WO2002031975A1 - Torsional vibrator - Google Patents

Torsional vibrator Download PDF

Info

Publication number
WO2002031975A1
WO2002031975A1 PCT/JP2001/008588 JP0108588W WO0231975A1 WO 2002031975 A1 WO2002031975 A1 WO 2002031975A1 JP 0108588 W JP0108588 W JP 0108588W WO 0231975 A1 WO0231975 A1 WO 0231975A1
Authority
WO
WIPO (PCT)
Prior art keywords
legs
leg
axis
torsional
electrodes
Prior art date
Application number
PCT/JP2001/008588
Other languages
French (fr)
Japanese (ja)
Inventor
Izumi Yamamoto
Tohru Yanagisawa
Hiromi Ueda
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Publication of WO2002031975A1 publication Critical patent/WO2002031975A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Definitions

  • the present invention relates to a crystal oscillator used as a reference signal source for a timepiece or a mobile communication device. More specifically, the present invention relates to a torsional oscillator having a base and three legs extending therefrom, which is made of quartz. It concerns the shape of the child and the electrode structure on the surface of each leg. Background art
  • a so-called tuning-fork type crystal unit having two vibrating legs is widely used as a reference signal source for watches and mobile communication devices.
  • Such a two-leg tuning fork vibrator is used in a vibration mode (in-plane vibration) in which two legs bend and vibrate in directions opposite to each other in the plane, that is, in the plane.
  • FIG. 15 is a graph showing the temperature dependence of the resonance frequency of a conventional two-leg tuning fork resonator.
  • the second-order temperature coefficient (coefficient ⁇ in the figure) with respect to temperature is about 3.5 ⁇ 10 " 2 ppm / ° C 2 .
  • FIG. 16 is a diagram showing the orientation of a conventional two-legged tuning fork vibrator.
  • quartz is an anisotropic single crystal belonging to the trigonal system, and its properties differ depending on the angle at which the tuning fork is cut out.
  • the width direction of the base 1 is defined as the X axis (electric axis) of the crystal axis of the crystal as shown in the figure, and the length direction and the thickness direction of the leg 3 are defined as the X axis.
  • the temperature characteristics By setting the X axis as the axis of rotation from 0 to 5 ° from the state of being aligned with the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis of the crystal, the temperature characteristics
  • the peak of the quadratic curve (see Fig. 15) is near room temperature (around 25 ° C), and the quadratic temperature coefficient is also an optimum value.
  • the change in the resonance frequency of the vibrator relates to, for example, the accuracy of the time display of a timepiece
  • various improvements in temperature characteristics have been conventionally proposed as described below.
  • One of them is the use of a torsional vibration mode.
  • the X-axis rotates 33 to 39 ° with the rotation axis as the rotation axis. It is shown that the torsional vibration of the quartz plate cut to the specified angle has little fluctuation due to the temperature change of the frequency and has good temperature characteristics.
  • the inventor of the present application conducted various experiments in consideration of applying such characteristics of the piezoelectric resonator to a two-leg tuning-fork type resonator. That is, in the structure of Fig. 16, the width direction of the base 1 is defined as the X axis of the crystal, and the longitudinal direction and the thickness direction of the leg 3 are defined as the Y axis (mechanical axis) and the Z axis (the crystal axis) of the crystal, respectively. (Optical axis), the direction was rotated by 30 ° to 35 ° with the X axis as the rotation axis. That is, the angle corresponding to “0 ° to 5 °” in FIG. 16 was set to “30 ° to 35 °”.
  • FIG. 17 is a diagram showing electrodes and wiring of a conventional two-leg tuning fork torsional vibrator, and is a diagram in which electrodes are arranged in the structure of FIG.
  • electrodes were arranged on each surface of the legs as shown in FIG. 17 for the structure shown in FIG. 16, and the opposing electrodes were wired so as to have the same potential.
  • torsional vibration with a resonance frequency near 260 kHz appears, and the secondary temperature coefficient is higher than that of a normal tuning fork. was about one-third, and good temperature characteristics could be obtained.
  • FIG. 18 is a diagram showing other electrodes and wirings of a conventional two-leg tuning fork vibrator.
  • the electrode 7 is not provided on the side of the leg as shown in the figure.
  • Attempts have been made to excite torsional vibrations by providing two in parallel on each of the front and back surfaces.
  • excitation cannot be performed because the piezoelectric constant e 16 used is zero.
  • Attempts to solve this problem have an angle at the base (spread at the base), but such a structure at the base of the leg is difficult to manufacture and is not practical.
  • Japanese Unexamined Patent Publication No. Hei Japanese Unexamined Patent Publication No. 2885
  • the width direction of the base 1 is set as the X axis of the crystal axis of the crystal, and the direction in which the legs extend and the thickness direction is matched with the Y axis and the Z axis, respectively, and the X axis is the rotation axis.
  • An object of the present invention is to solve the above-mentioned conventional problems, to simplify the circuit used for oscillation, to have a simple shape of the vibrator, to easily cut out a quartz plate, to manufacture easily and
  • An object of the present invention is to provide a torsional vibrator having temperature characteristics.
  • the torsional vibrator of the present invention has one base and three legs extending in the same direction from the base, and each of the three legs is in a torsional vibration mode. It is characterized by being used in.
  • the torsional vibrator of the present invention is preferably made of quartz.
  • the torsional vibration of the two legs located at both ends of the three legs is in phase with each other, and the torsional vibration of one leg located at the center is provided. Is characterized by being in opposite phase to the torsional vibration of the two legs located at both ends.
  • the torsional vibrator of the present invention has electrodes on each surface of the three legs, The electrodes are wired so that the electrodes on the opposing surfaces of the legs have the same potential. Specifically, the electrode on the side surface of one leg located at the center and the electrodes on the front and back surfaces of the two legs located at both ends have the same potential, and one electrode located at the center It is characterized in that the electrodes on the front and back surfaces of the legs and the electrodes on the side surfaces of the two legs located at both ends are wired so as to have the same potential.
  • the torsional vibrator of the present invention is characterized in that the length of the electrode in the longitudinal direction is 0.5 times or less of the total length L of the three legs from the root to the tip. I do.
  • the torsional vibrator of the present invention uses the width direction of the base as the X axis (electrical axis) of the crystal axis of the crystal, and the longitudinal direction and the thickness direction of the legs, respectively. From the state that the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis are aligned, the direction rotated by angle ⁇ ⁇ ⁇ with the X axis as the rotation axis, and angle 0 is the following inequality,
  • FIG. 1 is a view showing one embodiment of a torsional vibrator according to the present invention.
  • FIG. 3 is a diagram showing the orientation of quartz.
  • FIG. 2 is a graph showing the temperature dependence of the resonance frequency at the angle ⁇ of the torsional vibrator according to the present invention.
  • FIG. 3 is a graph showing how the angle 0 at which the apex temperature becomes room temperature changes depending on the side ratio in the torsional vibrator according to the present invention.
  • FIG. 4 is a diagram showing the electrode structure of the torsional vibrator according to the present invention.
  • FIG. 5 is a diagram showing electrodes and wirings of the torsional vibrator according to the present invention.
  • FIG. 6 is an explanatory diagram illustrating an applied electric field of the torsional vibrator according to the present invention. You.
  • Figure 7 is a graph showing the variation of the piezoelectric constant of quartz with angle ⁇ .
  • Figure 8 is a graph showing the angle ⁇ dependence of the etching rate of quartz.
  • Fig. 9 illustrates the movement of the legs of the torsional vibrator according to the present invention.
  • FIG. 10 is an explanatory diagram for explaining the movement of the leg due to the in-plane secondary vibration in the three-leg tuning fork.
  • FIG. 11 is a diagram showing an equivalent circuit of a crystal resonator.
  • FIG. 12 is a graph showing the relationship between the electrode length and the equivalent series resistance of the torsional vibrator according to the present invention.
  • Fig. 13 is an explanatory diagram for explaining the movement of the leg due to in-plane primary vibration in a three-leg tuning fork.
  • FIG. 14 is a circuit diagram showing an oscillation circuit for causing a torsional vibrator to self-oscillate according to the present invention.
  • Figure 15 is a graph showing the temperature dependence of the resonance frequency of a conventional two-leg tuning fork resonator.
  • FIG. 16 is a diagram showing the orientation of a conventional two-legged tuning fork vibrator.
  • FIG. 17 is a diagram showing electrodes and wiring of a conventional two-leg tuning fork torsional vibrator.
  • FIG. 18 is a diagram showing other electrodes and wiring of a conventional two-leg tuning fork torsional vibrator.
  • the mode in which each leg performs a primary bending vibration in the plane is caused by an imbalance of the vibration energy as compared with the primary vibration in the plane of the two-leg tuning fork.
  • the three legs can have a simple structure that extends straight from the base. Furthermore, as described above, after rotating the X axis as the rotation axis, there is no need to perform double rotation such as further rotating the Z ′ axis as the rotation axis.
  • FIG. 1 is a view showing one embodiment of a torsional vibrator according to the present invention, and is an explanatory view for explaining the orientation of quartz.
  • the torsional vibrator according to the present embodiment includes one base 1 and three legs 3 extending from the base 1 in the same direction.
  • the width direction of the torsional vibrator according to the present embodiment matches the X-axis direction of the crystal axis of quartz.
  • the direction in which the legs extend and the thickness direction is 0 degrees with the X axis (electric axis) as the rotation axis from the state in which the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis of the crystal are matched. Take in the direction just rotated.
  • the longitudinal direction of the leg after rotation is the Y axis
  • the thickness direction is the Z 'axis.
  • Angle 0 is preferably in the range of 25 ° to 45 °. The range of this angle 0 was obtained as follows.
  • the crystal is a single crystal belonging to the trigonal system consisting of a S i O 2 different Has anisotropy.
  • the elastic constant depends on the direction and is expressed as a tensor.
  • the temperature dependence differs for each component of the tensor. For this reason, the resonance frequency of a vibrator made of quartz varies depending on the direction with respect to the crystal axis, and the temperature dependence also changes with the direction.
  • FIG. 2 is a graph showing the temperature dependence of the resonance frequency at the angle 0 of the torsional vibrator according to the present invention.
  • the resonance frequency f changes with temperature (horizontal axis), and reaches the maximum frequency f.
  • the ratio of the frequency change with respect to (f 1 f) / f Q (vertical axis) is a quadratic curve that is convex upward.
  • the secondary temperature coefficient of the torsional vibrator of the present invention is about 1.1 X 10 ⁇ a 2 ppm / ° C 2, the secondary temperature coefficient of a conventional 2 Ashionsa type flexural resonator explained in FIG. 5 (about -.
  • the temperature indicating the maximum frequency f Q is called the peak temperature. If the peak temperature 5 is near the middle of the operating temperature range, the width of the change in the resonance frequency becomes smaller, so it is necessary to select such an angle 0.
  • the peak temperature 5 varies not only with the angle ⁇ but also with the ratio of the leg width W to the thickness D.
  • Figure 3 is a graph showing how the angle 0 at which the vertex temperature reaches 25 ° C changes depending on the side ratio WZD.
  • a practical range in consideration of the balance of the strength and size of the oscillator is a side ratio W / D of 1 to 3.
  • the angle 0 at which the peak temperature 5 becomes near room temperature is 25 ° to 45 °, and it is preferable that the side ratio WZD is 1 to 3.
  • Figure 8 is a graph showing the dependence of the etching rate of quartz on angle 0.
  • the preferred value of the angle 0 according to the present invention is obtained for the following reasons. That is, the torsional vibrator of the present embodiment is manufactured by etching with a mixed solution of hydrofluoric acid and ammonium fluoride. Etching is water The etching rate varies as shown in the figure, depending on the crystal orientation, and also at an angle of 0. That is, the smaller the angle 0, the better the etching performance (etching rate).
  • the angle 0 is larger than that of the two-leg tuning fork vibrator used in the conventional bending vibration mode shown in FIG. 16, so that the etching time needs to be 3 to 4 times. Become.
  • the side ratio WZD is large, it is necessary to increase the angle 0 at which the vertex temperature is near room temperature, but if the angle 0 is increased as shown in Fig. 8, the etching rate decreases. .
  • the frequency in this case was 262 kHz.
  • FIG. 4 is a diagram showing an electrode structure of a torsional vibrator according to one embodiment of the present invention. Electrodes 7 (hatched portions) are provided on each surface of each leg 3. A frequency adjusting electrode 9 is provided at the tip of each leg 3. The resonance frequency is adjusted by changing the mass of the leg by trimming the frequency adjusting electrode 9 with a laser or the like.
  • FIG. 5 is a diagram showing electrodes and wirings of the torsional vibrator according to the present invention.
  • electrodes 7 are arranged on the front and back surfaces and both side surfaces of three legs 3 shown in cross section, and each electrode is wired as shown.
  • the electrode 7 is wired on each surface of the leg 3 so that the opposing electrodes have the same potential.
  • the electrodes (a, b) on the sides of the center leg are at the same potential as the electrodes (g, h and k, 1) on the front and back surfaces of the legs located at both ends.
  • the electrodes (c, d) on the back side are wired so as to have the same potential as the electrodes (e, f and i, j) on the side surfaces of the legs located at both ends.
  • FIG. 6 is an explanatory diagram showing an applied electric field of the torsional vibrator according to the present invention.
  • the figure schematically shows an electric field 11 applied by the electrode 7 of the present embodiment.
  • an electric field 11 is generated inside the leg 3 in the X and Z directions.
  • the electric field 11 is point-symmetric with respect to the center of the cross section of the leg 3.
  • the directions of the electric field 11 are opposite to each other with respect to the center in the X component and the Z ′ component.When the electric field component in the X direction is toward the center, the electric field component in the Z ′ direction is opposite to the center. Acts on
  • FIG. 7 is a graph showing the change in the piezoelectric constant of quartz with an angle of 0.
  • the piezoelectric constant (vertical axis) utilized in torsional vibrator according to the present embodiment, e '1 is 4 and e, 3 6.
  • the piezoelectric constants e and 14 are constants that relate the electric field in the X direction to the shear strain (shear strain) in the Y, 100 'plane.
  • the number e '36 is a constant that relates Z, the direction of the electric field and X- Y, and shear strain in the plane.
  • an electric field that is point-symmetric with respect to the center of the leg cross section is generated in the X direction and the Z ′ direction, so that the piezoelectric transfer constants e, 14 and e ′ 36 It can oscillate torsional vibration.
  • the values of the piezoelectric constants e ′ 14 and e ′ 36 change as shown in FIG. 7 depending on the angle 0, but within the preferable range of the angle 0 (that is, the range of 25 ° to 45 °). It can be seen that they have the same sign, can oscillate without contradiction, and are large enough to drive.
  • FIG. 9 is an explanatory diagram illustrating the movement of the legs of the torsional vibrator according to the present invention.
  • the torsional vibrator of the present embodiment oscillates in another vibration mode ifi in which the center leg 3 and the legs 3 at both ends twist in opposite phases as shown in Fig. 9. I found that there was. The results of the experiment, the oscillation was found to be due to in-plane secondary vibration by the action of the piezoelectric constant e 12.
  • FIG. 10 is an explanatory diagram for explaining a leg motion due to in-plane secondary vibration in a three-leg tuning fork.
  • the in-plane secondary vibration is a vibration in which the center of each leg expands (becomes a belly) as shown in the figure, and the center leg and the legs at both ends vibrate in opposite phases.
  • FIG. 11 is a diagram showing an equivalent circuit of a crystal resonator.
  • the equivalent circuit of a crystal unit has an equivalent series inductance of 1 ⁇ and an equivalent series capacitance as shown in the figure. It can be represented by a circuit in which the equivalent parallel capacitance C Q is added to the series circuit composed of the equivalent series resistance Ri.
  • C Q the equivalent parallel capacitance
  • Ri the equivalent series resistance
  • the inventor of the present application states that since the required distortion of torsional vibration is the maximum at the root of each leg, using the difference in distortion of in-plane secondary vibration depending on the location increases only the equivalent series resistance of in-plane secondary vibration. By doing so, we focused on the fact that oscillation can be made difficult. .
  • FIG. 12 is a graph showing the relationship between the electrode length and the equivalent series resistance of the torsional vibrator according to the present invention. This graph was obtained as a result of various experiments. As shown in the figure, while the equivalent series resistance of torsional vibration hardly changes with the electrode length and the Z-leg length (see the solid line), the in-plane secondary vibration Has a large change in equivalent series resistance (see dotted line). For example, when the electrode length and the total length of the z-leg are 0.5 times or less, the equivalent series resistance of the in-plane secondary vibration is preferably 10 times or more the equivalent series resistance of the torsional vibration.
  • the equivalent series resistance of the in-plane secondary vibration will be 20 times or more the equivalent series resistance of torsional vibration. Even if the equivalent series resistance of the vibration changes about twice, the equivalent series resistance of the in-plane secondary vibration becomes 10 times or more, and a sufficient margin can be obtained, which is more preferable.
  • Fig. 13 is an explanatory diagram for explaining the movement of the leg due to in-plane primary vibration in a three-leg tuning fork.
  • the torsional vibrator of the present embodiment self-excited oscillation of in-plane primary vibration, which was a problem in the two-leg tuning fork, was not observed.
  • the equivalent series resistance of the primary vibration in the plane where each leg performs bending primary vibration in the plane was 100 k ⁇ or more, and there was no danger of self-excited oscillation. This is because the in-plane primary vibration of the tripod tuning fork is accompanied by leakage vibration of the base 1.
  • the left and right legs 3 move in opposite directions, so that symmetry is good and the center line becomes a node, so that supporting the center of the base almost does not cause leakage vibration.
  • the in-plane primary vibration of a three-leg tuning fork has poor symmetry because the legs 3 at both ends and the center leg 3 bend and vibrate in opposite phases. For this reason, unless the widths of the legs 3 at both ends and the center leg 3 are changed, leakage vibration to the base 1 occurs.
  • the resonance frequency is determined by the cross-sectional shape and length of the leg. Therefore, in a three-legged tuning fork torsional vibrator, each leg must have approximately the same cross-sectional shape, so that in-plane primary vibration involves leakage vibration.
  • FIG. 14 is a diagram showing an oscillation circuit for causing the torsional vibrator according to the present invention to self-oscillate.
  • the torsional vibrator according to the present embodiment is based on the idea that unnecessary sub-vibrations are generated by modifying the characteristics of the vibrator itself (three-leg structure) and the electrode structure (electrode and t electrode length and potential on each surface).
  • the oscillation circuit can be easily realized by a simple circuit configuration in which the resistor 13 and the inverter 17 are connected in parallel to the oscillator 13 as shown in the figure.
  • the equivalent series resistance of the torsional vibrator of this embodiment is about 1 to 5.
  • the equivalent series resistance of a conventional torsional vibrator using parallel electrodes is about 30 to 50, which is about 1/10.
  • the reason for this is that the provision of the electrodes on each side of the leg as in the present embodiment allows an electric field to be more effectively applied to the inside of the leg than to arrange the electrodes in parallel on a plane.
  • the torsional vibrator of the present invention has good temperature characteristics, is simple in shape, is easy to cut out a quartz plate by a single rotation, is easy to manufacture, and has a simple oscillation circuit. This has the effect that the equivalent series resistance can be reduced, and a low power consumption torsional vibrator can be obtained. Therefore, it has extremely high industrial applicability as a reference signal source for clocks and mobile communication devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A torsional vibrator comprising a base and three legs extending from the base, the torsional vibrations of two opposite-end legs out of the three legs being mutually in phase, the torsional vibration of one central leg and those of the two opposite-end legs being mutually in opposite phase. Each of the three legs has electrodes on respective surfaces, and electrodes on the facing surfaces of each leg are wired to keep them at the same potential; specifically, electrodes on the side surfaces of the one central leg and those on the front and rear surfaces of the two opposite-end legs are wired to keep them at the same potential, and electrodes on the front and rear surfaces of the one central and those on the side surfaces of the two opposite-end legs are wired to keep them at the same potential. A longitudinal length of an electrode is up to 0.5 time the entire length L of a leg extending from the leg base to the tip end thereof. The orientation of a quartz coincides with its direction set after the quartz is rotated on its X-axis through a rotation angle Υ, 25 ° ≤ Υ ≤ 45 °, while the width direction of the base is allowed to coincide with the X-axis of the quartz's crystal axes, and the longitudinal direction of a leg and its width direction are respectively allowed to agree with Y-axis and Z-axis of the quartz's crystal axes.

Description

明 細 書 捩り振動子 技術分野  Description Torsional vibrator Technical field
本発明は、 時計や移動体通信機の基準信号源と して用いられる水 晶振動子に関し、 詳しく は、 水晶によ り構成され、 基部とそこから 伸びた 3本の脚とを有する捩り振動子の形状とその各脚の面の電極 構造に関するものである。 背景技術  The present invention relates to a crystal oscillator used as a reference signal source for a timepiece or a mobile communication device. More specifically, the present invention relates to a torsional oscillator having a base and three legs extending therefrom, which is made of quartz. It concerns the shape of the child and the electrode structure on the surface of each leg. Background art
例えば時計や移動体通信機の基準信号源と して 2本の振動する脚 を持った、 いわゆる音叉型の水晶振動子が広く用いられている。 こ のような 2脚音叉振動子は 2本の脚が脚の並ぶ方向、 即ち面内で、 互いに反対方向に屈曲振動するような振動モー ド (面内振動) で使 用される。  For example, a so-called tuning-fork type crystal unit having two vibrating legs is widely used as a reference signal source for watches and mobile communication devices. Such a two-leg tuning fork vibrator is used in a vibration mode (in-plane vibration) in which two legs bend and vibrate in directions opposite to each other in the plane, that is, in the plane.
図 1 5は従来の 2脚音叉振動子における共振周波数の温度依存性 を示すグラフである。 図示のよ うに、 2脚音叉振動子の共振周波数 f は、 温度 T (横軸) によって変化し、 最大周波数 f Q に対する変 化の割合 ( f 一 f 。) Z f 。 (縦軸) は、 図示のような上に凸のニ 次曲線を示す。 この場合、 温度に対する二次温度係数 (図中の係数 β ) は、 約一 3 . 5 X 1 0 " 2 ppm / °C 2 である。 FIG. 15 is a graph showing the temperature dependence of the resonance frequency of a conventional two-leg tuning fork resonator. Yo shown urchin, 2 resonant frequency f of Ashionsa oscillator, varies with the temperature T (horizontal axis), the percentage of change with respect to the maximum frequency f Q (f one f.) Z f. (Vertical axis) indicates a quadratic curve that is convex upward as shown in the figure. In this case, the second-order temperature coefficient (coefficient β in the figure) with respect to temperature is about 3.5 × 10 " 2 ppm / ° C 2 .
図 1 6は従来の 2脚音叉振動子の方位を示す図である。 既に知ら れるように、 水晶は三方晶系に属する異方性単結晶であり、 どのよ うな角度に音叉を切り出すかによつてその性質が異なってく る。 従 来の 2脚音叉振動子では、 図示のよ うに基部 1の幅方向を水晶の結 晶軸の X軸 (電気軸) とし、 脚 3の長さ方向および厚み方向を、 そ れぞれ水晶の結晶軸の Y軸 (機械軸) および Z軸 (光学軸) に一致 させた状態から X軸を回転軸と して 0〜 5 ° 回転した方向とするこ とで、 温度特性の二次曲線の頂点 (図 1 5参照) が室温付近 ( 2 5 ° C付近) となり、 二次温度係数も最適値を得ている。 FIG. 16 is a diagram showing the orientation of a conventional two-legged tuning fork vibrator. As already known, quartz is an anisotropic single crystal belonging to the trigonal system, and its properties differ depending on the angle at which the tuning fork is cut out. In a conventional two-leg tuning fork resonator, the width direction of the base 1 is defined as the X axis (electric axis) of the crystal axis of the crystal as shown in the figure, and the length direction and the thickness direction of the leg 3 are defined as the X axis. By setting the X axis as the axis of rotation from 0 to 5 ° from the state of being aligned with the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis of the crystal, the temperature characteristics The peak of the quadratic curve (see Fig. 15) is near room temperature (around 25 ° C), and the quadratic temperature coefficient is also an optimum value.
ところで振動子の共振周波数の変化は、 例えば時計の時刻表示の 精度に関わるため、 以下に説明するように、 従来、 様々な温度特性 の向上が提案されている。 その一つに捩り振動モー ドの利用がある 例えば、 特公昭 5 8— 2 9 6 5 3号公報 (圧電共振子) によれば 、 X軸を回転軸と して 3 3〜 3 9 ° 回転した角度に切り出した水晶 板の捩り振動は、 周波数の温度変化による変動が少なく、 良好な温 度特性を持つことが示されている。  By the way, since the change in the resonance frequency of the vibrator relates to, for example, the accuracy of the time display of a timepiece, various improvements in temperature characteristics have been conventionally proposed as described below. One of them is the use of a torsional vibration mode. For example, according to Japanese Patent Publication No. 58-29653 (piezoelectric resonator), the X-axis rotates 33 to 39 ° with the rotation axis as the rotation axis. It is shown that the torsional vibration of the quartz plate cut to the specified angle has little fluctuation due to the temperature change of the frequency and has good temperature characteristics.
本願の発明者は、 このよ うな圧電共振子の特性を 2脚音叉型振動 子に適用することを考え種々の実験を行った。 即ち、 図 1 6の構造 において、 基部 1の幅方向を水晶の X軸と し、 脚 3の長手方向およ び厚み方向を、 それぞれ水晶の結晶軸の Y軸 (機械軸) および Z軸 (光学軸) に一致させた状態から X軸を回転軸と して 3 0° 〜 3 5 ° 回転した方向と した。 即ち、 図 1 6の 「 0 ° 〜 5 ° 」 に対応する 角度を 「 3 0 ° 〜 3 5 ° 」 に設定した。  The inventor of the present application conducted various experiments in consideration of applying such characteristics of the piezoelectric resonator to a two-leg tuning-fork type resonator. That is, in the structure of Fig. 16, the width direction of the base 1 is defined as the X axis of the crystal, and the longitudinal direction and the thickness direction of the leg 3 are defined as the Y axis (mechanical axis) and the Z axis (the crystal axis) of the crystal, respectively. (Optical axis), the direction was rotated by 30 ° to 35 ° with the X axis as the rotation axis. That is, the angle corresponding to “0 ° to 5 °” in FIG. 16 was set to “30 ° to 35 °”.
図 1 7は従来の 2脚音叉捩り振動子の電極と配線を示す図であり 、 図 1 6の構造に電極を配置した図である。 上記の実験を行うため に、 図 1 6の構造に対して図 1 7に示すよ うに脚の各面に電極を配 し、 対向する電極を同電位とするよ うに配線した。 このような電極 構造において、 イ ンピーダンスアナライザを用いて外部より強制振 動させた観察では、 2 6 0 k H z付近に共振周波数がある捩り振動 が生じ、 通常の音叉に比べて二次温度係数は 3分の 1程度となり、 良好な温度特性を得ることが出来た。 しかしながら、 この共振子を、 外部からの強制振動ではなく 自励 発振させたところ捩り振動が発生せず、 2本の脚 3が互いに反対方 向に一次の屈曲振動をする通常の音叉振動モー ド (面内一次振動) によ り発振してしまう という課題が浮上した。 この原因は、 面内振 動の Qが高く、 等価直列抵抗が小さいので容易に発振するためと考 えられる。 この課題、 即ち発振を解消するためには、 例えば発振回 路中に周波数選択回路を挿入して面内一次振動の周波数領域の信号 を抑制することにより解消できることが判明したが、 このよ うな周 波数選択回路の揷入は、 回路構成を複雑にし、 コス トアップを招く という課題が残った。 FIG. 17 is a diagram showing electrodes and wiring of a conventional two-leg tuning fork torsional vibrator, and is a diagram in which electrodes are arranged in the structure of FIG. In order to carry out the above experiment, electrodes were arranged on each surface of the legs as shown in FIG. 17 for the structure shown in FIG. 16, and the opposing electrodes were wired so as to have the same potential. In such an electrode structure, when observed by forced vibration from the outside using an impedance analyzer, torsional vibration with a resonance frequency near 260 kHz appears, and the secondary temperature coefficient is higher than that of a normal tuning fork. Was about one-third, and good temperature characteristics could be obtained. However, when this resonator is self-excited rather than forcedly vibrated from the outside, no torsional vibration occurs and the normal tuning fork vibration mode in which the two legs 3 perform primary bending vibration in the opposite direction to each other. The problem of oscillation caused by (in-plane primary vibration) has emerged. The cause is considered to be that oscillation is easy because the Q of the in-plane vibration is high and the equivalent series resistance is small. It has been found that this problem, that is, oscillation can be solved by, for example, inserting a frequency selection circuit in the oscillation circuit to suppress the signal in the frequency domain of the in-plane primary vibration, The introduction of the wave number selection circuit has a problem that the circuit configuration is complicated and the cost is increased.
図 1 8は従来の 2脚音叉振動子の他の電極と配線を示す図である 。 2脚音叉の捩り振動を利用した別の例として、 例えば特開平 5— 3 7 2 8 5号公報 (捩り水晶振動子) には電極 7を図示のように脚 の側面には設けず、 脚の表裏の各面に 2本平行に設けて捩り振動を 励起する試みがなされている。 この電極構造では、 本文献の説明に あるよ うに、 2本の脚が平行に伸びた通常の音叉形状では、 利用す る圧電定数 e 1 6が零のため励振出来ないので、 脚部の根元に角度を 持たせる (根元で広がりを持たせる〉 こ とで解決を試みている。 し かし、 このよ うな脚部の根元の構造は製造上困難を伴い実用的では なレ、。 FIG. 18 is a diagram showing other electrodes and wirings of a conventional two-leg tuning fork vibrator. As another example using the torsional vibration of a two-leg tuning fork, for example, in Japanese Patent Application Laid-Open No. Heisei 5-37285 (torsional quartz oscillator), the electrode 7 is not provided on the side of the leg as shown in the figure. Attempts have been made to excite torsional vibrations by providing two in parallel on each of the front and back surfaces. In this electrode structure, as described in this document, in a normal tuning fork shape in which two legs extend in parallel, excitation cannot be performed because the piezoelectric constant e 16 used is zero. Attempts to solve this problem have an angle at the base (spread at the base), but such a structure at the base of the leg is difficult to manufacture and is not practical.
さ らに、 2脚音叉の捩り振動を利用した他の例と して、 例えば特 開平 5— 1 9 9 0 6 3号公報 (捩り水晶振動子) では、 上記の特開 平 5— 3 7 2 8 5号公報と同様に、 電極を図 1 8に示すように側面 には設けず表裏各面に、 2本の平行な電極 7を設ける例が示されて いるが、 圧電定数 e 1 6を零としないために、 基部 1の幅方向を水晶 の結晶軸の X軸と し、 脚の伸びる方向および厚み方向をそれぞれ Y 軸および Z軸に一致させた状態から X軸を回転軸として回転し、 さ らに新たな厚み方向である Z ' 軸を回転軸として回転するという 2 重回転を行う ことが提案されている。 Further, as another example utilizing the torsional vibration of a two-leg tuning fork, for example, Japanese Unexamined Patent Publication No. Hei. Similarly to Japanese Patent Publication No. 2885, there is shown an example in which electrodes are not provided on the side surfaces but two parallel electrodes 7 are provided on each of the front and back surfaces as shown in FIG. 18, but the piezoelectric constant e 16 In order not to make zero, the width direction of the base 1 is set as the X axis of the crystal axis of the crystal, and the direction in which the legs extend and the thickness direction is matched with the Y axis and the Z axis, respectively, and the X axis is the rotation axis. Then In addition, it has been proposed to perform double rotation, in which a new thickness direction, the Z 'axis, is used as the rotation axis.
上述したよ うに、 捩り振動について従来種々の提案がなされてい るが、 解決すべき課題をまとめると、 ( 1 ) 図 1 7に示した電極構 造、 即ち脚の各面に電極を形成した 2脚音叉捩り振動子では、 周波 数選択回路を挿入するなど、 回路構成が複雑であるという課題があ つた。 ( 2 ) 図 1 8に示した電極構造、 即ち脚の表裏に 2本の平行 な電極を設けた 2脚音叉捩り振動子では、 脚部の根元に角度を持た せるため脚形状が複雑となり、 また、 新たな厚み方向である Z ' 軸 を回転軸として回転させるため、 水晶板の切り出しが 2重回転とな り、 従って製作が極めて複雑であり実用的ではないという課題があ つた。 発明の開示  As mentioned above, various proposals have been made for torsional vibration. However, the problems to be solved can be summarized as follows: (1) The electrode structure shown in Fig. 17, that is, electrodes were formed on each surface of the legs 2 The leg tuning fork torsional vibrator had a problem that the circuit configuration was complicated, such as inserting a frequency selection circuit. (2) In the case of the electrode structure shown in Fig. 18, that is, a two-leg tuning fork torsional vibrator in which two parallel electrodes are provided on the front and back of the leg, the leg shape is complicated because the root of the leg has an angle, In addition, the rotation of the Z 'axis, which is a new thickness direction, is used as the rotation axis, so that the crystal plate is cut out twice, which makes the production extremely complicated and impractical. Disclosure of the invention
本発明の目的は、 上記した従来の課題を解消するため、 発振に用 いる回路が簡単であり、 振動子の形状が単純で水晶板の切り出しも 容易に行い得て製作し易く、 かつ良好な温度特性を有した捩り振動 子を提供することにある。  An object of the present invention is to solve the above-mentioned conventional problems, to simplify the circuit used for oscillation, to have a simple shape of the vibrator, to easily cut out a quartz plate, to manufacture easily and An object of the present invention is to provide a torsional vibrator having temperature characteristics.
上言さ目的を達成するために、 本発明の捩り振動子は、 一つの基部 とこの基部から同一の方向に伸びる 3本の脚を有し、 3本の脚の各 々が捩り振動モー ドで使用されるこ とを特徴とする。 本発明の捩り 振動子は、 好適には水晶で構成されている。  To achieve the above object, the torsional vibrator of the present invention has one base and three legs extending in the same direction from the base, and each of the three legs is in a torsional vibration mode. It is characterized by being used in. The torsional vibrator of the present invention is preferably made of quartz.
このような基本構造において、 本発明の捩り振動子は、 3本の脚 のうち両端に位置する 2本の脚の捩り振動は互いに同相であり、 中 央に位置する 1本の脚の捩り振動は両端に位置する 2本の脚の捩り 振動と互いに逆相であることを特徴とする。  In such a basic structure, in the torsional vibrator of the present invention, the torsional vibration of the two legs located at both ends of the three legs is in phase with each other, and the torsional vibration of one leg located at the center is provided. Is characterized by being in opposite phase to the torsional vibration of the two legs located at both ends.
また、 本発明の捩り振動子は、 3本の脚の各面に電極を有し、 か つ各脚の対向する面の電極同士が同電位となるように配線したこと を特徴とする。 具体的には、 中央に位置する 1本の脚の側面部の電 極と、 両端に位置する 2本の脚の表裏面の電極とを同電位と し、 か つ中央に位置する 1本の脚の表裏面の電極と両端に位置する 2本の 脚の側面部の電極とを同電位とするように配線したことを特徴とす る。 Further, the torsional vibrator of the present invention has electrodes on each surface of the three legs, The electrodes are wired so that the electrodes on the opposing surfaces of the legs have the same potential. Specifically, the electrode on the side surface of one leg located at the center and the electrodes on the front and back surfaces of the two legs located at both ends have the same potential, and one electrode located at the center It is characterized in that the electrodes on the front and back surfaces of the legs and the electrodes on the side surfaces of the two legs located at both ends are wired so as to have the same potential.
また、 具体的な構造として、 本発明の捩り振動子は、 電極の長手 方向の長さを 3本の脚の根元から先端までの脚の全長 Lの 0 . 5倍 以下と したことを特徴とする。  Further, as a specific structure, the torsional vibrator of the present invention is characterized in that the length of the electrode in the longitudinal direction is 0.5 times or less of the total length L of the three legs from the root to the tip. I do.
さらに、 具体的な回転角度と して、 本発明の捩り振動子は、 基部 の幅方向を水晶の結晶軸の X軸 (電気軸) と し、 脚の長手方向およ び厚み方向を、 それぞれ水晶の結晶軸の Y軸 (機械軸) および Z軸 (光学軸) に一致させた状態から X軸を回転軸として角度 Θだけ回 転した方向と し、 角度 0が次の不等式、  Further, as a specific rotation angle, the torsional vibrator of the present invention uses the width direction of the base as the X axis (electrical axis) of the crystal axis of the crystal, and the longitudinal direction and the thickness direction of the legs, respectively. From the state that the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis are aligned, the direction rotated by angle と し て with the X axis as the rotation axis, and angle 0 is the following inequality,
2 5 ° ≤ Θ ≤ 4 5 °  2 5 ° ≤ Θ ≤ 45 °
を満足するように構成したことを特徴とする。 図面の簡単な説明 Is satisfied. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明による捩り振動子の一つの実施形態を示す図であり FIG. 1 is a view showing one embodiment of a torsional vibrator according to the present invention.
、 水晶の方位を示す図である。 FIG. 3 is a diagram showing the orientation of quartz.
図 2は本発明による捩り振動子の角度 Θにおける共振周波数の温 度依存性を示すグラフである。  FIG. 2 is a graph showing the temperature dependence of the resonance frequency at the angle の of the torsional vibrator according to the present invention.
図 3は本発明による捩り振動子において、 頂点温度が常温となる 角度 0が辺比によつて変化する様子を示すグラフである。  FIG. 3 is a graph showing how the angle 0 at which the apex temperature becomes room temperature changes depending on the side ratio in the torsional vibrator according to the present invention.
図 4は本発明による捩り振動子の電極構造を示す図である。  FIG. 4 is a diagram showing the electrode structure of the torsional vibrator according to the present invention.
図 5は本発明による捩り振動子の電極と配線を示す図である。 図 6は本発明による捩り振動子の印加電界を説明する説明図であ る。 FIG. 5 is a diagram showing electrodes and wirings of the torsional vibrator according to the present invention. FIG. 6 is an explanatory diagram illustrating an applied electric field of the torsional vibrator according to the present invention. You.
図 7は水晶の圧電定数の角度 Θによる変化を示すダラフである。 図 8は水晶のエッチングレー トの角度 Θ依存性を示すグラフであ る。  Figure 7 is a graph showing the variation of the piezoelectric constant of quartz with angle Θ. Figure 8 is a graph showing the angle Θ dependence of the etching rate of quartz.
図 9は本発明による捩り振動子の脚の動きを説明する.説明図であ る。  Fig. 9 illustrates the movement of the legs of the torsional vibrator according to the present invention.
図 1 0は 3脚音叉における面内二次振動の脚の動きを説明する説 明図である。  FIG. 10 is an explanatory diagram for explaining the movement of the leg due to the in-plane secondary vibration in the three-leg tuning fork.
図 1 1は水晶振動子の等価回路を示す図である。  FIG. 11 is a diagram showing an equivalent circuit of a crystal resonator.
図 1 2は本発明による捩り振動子の電極長と等価直列抵抗の関係 を示すダラフである。  FIG. 12 is a graph showing the relationship between the electrode length and the equivalent series resistance of the torsional vibrator according to the present invention.
図 1 3は 3脚音叉における面内一次振動の脚の動きを説明する説 明図である。  Fig. 13 is an explanatory diagram for explaining the movement of the leg due to in-plane primary vibration in a three-leg tuning fork.
図 1 4は本発明による捩り振動子を自励発振させる為の発振回路 を示す回路図である。  FIG. 14 is a circuit diagram showing an oscillation circuit for causing a torsional vibrator to self-oscillate according to the present invention.
図 1 5は従来の 2脚音叉振動子における共振周波数の温度依存性 を示すダラフである。  Figure 15 is a graph showing the temperature dependence of the resonance frequency of a conventional two-leg tuning fork resonator.
図 1 6は従来の 2脚音叉振動子の方位を示す図である。  FIG. 16 is a diagram showing the orientation of a conventional two-legged tuning fork vibrator.
図 1 7は従来の 2脚音叉捩り振動子の電極と配線を示す図である 図 1 8は従来の 2脚音叉捩り振動子の他の電極と配線を示す図で ある。 発明を実施するための最良の形態  FIG. 17 is a diagram showing electrodes and wiring of a conventional two-leg tuning fork torsional vibrator. FIG. 18 is a diagram showing other electrodes and wiring of a conventional two-leg tuning fork torsional vibrator. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の 3脚音叉構造では、 各脚が面内で一次の屈曲振動をする モー ド (面内一次振動) は、 2脚音叉の面内一次振動に比べて、 振 動エネルギーのアンパランスに起因して基部 1への漏れ振動が大き くなる。 従って、 捩り振動子を 3脚音叉構造とすると、 このよ う に 漏れ振動が大きくなるが、 回路基板への実装により面内一次振動は 逆に発振し難くなり、 そのため振動子を自励発振させても面内一次 振動による発振が生じることがない。 従って、 本発明の 3脚音叉構 造では、 発振を抑制するための周波数選択回路などの特別な回路を 附加する必要がない。 In the three-leg tuning fork structure of the present invention, the mode in which each leg performs a primary bending vibration in the plane (primary vibration in the plane) is caused by an imbalance of the vibration energy as compared with the primary vibration in the plane of the two-leg tuning fork. Large leakage vibration to the base 1 It becomes. Therefore, if the torsional vibrator has a three-leg tuning fork structure, the leakage vibration will increase in this way, but the in-plane primary vibration will be less likely to oscillate by mounting on the circuit board. However, oscillation due to in-plane primary vibration does not occur. Therefore, in the three-leg tuning fork structure of the present invention, it is not necessary to add a special circuit such as a frequency selection circuit for suppressing oscillation.
また、 各脚の各面に電極を設け対向する電極同士を同電位とする 電極構造をとることによって、 利用する圧電定数を e ' 1 4および e ' 3 6とすることができ、 Z軸まわりの回転が零でも利用する圧電定 数が零ではないので、 3本の脚形状は、 基部から真っ直ぐに伸びた 単純な構造とすることができる。 さらに、 前述のように、 X軸を回 転軸として回転させた後に、 さらに Z ' 軸を回転軸と して回すとい うような 2重回転を行う必要がない。 Moreover, by taking the electrode structure of the electrodes facing each other provided with electrodes on each side of each leg at the same potential, it is possible to make the piezoelectric constant utilized as e '1 4 and e' 3 6, about the Z axis Since the piezoelectric constant to be used is not zero even when the rotation is zero, the three legs can have a simple structure that extends straight from the base. Furthermore, as described above, after rotating the X axis as the rotation axis, there is no need to perform double rotation such as further rotating the Z ′ axis as the rotation axis.
以下、 本発明による実施の形態を図面に基づいて具体的に説明す る。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
図 1は本発明による捩り振動子の一つの実施形態を示す図であり 、 水晶の方位を説明する説明図である。 本実施形態の捩り振動子は 一つの基部 1 と基部 1から同一の方向に伸びる 3本の脚 3で構成さ れている。  FIG. 1 is a view showing one embodiment of a torsional vibrator according to the present invention, and is an explanatory view for explaining the orientation of quartz. The torsional vibrator according to the present embodiment includes one base 1 and three legs 3 extending from the base 1 in the same direction.
本実施形態の捩り振動子の幅方向は水晶の結晶軸の X軸方向に一 致している。 脚の伸びている方向および厚み方向は、 それぞれ水晶 の結晶軸の Y軸 (機械軸) および Z軸 (光学軸) に一致させた状態 から X軸 (電気軸) を回転軸と して角度 0だけ回転した方向にとる 。 なお、 図示のよ うに、 回転した後の脚の長手方向を Y, 軸、 厚み 方向を Z ' 軸とする。 角度 0は 2 5 ° 〜 4 5 ° の範囲とするのが好 適である。 この角度 0の範囲は次のように求められた。  The width direction of the torsional vibrator according to the present embodiment matches the X-axis direction of the crystal axis of quartz. The direction in which the legs extend and the thickness direction is 0 degrees with the X axis (electric axis) as the rotation axis from the state in which the Y axis (mechanical axis) and the Z axis (optical axis) of the crystal axis of the crystal are matched. Take in the direction just rotated. As shown, the longitudinal direction of the leg after rotation is the Y axis, and the thickness direction is the Z 'axis. Angle 0 is preferably in the range of 25 ° to 45 °. The range of this angle 0 was obtained as follows.
即ち、 水晶は S i O 2 からなる三方晶系に属する単結晶であり異 方性を有する。 弾性定数は方向によって異なり、 テンソルで表現さ れる。 また、 その温度依存性はテンソルの各成分ごとに異なる。 こ のため、 水晶で構成された振動子の共振周波数は、 結晶軸に対する 方位によっても異なると同時に、 温度依存性も方位によって変化す る。 In other words, the crystal is a single crystal belonging to the trigonal system consisting of a S i O 2 different Has anisotropy. The elastic constant depends on the direction and is expressed as a tensor. The temperature dependence differs for each component of the tensor. For this reason, the resonance frequency of a vibrator made of quartz varies depending on the direction with respect to the crystal axis, and the temperature dependence also changes with the direction.
図 2は本発明による捩り振動子の角度 0における共振周波数の温 度依存性を示すグラフである。 図 1 5で説明したように、 共振周波 数 f は温度 (横軸) によって変化し、 最大周波数 f 。 に対する周波 数変化の割合 ( f 一 f 。) / f Q (縦軸) は上に凸の二次曲線となる 本発明の捩り振動子の二次温度係数は約一 1 . 1 X 1 0-2ppm / °C2 であり、 図 1 5で説明した従来の 2脚音叉型屈曲振動子の二次 温度係数 (約— 3 . 5 X 1 0 -2ppm /°C2) の 3分の 1以下の値を 持っており温度特性は良好である。 ここで最大周波数 f Q を示す温 度を頂点温度と称す。 頂点温度 5が使用温度範囲の中間付近にあれ ば共振周波数変化の幅は小さくなるので、 そのような角度 0 を選択 することが必要となる。 頂点温度 5は角度 Θだけでなく脚の幅 Wと 厚み Dの比によっても変化する。 FIG. 2 is a graph showing the temperature dependence of the resonance frequency at the angle 0 of the torsional vibrator according to the present invention. As explained in Fig. 15, the resonance frequency f changes with temperature (horizontal axis), and reaches the maximum frequency f. The ratio of the frequency change with respect to (f 1 f) / f Q (vertical axis) is a quadratic curve that is convex upward. The secondary temperature coefficient of the torsional vibrator of the present invention is about 1.1 X 10 − a 2 ppm / ° C 2, the secondary temperature coefficient of a conventional 2 Ashionsa type flexural resonator explained in FIG. 5 (about -. 3 5 X 1 0 - 2 ppm / ° C 2) 3 minutes of It has a value of 1 or less and has good temperature characteristics. Here, the temperature indicating the maximum frequency f Q is called the peak temperature. If the peak temperature 5 is near the middle of the operating temperature range, the width of the change in the resonance frequency becomes smaller, so it is necessary to select such an angle 0. The peak temperature 5 varies not only with the angle Θ but also with the ratio of the leg width W to the thickness D.
図 3は辺比 WZDによつて頂点温度が 2 5 °Cとなる角度 0がどの ように変化するかを現したグラフである。 振動子の強度とサイズの パランスを考慮した実用的な範囲は辺比 W/Dが 1 〜 3である。 こ の範囲では頂点温度 5が室温付近になる角度 0は 2 5 ° ~ 4 5 ° で あり、 辺比 WZDを 1〜 3にすることが好適である。  Figure 3 is a graph showing how the angle 0 at which the vertex temperature reaches 25 ° C changes depending on the side ratio WZD. A practical range in consideration of the balance of the strength and size of the oscillator is a side ratio W / D of 1 to 3. In this range, the angle 0 at which the peak temperature 5 becomes near room temperature is 25 ° to 45 °, and it is preferable that the side ratio WZD is 1 to 3.
図 8は水晶のエッチングレー トの角度 0依存性を示すダラフであ る。 本発明による角度 0の好適な値は次のよ うな理由から求められ る。 即ち本実施形態の捩り振動子は、 フッ酸とフッ化アンモニゥム の混合液によるエッチングによって製作される。 エッチング性は水 晶の方位により異なり、 さらに角度 0によってもエッチングレー ト は図示のように変化する。 即ちエッチング性 (エッチングレー ト) は角度 0が小さいほど良く速いエッチングができる。 本実施形態の 捩り振動子では、 図 1 6に示した従来の屈曲振動モードで使用され る 2脚音叉振動子に比べて角度 0が大きいのでエッチング時間は 3 〜 4倍を必要とすることになる。 Figure 8 is a graph showing the dependence of the etching rate of quartz on angle 0. The preferred value of the angle 0 according to the present invention is obtained for the following reasons. That is, the torsional vibrator of the present embodiment is manufactured by etching with a mixed solution of hydrofluoric acid and ammonium fluoride. Etching is water The etching rate varies as shown in the figure, depending on the crystal orientation, and also at an angle of 0. That is, the smaller the angle 0, the better the etching performance (etching rate). In the torsional vibrator of the present embodiment, the angle 0 is larger than that of the two-leg tuning fork vibrator used in the conventional bending vibration mode shown in FIG. 16, so that the etching time needs to be 3 to 4 times. Become.
従って振動子の厚み Dを増やすことは量産性を損なうため好まし くなく、 実際の設計では厚み Dをほぼ一定として脚の幅 Wを変える ことのみ許されることになる。 厚みと脚の長さを一定にした場合、 辺比 W/ Dを小さくすることは脚幅が小さくなり脚が細くなること を意味するので、 辺比 W/Dが小さい方が共振周波数は高くなる。 しかし捩り振動子を時計や移動体通信機の基準周波数源として用い る場合、 周波数が高くなると消費電力が増加するため好ましく ない 、 従って辺比 WZDは共振周波数からの要請では大きく したい。  Therefore, it is not preferable to increase the thickness D of the vibrator because mass productivity is impaired. In an actual design, it is only allowed to change the width W of the leg while keeping the thickness D substantially constant. When the thickness and the length of the legs are kept constant, reducing the side ratio W / D means that the leg width becomes smaller and the legs become thinner, so the smaller the side ratio W / D, the higher the resonance frequency. Become. However, when a torsional vibrator is used as a reference frequency source for a timepiece or a mobile communication device, it is not preferable because the power consumption increases when the frequency is high.
しかしながら、 図 3に見るように辺比 WZDが大きいと頂点温度 を室温付近とする角度 0 を大きくする必要があるが、 図 8に示すよ うに角度 0 を大きくするとエッチングレー トが低下してしまう。 以 上の説明で明らかなように、 共振周波数からの要請とエッチングレ ートからの要請の双方を考慮すると、 辺比 WZDは 2前後にするの が適切である。 図 3を参照すると、 辺.比が 1. 5〜 2. 5で頂点温 度が室温付近となる角度 0は 3 0 ° 〜 4 0 ° であり、 これが角度 0 のさ らに好適な範囲である。 一例と して、 厚み D = 1 0 0 μ m、 脚 の幅 W = 1 8 6 μ m、 脚長 Ι^ = 2 3 7 5 μ πιの時、 角度 0 = 3 4. 6 ° で頂点温度は 2 5 ° Cとなった。 また、 この場合の周波数は 2 6 2 k H zであった。  However, as shown in Fig. 3, if the side ratio WZD is large, it is necessary to increase the angle 0 at which the vertex temperature is near room temperature, but if the angle 0 is increased as shown in Fig. 8, the etching rate decreases. . As is clear from the above description, it is appropriate to set the side ratio WZD to around 2 in consideration of both the requirement from the resonance frequency and the requirement from the etching rate. Referring to FIG. 3, the angle 0 at which the side ratio is 1.5 to 2.5 and the vertex temperature is near room temperature is 30 ° to 40 °, which is a more preferable range at the angle 0. is there. As an example, when the thickness D = 100 μm, the leg width W = 186 μm, and the leg length Ι ^ = 2 375 μππ, the apex temperature becomes 0 at an angle of 0 = 34.6 °. It was 25 ° C. The frequency in this case was 262 kHz.
以上のように、 角度 0 を決めるに際しては、 頂点温度、 エツチン グ性の各面からの検討が必要であり、 その結果、 2 5 ° ≤ 0 ≤ 4 5 ° が好適であると求められた。 また、 さらに好適な角度は 3 0 ° ≤ 0 ≤ 4 0。 の範囲であった。 As described above, when determining the angle 0, it is necessary to consider the apex temperature and the etching properties, and as a result, 25 ° ≤ 0 ≤ 4 5 ° was determined to be suitable. A more preferable angle is 30 ° ≤ 0 ≤ 40. Was in the range.
図 4は本発明による一つの実施形態の捩り振動子の電極構造を示 す図である。 電極 7 (斜線部分) は各脚 3の各面に設けられている 。 また、 各脚 3の先端には周波数調整用電極 9が設けられている。 周波数調整用電極 9をレーザ等でト リ ミ ングすることによ り脚の質 量を変化させて共振周波数を調整する。  FIG. 4 is a diagram showing an electrode structure of a torsional vibrator according to one embodiment of the present invention. Electrodes 7 (hatched portions) are provided on each surface of each leg 3. A frequency adjusting electrode 9 is provided at the tip of each leg 3. The resonance frequency is adjusted by changing the mass of the leg by trimming the frequency adjusting electrode 9 with a laser or the like.
図 5は本発明による捩り振動子の電極と配線を示す図である。 図 示のように、 断面で示す 3本の脚 3の表裏面及び両側面に電極 7が 配置され、 各電極は図示のように配線されている。 脚 3の各面には 電極 7は、 対向する電極同士が同電位となるように配線される。 ま た、 中央に位置する脚の側面の電極 ( a , b ) は両端に位置する脚 の表裏面の電極 ( g, h及び k, 1 ) と同電位とし、 中央に位置す る脚の表裏面の電極 ( c , d ) は両端に位置する脚の側面の電極 ( e , f 及び i, j ) と同電位となるよう配線される。  FIG. 5 is a diagram showing electrodes and wirings of the torsional vibrator according to the present invention. As shown in the figure, electrodes 7 are arranged on the front and back surfaces and both side surfaces of three legs 3 shown in cross section, and each electrode is wired as shown. The electrode 7 is wired on each surface of the leg 3 so that the opposing electrodes have the same potential. The electrodes (a, b) on the sides of the center leg are at the same potential as the electrodes (g, h and k, 1) on the front and back surfaces of the legs located at both ends. The electrodes (c, d) on the back side are wired so as to have the same potential as the electrodes (e, f and i, j) on the side surfaces of the legs located at both ends.
図 6は本発明による捩り振動子の印加電界を示す説明図である。 本図は、 本実施形態の電極 7によ り印加される電界 1 1 を模式的に 示している。 図示のように、 脚 3の内部において X方向および Z, 方向へ電界 1 1が生じることを示している。 電界 1 1 は脚 3の断面 の中心に対して点対称となる。 また、 電界 1 1 の向きは X成分と Z ' 成分で中心に対して互いに逆向きであり、 X方向の電界成分が中 心に向かう時は Z ' 方向の電界成分は逆に中心から遠ざかる向きに 作用する。  FIG. 6 is an explanatory diagram showing an applied electric field of the torsional vibrator according to the present invention. The figure schematically shows an electric field 11 applied by the electrode 7 of the present embodiment. As shown, an electric field 11 is generated inside the leg 3 in the X and Z directions. The electric field 11 is point-symmetric with respect to the center of the cross section of the leg 3. The directions of the electric field 11 are opposite to each other with respect to the center in the X component and the Z ′ component.When the electric field component in the X direction is toward the center, the electric field component in the Z ′ direction is opposite to the center. Acts on
図 7は水晶の圧電定数の角度 0による変化を示すダラフである。 本実施形態による捩り振動子で利用する圧電定数 (縦軸) は、 e ' 1 4および e, 3 6である。 圧電定数 e, 1 4は X方向の電界と Y, 一 Ζ ' 面内のずり歪 (せん断歪み) とを関係づける定数であり、 圧電定 数 e ' 36は Z, 方向の電界と X— Y, 面内のずり歪とを関係づける 定数である。 FIG. 7 is a graph showing the change in the piezoelectric constant of quartz with an angle of 0. The piezoelectric constant (vertical axis) utilized in torsional vibrator according to the present embodiment, e '1 is 4 and e, 3 6. The piezoelectric constants e and 14 are constants that relate the electric field in the X direction to the shear strain (shear strain) in the Y, 100 'plane. The number e '36 is a constant that relates Z, the direction of the electric field and X- Y, and shear strain in the plane.
角度 0 = 0の時、 圧電定数 e ' 14および e, 36は、 それぞれ水晶 固有の圧電定数である e 14および e 36 (= 0 ) に一致する。 本実施 形態の電極構造によれば、 図 6に示すよ うに、 X方向および Z ' 方 向へ脚断面の中心に対し点対称な電界が生じるので、 圧電伝定数 e , 14および e ' 36によって捩り振動を発振することができる。 圧電 定数 e ' 14および e ' 36は、 角度 0 によ り図 7のように値が変化す るが、 上記した角度 0 の好適な範囲 (即ち、 2 5 ° 〜 4 5 ° の範囲 ) において同符号であり、 矛盾無く発振することができ、 また駆動 するのに充分な大きさがあることがわかる。 When the angle 0 = 0, a piezoelectric constant e '14 and e, 36 corresponds to the e 14 and e 36 are quartz inherent piezoelectric constant, respectively (= 0). According to the electrode structure of the present embodiment, as shown in FIG. 6, an electric field that is point-symmetric with respect to the center of the leg cross section is generated in the X direction and the Z ′ direction, so that the piezoelectric transfer constants e, 14 and e ′ 36 It can oscillate torsional vibration. The values of the piezoelectric constants e ′ 14 and e ′ 36 change as shown in FIG. 7 depending on the angle 0, but within the preferable range of the angle 0 (that is, the range of 25 ° to 45 °). It can be seen that they have the same sign, can oscillate without contradiction, and are large enough to drive.
図 9は本発明による捩り振動子の脚の動きを説明する説明図であ る。 前述のように、 本実施形態の捩り振動子は図 9に示すように中 央の脚 3 と両端の脚 3が逆相で捩れる捩り振動を行う ifi さらに他 の振動モー ドで発振する場合があることがわかった。 実験の結果、 この発振は圧電定数 e 12の作用によって面内二次振動によるもので あることがわかった。 FIG. 9 is an explanatory diagram illustrating the movement of the legs of the torsional vibrator according to the present invention. As described above, the torsional vibrator of the present embodiment oscillates in another vibration mode ifi in which the center leg 3 and the legs 3 at both ends twist in opposite phases as shown in Fig. 9. I found that there was. The results of the experiment, the oscillation was found to be due to in-plane secondary vibration by the action of the piezoelectric constant e 12.
図 1 0は 3脚音叉における面内二次振動による脚の動きを説明す る説明図である。 面内二次振動は図示のよ うに各脚の中央部が膨ら む (腹となる) 振動であり、 中央の脚と両端の脚が逆相で振動する モー ドである。  FIG. 10 is an explanatory diagram for explaining a leg motion due to in-plane secondary vibration in a three-leg tuning fork. The in-plane secondary vibration is a vibration in which the center of each leg expands (becomes a belly) as shown in the figure, and the center leg and the legs at both ends vibrate in opposite phases.
図 1 1 は水晶振動子の等価回路を示す図である。 一般に水晶振動 子の等価回路は、 図示のよ うに等価直列イ ンダクタンス 1^ と等価 直列容量。ェ および等価直列抵抗 Ri による直列回路に、 等価並列 容量 CQ が付加された回路で表現することができる。 種々の実験の 結果、 電極長を変えると面内二次振動の等価直列抵抗が変化し、 電 極長を短くすると等価直列抵抗が大きくなることが判明した。 これ は面内二次振動の歪みが脚の長さ方向の中央付近が最大で、 根元方 向に向かって小さくなるためである (図 1 0参照) 。 本願の発明者 は、 必要な捩り振動の歪は各脚の根元が最大なので、 場所による面 内二次振動の歪みの差を利用すれば、 面内二次振動の等価直列抵抗 のみを大きくすることにより、 発振し難くすることができることに 着目 した。 . FIG. 11 is a diagram showing an equivalent circuit of a crystal resonator. Generally, the equivalent circuit of a crystal unit has an equivalent series inductance of 1 ^ and an equivalent series capacitance as shown in the figure. It can be represented by a circuit in which the equivalent parallel capacitance C Q is added to the series circuit composed of the equivalent series resistance Ri. As a result of various experiments, it was found that changing the electrode length changed the equivalent series resistance of the in-plane secondary vibration, and shortening the electrode length increased the equivalent series resistance. this This is because the distortion of the in-plane secondary vibration is maximum near the center in the length direction of the leg and decreases toward the root (see Fig. 10). The inventor of the present application states that since the required distortion of torsional vibration is the maximum at the root of each leg, using the difference in distortion of in-plane secondary vibration depending on the location increases only the equivalent series resistance of in-plane secondary vibration. By doing so, we focused on the fact that oscillation can be made difficult. .
図 1 2は本発明による捩り振動子の電極長と等価直列抵抗の関係 を示すグラフである。 本グラフは種々の実験の結果得られたもので あり、 図示のように、 電極長 Z脚全長によって捩り振動の等価直列 抵抗はほとんど変化しないのに対して (実線参照) 、 面内二次振動 の等価直列抵抗は大きく変化する (点線参照) 。 例えば電極長 z脚 全長が 0 . 5倍以下であれば、 面内二次振動の等価直列抵抗は捩り 振動の等価直列抵抗の 1 0倍以上になるので好ましい。 また、 電極 長 Z脚全長が 0 . 4倍以下のときは、 面内二次振動の等価直列抵抗 は捩り振動の等価直列抵抗の 2 0倍以上になるので、 製作上のパラ ツキ等で捩り振動の等価直列抵抗が例え 2倍程度変化しても、 面内 二次振動の等価直列抵抗は 1 0倍以上となり充分なマージンを得る ことができ、 さ らに好適である。  FIG. 12 is a graph showing the relationship between the electrode length and the equivalent series resistance of the torsional vibrator according to the present invention. This graph was obtained as a result of various experiments. As shown in the figure, while the equivalent series resistance of torsional vibration hardly changes with the electrode length and the Z-leg length (see the solid line), the in-plane secondary vibration Has a large change in equivalent series resistance (see dotted line). For example, when the electrode length and the total length of the z-leg are 0.5 times or less, the equivalent series resistance of the in-plane secondary vibration is preferably 10 times or more the equivalent series resistance of the torsional vibration. If the electrode length and the total length of the Z-leg are less than 0.4 times, the equivalent series resistance of the in-plane secondary vibration will be 20 times or more the equivalent series resistance of torsional vibration. Even if the equivalent series resistance of the vibration changes about twice, the equivalent series resistance of the in-plane secondary vibration becomes 10 times or more, and a sufficient margin can be obtained, which is more preferable.
図 1 3は 3脚音叉における面内一次振動の脚の動きを説明する説 明図である。 本実施形態の捩り振動子では、 2脚音叉において課題 となった面内一次振動の自励発振は観測されなかった。 ィンビーダ ンスアナライザによる測定では各脚が面内で屈曲一次振動を行う面 内一次振動の等価直列抵抗は 1 0 0 k Ω以上であり 自励発振の恐れ がないことを確認した。 これは、 3脚音叉の面内一次振動は基部 1 の漏れ振動を伴うためである。 2脚音叉の場合は左右の脚 3が反対 方向へ運動するため対称性が良く、 中心線が節となるので基部の中 央'を支持すれば漏れ振動がほとんど生じないが、 図 1 3に示すよう に 3脚音叉の面内一次振動は両端の脚 3 と中央の脚 3が逆相で屈曲 振動するモー ドなので対称性が良くない。 このため両端の脚 3 と中 央の脚 3の幅を変えるなどしなければ基部 1への漏れ振動が生じる 。 捩り振動子では共振周波数が脚の断面形状と長さで決まる。 その ため、 3脚音叉捩り振動子では各脚はほぼ等しい断面形状とする必 要があるので面内一次振動では漏れ振動を伴うのである。 Fig. 13 is an explanatory diagram for explaining the movement of the leg due to in-plane primary vibration in a three-leg tuning fork. In the torsional vibrator of the present embodiment, self-excited oscillation of in-plane primary vibration, which was a problem in the two-leg tuning fork, was not observed. In the measurement using an impedance analyzer, it was confirmed that the equivalent series resistance of the primary vibration in the plane where each leg performs bending primary vibration in the plane was 100 kΩ or more, and there was no danger of self-excited oscillation. This is because the in-plane primary vibration of the tripod tuning fork is accompanied by leakage vibration of the base 1. In the case of a two-legged tuning fork, the left and right legs 3 move in opposite directions, so that symmetry is good and the center line becomes a node, so that supporting the center of the base almost does not cause leakage vibration. As shown In addition, the in-plane primary vibration of a three-leg tuning fork has poor symmetry because the legs 3 at both ends and the center leg 3 bend and vibrate in opposite phases. For this reason, unless the widths of the legs 3 at both ends and the center leg 3 are changed, leakage vibration to the base 1 occurs. In a torsional vibrator, the resonance frequency is determined by the cross-sectional shape and length of the leg. Therefore, in a three-legged tuning fork torsional vibrator, each leg must have approximately the same cross-sectional shape, so that in-plane primary vibration involves leakage vibration.
図 1 4は本発明による捩り振動子を自励発振させるための発振回 路を示す図である。 上述したように、 本実施形態における捩り振動 子は、 '不要な副振動を振動子自身の構造 ( 3脚構造) による特性と 電極構造 (各面の電極と t電極長と電位) の工夫によ り除去すること ができるので、 発振回路は、 図示のように、 振動子 1 3に抵抗 1 5 とイ ンパータ 1 7を並列に接続した簡単な回路構成によって容易に 実現することができる。 なお、 本実施形態の捩り振動子の等価直列 抵抗は 1〜 5 程度である。 従来の平行な電極を用いた捩り振動 子の等価直列抵抗は 3 0〜 5 0 程度なので、 1 0分の 1程度の 値である。 この理由は平面上に平行に電極を配置するよりも、 本実 施形態のように脚の各面に電極を設けた方が脚内部に有効に電界を 印加することができるためである。 産業上の利用可能性 FIG. 14 is a diagram showing an oscillation circuit for causing the torsional vibrator according to the present invention to self-oscillate. As described above, the torsional vibrator according to the present embodiment is based on the idea that unnecessary sub-vibrations are generated by modifying the characteristics of the vibrator itself (three-leg structure) and the electrode structure (electrode and t electrode length and potential on each surface). The oscillation circuit can be easily realized by a simple circuit configuration in which the resistor 13 and the inverter 17 are connected in parallel to the oscillator 13 as shown in the figure. The equivalent series resistance of the torsional vibrator of this embodiment is about 1 to 5. The equivalent series resistance of a conventional torsional vibrator using parallel electrodes is about 30 to 50, which is about 1/10. The reason for this is that the provision of the electrodes on each side of the leg as in the present embodiment allows an electric field to be more effectively applied to the inside of the leg than to arrange the electrodes in parallel on a plane. Industrial applicability
以上に記したように、 本発明の捩り振動子は、 温度特性が良好な 上、 形状が簡単で水晶板の切り出しも一重回転で容易になり製作し 易く、 また用いる発振回路も単純になるという効果があり、 さ らに 等価直列抵抗を小さくすることができ、 低消費電力の捩り振動子を 得ることができるという効果がある。 従って、 時計や移動体通信機 等の基準信号源と して産業上の利用可能性は極めて高い。  As described above, the torsional vibrator of the present invention has good temperature characteristics, is simple in shape, is easy to cut out a quartz plate by a single rotation, is easy to manufacture, and has a simple oscillation circuit. This has the effect that the equivalent series resistance can be reduced, and a low power consumption torsional vibrator can be obtained. Therefore, it has extremely high industrial applicability as a reference signal source for clocks and mobile communication devices.

Claims

1 . 1つの基部と該基部から同一の方向に伸びる 3本の脚を有し 、 該 3本の脚の各々が捩り振動モー ドで使用されることを特徴とす る捩り振動子。 1. A torsional vibrator having one base and three legs extending from the base in the same direction, wherein each of the three legs is used in a torsional vibration mode.
2 . 請求項 1に記載の捩り振動子であって、 両端に位置する 2本 青  2. The torsional vibrator according to claim 1, wherein two wires are located at both ends.
の脚の捩り振動は互いに同相であり、 中央に位置する 1本の脚の捩 り振動は、 該両端に位置する 2本の脚の捩り振動と互いに逆相であ ることを特徴とする捩り振動子。の The torsional vibrations of the two legs located at the center are in phase with the torsional vibrations of the two legs located at both ends. Vibrator. of
3 . 請求項 1又は請求項 2に記載の捩り振動子であって、 該捩り 振動子は水晶で構成されることを特徴とす囲る捩り振動子。 3. The torsional vibrator according to claim 1 or 2, wherein the torsional vibrator is made of quartz.
4 . 請求項 3に記載の捩り振動子であって、 前記 3本の脚の各面 に電極を有し、 該 3本の脚の各々の対向する面の電極同士が同.電位 となるように配線したことを特徴とする捩り振動子。  4. The torsional vibrator according to claim 3, wherein each of the three legs has an electrode, and the electrodes on the opposing surfaces of each of the three legs have the same potential. A torsional vibrator characterized by being wired to.
5 . 請求項 4に記載の捩り振動子であって、 前記中央に位置する 1本の脚の側面部の電極と前記両端に位置する 2本の脚の表裏面の 電極とを同電位と し、 該中央に位置する 1本の脚の表裏面の電極と 該両端に位置する 2本の脚の側面部の電極とを同電位とするよ うに 配線したことを特徴とする捩り振動子。  5. The torsional vibrator according to claim 4, wherein the electrodes on the side surfaces of the one leg located at the center and the electrodes on the front and back surfaces of the two legs located at the both ends have the same potential. A torsional vibrator characterized in that the electrodes on the front and back surfaces of the one leg located at the center and the electrodes on the side surfaces of the two legs located at both ends are wired so as to have the same potential.
6 . 請求項 4又は請求項 5に記載の捩り振動子であって、 前記電 極の長手方向の長さを、 前記 3本の脚の根元から先端までの該脚の 全長の 0 . 5倍以下としたことを特徴とする捩り振動子。  6. The torsional vibrator according to claim 4 or 5, wherein a length of the electrode in a longitudinal direction is 0.5 times a total length of the three legs from a root to a tip. A torsional vibrator characterized by the following.
7 . 請求項 3乃至 6のいずれかに記載の捩り振動子であって、 前 記基部の幅方向を水晶の結晶軸の X軸と し、 前記脚の長手方向およ び厚み方向を、 それぞれ水晶の結晶軸の Y軸および Z軸に一致させ た状態から X軸を回転軸として角度 0だけ回転した方向とし、 角度 0が次の不等式 2 5 ° ≤ Θ ≤ 4 5 ° 7. The torsional vibrator according to any one of claims 3 to 6, wherein a width direction of the base is defined as an X axis of a crystal axis of the crystal, and a longitudinal direction and a thickness direction of the legs are respectively defined. From the state in which the crystal axis of the crystal is matched with the Y axis and Z axis, the direction rotated by angle 0 with the X axis as the rotation axis, and angle 0 is the following inequality 2 5 ° ≤ Θ ≤ 45 °
を満足するよ うに構成したことを特徴とする捩り振動子。 A torsional vibrator characterized by satisfying the following conditions.
PCT/JP2001/008588 2000-10-10 2001-09-28 Torsional vibrator WO2002031975A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-308717 2000-10-10
JP2000308717A JP2002118441A (en) 2000-10-10 2000-10-10 Torsional vibrator

Publications (1)

Publication Number Publication Date
WO2002031975A1 true WO2002031975A1 (en) 2002-04-18

Family

ID=18788982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008588 WO2002031975A1 (en) 2000-10-10 2001-09-28 Torsional vibrator

Country Status (2)

Country Link
JP (1) JP2002118441A (en)
WO (1) WO2002031975A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525061B2 (en) * 2003-12-08 2010-08-18 セイコーエプソン株式会社 Quartz lumbard ore, method for producing quartz plate, and quartz lumbard ore
JP5785470B2 (en) * 2011-09-30 2015-09-30 シチズンファインデバイス株式会社 Method for manufacturing piezoelectric vibrator
JP2013078045A (en) * 2011-09-30 2013-04-25 Citizen Finetech Miyota Co Ltd Piezoelectric vibrator and method of manufacturing the same
JP2013078046A (en) * 2011-09-30 2013-04-25 Citizen Finetech Miyota Co Ltd Method of manufacturing piezoelectric vibrator, and piezoelectric vibrator
JP5864189B2 (en) * 2011-09-30 2016-02-17 シチズンファインデバイス株式会社 Piezoelectric vibrator and manufacturing method thereof
JP2013192013A (en) * 2012-03-13 2013-09-26 Seiko Epson Corp Vibration element, vibration device and electronic apparatus
JP6100582B2 (en) * 2013-03-29 2017-03-22 シチズンファインデバイス株式会社 Torsional vibrator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538590A (en) * 1976-07-12 1978-01-26 Seiko Instr & Electronics Ltd Crystal resonator
JPS5630312A (en) * 1979-08-21 1981-03-26 Citizen Watch Co Ltd Length longitudinal oscillator
JPS56158520A (en) * 1980-05-12 1981-12-07 Seiko Instr & Electronics Ltd Oscillator
JPS62231506A (en) * 1986-03-31 1987-10-12 Miyota Seimitsu Kk Supporting structure for lengthwise longitudinal vibrator of 1mhz band
JPS6364925B2 (en) * 1980-01-22 1988-12-14
JPS6365243B2 (en) * 1982-03-02 1988-12-15
JPH0150133B2 (en) * 1981-05-07 1989-10-27 Citizen Watch Co Ltd
JPH0150135B2 (en) * 1981-12-25 1989-10-27 Citizen Watch Co Ltd
JPH0150134B2 (en) * 1981-05-26 1989-10-27 Citizen Watch Co Ltd
JPH0150132B2 (en) * 1981-04-17 1989-10-27 Citizen Watch Co Ltd
JPH0338770B2 (en) * 1982-01-08 1991-06-11 Citizen Watch Co Ltd
JPH0538483B2 (en) * 1984-05-17 1993-06-10
JP6066631B2 (en) * 2012-08-31 2017-01-25 三菱重工業株式会社 Method of arranging gap expansion jig for heat transfer tube and vibration suppressing member

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538590A (en) * 1976-07-12 1978-01-26 Seiko Instr & Electronics Ltd Crystal resonator
JPS5630312A (en) * 1979-08-21 1981-03-26 Citizen Watch Co Ltd Length longitudinal oscillator
JPS6364925B2 (en) * 1980-01-22 1988-12-14
JPS56158520A (en) * 1980-05-12 1981-12-07 Seiko Instr & Electronics Ltd Oscillator
JPH0150132B2 (en) * 1981-04-17 1989-10-27 Citizen Watch Co Ltd
JPH0150133B2 (en) * 1981-05-07 1989-10-27 Citizen Watch Co Ltd
JPH0150134B2 (en) * 1981-05-26 1989-10-27 Citizen Watch Co Ltd
JPH0150135B2 (en) * 1981-12-25 1989-10-27 Citizen Watch Co Ltd
JPH0338770B2 (en) * 1982-01-08 1991-06-11 Citizen Watch Co Ltd
JPS6365243B2 (en) * 1982-03-02 1988-12-15
JPH0538483B2 (en) * 1984-05-17 1993-06-10
JPS62231506A (en) * 1986-03-31 1987-10-12 Miyota Seimitsu Kk Supporting structure for lengthwise longitudinal vibrator of 1mhz band
JP6066631B2 (en) * 2012-08-31 2017-01-25 三菱重工業株式会社 Method of arranging gap expansion jig for heat transfer tube and vibration suppressing member

Also Published As

Publication number Publication date
JP2002118441A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
JP2003023338A (en) Vertical-width piezoelectric crystal vibrator
JP2013243753A (en) Method for manufacturing crystal vibrator, crystal unit and crystal oscillator
JP3743913B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, and manufacturing method thereof
WO2002031975A1 (en) Torsional vibrator
JP2005197946A6 (en) Tuning fork crystal unit
JP2005197946A (en) Tuning fork type crystal resonator
JP2001196891A (en) Vibrator
JPS58220515A (en) Elongated mode piezoelectric microwave resonator
JPS6316169Y2 (en)
JPS5851687B2 (en) Tuning fork crystal oscillator
JP2010187307A (en) At cut quartz resonator and manufacturing method thereof
JPH06112761A (en) Tortion crystal vibrator
JPS5838015A (en) Piezoelectric oscillator
JP3363457B2 (en) Torsional crystal oscillator
JP2007150405A (en) Fsk modulator
JP2005094726A (en) Crystal unit, manufacturing method thereof and crystal oscillator
US4525646A (en) Flexural mode vibrator formed of lithium tantalate
JP4067044B2 (en) Oscillator and vibratory gyroscope
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JPH07254839A (en) Crystal vibrator
JP2003115747A (en) Lame mode crystal oscillator
JP2005094734A (en) Resonator, resonator unit, oscillator, and electronic apparatus
JPH0278313A (en) Structure for overtone oscillating piezoelectric resonator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase