WO2002043454A1 - Plasma-pulver-schweissbrenner - Google Patents

Plasma-pulver-schweissbrenner Download PDF

Info

Publication number
WO2002043454A1
WO2002043454A1 PCT/EP2001/013392 EP0113392W WO0243454A1 WO 2002043454 A1 WO2002043454 A1 WO 2002043454A1 EP 0113392 W EP0113392 W EP 0113392W WO 0243454 A1 WO0243454 A1 WO 0243454A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
plasma
welding torch
channel
cross
Prior art date
Application number
PCT/EP2001/013392
Other languages
English (en)
French (fr)
Inventor
Eckhart KRÄMER
Stefan Giessler
Original Assignee
Alexander Binzel Schweisstechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alexander Binzel Schweisstechnik Gmbh & Co. Kg filed Critical Alexander Binzel Schweisstechnik Gmbh & Co. Kg
Priority to AT01995642T priority Critical patent/ATE281754T1/de
Priority to DE50104432T priority patent/DE50104432D1/de
Priority to EP01995642A priority patent/EP1336328B1/de
Publication of WO2002043454A1 publication Critical patent/WO2002043454A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/324Devices for supplying or evacuating a shielding or a welding powder, e.g. a magnetic powder

Definitions

  • the invention relates to a plasma powder welding torch with at least one plasma nozzle, a powder feed tube and a plurality of powder guide channels surrounding the plasma nozzle.
  • Plasma welding torches are used in many technical applications for joining or cladding. If the addition of additional material is required for the respective application, this is added in the form of wire, rods or as a powder.
  • the powdery additional material is added using various devices that are individually tied to the design specifications of the burner used.
  • the powder is transported from a storage container to the welding torch using a carrier gas.
  • the powder with the carrier gas stream emerges from openings, which can be designed differently, and thus reaches the welded weld pool. There it is liquefied due to the thermal effect of the plasma transfer arc and mixes with the molten metal of the base material. This leads to the desired increase in volume of the molten metal bath.
  • the solidification of the melt creates the connection or application bead.
  • a very simple method is to add the powder by using a separate tube that is separate from the burner and located underneath the burner tip is attached.
  • the powder is blown out of the tube into the weld pool at a flat angle in front of the burner.
  • a corresponding device is previously known from DE PS 1 193 324.
  • the device there is not a welding torch, but rather is designed for a somewhat different working method, namely the powder flame.
  • a disadvantage of using such separate powder feeds when welding is that the tube / burner constellation must first be optimized for each application. By blowing from a single direction, the torch position and the welding direction are often fixed.
  • Another disadvantage is the interference geometry associated with tube assembly, which leads to accessibility problems with complex geometries to be welded.
  • a plasma torch for coating base materials with powdery filler materials is known with a feed gas nozzle which has a feed gas nozzle channel for supplying the feed gas stream transporting the powder particles.
  • the conveying gas nozzle channel has a section with a tapering cross-section in the flow direction, which causes an increase in the conveying gas or powder speed in the mouth region of the conveying gas nozzle channel and thus the risk of droplet formation of the powder in the nozzle channel should be avoided even with a relatively large coupling angle of the conveying gas flow.
  • a welding torch is known in which the powder emerges through a hole in the lower side of the plasma anode and then falls into the molten bath.
  • a welding torch is known from DE 41 20 791 A1, in which the powder emerges through a plurality of powder guide channels on the lower side of the plasma anode and then reaches the weld pool in a plurality of jets. Such a device forms the preamble of claim 1.
  • the individual supply is often difficult due to the small space within the burner geometry. Therefore, one or two internal supply lines are sometimes used within the burner geometry, which expand into a cavity from which the individual outlet openings are supplied. If the position of the torch is changed outside the trough position, the individual holes are supplied unevenly due to the force of gravity that acts on the individual powder particles, which leads to asymmetries in the weld beads.
  • Another possibility of adding powder is realized by a powder nozzle arranged concentrically to the plasma nozzle. Here, the powder emerges through an annular gap and thus creates a tubular or funnel-shaped powder curtain. In this way, the powder is fed evenly in front of, behind and next to the plasma jet to the weld pool.
  • the known welding torch designs are only of limited suitability for manual welding in various positions or for the automated welding of three-dimensional contours with welding robots, in which the uniform direction and position-independent introduction of the powdered welding additive into the weld pool determines the quality, which has led to " that. these applications remained limited to a few possible uses.
  • the constructive difficulties lie in the leadership, the redirection and the Even distribution of the powder-transporting gas flow inside and outside the burner geometry.
  • the object of the invention is therefore to propose a plasma powder welding torch in which the additional powder is transported evenly into the weld pool. It is important that the powder, regardless of the current welding direction and irrespective of the position of the torch, reaches the molten pool evenly and without major scattering losses.
  • a welding torch in which the cross section of the powder feed system from the powder feed tube to the powder guide channels is selected such that the most uniform possible powder introduction is achieved regardless of the position of the torch.
  • the burner-internal guidance of the powder-carrying gas stream is therefore optimized as much as possible, so that the powder guide channels which are at the rear in the flow direction receive as much powder as the ones lying at the front. Likewise, when the burner is tilted, the upper channels receive as much powder as the lower ones.
  • the construction can be carried out in such a way that, for example, the cross-sectional areas of the lines which belong to the powder supply system and are used to guide the fluid (powder plus carrier gas flow) are kept largely constant.
  • This principle is, as far as possible, from the exit of the fluid from the conveying device to the exit of the powder from the individual powder guide channels arranged concentrically to the plasma arc Powder nozzles held out.
  • the cross section of the powder feed tube thus corresponds approximately to the sum of the cross sections of the individual powder guide channels.
  • the cross sections should preferably not differ from one another by more than 20%.
  • the cross section of the distribution channel is also reduced approximately by the cross section of each individual branching channel.
  • the design of the powder feed system according to the invention is optimized in terms of fluid dynamics and is relatively narrow, so that there are no dead spaces in which powder particles could be deposited.
  • the powder stream is divided evenly into a number of partial streams as soon as it enters the burner body.
  • Flow-favorable distributors or branches of a stronger pipe into several weaker pipes are both from biology (veins in the bloodstream, branches in trees) and from technology (exhaust manifolds or downpipes of sports engines - however, there is the kinematic reversal of the equal association of several individual pipes in a common one Tailpipe before) known.
  • a concentrically extending channel is provided which surrounds the actual plasma channel in an annular manner and from which the powder guide channels branch off in the direction of the burner tip. This channel is used to distribute the powder from the powder feed tube to the individual powder guide channels.
  • the cross section of the channel now tapers from the powder feed tube to the last channel operated.
  • two or more tapering distribution channels are provided which connect the individual powder guide channels to the powder feed tube. Also here the distribution channels are again provided with a decreasing cross-section, so that the flow velocity remains approximately constant. Two or more distribution channels instead of one have the advantage of the shorter distances from the powder inlet to the powder guide channels that deliver the powder. Two distribution channels are preferred, one serving the left powder guide channels running on the left around the plasma nozzle and the other one running on the right around the plasma nozzle.
  • a second ring channel which runs closer to the nozzle tip and runs horizontally, is also provided, which connects the individual powder guide channels with one another within their course in the direction of the nozzle tip.
  • a reduction in the powder outlet speed is achieved through this second circulating channel.
  • the entire cross-sectional area of the powder outlet openings on the underside of the nozzle is preferably also changed accordingly, in particular expanded, in order to achieve a reduction in the flow rate. The reason for this is to avoid blowing the weld pool apart.
  • the burner's internal fluid flow enables targeted, low-leakage introduction of powdered filler materials into the weld pool.
  • the torch body is guaranteed to have a uniform powder outlet from the powder nozzle holes. This is favorable for automated, direction-independent welding.
  • the flow velocity is kept approximately constant and there is no enrichment or thinning of individual partial volume flows with powder particles.
  • the kinetic energy which is transferred from the gas flow to the powder particles is large enough to guide the powder particles through the burner almost unaffected by gravitational forces. This in turn has the effect that the powder quantities emerging from the individual powder openings are always almost identical to one another, regardless of the position and position of the burner. If the powder outlet speed is too high for certain applications, the outlet speed can be reduced by widening the cross-sectional area of the outlet openings by enlarging the openings or by increasing their number.
  • the single figure shows a developed representation of the powder feed system in a burner according to the invention.
  • the powder feed pipe 1 is shown as a fluid feed line into the burner body 2.
  • Reference number 3 designates the distribution channel, which is drawn here to run straight because of the development, but in reality surrounds the actual plasma nozzle as a ring and runs horizontally. It can also be seen that the distributor channel 3 has a relatively large diameter on its inlet side when the fluid is being fed in, while its cross section continues to decrease in the further course. This distribution channel 3 is closed several
  • Powder guide channels 4 as branches, all of which lead to a powder nozzle 5.
  • This powder nozzle 5 has as many powder outlet openings 6 as channels 4 are provided.
  • an annular channel 7 is additionally provided, which connects all the individual channels 4 to one another and is provided to reduce the fluid velocity.
  • Such a ring channel 7 can also be used in particular when the number of individual powder guide channels 4 is a different number of powder outlet openings 6. In this case, the ring channel 7 smoothes the flow of the powder.
  • powder is passed from its propellant or carrier gas through the powder feed pipe 1 to point A of the burner body 2.
  • the powder enters the horizontally running annular distribution channel 3, which lies on the outer surface of the base body 2.
  • the channel 3 has approximately the same cross-section as the feed pipe 1.
  • the cross-sectional area of the channel 3 is continuously reduced in its course; to zero in the embodiment chosen here.
  • a number of powder guiding channels 4 of the same cross-sectional area in the present case six, branch off at regular intervals parallel to the burner axis.
  • care was taken to ensure that the total cross-sectional area of the powder guiding channels 4 branching off uniformly over the length of the channel 3 corresponds to the original cross-sectional area of the channel 3 at its beginning.
  • the number of powder outlet openings 6 can correspond to the number of vertical powder guide channels 4 to be fed. However, it can also differ from the number, in particular if an upstream annular channel 7 reduces the Powder exit speed is reached. In this case, the entire cross-sectional area is also
  • Powder outlet openings 6 on the underside of the powder nozzle 5 to change accordingly, so that a reduction in the flow rate is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Arc Welding In General (AREA)

Abstract

Die Erfindung betrifft einen Plasma-Pulver-Schweissbrenner mit mindestens einer Plasmadüse, einem Pulverzuführrohr (1) und mehreren die Plasmadüse umgebenden Pulverführungskanälen (4). Zur Vergleichmäßigung des Pulveraustrags auch bei unterschiedlichen Brennerstellungen ist vorgesehen, daß der Querschnitt des Pulverführungssystems (Verteilkanal 3, Pulverfürhrungskanale 4) optimiert ist.

Description

Bezeichnung : Plasma-Pulver-Schweißbrenner
Beschreibung
Die Erfindung betrifft einen Plasma-Pulver-Schweißbrenner mit mindestens einer Plasmadüse, einem Pulverzuführrohr und mehreren die Plasmadüse umgebenden Pulverführungskanälen.
Plasmaschweißbrenner werden in vielen technischen Anwendungen zum Verbindungs- oder Auftragschweißen eingesetzt. Ist für die jeweilige Anwendung die Zugabe von Zusatzmaterial erforderlich, wird dieses in Form von Draht, Stäbchen oder als Pulver zugegeben.
Die Zugabe des pulverförmigen Zusatzmaterials erfolgt in der Praxis über verschiedene Vorrichtungen, die individuell an die konstruktiven Vorgaben des jeweils verwendeten Brenners gebunden sind. Grundsätzlich wird das Pulver aus einem Vorratsbehälter mittels eines Trägergases zum Schweißbrenner hin transportiert. Aus Öffnungen, die verschieden gestaltet sein können, tritt das Pulver mit dem Trägergasstrom aus und gelangt so in das Schmelzschweißbad. Dort wird es aufgrund der thermischen Einwirkung des Plasmatransferlichtbogens verflüssigt und vermischt sich mit der Metallschmelze des Grundwerkstoffes. Dadurch kommt es zu der gewünschten Volumenvergrößerung des Metallschmelzbades. Durch die Erstarrung der Schmelze entsteht die Verbindungs- oder Auftragsraupe .
Eine sehr einfache Methode ist die Pulverzugabe durch ein eigenes, vom Brenner getrenntes Röhrchen, das seitlich unter der Brennerspitze angebracht ist. Aus dem Röhrchen wird das Pulver im flachen Winkel vor den Brenner in das Schweißbad geblasen. Eine entsprechende Vorrichtung ist aus der DE PS 1 193 324 vorbekannt. Die dortige Vorrichtung ist allerdings kein Schweißbrenner, sondern für ein etwas anderes Arbeitsverfahren, nämlich das Pulverflammen, ausgebildet. Nachteilig bei der Verwendung solcher getrennter Pulverzuführungen beim Schweißen ist, daß für jeden Anwendungsfall zunächst eine Optimierung der Konstellation Röhrchen/Brenner vorgenommen werden muß. Durch die Einblasung aus einer einzigen Richtung sind häufig die Brennerposition und die Schweißrichtung festgelegt. Ein weiterer Nachteil ist die mit der Röhrchenmontage bedingte Störgeometrie, die zu Zugänglichkeitsproblemen bei komplexen zu schweißenden Geometrien führt.
Aus der DE 40 30 541 C2 ist ein Plasmabrenner zur Beschichtung von Grundwerkstoffen mit pulverförmigen Zusatzwerkstoffen bekannt mit einer Fördergasdüse, welche einen Fördergasdüsenkanal für die Zuführung des die Pulverpartikel transportierenden Fördergasstromes aufweist. Der Fördergasdüsenkanal weist einen Abschnitt mit sich in Strömungsrichtung verjüngendem Querschnitt auf, wodurch eine Vergrößerung der Fördergas- bzw. Pulvergeschwindigkeit im Mündungsbereich des Fördergasdüsenkanals bewirkt und damit die Gefahr einer Tropfenbildung des Pulvers im Düsenkanal auch bei einem relativ großen Einkupplungswinkel des Fördergasstromes vermieden werden soll. Aus der DE 39 30 267 AI ist ein Schweißbrenner bekannt, bei dem das Pulver durch eine Bohrung an der unteren Seite der Plasmaanode austritt und dann in das Schmelzbad fällt.
Aus der DE 41 20 791 AI ist ein Schweißbrenner bekannt, bei dem das Pulver durch mehrere Pulverführungskanäle an der unteren Seite der Plasmaanode austritt und dann in mehreren Strahlen in das Schmelzbad gelangt. Eine solche Vorrichtung bildet den Oberbegriff des Anspruchs 1.
Bei diesen beiden Brennertypen hat es sich als nachteilig erwiesen, daß das Pulver wegen der hohen Temperatur im Bereich der Plasmadüse immer wieder an den Düsen festklebt und die Bohrungen nach und nach verstopfen. Schwierig gestaltet sich zudem die gleichmäßige Verteilung des Pulvers. Bei ein oder zwei Bohrungen können diese einzeln mit Pulver versorgt werden. Allerdings ist dann die Führungsrichtung des Brenners vorgegeben, da das Pulver entweder vor, hinter oder seitlich zum Plasmastrahl zugegeben werden muß.
Bei der Versorgung mehrerer Austrittsöffnungen ist die Einzelversorgung auf Grund des geringen Raumes innerhalb der Brennergeometrie oft schwierig. Deshalb werden innerhalb der Brennergeometrie manchmal ein oder zwei interne Versorgungsleitungen benutzt, die sich in einen Hohlraum erweitern, von dem aus die einzelnen Austrittsöffnungen versorgt werden. Bei Lageänderung des Brenners außerhalb der Wannenposition kommt es auf Grund der Schwerkraft, die auf die einzelnen Pulverpartikel wirkt, zur ungleichmäßigen Versorgung der einzelnen Bohrungen, was zu Asymmetrien in den Schweißraupen führt. Eine andere Möglichkeit der Pulverzugabe wird durch eine konzentrisch zur Plasmadüse angeordnete Pulverdüse realisiert. Hierbei tritt das Pulver durch einen Ringspalt aus und erzeugt so einen schlauch- oder trichterförmigen Pulvervorhang. Auf diese Weise wird das Pulver gleichmäßig vor, hinter und neben dem Plasmastrahl dem Schmelzbad zugeführt. Auch hierbei ist es problematisch, das Pulver aus einer oder zwei VersorgungsZuführungen des Brenners gleichmäßig auf den Ringquerschnitt zu verteilen. Dies wird bei den bestehenden Konstruktionen meist über eine Ringkammer realisiert, die am Ende der Versorgungsleitungen angeordnet ist und den sich anschließenden Spalt gleichmäßig mit Pulver versorgen soll. Sobald die Brennerachse aus der senkrechten Position in eine Schieflage gebracht wird, verlagert sich auf Grund der Schwerkraft in der Ringkammer der Pulveraustritt zur tiefsten Stelle hin. Das führt wiederum zu einem ungleichmäßigen Pulvereintrag in das Schweißbad, was sich in einer Asymmetrie der Schweißraupe widerspiegelt.
Speziell für das händische Schweißen in verschiedenen Positionen oder für das automatisierte Schweißen dreidimensionaler Konturen mit Schweißrobotern, bei denen die gleichmäßige richtungs- und lageunabhängige Einbringung des pulverförmigen Schweißzusatzes in das Schmelzbad qualitätsbestimmend ist, sind die bekannten Schweißbrennerkonstruktionen nur bedingt geeignet, was dazu geführt „hat, daß. diese Anwendungen auf wenige Einsatzmöglichkeiten begrenzt blieben. Die konstruktiven Schwierigkeiten liegen in der Führung, der Umlenkung und der gleichmäßigen Verteilung des pulvertransportierenden Gasstromes inner- und außerhalb der Brennergeometrie.
Aufgabe der Erfindung ist es daher, einen Plasma-Pulver- Schweißbrenner vorzuschlagen, bei dem das Zusatzpulver gleichmäßig in das Schweißbad transportiert wird. Dabei ist es wichtig, daß das Pulver unabhängig von der momentanen Schweißrichtung und unabhängig von der Brennerstellung gleichmäßig und ohne größere Streuverluste in das Schmelzbad gelangt.
Diese Aufgabe wird erfindungsgemäß gelöst von einem Schweißbrenner, bei dem der Querschnitt des Pulverzuführsystems von dem Pulverzuführrohr bis zu den Pulverführungskanälen so gewählt ist, daß unabhängig von der Brennerstellung eine möglichst gleichmäßige Pulvereinbringung erreicht wird. Bei der Erfindung wird die brennerinterne Führung des pulvertragenden Gasstromes also möglichst optimiert, so daß die in Flußrichtung hintersten Pulverführungskanäle ebensoviel Pulver erhalten wie die vorne liegenden. Ebenso erhalten bei gekipptem Brenner die oberen Kanäle soviel Pulver wie die unteren.
Konstruktiv kann dabei so vorgegangen werden, daß z.B. die Querschnittsflächen der Leitungen, die zum Pulverzuführsystem gehören und zur Führung des Fluids (Pulver plus Trägergasstrom) verwendet werden, weitestgehend konstant gehalten werden. Dieses Prinzip wird, soweit möglich, vom Austritt des Fluids aus der Fördervorrichtung bis zum Austritt des Pulvers aus den einzelnen konzentrisch zum Plasmalichtbogen angeordneten Pulverführungskanälen an den Pulverdüsen durchgehalten. Der Querschnitt des Pulverzuführrohrs entspricht also in etwa der Summe der Querschnitte der einzelnen Pulverführungskanäle. Dabei sollten die Querschnitte bevorzugt nicht mehr als 20% voneinander abweichen. Ist zwischen Pulverzuführrohr und den Pulverführungskanälen ein gemeinsamer Verteilkanal vorgesehen, von dem seriell die einzelnen Pulverführungskanäle abzweigen, so reduziert sich auch der Querschnitt des Verteilkanals ungefähr um den Querschnitt jedes einzelnen abzweigenden Kanals. Der Vorteil einer derartigen Fluidführung im Brenner liegt darin, daß die Strömungsgeschwindigkeiten des Fluids zu jeder Zeit und an jeder Stelle auf dem Weg von der Fördereinheit bis zum Schweißbad im wesentlichen konstant gehalten werden. Dadurch gibt es praktisch keine Verzögerung oder Beschleunigung des Volumenstromes, welche zur Anreicherung oder zur Verarmung einzelner Teilvolumenströme mit Pulverpartikeln führen würde. Das ist bei der Aufteilung des gesamten Fluidstromes, der von der Fördereinrichtung in den Brenner kommt, in Einzelströme, welche die Austrittsöffnungen der Pulverdüse versorgen, von entscheidender Bedeutung. Dabei ist zu berücksichtigen, daß die Beschleunigungskräfte, die im normalen Betrieb vom strömenden Trägergas auf die Pulverpartikel wirken, deutlich größer sind als die durch die Gravitation auf die Partikel wirkenden Kräfte.
Die erfindungsgemäße Auslegung des Pulverführsystems ist fluiddynamisch optimiert und relativ eng, so daß Toträume gar nicht auftreten, in denen sich Pulverpartikel ablagern könnten. In einer ersten Ausführung der Erfindung wird der Pulverstrom bereits beim Eintritt in den Brennerkörper gleichmäßig in eine Anzahl von Teilströmen aufgeteilt. Strömungsgünstige Verteiler oder Verzweigungen eines stärkeren Rohres in mehrere schwächere sind sowohl aus der Biologie (Adern im Blutkreislauf, Verästelungen in Bäumen) als auch aus der Technik (Auspuffkrümmer oder Hosenrohre von Sportmotoren - dort liegt allerdings die kinematische Umkehr der gleichberechtigten Vereinigung mehrerer Einzelrohre in ein gemeinsames Endrohr vor) bekannt. Durch die Verteilung des ankommenden Stromes in mehrere gleichberechtigte Ströme wird eine gleichmäßige Verteilung der Pulvermenge erreicht. Unabhängig von der Brennerhaltung tritt in allen Brennerstellungen gleichmäßig viel Pulver aus den einzelnen Kanälen.
In einer weiteren Ausführung der Erfindung ist ein konzentrisch verlaufender Kanal vorgesehen, der den eigentlichen Plasmakanal ringförmig umgibt und von dem aus die Pulverführkanäle in Richtung Brennerspitze abzweigen. Dieser Kanal dient der Verteilung des Pulvers vom Pulverzuführrohr auf die einzelnen Pulverführungskanäle. Erfindungsgemäß verjüngt sich nun der Querschnitt des Kanals vom Pulverzuführrohr bis zum letzten bedienten Kanal hin. Dadurch wird wieder die oben beschriebene erfindungsgemäße Idee des konstant gehaltenen Querschnitts vom Anfang des Zuführweges bis zu dem Ende in den Pulverführungskanälen erreicht.
In einer weiteren Ausführung der Erfindung sind zwei oder mehr sich verjüngende Verteilkanäle vorgesehen, die die einzelnen Pulverführungskanäle mit dem Pulverzuführrohr verbinden. Auch hier sind die Verteilkanäle wieder mit abnehmendem Querschnitt versehen, so daß die Flußgeschwindigkeit in etwa konstant bleibt. Zwei oder mehrere Verteilkanäle statt einem haben den Vorteil der kürzeren Wege vom Pulvereintritt bis zu den das Pulver abgebenden Pulverfuhrungskanalen. Bevorzugt sind zwei Verteilkanäle, wobei einer dann links um die Plasmadüse verlaufend die links liegenden und der andere rechts um die Plasmadüse verlaufend die restlichen, rechts liegenden Pulverführungskanäle bedient.
In einer weiteren Ausführung ist zusätzlich ein zweiter, näher an der Düsenspitze und horizontal verlaufender Ringkanal vorgesehen, der die einzelnen Pulverführungskanäle innerhalb ihres Verlaufes Richtung Düsenspitze miteinander verbindet. Durch diesen zweiten umlaufenden Kanal wird eine Verringerung der Pulveraustrittsgeschwindigkeit erreicht. Bevorzugt wird in diesem Fall auch die gesamte Querschnittsfläche der Pulveraustrittsöffnungen an der Unterseite der Düse entsprechend verändert, insbesondere erweitert, um eine Verringerung der Strömungsgeschwindigkeit zu erreichen. Der Grund hierfür ist, ein Auseinanderblasen des Schweißbades zu vermeiden.
Die Erfindung bietet folgende Vorteile:
Die brennerinterne Fluidführung ermöglicht eine gezielte und streuverlustarme Einbringung pulverförmiger Zusatzwerkstoffe in das Schweißschmelzbad.
Durch die frühe Aufteilung des Gesamtfluidstromes in mehrere Einzelströme und die symmetrische Führung dieser Ströme durch den Brennerkörper wird ein gleichmäßiger Pulveraustritt aus den Pulverdüsenbohrungen gewährleistet. Dies ist für ein automatisiertes, richtungsunabhängiges Schweißen günstig.
Durch die Reduzierung der Querschnittsfläche des Verteilkanals - bevorzugt jeweils um den Querschnitt der abzweigenden Einzelkanäle - wird die Strömungsgeschwindigkeit in etwa konstant gehalten und es kommt nicht zu einer Anreicherung oder Abmagerung einzelner Teilvolumenströme mit Pulverpartikeln.
Da die Gesamtquerschnittfläche beim Durchlauf durch den Brenner möglichst konstant gehalten wird, kommt es weder zu positiven noch zu negativen Beschleunigungen der Fluidströme.
Durch die relativ enge Auslegung des Führungsquerschnitts ist die kinetische Energie, die vom Gasstrom auf die Pulverteilchen übertragen wird, groß genug, um die Pulverteilchen nahezu unbeeinflußt von Gravitationskräften durch den Brenner zu führen. Dies wiederum bewirkt, daß die aus den einzelnen Pulveröffnungen austretenden Pulvermengen untereinander immer nahezu gleich sind, unabhängig von Lage und Stellung des Brenners. Ist für bestimmte Anwendungen die Pulveraustrittsgeschwindigkeit zu groß, kann durch eine Erweiterung der Querschnittsfläche der Austrittsöffnungen durch Vergrößerung der Öffnungen oder durch Erhöhung deren Anzahl die Austrittsgeschwindigkeit verringert werden.
Weitere Ziele, Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich anhand der in der Zeichnung gezeigten Ausführung. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der vorliegenden Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
Die einzige Figur zeigt in abgewickelter Darstellung das Pulverzuführsystem in einem erfindungsgemäßen Brenner.
In der Figur ist das Pulverzuführrohr 1 als Fluidzuleitung in den Brennerkörper 2 dargestellt. Mit Bezugszeichen 3 ist der Verteilkanal bezeichnet, der hier wegen der abgewickelten Darstellung als gerade verlaufend gezeichnet ist, jedoch in Wirklichkeit als Ring die eigentliche Plasmadüse umgibt und horizontal verläuft. Zu erkennen ist weiterhin, daß der Verteilerkanal 3 an seiner Eingangsseite bei der Fluidzuleitung einen relativ großen Durchmesser hat, während sein Querschnitt im weiteren Verlauf immer weiter abnimmt. Diesem Verteilkanal 3 schließen sich mehrere
Pulverführungskanäle 4 als Abzweigungen an, die alle zu einer Pulverdüse 5 führen. Diese Pulverdüse 5 hat so viele Pulveraustrittsöffnungen 6, wie Kanäle 4 vorgesehen sind. In dieser Ausführung ist zusätzlich noch ein Ringkanal 7 vorgesehen, der alle Einzelkanäle 4 miteinander verbindet und zur Reduktion der Fluidgeschwindigkeit vorgesehen ist. Ein solcher Ringkanal 7 kann insbesondere auch dann verwendet werden, wenn die Zahl der einzelnen Pulverführungskanäle 4 unterschiedlicher Zahl der Pulveraustrittsöffnungen 6 ist. In diesem Fall vergleichmäßigt der Ringkanal 7 die Strömung des Pulvers. Im Betrieb des Brenners wird Pulver von seinem Treib- oder Trägergas durch das Pulverzuführrohr 1 an die Stelle A des Brennerkörpers 2 geleitet. Das Pulver gelangt in den horizontal verlaufenden ringförmigen Verteilkanal 3, der auf der Mantelfläche des Grundkörpers 2 liegt. Der Kanal 3 hat am Anfang ungefähr den gleichen Querschnitt wie die zuführende Rohrleitung 1. In seinem Verlauf reduziert sich die Querschnittsfläche des Kanals 3 kontinuierlich; bei dem hier gewählten Ausführungsbeispiel bis auf null. Gleichzeitig zweigen in gleichmäßigen Abständen eine Anzahl von Pulverführungskanälen 4 gleicher Querschnittsfläche, vorliegend sechs Stück, im rechten Winkel parallel zur Brennerachse nach unten ab. Dabei wurde bei dem Ausführungsbeispiel darauf geachtet, daß die Gesamtquerschnittsfläche der über die Länge des Kanals 3 gleichmäßig abzweigenden Pulverführungskanäle 4 der Ursprungsquerschnittsflache des Kanals 3 an seinem Anfang entspricht. Durch diese Maßnahme ist gewährleistet, daß sich der in den Brenner 2 eintretende Gesamtfluidstrom in eine Anzahl (hier sechs) gleicher Fluidströme aufteilt, die auf Grund der konstanten Strömungsgeschwindigkeit alle eine annähernd gleiche Anzahl von Pulverpartikeln mit sich führen. Am unteren Ende dieser Kanäle 4 befindet sich die Pulverdüse 5, die über eine vorgegebene Anzahl von Bohrungen 6 die Fluidströme direkt in das Schmelzbad leitet.
Die Anzahl der Pulveraustrittsöffnungen 6 kann mit der Anzahl der zuführenden senkrechten Pulverführungskanäle 4 übereinstimmen. Sie kann aber auch von der Anzahl abweichend sein, insbesondere dann, wenn durch einen vorgeschalteten ringförmigen Kanal 7 eine Verringerung der Pulveraustrittsgeschwindigkeit erreicht wird. In diesem Fall ist auch die gesamte Querschnittsfläche der
Pulveraustrittsöffnungen 6 an der Unterseite der Pulverdüse 5 entsprechend zu verändern, so daß eine Verringerung der Strömungsgeschwindigkeit erreicht wird.
Bezugs zeichenliste
1 Pulverzuführrohr
2 Brennerkörper
3 Verteilkanal
4 Pulverführungskanal
5 Pulverdüse
6 Pulveraustrittsöffnung
7 Ringkanal

Claims

Patentansprüche
1. Plasma-Pulver-Schweißbrenner mit mindestens einer Plasmadüse, einem Pulverzuführrohr (1) und mehreren die Plasmadüse umgebenden Pulverführungskanälen (4) , dadurch gekennzeichnet, daß der Querschnitt des
Pulverführungssystems so gewählt ist, daß unabhängig von der Brennerhaltung eine möglichst gleichmäßige Pulvereinbringung erreicht wird.
2. Plasma-Pulver-Schweißbrenner nach Anspruch 1, dadurch gekennzeichnet, daß der Pulvergasstrom bereits bei Eintritt in den Brennerkörper (2) gleichmäßig auf eine Anzahl von Teilströmen aufgeteilt wird.
3. Plasma-Pulver-Schweißbrenner nach Anspruch 1, gekennzeichnet durch einen konzentrisch verlaufenden Verteilkanal (3) , von dem seriell die Pulverführungskanäle (4) abzweigen, wobei dessen Querschnitt vom Pulverzuführrohr (1) bis zum letzten Pulverführungskanal (4) abnimmt.
4. Plasma-Pulver-Schweißbrenner nach Anspruch 3, dadurch gekennzeichnet, daß wenigstens zwei sich verjüngende Verteilkanäle vorgesehen sind, die die einzelnen Pulverführungskanäle (4) mit dem Pulverzuführrohr (1) verbinden.
5. Plasma-Pulver-Schweißbrenner auf einen der vorhergehenden Ansprüche, gekennzeichnet durch einen zweiten Ringkanal (7), der die Pulverführungskanäle (4) miteinander verbindet.
PCT/EP2001/013392 2000-11-21 2001-11-20 Plasma-pulver-schweissbrenner WO2002043454A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT01995642T ATE281754T1 (de) 2000-11-21 2001-11-20 Plasma-pulver-schweissbrenner
DE50104432T DE50104432D1 (de) 2000-11-21 2001-11-20 Plasma-pulver-schweissbrenner
EP01995642A EP1336328B1 (de) 2000-11-21 2001-11-20 Plasma-pulver-schweissbrenner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10057676A DE10057676C1 (de) 2000-11-21 2000-11-21 Plasma-Pulver-Schweißbrenner
DE10057676.1 2000-11-21

Publications (1)

Publication Number Publication Date
WO2002043454A1 true WO2002043454A1 (de) 2002-05-30

Family

ID=7664068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013392 WO2002043454A1 (de) 2000-11-21 2001-11-20 Plasma-pulver-schweissbrenner

Country Status (5)

Country Link
EP (1) EP1336328B1 (de)
AT (1) ATE281754T1 (de)
DE (2) DE10057676C1 (de)
ES (1) ES2230392T3 (de)
WO (1) WO2002043454A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605346B2 (en) 2005-08-23 2009-10-20 Hardwear Pyt Ltd Powder delivery nozzle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT413197B (de) * 2002-08-12 2005-12-15 Arc Seibersdorf Res Gmbh Düsenkopf für das aufbringen von in pulverform zugeführten materialien auf substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197605A (en) * 1961-02-06 1965-07-27 Soudure Autogene Elect Constricted electric arc apparatus
US4080550A (en) * 1976-12-30 1978-03-21 Sheer-Korman Associates, Inc. Method and apparatus for projecting solids-containing gaseous media into an arc discharge
US4672171A (en) * 1985-03-21 1987-06-09 United Centrifugal Pumps Plasma transfer welded arc torch
US4866240A (en) * 1988-09-08 1989-09-12 Stoody Deloro Stellite, Inc. Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch
US5556560A (en) * 1992-03-31 1996-09-17 Plasma Modules Oy Welding assembly for feeding powdered filler material into a torch

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1193324B (de) * 1959-12-28 1965-05-20 Voith Gmbh J M Hydrodynamische Dichtung, insbesondere fuer Pumpen, Kompressoren oder Turbinen
DE3930267C2 (de) * 1989-09-11 1998-12-24 Castolin Gmbh Schutzgasplasmabrenner
DE4030541C2 (de) * 1990-09-27 1997-10-02 Dilthey Ulrich Prof Dr Ing Brenner zur Beschichtung von Grundwerkstoffen mit pulverförmigen Zusatzwerkstoffen
DE4120791A1 (de) * 1991-06-24 1993-01-14 Verkehrswesen Hochschule Anordnung zum oberflaechenbehandeln metallischer werkstuecke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197605A (en) * 1961-02-06 1965-07-27 Soudure Autogene Elect Constricted electric arc apparatus
US4080550A (en) * 1976-12-30 1978-03-21 Sheer-Korman Associates, Inc. Method and apparatus for projecting solids-containing gaseous media into an arc discharge
US4672171A (en) * 1985-03-21 1987-06-09 United Centrifugal Pumps Plasma transfer welded arc torch
US4866240A (en) * 1988-09-08 1989-09-12 Stoody Deloro Stellite, Inc. Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch
US5556560A (en) * 1992-03-31 1996-09-17 Plasma Modules Oy Welding assembly for feeding powdered filler material into a torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605346B2 (en) 2005-08-23 2009-10-20 Hardwear Pyt Ltd Powder delivery nozzle

Also Published As

Publication number Publication date
DE10057676C1 (de) 2002-05-02
EP1336328A1 (de) 2003-08-20
ATE281754T1 (de) 2004-11-15
EP1336328B1 (de) 2004-11-03
ES2230392T3 (es) 2005-05-01
DE50104432D1 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
DE69308546T3 (de) Schweissanlage zum zuführen von schweisspulver an einem brenner
DE3309664C2 (de) Verteiler für Fluide
DE69923360T2 (de) Thermische Lichtbogenspritzpistole und ihre Gaskappe
DE602005000112T2 (de) Pulvermetalbeschichtungsdüse
DE3929960A1 (de) Duese fuer einen plasmabrenner und verfahren zum einbringen eines pulvers in die plasmaflamme eines plasmabrenners
DE60103281T3 (de) Vorrichtung zum speisen eines spritzgeräts mit einem pulverlack und sprühbeschichtungsanlage mit einer solchen vorrichtung
EP1295822A1 (de) Pneumatische Fördervorrichtung und -verfahren
AT392467B (de) Verfahren und vorrichtung zum bilden einer feuerfestmasse auf einer oberflaeche
EP0902868A1 (de) Vorrichtung zum aufteilen einer mittels einer gasströmung transportierten viskosen flüssigkeit
DE112019007022T5 (de) Schutzgasdüse zur Metallbildung und Lasermetallbildungsvorrichtung
DE2300217B2 (de) Einspritzvorrichtung zur Einspritzung flüssigen Brennstoffs in Hochöfen
DE102004034777B4 (de) Vorrichtung zum Laserschweißen
DE19531421A1 (de) Injektor-Vorrichtung zur Pulver-Sprühbeschichtung
DE10035622C2 (de) Pulverbeschichtungskopf
DE10057676C1 (de) Plasma-Pulver-Schweißbrenner
DE19725345A1 (de) Schmiervorrichtung
DE1281769B (de) Verfahren und Vorrichtung zur Zufuehrung eines Pulvers in den Plasmastrahl beim Plasmaspritzen
DE102012014665A1 (de) Brenner zum Lichtbogendrahtspritzen
DE2714019C3 (de) Vorrichtung zum Abkühlen von mit hoher Geschwindigkeit durch Führungsrohre laufenden Walzdraht
CH714521B1 (de) Vorrichtung und Verfahren zum thermischen Spritzen von Fluiden, insbesondere zum Hochgeschwindigkeits-Suspensionsflammspritzen.
DE69531797T2 (de) Aggregat zu einem pulverzuführungssystem
DE903460C (de) Bestaeubungsvorrichtung fuer Druckbogen
DE202024102471U1 (de) Pulververteilvorrichtung für Laser-Cladding-System
DE3422197C2 (de) Pulverflammspritzbrenner
DE19860785A1 (de) Zerstäubungsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001995642

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001995642

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001995642

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP