WO2002044777A1 - Compensateur de phase thermo-optique a consommation reduite - Google Patents

Compensateur de phase thermo-optique a consommation reduite Download PDF

Info

Publication number
WO2002044777A1
WO2002044777A1 PCT/AU2001/001521 AU0101521W WO0244777A1 WO 2002044777 A1 WO2002044777 A1 WO 2002044777A1 AU 0101521 W AU0101521 W AU 0101521W WO 0244777 A1 WO0244777 A1 WO 0244777A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide structure
planar
layer
buffer layer
thermo
Prior art date
Application number
PCT/AU2001/001521
Other languages
English (en)
Inventor
Michael Bazylenko
Original Assignee
Redfern Integrated Optics Pty. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Redfern Integrated Optics Pty. Ltd. filed Critical Redfern Integrated Optics Pty. Ltd.
Priority to AU2002223279A priority Critical patent/AU2002223279A1/en
Publication of WO2002044777A1 publication Critical patent/WO2002044777A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded

Definitions

  • the present invention relates to a the ⁇ no-optic planar waveguide device, and to a method of fabricating such a device.
  • thermo-optic devices which use the thermo-optic effect are typically fabricated on a silicon wafer substrate and incorporate a thin film heater for temporarily changing the refractive index of some portion of the optical device.
  • thermo-optic device is the Mach-Zehnder interferometer, which comprises an optical splitter device to split an input signal into two separate signals, each of which follows a different optical path to a second coupler, which couples the output into one of two output waveguides depending on the phase difference between the signals in the two optical paths.
  • the waveguides forming the optical paths are identical in length.
  • a phase difference between the signals of each of the branches is achieved by varying the refractive index of the waveguide comprising one of the branches of the interferometer through heating or the like, thereby changing the optical path length along that branch, resulting in a phase difference in the signals at the second coupler.
  • the key problems with applying heat to an optical waveguide core in an integrated optical device are heat dissipation and heat conductivity within the device and substrate.
  • the heat conductivity of the part of the device surrounding the waveguide core means that heat applied by the thin film heater is dissipated into the substrate and the surrounding areas of the device. This forces the heater to continuously supply large amounts of energy in order to achieve the desired amount of heating of the waveguide core.
  • heat which is dissipated into the substrate can be problematic for other parts of the optical device or nearby optical components, especially where thermo- optic switch units are integrated close to one another.
  • a further problem associated with heat dissipation is that the waveguide core must be able to be cooled as well as heated in order to enable a thermo-optic device to function.
  • any residual heat remaining in the waveguide core or surrounding material can reduce the degree to which the path length can be changed, which can in turn hamper switching capability.
  • thermo-optic devices which provide desirable heat dissipation and thermal conductivity characteristics.
  • a photonic planar waveguide structure having a thermo-optic effect comprising: an optical buffer layer formed on a substrate; and an electromagnetic-radiation-guiding region formed on the buffer layer, wherein the buffer layer incorporates a planar gap in which solid material has been removed, the gap extending at least part-way between the radiation-guiding region and the substrate, and being arranged to enhance thermal isolation of the radiation-guiding region from the substrate.
  • the planar gap is disposed substantially parallel to the substrate.
  • the gap may be evacuated, or may be filled with a moisture-free gas or mixture of gases.
  • the planar gap may have been formed by anisotropically etching the buffer layer to sacrificially remove predetermined portions of the buffer layer.
  • the predetermined portions may comprise at least a part of a sacrificial layer of material incorporated within the buffer layer.
  • the sacrificial layer of material may be composed substantially of amorphous silicon.
  • the buffer layer material surrounding the planar gap may be composed of a silica-based material.
  • the buffer layer further comprises a supporting structure which bridges a section of the planar gap and maintains a thickness of the gap.
  • the supporting structure has a size selected to provide a predetermined degree of thermal isolation from the substrate.
  • the waveguide structure may further comprise a cladding layer formed over the guiding region.
  • the waveguide structure may further comprise a heating device in thermal communication with the guiding region for controlling the thermo-optic effect.
  • thermo-optic photonic waveguide structure comprising the steps of: forming an optical buffer layer on a planar substrate, the buffer layer incorporating a planar sacrificial layer disposed substantially parallel to the substrate; forming an electromagnetic-radiation-guiding region on the buffer layer, the guiding region having a thermo-optic effect; selectively etching at least a part of the sacrificial layer so as to form a planar gap between the guiding region and the substrate for enhancing thermal . isolation of the guiding region from the substrate.
  • the step of forming the buffer layer may comprise: depositing a first layer upon the substrate; depositing the sacrificial layer upon the first layer; and depositing a second layer upon the sacrificial layer.
  • the first and second layers may be composed of a silica-based material.
  • the sacrificial layer may be composed of amorphous silicon.
  • the first layer, second layer and sacrificial layer each have a thickness selected to produce predetermined optical and thermal characteristics in the waveguide structure.
  • the method may further comprise a step of forming a heating device in thermal communication with the waveguide structure for controlling the thermo-optic effect of the waveguide structure.
  • thermo-optic photonic switching device incorporating a planar waveguide structure in accordance with the first aspect of the invention.
  • the present invention also provides a thermo-optic photonic switching device incorporating a planar waveguide structure fabricated in accordance with the second aspect of the invention.
  • Fig. 1 shows a cross-sectional view of a prior art design for a photonic device operating on the thermo-optic effect
  • Fig. 2 shows a cross-sectional view of an early stage in the fabrication process for a device operating on the thermo-optic effect in accordance with an embodiment of the invention
  • FIG. 3 shows a cross-sectional view of a subsequent stage in the fabrication of the device shown in Fig. 2;
  • Fig. 4 shows a cross sectional view of the completed device of Figs. 2 and 3;
  • Fig. 5 shows an embodiment of the invention in which the device comprises a Mach-Zehnder interferometric switch.
  • Fig. 6 shows an embodiment of the invention being used for optical path length trimming in an optical device.
  • Fig. 1 shows a sectioned view of a prior art device 10 which operates on the thermo-optic effect.
  • the device 10 comprises a silicon substrate 20, on top of which is fabricated an electromagnetic-radiation-guiding region in the form of a silica-based channel-geometry waveguide core 30.
  • the core 30 is surrounded by a lower refractive index silicon dioxide structure comprising an optical buffer layer 40 between the core 30 and substrate 20, and a cladding layer 50.
  • a thin film heating element 60 is formed above the silica waveguide 30, on an upper surface of the sihcon dioxide cladding layer 50. Suitable methods of fabricating a thin film heating element will be known to a person skilled in the art.
  • the device 10 as described above should be able to apply heat to the waveguide core 30 without allowing heat to be conducted in the silicon substrate 20.
  • the buffer layer 40 does not provide adequate thermal resistance between the heated core 30 and the substrate 20.
  • FIG. 2 an embodiment a device 210 incorporating a waveguide structure according to an embodiment of the invention is shown in an early stage of fabrication.
  • the device 210 is fabricated on a silicon wafer substrate 220 and comprises a radiation-guiding region in the form of a thermo-optic channel-geometry waveguide core 230 formed between a buffer layer 240 and a cladding layer 250.
  • a heating element 260 is formed on the cladding layer 250 as described in connection with the prior art above.
  • the buffer layer 240 initially comprises a first layer 270 which is formed directly on top of the substrate 220, a sacrificial layer 280 formed on the first layer 270, and a second layer 290 formed on top of the sacrificial layer 280.
  • the first and second layers 270, 290 of the buffer layer are both composed of silicon dioxide and the sacrificial layer 280 is composed of amorphous silicon (a-Si).
  • the first and second layers 270, 290 can include one or more dopants or could be composed of a different material altogether.
  • the buffer layer 240 is composed of materials which enable the sacrificial layer 280 to be etched in preference to the first and second layers 270, 290.
  • the device 210 is shown at a later stage of its fabrication. Two channels
  • the sacrificial layer 280 is partially etched away using the channels 320, 330 as access sites, thereby creating planar gaps 410, 420 between the first and second layers 270, 290.
  • a small section 340 of the sacrificial layer 280 is left unetched below the second layer in order to provide a supporting structure.
  • the supporting structure 340 bridges the gap between the first and second layers 270, 290 by the thickness of the sacrificial layer and thereby maintains the thickness of the planar gaps 410, 420.
  • the sacrificial layer 280 is etched using an anisotropic etching process which etches amoiphous silicon in preference to the silicon dioxide in the first and second layers.
  • the planar gaps 410, 420 enhance the thermal isolation of the waveguide core 230 from the substrate 220.
  • the channels 300, 310 and planar gaps 410, 420 may be filled with a moisture-free gas such as air, nitrogen or a noble gas. Alternatively, the channels 300, 310 and gaps 410, 420 may be evacuated.
  • an easily-etched sacrificial layer in this case an a-Si layer 280, allows better control of the undercutting process than using an isotropic etch process to remove part of the substrate.
  • Further advantages of incorporating a sacrificial layer within the buffer layer are listed below. • The thickness of the a-Si layer can be chosen to easily control the thickness of the planar gap.
  • the thickness of the second layer (the distance between the waveguide core and the sacrificial layer) can be made small, thereby reducing the etch depth prior to undercutting. This results in a reduction in etch time in comparison to etching all the way down to the substrate.
  • the etching process used to remove the sacrificial layer is faster and uses a lower etchant concentration than the etching process required to perform an isotropic etch on the substrate.
  • the sacrificial layer can be made very thin and is transparent in to infra-red light.
  • thermo-optic device 210 is substantially thermally insulated from the substrate 220 and surrounding regions 320, 330 by the gaps 410, 420 and channels 300, 310.
  • thermo-optic device can provide the following benefits: the thin film heater 260 can provide a reduced amount of thermal energy in order to provide the desired amount of refractive index change in waveguide 230 as substantially less heat will be conducted in the substrate and surrounding parts of the optical device; adjacent areas of the optical device will remain substantially unaffected by the heat applied by thin film heater 260 and thus the optical device will operate as intended; the reduced thermal energy input into the optical device 210 may allow more rapid cooling of the waveguide core 230, thereby reducing the cycle time required to heat and cool the thermo-optic device 210.
  • the reduction in thermal energy discussed above means that a reduction in power can be achieved while still producing a similar optical path length change.
  • a 0.5 W heater will be used to effect a ⁇ phase change in the optical path length of a waveguide, whereas when using an embodiment of the present invention the power consumption of the heater can be reduced to between 100 to 150 mW while maintaining an acceptable switching time of around 10ms.
  • Fabrication stresses and mechanical stresses caused by differential heating can cause changes in the refractive index of the device, birefringence, and other undesirable properties in an integrated optical device.
  • the provision of air gaps between adjacent waveguides and/or thermo-optic devices reduces the mechanical stresses on the waveguides by localising heating and allowing differential expansion of parts of the device without increasing mechanical stress in neighbouring parts of the device.
  • the present invention can also reduce refractive index variations caused by mechanical stress.
  • Fig. 5 shows an embodiment of the invention in which the device 210 shown in Fig. 4 is integrated into a Mach-Zehnder interferometer-type optical switch 500.
  • the optical switch 500 includes two optical waveguide inputs, 510, 520 which converge in an optical coupler 530. Emerging from the optical coupler 530 are two equal-length branches 540, 550 of the interferometer. Branch 540 has no heating device attached to it and thus no optical path length change can be produced in this branch of the switch 500.
  • Branch 550 of the switch 500 additionally has a thermo-optic device 210 according to an embodiment of the invention.
  • the heating element 260 of the thermo-optic device 210 has two electrical connections, 610, 620 which are connected to suitable electrical control (not shown).
  • the access channels 310, 330 can be seen either side of the heating element 260.
  • heat dissipation must occur through the ends 660, 670 or via the narrow a-Si support.
  • this controlled heat dissipation may be particularly advantageous when a thermo-optic device must be mounted closely adjacent to another optical device within an integrated optical system.
  • an optical path length difference between the two branches 540, 550 of switch 500 can be altered by application of heat to the branch 550 by thin film heater 260, thereby achieving a selective coupling of the output signal into either one of the two output waveguides 690, 700.
  • triming Changing the optical pathlength of a waveguide by changing the refractive index of part of the optical path within an integrated optical device is termed "trimming".
  • Trimming can be used to create accurate post-fabrication pathlength adjustments in order to increase the fabrication yield of integrated optical devices when precise optical pathlengths (or optical pathlength differences) are required.
  • Thermo-optic waveguide structures of the type shown in Fig. 4 can be used to trim a section of a larger planar waveguide.
  • Fig. 6 shows a planar optical device 600 including input 610 into which an optical signal comprising four input wavelengths ⁇ i to ⁇ 4 is launched.
  • the device 600 further includes a star coupler 660 which splits the optical signal power into four substantially- equal portions which propagate along the phase array section 662 - 668, and arrive at a second star coupler 680 with certain phase differences induced by different optical path lengths in the arms 662-668 of the phase array.
  • the second star coupler 680 outputs each wavelength ⁇ i to ⁇ 4 into a separate output channel 620 - 650, respectively.
  • the waveguides 662, 664, 666, 668 have respective trimming heaters 670, 672, 674, 676 formed above each waveguide so as to provide output control for the overall arrangement.
  • the waveguide structure below each heater 670, 672, 674, 676 is of the type shown in Fig. 4 to minimise thermal cross-talk between waveguides.
  • thermo-optic heaters 670, 672, 674, 676 on each of the waveguides 662 to 668 can be used to trim the optical pathlengths of the waveguides 662 to 668.
  • a permanent change in the reflective index of the heated waveguides is achieved which in turn results in a change in the optical pathlength of the waveguide.
  • the optical pathlength of each waveguide 662 to 668 can be adjusted to correct fabrication defects.
  • low temperature deposition techniques are utilised to fabricate the overall device.
  • Suitable low temperature fabrication techniques can include those set out in United States Patent No. 6, 154,582 by Bazylenko et al. entitled “Fabrication of Silica-Based Optical Devices and Opto-Electronic Devices", the contents of which are incorporated by cross-reference.
  • Low temperature techniques in conjunction with heat confinement provide many advantageous effects. For example, low-temperature-deposited-materials are often more highly responsive to heating or the like and therefore allows for rapid trimming of devices. Further, low temperature deposition often also results in low temperature trimming. Utilising the aforementioned deposition process, trimming at about 450 degrees Celsius was found to occur. Further, low temperature deposition does not require the high temperature annealing which may affect the operating parameters of devices Integrated optical devices can be fabricated by manufacturing a multiplicity of such devices on a silicon wafer. The silicon wafer is then diced to produce individual devices.
  • the above method of trimming has substantial advantages as the trimming can occur at elevated temperatures and the induced refractive index change is stable and does not need to be separately stabilised by additional annealing as in the case of UN trimming.
  • the effect of the heating of the waveguide will also be localised more effectively by using an embodiment of the present invention thereby reducing the possibility that neighbouring waveguides will be affected by the process of trimming one particular waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

L'invention concerne une structure de guide d'ondes photonique plane à effet thermo-optique. En mode de réalisation préféré., la structure comprend un noyau de guide d'ondes établi sur une couche optique tampon dans laquelle on trouve un intervalle plan qui, débarrassé de son matériau solide, améliore l'isolation thermique entre le noyau et le substrat. Pour créer l'intervalle considéré, on établit la couche tampon de manière à lui incorporer une couche sacrifiée, l'opération consistant ensuite de préférence à attaquer cette couche sacrifiée pour l'éliminer. Ladite couche sacrifiée est constituée de silicium amorphe, et le matériau de la couche tampon entourant l'intervalle est à base de silice. La présence de la couche sacrifiée permet de contrôler avec soin la taille et l'emplacement de l'intervalle.
PCT/AU2001/001521 2000-11-28 2001-11-23 Compensateur de phase thermo-optique a consommation reduite WO2002044777A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002223279A AU2002223279A1 (en) 2000-11-28 2001-11-23 Thermo-optic phase shifter with reduced power consumption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPR1743 2000-11-28
AUPR1743A AUPR174300A0 (en) 2000-11-28 2000-11-28 Thermo optical phase shifter with reduced power consumption

Publications (1)

Publication Number Publication Date
WO2002044777A1 true WO2002044777A1 (fr) 2002-06-06

Family

ID=3825780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2001/001521 WO2002044777A1 (fr) 2000-11-28 2001-11-23 Compensateur de phase thermo-optique a consommation reduite

Country Status (2)

Country Link
AU (2) AUPR174300A0 (fr)
WO (1) WO2002044777A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246547A1 (de) * 2002-09-30 2004-04-29 Infineon Technologies Ag Brechungsindexgitter und Modenkoppler mit einem Brechugsindexgitter
WO2005001558A1 (fr) * 2003-06-19 2005-01-06 Intel Corporation Dispositifs optiques isolants thermiques
EP1536275A1 (fr) * 2003-11-25 2005-06-01 Nec Corporation Circuit optique à plusieurs canaux interféromètres Mach-Zehnder thermo-optiques et moyens pour réduire un échange de chaleur entre interféromètres adjacents
EP1540722A2 (fr) * 2002-08-16 2005-06-15 Sarnoff Corporation Dispositifs photoniques et circuits photoniques integres comprenant des structures d'essai sacrificielles et procedes de production de ceux-ci
EP1557702A2 (fr) * 2004-01-20 2005-07-27 E.I. du Pont de Nemours and Company Interconnecteur à grand nombre de ports composé d'une matrice de commutation planaire, strictement non bloquante et à contrast d'indice très élevé.
WO2006012141A1 (fr) * 2004-06-29 2006-02-02 E.I. Dupont De Nemours And Company Matrice de brassage a grand nombre d'acces, strictement non bloquante, plane, a difference relative d'indice ultra-elevee
EP1841023A3 (fr) * 2006-03-30 2007-10-10 Eudyna Devices Inc. La température reglant la longueur d'onde d'une diode de laser par le chauffage
WO2010117701A2 (fr) 2009-03-31 2010-10-14 Oracle America, Inc. Formerly Known As Sun Microsystems, Inc. Dispositif optique avec impédance thermique élevée
JP2015519618A (ja) * 2012-06-15 2015-07-09 マイクロン テクノロジー, インク. フォトニックデバイスを断熱する方法および装置
JP2018092016A (ja) * 2016-12-05 2018-06-14 日本電信電話株式会社 光部品
US20190086764A1 (en) * 2016-05-04 2019-03-21 Huawei Technologies Co., Ltd. Optical switch
JP2019159158A (ja) * 2018-03-14 2019-09-19 古河電気工業株式会社 光導波路構造及びその製造方法
CN113485033A (zh) * 2018-02-21 2021-10-08 洛克利光子有限公司 光电装置
GB2595588A (en) * 2018-02-21 2021-12-01 Rockley Photonics Ltd Optoelectronic device
FR3111997A1 (fr) * 2020-06-29 2021-12-31 Soitec Procede de fabrication d’un composant thermo-optique
US11262603B2 (en) 2019-06-13 2022-03-01 Rockley Photonics Limited Multilayer metal stack heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837352A2 (fr) * 1996-10-21 1998-04-22 Siemens Aktiengesellschaft Corps semi-conducteur, muni d'un élement de chauffage, pour la modulation de la lumière
GB2320104A (en) * 1997-10-16 1998-06-10 Bookham Technology Ltd Thermally isolated silicon layer
JP2000206476A (ja) * 1999-01-18 2000-07-28 Kyocera Corp 温度制御型光導波路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837352A2 (fr) * 1996-10-21 1998-04-22 Siemens Aktiengesellschaft Corps semi-conducteur, muni d'un élement de chauffage, pour la modulation de la lumière
GB2320104A (en) * 1997-10-16 1998-06-10 Bookham Technology Ltd Thermally isolated silicon layer
JP2000206476A (ja) * 1999-01-18 2000-07-28 Kyocera Corp 温度制御型光導波路

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1540722A2 (fr) * 2002-08-16 2005-06-15 Sarnoff Corporation Dispositifs photoniques et circuits photoniques integres comprenant des structures d'essai sacrificielles et procedes de production de ceux-ci
EP1540722A4 (fr) * 2002-08-16 2005-10-26 Sarnoff Corp Dispositifs photoniques et circuits photoniques integres comprenant des structures d'essai sacrificielles et procedes de production de ceux-ci
DE10246547A1 (de) * 2002-09-30 2004-04-29 Infineon Technologies Ag Brechungsindexgitter und Modenkoppler mit einem Brechugsindexgitter
DE10246547B4 (de) * 2002-09-30 2008-05-15 Finisar Corp., Sunnyvale Brechungsindexgitter und Modenkoppler mit einem Brechungsindexgitter
US6975795B2 (en) 2002-09-30 2005-12-13 Finisar Corporation Refractive index grating, and mode coupler having a refractive index grating
WO2005001558A1 (fr) * 2003-06-19 2005-01-06 Intel Corporation Dispositifs optiques isolants thermiques
WO2005006063A1 (fr) * 2003-06-19 2005-01-20 Intel Corporation Dispositifs optiques a isolation thermique
US7228019B2 (en) 2003-11-25 2007-06-05 Nec Corporation Multi-channel Mach-Zehnder interferometer type optical circuits for restraining heat interference of adjacent channel
EP1536275A1 (fr) * 2003-11-25 2005-06-01 Nec Corporation Circuit optique à plusieurs canaux interféromètres Mach-Zehnder thermo-optiques et moyens pour réduire un échange de chaleur entre interféromètres adjacents
CN100338503C (zh) * 2003-11-25 2007-09-19 日本电气株式会社 抑制相邻信道热干扰的多信道马赫-策德尔干涉仪型光电路
EP1557702A3 (fr) * 2004-01-20 2005-08-24 E.I. du Pont de Nemours and Company Interconnecteur à grand nombre de ports composé d'une matrice de commutation planaire, strictement non bloquante et à contrast d'indice très élevé.
EP1557702A2 (fr) * 2004-01-20 2005-07-27 E.I. du Pont de Nemours and Company Interconnecteur à grand nombre de ports composé d'une matrice de commutation planaire, strictement non bloquante et à contrast d'indice très élevé.
WO2006012141A1 (fr) * 2004-06-29 2006-02-02 E.I. Dupont De Nemours And Company Matrice de brassage a grand nombre d'acces, strictement non bloquante, plane, a difference relative d'indice ultra-elevee
US8563991B2 (en) 2006-03-30 2013-10-22 Eudyna Devices Inc. Optical semiconductor device, laser chip and laser module
US8101957B2 (en) 2006-03-30 2012-01-24 Eudyna Devices Inc. Optical semiconductor device, laser chip and laser module
EP1841023A3 (fr) * 2006-03-30 2007-10-10 Eudyna Devices Inc. La température reglant la longueur d'onde d'une diode de laser par le chauffage
WO2010117701A2 (fr) 2009-03-31 2010-10-14 Oracle America, Inc. Formerly Known As Sun Microsystems, Inc. Dispositif optique avec impédance thermique élevée
WO2010117701A3 (fr) * 2009-03-31 2010-11-25 Oracle America, Inc. Formerly Known As Sun Microsystems, Inc. Dispositif optique avec impédance thermique élevée
CN102414600A (zh) * 2009-03-31 2012-04-11 甲骨文美国公司 具有大热阻抗的光学器件
US9310552B2 (en) 2012-06-15 2016-04-12 Micron Technology, Inc. Methods and apparatus providing thermal isolation of photonic devices
JP2015519618A (ja) * 2012-06-15 2015-07-09 マイクロン テクノロジー, インク. フォトニックデバイスを断熱する方法および装置
US11217737B2 (en) 2012-06-15 2022-01-04 Micron Technology, Inc. Methods and apparatus providing thermal isolation of photonic devices
US10777722B2 (en) 2012-06-15 2020-09-15 Micron Technology, Inc. Methods and apparatus providing thermal isolation of photonic devices
US20190086764A1 (en) * 2016-05-04 2019-03-21 Huawei Technologies Co., Ltd. Optical switch
EP3441817A4 (fr) * 2016-05-04 2019-07-10 Huawei Technologies Co., Ltd. Commutateur optique
US10481466B2 (en) 2016-05-04 2019-11-19 Huawei Technolgies Co., Ltd. Optical switch
JP2018092016A (ja) * 2016-12-05 2018-06-14 日本電信電話株式会社 光部品
US11209678B2 (en) 2018-02-21 2021-12-28 Rockley Photonics Limited Optoelectronic device
GB2595588A (en) * 2018-02-21 2021-12-01 Rockley Photonics Ltd Optoelectronic device
CN113485033A (zh) * 2018-02-21 2021-10-08 洛克利光子有限公司 光电装置
GB2595588B (en) * 2018-02-21 2022-08-31 Rockley Photonics Ltd Optoelectronic device
US11815748B2 (en) 2018-02-21 2023-11-14 Rockley Photonics Limited Optoelectronic device
JP2019159158A (ja) * 2018-03-14 2019-09-19 古河電気工業株式会社 光導波路構造及びその製造方法
JP7051505B2 (ja) 2018-03-14 2022-04-11 古河電気工業株式会社 光導波路構造及びその製造方法
US11262603B2 (en) 2019-06-13 2022-03-01 Rockley Photonics Limited Multilayer metal stack heater
FR3111997A1 (fr) * 2020-06-29 2021-12-31 Soitec Procede de fabrication d’un composant thermo-optique
WO2022003270A1 (fr) * 2020-06-29 2022-01-06 Soitec Procede de fabrication d'un composant thermo-optique

Also Published As

Publication number Publication date
AU2002223279A1 (en) 2002-06-11
AUPR174300A0 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
WO2002044777A1 (fr) Compensateur de phase thermo-optique a consommation reduite
JP2599488B2 (ja) 光導波回路の特性調整方法およびその方法に使われる光導波回路
Lai et al. Low-power compact 2× 2 thermooptic silica-on-silicon waveguide switch with fast response
US7565038B2 (en) Thermo-optic waveguide apparatus
JP4078898B2 (ja) 熱光学位相シフタ及びその製造方法
Chong et al. Tuning of photonic crystal waveguide microcavity by thermooptic effect
US6847750B1 (en) Thermo-optical waveguide switch
US8150218B2 (en) Thermo-optical phase shifter
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
WO2008047634A1 (fr) Déphaseur thermo-optique et procédé de production de celui-ci
JP2009020356A (ja) シリコン構造体
Xia et al. Low power 2× 2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching
WO2004005988A1 (fr) Compensation thermique de guides d'ondes par noyau de matiere dual
US6415066B1 (en) Thermally isolated silicon layer
JP4638749B2 (ja) 熱光学位相変調器及びその製造方法
KR100326046B1 (ko) 열광학 스위치 및 그 제작방법
US6678454B2 (en) Birefringence-free passive optical component
Lai et al. Tunable wavelength-selection switch and multiplexer/demultiplexer based on asymmetric silica-on-silicon Mach-Zehnder interferometer
JPH0534525A (ja) 光回路
Zhang-Tao et al. Fabrication of thermo-optic switch in silicon-on-insulator
Qing et al. Low power-consumption and high response frequency thermo-optic variable optical attenuators based on silicon-on-insulator materials
WO2004005987A1 (fr) Compensation thermique de guides d'ondes par coeur a deux materiaux
WO2002012951A3 (fr) Commutateur optique de guide d'ondes planaire et procede de fabrication correspondant
JP2001222034A (ja) 干渉型熱光学光部品
Xie et al. Proposal and design of sub-mW and high-speed polymer thermo-optic switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP