JP2005094726A - Crystal unit, manufacturing method thereof and crystal oscillator - Google Patents

Crystal unit, manufacturing method thereof and crystal oscillator Download PDF

Info

Publication number
JP2005094726A
JP2005094726A JP2003402262A JP2003402262A JP2005094726A JP 2005094726 A JP2005094726 A JP 2005094726A JP 2003402262 A JP2003402262 A JP 2003402262A JP 2003402262 A JP2003402262 A JP 2003402262A JP 2005094726 A JP2005094726 A JP 2005094726A
Authority
JP
Japan
Prior art keywords
crystal
vibration
width
axis
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402262A
Other languages
Japanese (ja)
Inventor
Hirofumi Kawashima
宏文 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Piedek Technical Laboratory
Original Assignee
Piedek Technical Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piedek Technical Laboratory filed Critical Piedek Technical Laboratory
Priority to JP2003402262A priority Critical patent/JP2005094726A/en
Publication of JP2005094726A publication Critical patent/JP2005094726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal unit provided with a microminiature contour crystal vibrator which has small equivalent series resistance R<SB>n</SB>, a high Q value and an excellent frequency temperature characteristic, a manufacturing method thereof, and a crystal oscillator provided with this crystal unit. <P>SOLUTION: The contour crystal vibrator composed of a vibration section, a connection section and a supporting section is formed of a crystal plate having proper electrooptic conversion efficiency, and has a zero temperature coefficient at an arbitrary temperature. Thus, the crystal unit provided with the microminiature contour crystal vibrator having a small change in frequency over a wide temperature range and a small equivalent series resistance R<SB>n</SB>is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高い電気機械変換効率を有し、主振動が副振動との結合のない単一の振動モードで振動する輪郭水晶振動子(例えば、幅縦水晶振動子、ラーメ水晶振動子、長さ縦水晶振動子)とケースと蓋とを具えた水晶ユニットとその製造方法と水晶発振器に関する。特に、本発明の水晶ユニットを構成する輪郭水晶振動子の一つである幅縦水晶振動子のカット角、電極構成と振動子形状に関する。詳細に、小型化、高精度、耐衝撃性、低廉化などの要求の強い携帯機器用、計測機器用、及び民生機器用の基準信号源として最適な新カット、新電極構成の幅縦水晶振動子を具えた水晶ユニットとその製造方法と水晶発振器に関する。  The present invention has a high electromechanical conversion efficiency, and a contour crystal resonator that vibrates in a single vibration mode in which the main vibration is not coupled with the secondary vibration (for example, a width vertical crystal resonator, a lame crystal resonator, a length The present invention relates to a crystal unit including a vertical crystal resonator), a case, and a lid, a manufacturing method thereof, and a crystal oscillator. In particular, the present invention relates to a cut angle, an electrode configuration, and a vibrator shape of a width-longitudinal crystal resonator that is one of the contour crystal resonators constituting the crystal unit of the present invention. In detail, a new vertical and vertical crystal oscillation with a new cut that is optimal as a reference signal source for portable devices, measuring instruments, and consumer devices, which are highly demanded for miniaturization, high accuracy, impact resistance, and low cost. The present invention relates to a crystal unit including a child, a manufacturing method thereof, and a crystal oscillator.

例えば、従来の技術としては、水晶を用いた幅縦モード振動と長さ縦モード振動が結合したNS−GTカット幅・長さ縦結合水晶振動子がよく知られている。図15にはこの従来例の平面図を示す。図15において水晶振動子200は振動部201、接続部203、206及び支持部204、207を具えて構成されている。支持部204、207はそれぞれマウント部205、208を包含している。図15と図16に示されているように、振動部201の上下面には電極202と211が配置され、振動部の電極202は接続部203を介してマウント部205にまで延在している。これに対して、振動部の電極211も同様に接続部206を介してマウント部208にまで延在している。電極202と電極211は異極となるように構成され、2電極端子を構成している。図示されていないが、振動子はマウント部205、208で台座に接着剤などで固定され、更に、台座はリード線に固定されている。即ち、腕時計で多様されている円筒型の金属容器に収納されている。今、両電極202、211間に交番電圧を印加すると、図16の実線と点線で示されるように、電界Eは厚みT方向に交互に働く。その結果、幅Wに反比例して大略周波数が決まる幅縦振動モードと長さLに反比例して大略周波数が決まる長さ縦振動モードが同時に励振され、両振動モードが結合したNS−GTカット幅・長さ縦結合水晶振動子が得られる。しかし、小型化(高周波数化)するとRが大きくなるという問題があった。
古賀逸策著「圧電気と高周波」、オーム社 昭和13年 「矩形板状水晶振動子の短辺振動とその周波数温度係数」、電気学会雑誌、56巻579号 昭和11年10月 「水晶振動子とその応用デバイス」電子情報通信学会論文誌C−I Vol.J82−C−I No.12pp.667−682 1999年12月 「2軸回転ラーメモード圧電振動子のエネルギー法による解析」、電子情報通信学会論文誌A Vol.J79−A、No.6pp.1157−1164 1996年6月 特開2001−313537号公報 特開2002−111434号公報 特開2002−158559号公報
For example, as a conventional technique, an NS-GT cut width / length longitudinally coupled crystal resonator in which width longitudinal mode vibration and length longitudinal mode vibration using a crystal are coupled is well known. FIG. 15 shows a plan view of this conventional example. In FIG. 15, the crystal resonator 200 includes a vibration part 201, connection parts 203 and 206, and support parts 204 and 207. The support portions 204 and 207 include mount portions 205 and 208, respectively. As shown in FIGS. 15 and 16, electrodes 202 and 211 are arranged on the upper and lower surfaces of the vibration unit 201, and the electrode 202 of the vibration unit extends to the mount unit 205 via the connection unit 203. Yes. On the other hand, the electrode 211 of the vibration part similarly extends to the mount part 208 via the connection part 206. The electrode 202 and the electrode 211 are configured to have different polarities, and form a two-electrode terminal. Although not shown, the vibrator is fixed to the pedestal with mounts 205 and 208 with an adhesive or the like, and the pedestal is further fixed to the lead wire. That is, it is stored in a cylindrical metal container that is widely used in wristwatches. Now, when an alternating voltage is applied between the electrodes 202 and 211, as indicated by a solid line and a dotted line in FIG. 16, the electric field E t work alternately in the thickness T direction. As a result, the width longitudinal vibration mode in which the frequency is approximately inversely proportional to the width W and the length longitudinal vibration mode in which the frequency is approximately inversely proportional to the length L are simultaneously excited, and the NS-GT cut width in which both vibration modes are combined. -A longitudinally coupled crystal unit can be obtained. However, there has been a problem that R 1 increases as the size is reduced (higher frequency).
Kosaku Itsusaku's "Piezoelectric and High Frequency", Ohmsha Showa 13 “Short-side vibration of rectangular crystal resonator and its frequency temperature coefficient”, The Institute of Electrical Engineers of Japan, Vol. 56, No. 579, October 1946 “Crystal resonator and its application device” IEICE Transactions CI Vol. J82-CI No. 12pp. 667-682 December 1999 “Analysis of Biaxial Rotating Ramé Mode Piezoelectric Vibrator by Energy Method”, IEICE Transactions A Vol. J79-A, no. 6pp. 1157-1164 June 1996 JP 2001-31537 A JP 2002-111434 A JP 2002-158559 A

NS−GTカット幅・長さ縦結合水晶振動子では、振動部の面積が大きい程(低周波数)等価直列抵抗Rが小さくなり、品質係数Q値が大きくなる。しかしながら2つの振動モードが結合した、NS−GTカット幅・長さ縦結合水晶振動子は、それらの周波数はそれぞれ幅Wと長さLに反比例し、且つ、周波数温度特性が幅Wと長さLの比、いわゆる辺比W/Lによって決定され、更に、周波数温度特性が良好となる辺比W/L≒0.95となるので、小型化(高周波数化)しようとすると、振動部の面積が小さくなる。そのため、電気機械変換効率が小さくなり、その結果、等価直列抵抗Rが大きくなり、品質係数Q値が小さくなるなどの課題が残された。このようなことから、超小型で、等価直列抵抗Rが小さく、品質係数Q値が高くなるような新カットで、電気機械変換効率が高くなる電極構成を具える水晶振動子を収納した水晶ユニットとその水晶ユニットの製造方法及びその水晶ユニットからなる水晶発振器が所望されていた。The NS-GT cut width and length longitudinally coupled crystal oscillator, the larger the area of the vibration part (low frequency) equivalent series resistance R 1 becomes smaller, the quality factor Q value increases. However, the NS-GT cut width / length longitudinally coupled crystal resonator in which two vibration modes are coupled has their frequencies inversely proportional to the width W and the length L, respectively, and the frequency temperature characteristic is the width W and the length. L is determined by the ratio of L, the so-called side ratio W / L, and the side ratio W / L≈0.95 at which the frequency temperature characteristic is good. The area becomes smaller. Therefore, the electromechanical conversion efficiency is reduced, resulting in increased equivalent series resistance R 1, the quality factor Q value is left a problem such as decreased. For this reason, ultra-small, low equivalent series resistance R 1, the new cut as the quality factor Q value is high, the crystal housing a quartz oscillator comprising an electrode structure electromechanical conversion efficiency is increased There has been a demand for a unit, a method for manufacturing the crystal unit, and a crystal oscillator including the crystal unit.

本発明は、以下の方法で従来の課題を有利に解決した輪郭水晶振動子、例えば、幅縦水晶振動子、又はラーメ水晶振動子、又は長さ縦水晶振動子を具えた水晶ユニットとその製造方法とその水晶ユニットからなる水晶発振器を提供することを目的とするものである。  The present invention provides a contoured quartz crystal unit that advantageously solves the conventional problems in the following manner, for example, a quartz crystal unit including a width vertical crystal unit, a lame crystal unit, or a length vertical crystal unit, and its manufacture. The object is to provide a method and a crystal oscillator comprising the crystal unit.

即ち、本発明の水晶ユニットの第1の態様は、水晶振動子とケースと蓋とを具えて構成されていて、前記水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい輪郭水晶振動子を具えて構成される水晶ユニットであって、前記輪郭水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸z軸方向にそれぞれ一致させ、前記輪郭水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記輪郭水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子の振動部は、少なくとも第一接続部と第二接続部を介して支持部に接続され、前記接続部は振動部の長さ方向に設けられていて、更に、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きく、かつ、前記振動部と前記接続部と前記支持部とを具えて構成される輪郭水晶振動子は粒子法により一体に形成されていて、前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置され、基本波モード振動、又はオーバートンモード振動の振動次数が圧電定数に依存しないように、前記振動部に電極が配置されている横効果型の輪郭水晶振動子を具えて構成されている水晶ユニットである。
本発明の水晶ユニットの第2の態様は、輪郭水晶振動子は幅縦モードで振動する幅縦水晶振動子で、前記幅縦水晶振動子の圧電定数e12の絶対値が0.095〜0.19C/mの範囲内にあり、前記幅縦水晶振動子の角度θと寸法比(W/L)と電極対数n(奇数)との関係が、[20{W/(nL)}−25]°<θ<[20{W/(nL)}−5]°で与えられる第1の態様に記載の水晶ユニットである。
本発明の水晶ユニットの第3の態様は、輪郭水晶振動子の一つである幅縦水晶振動子の厚みTが0.01mm〜0.18mmの範囲内にあり、更に、振動部の幅方向に分割されたn対(奇数対)の電極を有するとき、振動部の幅Wは(0.01〜0.96)nmmの範囲内にある第1の態様、又は第2の態様に記載の水晶ユニットである。
本発明の水晶ユニットの第4の態様は、水晶振動子とケースと蓋とを具えて構成されていて、前記水晶振動子は振動部と接続部と支持部とを具えて構成される輪郭水晶振動子を具えて構成される水晶ユニットで、振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子の振動部は、少なくとも第一接続部と第二接続部を介して支持部に接続され、かつ、振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子は粒子法及び/又は化学的エッチング法により一体に形成されていて、前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置され、輪郭水晶振動子の振動次数が圧電定数に依存しないように、前記振動部に電極が配置されている横効果型の輪郭水晶振動子で、前記輪郭水晶振動子の主振動と副振動の周波数安定係数をそれぞれSとSとするとき、SとSがS=r/2Q とS=r/2Q で与えられ、S<Sの関係を有する水晶ユニットである。
That is, the first aspect of the crystal unit of the present invention is configured to include a crystal resonator, a case, and a lid, and the crystal resonator includes a vibrating portion, a connection portion, and a support portion, The vibration unit is a crystal unit including a contour crystal resonator having a width dimension smaller than a length dimension and larger than a thickness dimension, wherein the thickness direction of the contour crystal oscillator is a width in the electric axis x-axis direction. The direction is the same as the machine axis y-axis direction, the length direction is the same as the optical axis z-axis direction, the contour crystal unit is first rotated by an angle θ x with the axis in the thickness direction as the rotation axis, and then the width direction or the axis is the angle theta y as a rotation axis, or the contour crystal resonator first angle theta is y rotating the shaft in the width direction as a rotation axis, then the angle a in the thickness direction axis as a rotation axis theta the angle θ x and the angle θ y are respectively θ x = − The vibration part of the contour crystal resonator which is in the range of 25 ° to + 25 ° and θ y = −30 ° to + 30 ° and includes the vibration part, the connection part, and the support part is at least a first connection. The connecting portion is provided in the length direction of the vibrating portion, and the width dimension of the vibrating portion is smaller than the length dimension and larger than the thickness dimension. In addition, the contoured crystal resonator including the vibrating portion, the connecting portion, and the support portion is integrally formed by a particle method, and at least a pair of different polarities are formed on the upper and lower surfaces of the vibrating portion. A lateral effect type contour crystal resonator in which electrodes are arranged so that the vibration order of fundamental wave mode vibration or overton mode vibration does not depend on the piezoelectric constant is provided. It is a crystal unit that is configured.
A second aspect of the crystal unit of the present invention, the contour crystal oscillators width longitudinal quartz crystal resonator which vibrates in the width longitudinal mode, the absolute value of piezoelectric constant e 12 of the width longitudinal quartz oscillator 0.095 to 0 .19 C / m 2 , and the relationship between the angle θ x of the width-longitudinal crystal resonator, the dimensional ratio (W 0 / L 0 ), and the number of electrode pairs n (odd number) is [20 {W 0 / ( nL 0 )} − 25] ° <θ x <[20 {W 0 / (nL 0 )} − 5] °, the crystal unit according to the first aspect.
A third aspect of the crystal unit of the present invention is the thickness T 0 of the width longitudinal quartz crystal resonator which is one of the contour crystal oscillator within the 0.01Mm~0.18Mm, further, the width of the vibrating part When having n pairs (odd number pairs) of electrodes divided in the direction, the width W 0 of the vibration part is in the range of (0.01 to 0.96) nmm in the first mode or the second mode. It is a crystal unit of description.
According to a fourth aspect of the crystal unit of the present invention, the crystal unit includes a crystal resonator, a case, and a lid, and the crystal resonator includes a vibrating portion, a connection portion, and a support portion. A crystal unit comprising a vibrator, wherein the vibration part of the contour crystal vibrator comprising a vibration part, a connection part, and a support part is provided via at least a first connection part and a second connection part. The contour quartz crystal resonator that is connected to the support portion and includes the vibration portion, the connection portion, and the support portion is integrally formed by a particle method and / or a chemical etching method. At least a pair of electrodes having different polarities are arranged on the upper and lower surfaces, and a lateral effect type contour crystal in which electrodes are disposed on the vibrating portion so that the vibration order of the contour crystal resonator does not depend on the piezoelectric constant. A main vibration of the contour quartz crystal When the frequency stability factor and vibration S n and S f, respectively, S n and S f is given by S n = r n / 2Q n 2 and S f = r f / 2Q f 2, S n <S f This is a crystal unit having the following relationship.

本発明の水晶ユニットの製造方法の第1の態様は、水晶振動子とケースと蓋とを具えて構成される水晶ユニットの製造方法において、前記水晶ユニットを構成する前記水晶振動子は幅縦モードで振動する幅縦水晶振動子で、前記幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸z軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、更に、前記幅縦水晶振動子は振動部と接続部と支持部とを具えて構成され、前記接続部は少なくとも第一接続部と第二接続部とを有し、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい幅縦水晶振動子を粒子法により一体に形成する工程と、振動部の上下面には極性の異なる少なくとも一対の電極を対抗して配置する工程と、前記幅縦水晶振動子を前記ケース、又は、前記蓋に固定する工程と、発振の周波数を調整する工程と、前記ケースと前記蓋とを接合部材を介して接合する工程と、を有する水晶ユニットの製造方法である。According to a first aspect of the crystal unit manufacturing method of the present invention, in the crystal unit manufacturing method including a crystal resonator, a case, and a lid, the crystal resonator constituting the crystal unit is in a longitudinal mode. The width-longitudinal crystal resonator oscillates in the direction of thickness, the thickness direction of the width-longitudinal crystal resonator coincides with the electric axis x-axis direction, the width direction coincides with the mechanical axis y-axis direction, and the length direction coincides with the optical axis z-axis direction. the width longitudinal quartz crystal resonator first be angle theta x rotated in the thickness direction axis as a rotation axis, then, either by the angle theta y rotating the shaft in the width direction as a rotation axis, or the width longitudinal quartz crystal resonator First, the angle θ y is rotated with the width direction axis as the rotation axis, and then the angle θ x is rotated with the thickness direction axis as the rotation axis. The angle θ x and the angle θ y are respectively θ x = −25 In the range of ° to + 25 °, θ y = −30 ° to + 30 °, and The width longitudinal crystal resonator includes a vibrating portion, a connecting portion, and a supporting portion, and the connecting portion has at least a first connecting portion and a second connecting portion, and the width dimension of the vibrating portion is long. A step of integrally forming a longitudinal quartz crystal resonator having a width smaller than that of the thickness and larger than a thickness by a particle method, a step of opposingly arranging at least a pair of electrodes having different polarities on the upper and lower surfaces of the vibrating portion, and the width Manufacturing a crystal unit comprising: a step of fixing a vertical crystal resonator to the case or the lid; a step of adjusting an oscillation frequency; and a step of joining the case and the lid via a joining member. Is the method.

本発明の水晶発振器の第1の態様は、水晶振動子と増幅器とコンデンサーと抵抗とを具えて構成される水晶発振器で、前記水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置されていて、前記水晶振動子は輪郭モードで振動する輪郭水晶振動子で、振動部と接続部と支持部とを具えて構成される前記水晶振動子は粒子法及び/又は化学的エッチング法により一体に形成され、輪郭水晶振動子の主振動の等価直列抵抗Rが副振動の等価直列抵抗Rより小さい輪郭水晶振動子を具えて水晶発振器は構成されると共に、増幅回路と帰還回路とを具えて構成される前記水晶発振器の増幅回路の主振動の負性抵抗の絶対値|−RL|と主振動の等価直列抵抗Rとの比が、増幅回路の副振動の負性抵抗の絶対値|−RL|と副振動の等価直列抵抗Rとの比より大きくなるように前記水晶発振器は構成され、前記輪郭水晶振動子を具えて構成された前記水晶発振器の出力信号が主振動の発振周波数で、かつ、主振動は輪郭水晶振動子の基本波モード振動、又は高調波モード振動である水晶発振器である。
本発明の水晶発振器の第2の態様は、輪郭水晶振動子の振動部は接続部を介して支持部に接続され、前記接続部は少なくとも第一接続部と第二接続部とを有し、前記輪郭水晶振動子の主振動と副振動の周波数安定係数をそれぞれSとSとするとき、SとSがS=r/2Q とS=r/2Q で与えられ、S<Sの関係を有する第1の態様に記載の水晶発振器である。
本発明の水晶発振器の第3の態様は、輪郭水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい幅縦モードで振動する幅縦水晶振動子で、水晶発振器は前記幅縦水晶振動子を具えて構成され、前記幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸2軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、前記幅縦水晶振動子は、その主振動の共振周波数が圧電定数に依存しない横効果型の水晶振動子で、前記水晶発振器は少なくとも増幅器としてCMOSインバータ、抵抗として帰還抵抗、コンデンサとしてゲート側のコンデンサとドレイン側のコンデンサと前記幅縦水晶振動子とを具えて構成されている第1の態様、又は第2の態様に記載の水晶発振器である。
本発明の水晶発振器の第4の態様は、輪郭水晶振動子は幅縦水晶振動子、又はラーメ水晶振動子、又は長さ縦水晶振動子で、前記水晶振動子の主振動の容量比rが大略60〜490の範囲内にあり、かつ、副振動のフイガーオブメリットMが32より小さい第1の態様から第3の態様の何れかに記載の水晶発振器である。
A first aspect of the crystal oscillator according to the present invention is a crystal oscillator including a crystal resonator, an amplifier, a capacitor, and a resistor, and the crystal resonator includes a vibrating portion, a connection portion, and a support portion. In addition, at least a pair of electrodes having different polarities are arranged on the upper and lower surfaces of the vibrating portion, and the crystal resonator is a contour crystal resonator that vibrates in a contour mode. The quartz crystal resonator is integrally formed by a particle method and / or a chemical etching method, and the equivalent series resistance R n of the main vibration of the contour crystal resonator is more than the equivalent series resistance R f of the sub vibration. The crystal oscillator is configured to include a small contour crystal resonator, and the absolute value of the negative resistance of the main vibration of the amplifier circuit of the crystal oscillator configured to include an amplifier circuit and a feedback circuit | −RL n | Equivalent series resistance R of main vibration The crystal oscillator is configured such that the ratio to n is larger than the ratio of the absolute value | -RL f | of the negative resistance of the secondary vibration of the amplifier circuit to the equivalent series resistance R f of the secondary vibration, and the contour crystal A crystal oscillator in which an output signal of the crystal oscillator having a vibrator is an oscillation frequency of a main vibration, and the main vibration is a fundamental mode vibration or a harmonic mode vibration of a contour crystal vibrator.
In the second aspect of the crystal oscillator of the present invention, the vibration part of the contour crystal resonator is connected to the support part via the connection part, and the connection part has at least a first connection part and a second connection part, when said contour of the main vibration and secondary vibration of the crystal oscillator frequency stability factor respectively S n and S f, S n and S f is S n = r n / 2Q n 2 and S f = r f / 2Q f The crystal oscillator according to the first aspect, which is given by 2 and has a relationship of S n <S f .
According to a third aspect of the crystal oscillator of the present invention, the contour crystal resonator includes a vibrating portion, a connecting portion, and a supporting portion, and the width of the vibrating portion is smaller than the length and larger than the thickness. A width-longitudinal crystal resonator that vibrates in a longitudinal mode. The crystal oscillator includes the width-longitudinal crystal resonator, and the thickness direction of the width-longitudinal crystal resonator is the electric axis x-axis direction and the width direction is the mechanical axis y. In the axial direction, the length direction coincides with the two optical axis directions, and the width-longitudinal crystal unit is first rotated by an angle θ x with the thickness direction axis as the rotation axis, and then the width direction axis is rotated. or to angularly theta y rotation as an axis, or first angle theta is y rotating the shaft in the width direction as a rotation axis the width longitudinal quartz crystal resonator, then, is the angle theta x rotated in the thickness direction axis as a rotation axis the angle theta x and the angle theta y respectively θ x = -25 ° ~ + 25 °, θ y = The width longitudinal crystal resonator is in a range of 30 ° to + 30 °, and the resonance frequency of the main vibration is a lateral effect type crystal resonator that does not depend on the piezoelectric constant, and the crystal oscillator is at least a CMOS inverter as an amplifier, The crystal oscillator according to the first aspect or the second aspect, comprising a feedback resistor as a resistor, a capacitor on the gate side, a capacitor on the drain side as a capacitor, and the width-longitudinal crystal resonator.
According to a fourth aspect of the crystal oscillator of the present invention, the contour crystal resonator is a width vertical crystal resonator, a lame crystal resonator, or a length vertical crystal resonator, and the capacitance ratio r n of the main vibration of the crystal resonator. Is a crystal oscillator according to any one of the first to third aspects, wherein the oscillation frequency is approximately in the range of 60 to 490, and the Fibr of Merit Mf of the secondary vibration is smaller than 32.

このように、本発明は輪郭水晶振動子を具えた水晶ユニットで、しかも、高い電気機械変換効率を有する振動子を形成し、且つ、電極を配置することにより、電気的諸特性と周波数温度特性に優れた超小型の幅縦水晶振動子を具えた水晶ユニットが実現できると同時に、水晶ユニットの製造方法を確立することができる。更に、周波数安定性に優れた高品質の輪郭水晶振動子を具えて構成される、超小型の水晶発振器が実現できる。また、高周波数で超小型の幅縦水晶振動子が得られるので、幅縦水晶振動子とバラクタダイオードと可変電圧を具えたVCXO、更に、温度補償回路を具えることによりVCTCXOの水晶発振器が超小型で、しかも高品質で実現できる。  As described above, the present invention is a crystal unit including a contoured crystal resonator, and further, by forming a resonator having high electromechanical conversion efficiency and arranging electrodes, electrical characteristics and frequency temperature characteristics. This makes it possible to realize a crystal unit having an ultra-small and wide vertical crystal unit, and to establish a method for manufacturing the crystal unit. Furthermore, it is possible to realize an ultra-compact crystal oscillator configured with a high-quality contoured crystal resonator having excellent frequency stability. In addition, since an ultra-compact width vertical crystal resonator can be obtained at a high frequency, a VCXO having a width vertical crystal resonator, a varactor diode, and a variable voltage, and a VCTCXO crystal oscillator having a temperature compensation circuit can be used. It is small and can be realized with high quality.

以下、本発明の実施例を図面に基づき具体的に述べる。  Embodiments of the present invention will be specifically described below with reference to the drawings.

図1は本発明の輪郭水晶振動子の一つである幅縦水晶振動子を形成するのに用いられる水晶板1のカット角とその座標系との関係である。座標系は原点O、電気軸x、機械軸y、光軸zからなりO−xyzを構成している。まず、x軸に垂直な水晶板、いわゆる、X板水晶を考える。このとき、X板水晶の各寸法である幅W、長さL、及び厚みTはそれぞれy軸、z軸、及びx軸方向に一致している。次に、このX板水晶をx軸の廻りに角度θ=−25°〜+25°回転し、更に、y軸の新軸y′軸の廻りに角度θ=−30°〜+30°回転される。このとき、x軸の新軸はx′軸に、z軸は2軸の廻りに回転されるので、新軸z″と成る。そして、本発明の幅縦水晶振動子は前記した回転水晶板から形成される。本実施例では、X板水晶を最初に、x軸の廻りに角度θ=−25°〜+25°回転し、次に、y′軸の廻りに角度θ=−30°〜+30°回転されているが、最初に、機械軸軸の廻りに角度θ=−30°〜+30°回転し、次に、電気軸x軸の新軸x′軸の廻りに角度θ=−25°〜+25°回転してもよい。又、本実施例では、幅縦水晶振動子が形成される水晶板のカット角について述べたが、本発明の振動子のカット角はこれに限定されるものでなく、形成された幅縦水晶振動子が前記した角度を有する振動子であれば良く、本発明はそれらの振動子をも包含するものである。例えば、水晶板の面内回転をしないで、振動子形成に用いるマスク等で面内回転を行うものである。FIG. 1 shows the relationship between the cut angle of a crystal plate 1 used to form a width-longitudinal crystal resonator, which is one of the contour crystal resonators of the present invention, and its coordinate system. The coordinate system includes an origin O, an electric axis x, a mechanical axis y, and an optical axis z, and constitutes O-xyz. First, consider a quartz plate perpendicular to the x-axis, so-called X-plate quartz. At this time, the width W 0 , the length L 0 , and the thickness T 0 as the dimensions of the X plate crystal coincide with the y-axis, z-axis, and x-axis directions, respectively. Next, this X-plate crystal is rotated around the x-axis by an angle θ x = −25 ° to + 25 °, and further rotated around a new y-axis y′-axis by an angle θ y = −30 ° to + 30 °. Is done. At this time, since the new x axis is rotated to the x 'axis and the z axis is rotated about the two axes, it becomes the new axis z ". The width vertical crystal resonator of the present invention is the above-described rotating quartz plate. In this embodiment, the X-plate crystal is first rotated around the x axis by an angle θ x = −25 ° to + 25 °, and then around the y ′ axis by an angle θ y = −30. It is rotated by ~ 30 °, but first, the angle θ y = −30 ° ~ + 30 ° around the mechanical axis y axis, and then the angle around the new axis x ′ axis of the electric axis x axis θ x = -25 ° may rotate ~ + 25 °. Further, in the present embodiment has been described cut angle of the quartz plate width longitudinal quartz crystal resonator is formed, the cut angle of the transducer of the present invention The present invention is not limited to this, and the formed width-longitudinal crystal resonator may be a resonator having the above-mentioned angle, and the present invention includes those resonators. The in it. For example, without the in-plane rotation of the quartz plate, and performs in-plane rotation with a mask or the like used for the oscillator formed.

更に詳細には、幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向をz軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸(x軸)を回転軸として角度θ回転させ、次に、幅方向の軸(機械軸y軸の回転後の新軸y′軸)を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸(y軸)を回転軸として角度θ回転させ、次に、厚み方向の軸(電気軸x軸の回転後の新軸x′軸)を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°を有するように幅縦水晶振動子は形成される。More specifically, the thickness direction of the width-longitudinal crystal resonator is matched with the electric axis x-axis direction, the width direction is matched with the mechanical axis y-axis direction, and the length direction is matched with the z-axis direction. First, the angle θ x is rotated using the axis in the thickness direction (x axis) as the rotation axis, and then the angle θ y is rotated using the axis in the width direction (new axis y ′ axis after rotation of the mechanical axis y axis) as the rotation axis. Or the width longitudinal crystal resonator is first rotated by an angle θ y with the axis in the width direction (y axis) as the rotation axis, and then the axis in the thickness direction (the new axis after rotation of the electric axis x axis) x ′ axis) as an axis of rotation, the angle θ x is rotated, and the angle θ x and the angle θ y have the longitudinal width so that θ x = −25 ° to + 25 ° and θ y = −30 ° to + 30 °, respectively. A quartz crystal is formed.

実施例1の水晶ユニットCrystal unit of Example 1

図2は本発明の実施例1の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と側面図(b)である。幅縦水晶振動子2は振動部3、接続部6、9とマウント部8、11をそれぞれ含む支持部7、10を具えて構成されている。更に、支持部7と支持部10にはそれぞれ穴7aと穴10aが設けられている。更に詳述するならば、第一接続部6と第二接続部9は振動部3の長さ方向の反対に位置する端部に設けられている。即ち、一方の第一支持部7は第一接続部6を介して振動部3に接続されていて、他方の第二支持部10は第二接続部9を介して振動部3に接続されている。また、振動部3の上面と下面には電極4と電極5が対抗して配置され、それらの電極は異極となるように構成されている。即ち、一対の電極が配置されている。更に、電極4は一方の第二接続部9を介して第二マウント部11にまで延在して配置されている。また、電極5は他方の第一接続部6を介して第一マウント部8にまで延在して配置されている。本実施例では、振動部3に配置された電極4と電極5は互いに異なる方向に延在してマウント部まで配置されているが、同方向に延在して配置しても振動子として同じ特性が得られる。本実施例の振動子はマウント部が振動子を収納するユニットのケース、又は蓋等の固定部に接着剤や半田によって固定される。  FIGS. 2A and 2B are a top view and a side view, respectively, of the width-longitudinal crystal resonator housed in the crystal unit according to the first embodiment of the present invention. The width-longitudinal crystal resonator 2 is configured to include support portions 7 and 10 including a vibration portion 3, connection portions 6 and 9, and mount portions 8 and 11, respectively. Furthermore, the support part 7 and the support part 10 are provided with a hole 7a and a hole 10a, respectively. More specifically, the first connecting portion 6 and the second connecting portion 9 are provided at the end portions of the vibrating portion 3 that are located opposite to each other in the length direction. That is, one first support portion 7 is connected to the vibration portion 3 via the first connection portion 6, and the other second support portion 10 is connected to the vibration portion 3 via the second connection portion 9. Yes. Moreover, the electrode 4 and the electrode 5 are arrange | positioned facing the upper surface and lower surface of the vibration part 3, and these electrodes are comprised so that it may become a different polarity. That is, a pair of electrodes are arranged. Further, the electrode 4 is disposed so as to extend to the second mount portion 11 through one second connection portion 9. The electrode 5 extends to the first mount portion 8 via the other first connection portion 6. In the present embodiment, the electrode 4 and the electrode 5 arranged in the vibration part 3 extend in different directions and are arranged up to the mount part, but even if arranged in the same direction, the same as the vibrator Characteristics are obtained. The vibrator of this embodiment is fixed to the fixing part such as a case or a lid of the unit in which the mount unit stores the vibrator by an adhesive or solder.

更に、振動部3の寸法、即ち、幅W、長さL、及び厚みTはそれぞれy′軸、z″軸、及びx′軸方向と一致している。すなわち、x′軸に垂直な面となる振動部3の上面と下面に電極4と電極5が配置されている。又、電極4に対抗する電極5は異極となるように構成されている。更に、振動部3の長さLは幅Wより大きく、厚みTは幅Wより小さくなるように設計される。即ち、幅縦モード振動と長さ縦モード振動との結合を無視できるほどに小さく、且つ、振動部の電極面積を大きくして、等価直列抵抗Rの小さい幅縦水晶振動子を得るためには、幅Wと長さLの比W/Lは0.8より小さく、好ましくは、0.02〜0.45の範囲内に、且つ、電界Eを大きくして、等価直列抵抗Rの小さい幅縦水晶振動子を得るためには、厚みTと幅Wとの比T/Wは0.85より小さくすることが必要である。実際のこれらの寸法の決定は幅縦水晶振動子に要求される特性によって決まる。通常、厚みTは0.23mm以下に、好ましくは、0.01mm〜0.18mmの範囲にあるように設計される。又、一対の電極構成では、幅Wは0.01mmより大きく、好ましくは、0.01mm〜0.96mmの範囲内にある。更に、幅方向に分割されたn対(n=1,3,5,・・・:奇数)の電極構成では、幅Wは0.01nmmより大きく、好ましくは、(0.01〜0.96)nmmの範囲内にある。また、すべりモードとの結合を小さくするために、角度θは−160°〜−20°の範囲内にある。Furthermore, the dimensions of the vibrating portion 3, that is, the width W 0 , the length L 0 , and the thickness T 0 coincide with the y′-axis, z ″ -axis, and x′-axis directions. An electrode 4 and an electrode 5 are disposed on the upper and lower surfaces of the vibration part 3 that is a vertical surface, and the electrode 5 that opposes the electrode 4 is configured to have a different polarity. The length L 0 is greater than the width W 0 and the thickness T 0 is less than the width W 0. That is, the coupling between the width longitudinal mode vibration and the length longitudinal mode vibration is negligibly small, and, by increasing the electrode area of the vibration part, in order to obtain a small width longitudinal crystal oscillator equivalent series resistance R 1, the ratio W 0 / L 0 width W 0 and the length L 0 is from 0.8 small, preferably in the range of from 0.02 to 0.45, and, by increasing the electric field E x, small equivalent series resistance R 1 To obtain had Habatate crystal oscillator, the ratio T 0 / W 0 of the thickness T 0 and width W 0 is required to be smaller than 0.85. The actual determination of these dimensions are width vertical The thickness T 0 is usually designed to be 0.23 mm or less, and preferably in the range of 0.01 mm to 0.18 mm. , The width W 0 is larger than 0.01 mm, preferably in the range of 0.01 mm to 0.96 mm, and n pairs (n = 1, 3, 5,...) Divided in the width direction. In an (odd) electrode configuration, the width W 0 is greater than 0.01 nm, preferably in the range of (0.01-0.96) nmm, and in order to reduce the coupling with the sliding mode, the angle the theta x is in the range of -160 ° ~-20 °.

詳細には、幅縦水晶振動子の共振周波数は幅寸法Wに反比例し、他の寸法(長さ、厚み、接続部と支持部)には殆ど依存しない。それ故、幅Wを小さくすることにより、小型で、高周波数化が図れる。また、前記した寸法の関係から不要振動のない単一振動モードで振動する幅縦水晶振動子が得られる。と同時に、厚み方向に電界がかかるように振動部に電極を配置することにより、幅縦水晶振動子の基本波モードとオーバートンモードの振動次数が圧電定数に依存しなくなる。即ち、振動子の振動部に振動次数が圧電定数に依存しない電極の配置が行われる。それ故、本発明の幅縦水晶振動子の発振、又は共振周波数は圧電定数に依存しないので、振動子の設計が非常に容易になると言う著しい効果を有する。Specifically, the resonance frequency of the width-longitudinal crystal resonator is inversely proportional to the width dimension W 0 and hardly depends on other dimensions (length, thickness, connection portion and support portion). Therefore, by reducing the width W 0 , the size can be reduced and the frequency can be increased. In addition, a width-longitudinal crystal resonator that vibrates in a single vibration mode without unnecessary vibration can be obtained from the above-described dimensional relationship. At the same time, by arranging the electrodes in the vibration part so that an electric field is applied in the thickness direction, the vibration orders of the fundamental wave mode and the overton mode of the width-longitudinal crystal resonator do not depend on the piezoelectric constant. That is, the electrodes are arranged such that the vibration order does not depend on the piezoelectric constant in the vibrating portion of the vibrator. Therefore, since the oscillation or resonance frequency of the width-longitudinal crystal resonator of the present invention does not depend on the piezoelectric constant, it has a remarkable effect that the design of the resonator becomes very easy.

次に、本実施例の幅縦水晶振動子を駆動するのに必要な圧電定数e12(=e′12)の値について説明する。この圧電定数e12の値が大きいほど、電気機械変換効率は高くなる。今、x軸とy′軸回転のとき、e12(=e′12)=a1122(−e1122+2e1423)で与えられる。但し、e11(=0.171C/m)、e14(=−0.0406C/m)は水晶の圧電定数で、a11、a22、a23は角度θ、θの関数で与えられる。本発明の圧電定数e12の絶対値は0.095C/mより大きく、通常、0.095〜0.19C/mの範囲内にある。室温付近の零温度係数を得るには、0.095〜0.166C/mの範囲内にある事が好ましい。即ち、本実施例の幅縦水晶振動子は高い電気機械変換効率を有するので、主振動の等価直列抵抗Rの小さい、Q値の高い、超小型の幅縦水晶振動子が得られる。尚、長さ縦水晶振動子の場合には、圧電定数e12の絶対値は0.095〜0.19C/mの範囲内にある。又、幅縦水晶振動子の説明において、「幅」を「長さ」に置き換えることによって、長さ縦水晶振動子は得られる。Next, the value of the piezoelectric constant e 12 (= e ′ 12 ) necessary for driving the width-longitudinal crystal resonator of this embodiment will be described. As the value of the piezoelectric constant e 12 is large, the electromechanical conversion efficiency is high. Now, when the x axis and the y ′ axis are rotated, e 12 (= e ′ 12 ) = a 11 a 22 (−e 11 a 22 + 2e 14 a 23 ) is given. However, e 11 (= 0.171 C / m 2 ) and e 14 (= −0.0406 C / m 2 ) are piezoelectric constants of quartz, and a 11 , a 22 , and a 23 are functions of angles θ x and θ y . Given in. The absolute value of piezoelectric constant e 12 of the present invention is greater than 0.095C / m 2, is usually in the range of 0.095~0.19C / m 2. In order to obtain a zero temperature coefficient near room temperature, it is preferably in the range of 0.095 to 0.166 C / m 2 . That is, since the width longitudinal quartz crystal resonator of this embodiment has a high electromechanical conversion efficiency, low equivalent series resistance R n of the main vibration, high Q value, the width longitudinal quartz crystal micro obtained. In the case of long vertical quartz oscillator, the absolute value of piezoelectric constant e 12 is in the range of 0.095~0.19C / m 2. In the description of the width-longitudinal crystal resonator, the length-longitudinal crystal resonator can be obtained by replacing “width” with “length”.

今、図2の電極4と電極5の間に交番電圧を印加すると、電界Eは図2の側面図(b)の実線と点線の矢印で示したように厚み方向に交互に働く。その結果、振動部3は幅方向に伸縮する振動をすることになる。即ち、電界方向に対して垂直方向に振動する、いわゆる横効果型の幅縦水晶振動子を得ることができる。この幅縦モード振動の共振周波数は圧電定数に依存しない振動子である。また、本発明の幅縦水晶振動子は、電界方向に対して平行に振動するKTカット幅縦水晶振動子とは異なる振動子である。と同時に、KTカット水晶振動子はその振動次数が圧電定数に依存する、いわゆる縦効果型の振動子である。即ち、共振周波数が圧電定数に依存する振動子である。Now, when an alternating voltage is applied between the electrodes 4 and 5 in FIG. 2, the electric field E x is acting alternately in the thickness direction as shown by the solid line and dotted arrows in the side view of FIG. 2 (b). As a result, the vibration part 3 vibrates to expand and contract in the width direction. That is, it is possible to obtain a so-called lateral effect type width longitudinal crystal resonator that vibrates in a direction perpendicular to the electric field direction. The resonance frequency of the width-longitudinal mode vibration is a vibrator that does not depend on the piezoelectric constant. Further, the width-longitudinal crystal resonator of the present invention is a resonator different from the KT-cut width crystal resonator that vibrates in parallel with the electric field direction. At the same time, the KT cut quartz crystal resonator is a so-called longitudinal effect type resonator whose vibration order depends on the piezoelectric constant. That is, the resonator whose resonance frequency depends on the piezoelectric constant.

実施例2の水晶ユニットCrystal unit of Example 2

図3は本発明の実施例2の水晶ユニットに収納される幅縦水晶振動子12の上面図(a)と下面図(b)である。幅縦水晶振動子12は振動部13、接続部14、21、マウント部16とそれに接続される支持フレーム17,18、19を含む支持部15とマウント部23とそれに接続されるマウント部20を含む支持部22を具えて構成されている。更に、支持フレーム17の両端部は支持フレーム18,19の一端部に接続され、支持フレーム18、19の他端部はマウント部20に接続されている。支持部15には穴15aが、支持部22には穴22aが設けられている。更に詳述するならば、第一接続部14と第二接続部21は振動部13の端部の互いに反対の位置に設けられている。そして、振動部13は第一接続部14と第一支持部15の第一マウント部16を介して第一支持フレーム17に接続されている。更に、第一支持フレーム17の両端部はそれぞれ第二支持フレーム18と第三支持フレーム19の端部に接続されている。同様に、振動部13は第二接続部21と第二支持部22の第二マウント部23を介して第三マウント部20に接続されている。そして、第二支持フレーム18と第三支持フレーム19の端部はそれぞれ第三マウント部20に接続されている。  FIG. 3A is a top view and FIG. 3B is a bottom view of the width-longitudinal crystal resonator 12 housed in the crystal unit according to the second embodiment of the present invention. The width-longitudinal crystal resonator 12 includes a vibrating portion 13, connecting portions 14, 21, a mounting portion 16 and a supporting portion 15 including a supporting frame 17, 18, 19 connected thereto, a mounting portion 23, and a mounting portion 20 connected thereto. The support part 22 including is comprised. Further, both end portions of the support frame 17 are connected to one end portions of the support frames 18 and 19, and the other end portions of the support frames 18 and 19 are connected to the mount portion 20. The support part 15 is provided with a hole 15a, and the support part 22 is provided with a hole 22a. More specifically, the first connection portion 14 and the second connection portion 21 are provided at positions opposite to each other at the end portion of the vibration portion 13. The vibrating portion 13 is connected to the first support frame 17 via the first connection portion 14 and the first mount portion 16 of the first support portion 15. Further, both end portions of the first support frame 17 are connected to end portions of the second support frame 18 and the third support frame 19, respectively. Similarly, the vibration part 13 is connected to the third mount part 20 via the second connection part 21 and the second mount part 23 of the second support part 22. The end portions of the second support frame 18 and the third support frame 19 are connected to the third mount portion 20, respectively.

また、振動部13の上面と下面には異極で対抗する電極24と電極26が配置されている。更に、電極24は一方の接続部21を介してマウント部20にまで延在して配置され、マウント部20に一方の電極端子となる電極25が形成される。又、電極26は他方の接続部14と支持フレーム17、19を介してマウント部20にまで延在して配置され、マウント部20に他方の電極端子となる電極27が形成される。すなわち、2電極端子を形成する。本実施例では、振動部の電極のみが対抗するように配置されている。しかし、他の部分での電極が対抗して配置されてもよく、等価直列抵抗Rに及ぼす影響は無視できる程に小さい。更に、振動部13は幅W、長さLと厚みT(図示されていない)の寸法を有し、幅W、長さLと厚みTはそれぞれy′軸、z″軸とx′軸方向と一致している。すなわち、x′軸に垂直な面となる振動部13の上面と下面には電極24と電極26が配置されている。又、電極24と電極26は異極となるように構成されている。更に振動部13の長さLは幅Wより大きく、厚みTは幅Wより小さくなるように設計される。具体的な関係については実施例1で述べた通りである。In addition, electrodes 24 and 26 that are opposed to each other with different polarities are disposed on the upper surface and the lower surface of the vibration unit 13. Further, the electrode 24 is disposed so as to extend to the mount portion 20 via one connection portion 21, and an electrode 25 serving as one electrode terminal is formed on the mount portion 20. The electrode 26 is arranged to extend to the mount portion 20 via the other connection portion 14 and the support frames 17 and 19, and an electrode 27 serving as the other electrode terminal is formed on the mount portion 20. That is, a two-electrode terminal is formed. In the present embodiment, only the electrodes of the vibration part are arranged to oppose each other. However, electrodes in other parts may be arranged to oppose each other, and the influence on the equivalent series resistance R n is so small as to be negligible. Further, the vibration part 13 has dimensions of a width W 0 , a length L 0 and a thickness T 0 (not shown), and the width W 0 , the length L 0 and the thickness T 0 are respectively y′-axis and z ″. That is, the electrode 24 and the electrode 26 are disposed on the upper and lower surfaces of the vibrating portion 13 that are perpendicular to the x′-axis. Further, the length L 0 of the vibrating portion 13 is designed to be larger than the width W 0 and the thickness T 0 is smaller than the width W 0. Regarding the specific relationship, As described in the first embodiment.

このように幅縦水晶振動子を形成することにより、振動子の強度をより強くすることができる。その結果、振動子の一端部を接着剤や半田によりケース、又は蓋の固定部、あるいはリード線に固定できるので、量産での作業性に優れ、工数を削減することができる。即ち、安価な幅縦水晶振動子が得られる。同時に、衝撃に対して強い幅縦水晶振動子が実現できる。更に、支持部に穴が設けられているので、幅縦モードを圧電的に容易に引き起こすことができる。それ故、主振動の等価直列抵抗Rの小さい、Q値の高い超小型の幅縦水晶振動子が得られる。また、本発明の輪郭水晶振動子は表面実装型、又は円筒型の容器(ユニット)に収納される。尚、本実施例では、互いに異極となる電極がマウント部20の上面に電極25を、下面に電極27を配置しているが、マウント部20の同一平面に異極となる電極を配置してもよく、同様に安価な振動子が得られる。この方法として、一方の電極を支持フレームの側面、あるいはマウント部の側面を介して同一平面の同極となる電極に接続される。更に、本実施例では振動部に平行に支持フレームが2本設けられているが、1本でも十分な機械的強度を有するので、一本でもよく、十分な特性が得られる。By forming the width-longitudinal crystal resonator as described above, the strength of the resonator can be further increased. As a result, since one end portion of the vibrator can be fixed to the case, the fixing portion of the lid, or the lead wire by an adhesive or solder, the workability in mass production is excellent, and the number of man-hours can be reduced. That is, an inexpensive width vertical crystal resonator can be obtained. At the same time, it is possible to realize a width vertical crystal resonator that is strong against impact. Furthermore, since the hole is provided in the support portion, the width-longitudinal mode can be easily caused piezoelectrically. Therefore, a small equivalent series resistance R n of the main vibration, high Q micro width longitudinal quartz crystal resonator is obtained. Further, the contoured crystal resonator of the present invention is accommodated in a surface-mount type or cylindrical container (unit). In this embodiment, the electrodes having different polarities are arranged such that the electrode 25 is arranged on the upper surface of the mount portion 20 and the electrode 27 is arranged on the lower surface, but electrodes having different polarities are arranged on the same plane of the mount portion 20. Similarly, an inexpensive vibrator can be obtained. In this method, one electrode is connected to an electrode having the same polarity on the same plane via the side surface of the support frame or the side surface of the mount portion. Further, in the present embodiment, two support frames are provided in parallel with the vibrating portion, but even one has sufficient mechanical strength, so one may be sufficient and sufficient characteristics can be obtained.

実施例3の水晶ユニットCrystal unit of Example 3

図4は本発明の実施例3の水晶ユニットに収納される幅縦水晶振動子28の上面図(a)と下面図(b)である。幅縦水晶振動子28は、振動部29、接続部30、35、及び支持フレーム31,32、33を含む支持部41と支持フレーム36とマウント部34を含む支持部42を具えて構成されている。更に、振動部29は一方の接続部30を介して支持フレーム31に接続され、支持フレームの両端部は支持フレーム32、33に接続されている。更に、振動部29は他方の接続部35を介して支持フレーム36に接続され、その両端部は支持フレーム32、33に接続されている。又、マウント部34には穴43が設けられている。この穴43を設けることにより、幅縦振動を抑圧することなく容易に引き起こすことができる。更に、振動部29の上面と下面には異極で対抗する電極37と電極39が配置されている。そして、電極37は一方の接続部35を介してマウント部34にまで延在して配置され、マウント部34に一方の電極端子となる電極38が形成されている。又、電極39は他方の接続部30と支持フレーム31、33を介してマウント部34にまで延在して配置され、マウント部34に他方の電極端子となる電極40が形成されている、2電極端子を形成する。本実施例以外の電極配置法としては実施例2で述べた方法を本実施例でも含むものである。同時に、支持フレームについても同様に含むものである。  FIG. 4 is a top view (a) and a bottom view (b) of the width-longitudinal crystal resonator 28 housed in the crystal unit according to the third embodiment of the present invention. The width-longitudinal crystal resonator 28 includes a vibrating portion 29, connection portions 30 and 35, and a support portion 41 including support frames 31, 32, and 33, a support frame 36, and a support portion 42 including a mount portion 34. Yes. Further, the vibration part 29 is connected to the support frame 31 through one connection part 30, and both end parts of the support frame are connected to the support frames 32 and 33. Furthermore, the vibration part 29 is connected to the support frame 36 via the other connection part 35, and both ends thereof are connected to the support frames 32 and 33. The mount portion 34 is provided with a hole 43. By providing the hole 43, it is possible to easily cause the width-longitudinal vibration without being suppressed. Furthermore, the electrode 37 and the electrode 39 which oppose with a different polarity are arrange | positioned at the upper surface and lower surface of the vibration part 29. FIG. The electrode 37 is disposed so as to extend to the mount portion 34 via one connection portion 35, and an electrode 38 serving as one electrode terminal is formed on the mount portion 34. Further, the electrode 39 is arranged to extend to the mount portion 34 via the other connection portion 30 and the support frames 31 and 33, and an electrode 40 serving as the other electrode terminal is formed on the mount portion 34. Electrode terminals are formed. As an electrode arrangement method other than the present embodiment, the method described in the second embodiment is also included in this embodiment. At the same time, the support frame is also included.

更に、振動部29は幅W、長さLと厚みT(図示されていない)の寸法を有し、これらの寸法とx′軸、y′軸とz″軸との関係は実施例1で述べた通りである。また振動部29の長さLは幅Wより大きく、厚みTは幅Wより小さくなるように設計される。具体的な関係については実施例1で述べたのと同じである。更に、上記実施例の幅縦水晶振動子の振動部、接続部と支持部とは一体に形成され、このように幅縦水晶振動子の形成により、すでに実施例2で述べた、量産性に優れた安価な幅縦水晶振動子が得られる。同時に、衝撃に対して強い幅縦水晶振動子が実現できる。更に、マウント部に穴が設けられているので、幅縦モードの振動を抑圧することなく、圧電的に容易に引き起こすことができる。それ故、等価直列抵抗Rの小さい、Q値の高い、超小型の幅縦水晶振動子が得られる。Furthermore, the vibration part 29 has dimensions of width W 0 , length L 0 and thickness T 0 (not shown), and the relationship between these dimensions and the x ′ axis, y ′ axis and z ″ axis is implemented. This is as described in Example 1. Further, the length L 0 of the vibrating portion 29 is designed to be larger than the width W 0 and the thickness T 0 is smaller than the width W 0. The specific relationship is as in Example 1. In addition, the vibration part, the connection part and the support part of the width-longitudinal crystal resonator of the above-described embodiment are integrally formed, and thus the formation of the width-longitudinal crystal resonator has already been implemented. A low-priced vertical crystal unit with excellent mass productivity can be obtained as described in Example 2. At the same time, it is possible to realize a width-type vertical crystal unit that is resistant to impacts. , And can be easily induced piezoelectrically without suppressing the vibration in the width-longitudinal mode. Small series resistance R n, high Q value, the width longitudinal quartz crystal micro obtained.

図5は上記実施例1から実施例3の幅縦水晶振動子の周波数温度特性の一例を示す線図である。前記した角度θと角度θの選択により任意の温度で一次温度係数αが零になり、2次曲線で表すことができる。例えば、曲線44で示されるように、頂点温度Tを室温付近に設定することができる。又、曲線45は頂点温度Tを0℃付近に設定した場合である。更に、頂点温度Tは任意に設定でき、曲線46は頂点温度Tを負側に設定した場合である。上記実施例の角度θと角度θを有する幅縦水晶振動子では、頂点温度Tを約−200℃から約+60℃と極めて広い温度範囲に設定することができる。頂点温度Tは用いられる機器等によって決定される。このように本発明の幅縦水晶振動子は頂点温度を極めて広い温度範囲で任意に設定でき、且つ、周波数温度特性が2次曲線で近似できるので、広い温度範囲で周波数変化の小さい、優れた振動子であることが理解される。FIG. 5 is a diagram showing an example of frequency-temperature characteristics of the width-longitudinal crystal resonators of the first to third embodiments. By selecting the angle θ x and the angle θ y described above, the primary temperature coefficient α becomes zero at an arbitrary temperature, and can be expressed by a quadratic curve. For example, as shown by the curve 44, the peak temperature T p can be set to about room temperature. The curve 45 is a case of setting the peak temperature T p in the vicinity of 0 ° C.. Furthermore, the vertex temperature T p can be set arbitrarily, and the curve 46 is obtained when the vertex temperature T p is set to the negative side. In the width longitudinal crystal resonator having the angle θ x and the angle θ y of the above embodiment, the vertex temperature T p can be set in a very wide temperature range from about −200 ° C. to about + 60 ° C. The apex temperature T p is determined by the equipment used. Thus, the width longitudinal crystal resonator of the present invention can arbitrarily set the vertex temperature in a very wide temperature range, and the frequency temperature characteristic can be approximated by a quadratic curve. It is understood that it is a vibrator.

実施例4の水晶ユニットCrystal unit of Example 4

図6は本発明の実施例4の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と下面図(b)である。幅縦水晶振動子50は振動部51、接続部52、55、及びマウント部54、57をそれぞれ含む支持部53、56を具えて構成されている。更に、支持部53と支持部56にはそれぞれ穴53aと穴56aが設けられている。そして、振動部51の上面と下面にはそれぞれ複数個の電極が配置されている。又、上面、及び下面の幅方向に隣接する電極は異極となるように構成されている。且つ、上面と下面に配置された対抗電極は異極となるように構成されている。本実施例では電極58,59,60と電極61,62,63が配置されている。本実施例の電極配置では3次オーバートーン(3次高調波モード振動)の幅縦水晶振動子が得られる。更に詳述するならば、電極58とそれに隣接する電極59は異極に、さらに、電極58とそれに対抗する電極63は異極となるように構成されている。電極58とそれとは異極となる電極63で一対の電極を構成している。全く同様に、電極59とそれに隣接する電極58、60は異極に、更に、電極59とそれに対抗する電極62は異極となるように構成されている。電極59とそれとは異極となる電極62で一対の電極を構成している。更に電極60とそれに隣接する電極59は異極に、さらに、電極60とそれに対抗する電極61は異極となるように構成されている。電極60とそれとは異極となる電極61で一対の電極を構成している。又、上面の電極58と電極60は接続電極58aを介して接続されている。更に、下面の電極61と電極63は接続電極61aを介して接続されている。  FIG. 6A is a top view and FIG. 6B is a bottom view of a widthwise vertical crystal unit housed in a crystal unit according to a fourth embodiment of the present invention. The width-longitudinal crystal resonator 50 includes support portions 53 and 56 including a vibration portion 51, connection portions 52 and 55, and mount portions 54 and 57, respectively. Furthermore, the support part 53 and the support part 56 are provided with a hole 53a and a hole 56a, respectively. A plurality of electrodes are arranged on the upper surface and the lower surface of the vibration part 51. Moreover, the electrode adjacent to the width direction of an upper surface and a lower surface is comprised so that it may become a different pole. And the counter electrode arrange | positioned at an upper surface and a lower surface is comprised so that it may become a different pole. In this embodiment, electrodes 58, 59 and 60 and electrodes 61, 62 and 63 are arranged. In the electrode arrangement of the present embodiment, a third longitudinal overtone (third harmonic mode vibration) width longitudinal crystal resonator can be obtained. More specifically, the electrode 58 and the electrode 59 adjacent thereto are configured to have different polarities, and the electrode 58 and the electrode 63 opposed thereto are configured to have different polarities. The electrode 58 and the electrode 63 having a different polarity from the electrode 58 constitute a pair of electrodes. In exactly the same manner, the electrode 59 and the electrodes 58 and 60 adjacent thereto are configured to have different polarities, and the electrode 59 and the electrode 62 opposed thereto are configured to have different polarities. The electrode 59 and the electrode 62 having a different polarity form a pair of electrodes. Further, the electrode 60 and the electrode 59 adjacent to the electrode 60 are configured to have different polarities, and the electrode 60 and the electrode 61 opposed thereto are configured to have different polarities. The electrode 60 and the electrode 61 having a different polarity from the electrode 60 constitute a pair of electrodes. The upper electrode 58 and the electrode 60 are connected via a connection electrode 58a. Furthermore, the electrode 61 and the electrode 63 on the lower surface are connected via a connection electrode 61a.

更に、上面の同極となる電極58、60は一方の接続部52を介してマウント部54にまで延在して配置されている。又、電極59は他方の接続部55を介してマウント部57にまで延在して配置されている。更に、下面の電極62は一方の接続部52を介してマウント部54にまで延在して配置されている。又、下面の同極となる電極61、63は他方の接続部55を介してマウント部57にまで延在して配置されている。図6から明らかなように、一方の接続部と支持部の上下面には同極となる電極が振動部から延在して配置され、他方の接続部と支持部の上下面には同極となる電極が振動部から延在して配置されている。それ故、一方の電極58,60、62は同極に、他方の電極59,61、63は同極となるように配置され、それらは互いに異極となる2電極端子構造を形成している。本実施例では三対の電極を構成している。本発明の電極構成は前記実施例のn対(n=1,3)に限定されるものでなく、対称モードを使用する場合にはn対(n=5,7,9・・・)と奇数対の電極構成をも包含するものである。  Furthermore, the electrodes 58 and 60 having the same polarity on the upper surface are disposed so as to extend to the mount portion 54 via one connection portion 52. Further, the electrode 59 is arranged to extend to the mount portion 57 via the other connection portion 55. Furthermore, the electrode 62 on the lower surface is disposed so as to extend to the mount portion 54 via one connection portion 52. Further, the electrodes 61 and 63 having the same polarity on the lower surface are arranged to extend to the mount portion 57 via the other connection portion 55. As is apparent from FIG. 6, electrodes having the same polarity are disposed on the upper and lower surfaces of one connection portion and the support portion so as to extend from the vibration portion, and the same polarity is provided on the upper and lower surfaces of the other connection portion and the support portion. The electrode which becomes becomes extended from the vibration part. Therefore, one electrode 58, 60, 62 is disposed so as to have the same polarity, and the other electrode 59, 61, 63 is disposed so as to have the same polarity, which forms a two-electrode terminal structure having different polarities. . In this embodiment, three pairs of electrodes are configured. The electrode configuration of the present invention is not limited to the n pairs (n = 1, 3) in the above-described embodiment, and when using the symmetric mode, n pairs (n = 5, 7, 9,...) It also includes an odd pair of electrode configurations.

次に、振動部の幅W、長さL、厚みTと電極との関係について述べる。本実施例では、三対の電極を構成している。それ故、図5で説明した良好な周波数温度特性、及び電界Eを大きくし、主振動の等価直列抵抗Rの小さい幅縦水晶振動子を得るには、厚みTと幅Wとの関係は3T/Wが0.85より小さくする必要がある。又、幅縦振動モードと長さ縦振動モードとの結合を無視できるほどに小さく、且つ、電極面積を大きくし、等価直列抵抗Rの小さい幅縦水晶振動子を得るには、幅Wと長さLとの関係はW/3Lが0.8より小さくする事が必要である。本実施例では三対の電極構成の場合について説明したが、n対(n=1,3,5,・・・)と奇数対の電極構成ではn次オ−バートーン(n次高調波モード振動)の幅縦水晶振動子が得られる。この場合、前記した優れた特性を有する水晶振動子を得るには、厚みTと幅Wとの関係はnT/Wが0.85より小さく、且つ、幅Wと長さLとの関係はW/nLが0.8より小さくする必要がある。Next, the relationship between the width W 0 , length L 0 , thickness T 0 of the vibrating part and the electrode will be described. In this embodiment, three pairs of electrodes are configured. Therefore, excellent frequency temperature characteristic described in FIG. 5, and the electric field E x is increased, in order to obtain a smaller width longitudinal crystal oscillator equivalent series resistance R n of the main vibration is the thickness T 0 and width W 0 The relationship of 3T 0 / W 0 needs to be smaller than 0.85. In addition, in order to obtain a width-longitudinal crystal resonator having a small and negligible series resistance R 3 , the coupling between the width-longitudinal vibration mode and the length-longitudinal vibration mode is negligibly small, the electrode area is increased, and the width W 0 is obtained. And the length L 0 requires that W 0 / 3L 0 be smaller than 0.8. In this embodiment, the case of three pairs of electrodes has been described. However, in the case of n pairs (n = 1, 3, 5,...) And odd pairs, n-order overtone (n-order harmonic mode vibration) is used. ) Width longitudinal crystal resonator. In this case, in order to obtain a crystal resonator having the above-described excellent characteristics, the relationship between the thickness T 0 and the width W 0 is that nT 0 / W 0 is smaller than 0.85, and the width W 0 and the length L As for the relationship with 0, W 0 / nL 0 needs to be smaller than 0.8.

更に詳細には、奇数対の電極構成では、奇数次の幅縦モードで振動し、これが主振動となる。例えば、一対の電極構成では、基本波モード振動(1次高調波モード振動)が主振動となる。また、三対の電極構成では、3次高調波(3次オーバートーン)モード振動が主振動となる。本発明では、幅縦モードで振動し、主振動以外の振動を副振動と呼ぶ。そして、主振動の等価直列抵抗をR、副振動の等価直列抵抗をRと言う。即ち、n=1のとき、Rは基本波モード振動、n=3のとき、Rは3次高調波モード振動、n=5のとき、Rは5次高調波モード振動、n=nのとき、Rはn次高調波モード振動のそれぞれ等価直列抵抗である。更に、周波数温度特性の2次曲線の頂点温度を室温付近に設定するためには、本実施例の幅縦水晶振動子の角度θと寸法比(W/L)と電極対数n(=1,3,5,・・・:奇数)との関係は、[20{W/(nL)}−25]°<θ<[20{W/(nL)}−5]°で与えられる。More specifically, in the case of an odd pair of electrodes, vibration is generated in an odd-order width longitudinal mode, which becomes the main vibration. For example, in the pair of electrode configurations, the fundamental mode vibration (first harmonic mode vibration) is the main vibration. In the three-pair electrode configuration, the third harmonic (third overtone) mode vibration is the main vibration. In the present invention, a vibration other than the main vibration that vibrates in the width-longitudinal mode is called a secondary vibration. The equivalent series resistance of the main vibration is called R n , and the equivalent series resistance of the sub vibration is called R f . That is, when n = 1, R 1 is fundamental mode vibration, when n = 3, R 3 is third harmonic mode vibration, when n = 5, R 5 is fifth harmonic mode vibration, n = When n, R n is an equivalent series resistance of n- th harmonic mode vibration. Further, in order to set the apex temperature of the quadratic curve of the frequency temperature characteristic to be near room temperature, the angle θ x of the width-longitudinal crystal resonator of this embodiment, the size ratio (W 0 / L 0 ), and the number of electrode pairs n ( = 1, 3, 5,...: Odd) is [20 {W 0 / (nL 0 )} − 25] ° <θ x <[20 {W 0 / (nL 0 )} − 5. ] Given in degrees.

このように、本発明の幅縦水晶振動子は、特に、振動部の電極の配置の仕方を工夫することにより、等価直列抵抗Rの小さい、周波数温度特性に優れた超小型の高次オーバートーンの幅縦水晶振動子を実現することができる。又、幅縦水晶振動子の周波数はオーバートーン次数に比例するので、高周波数化が可能になる。なお、本実施例で詳細に述べた電極構成は図3と図4の振動子形状にも適用できるものである。また、本実施例の振動子形状とその形状の構成は図2の振動子と同じである。Thus, the width longitudinal quartz crystal resonator of the present invention, in particular, by devising the way of arrangement of the electrodes of the vibrating section, a small equivalent series resistance R n, tiny higher over with excellent frequency temperature characteristic A tone width vertical crystal unit can be realized. Further, since the frequency of the width vertical crystal resonator is proportional to the overtone order, it is possible to increase the frequency. The electrode configuration described in detail in the present embodiment can also be applied to the vibrator shapes shown in FIGS. Further, the vibrator shape and the configuration of the shape of the present embodiment are the same as those of the vibrator of FIG.

実施例5の水晶ユニットCrystal unit of Example 5

図7は本発明の実施例5の水晶ユニットに収納される幅縦水晶振動子の上面図である。幅縦水晶振動子64は振動部65、接続部66、67、68、71、72、73及び、マウント部70、75をそれぞれ含む支持部69、74を具えて構成されている。支持部69には穴69aを、支持部74には穴74aを具えている。本実施例では、振動部65の長さ方向の両側にそれぞれ複数個の第一、第三、第五接続部66、67、68と第二、第四、第六接続部71、72、73とが設けられている。そして、第一接続部と第二接続部、第三接続部と第四接続部、第五接続部と第六接続部はそれぞれ振動部の長さ方向の端部に対抗して設けられている。更に、一方の接続部66、67、68は支持部69に接続され、他方の接続部71、72、73は支持部74に接続されている。前記振動子の振動部、接続部と支持部とは一体に形成されている。又、幅縦水晶振動子の振動部は幅W、長さL、厚みT(図示されていない)を有し、前記振動子に配置される電極は図示されていないが、実施例1から実施例4で述べられた電極の配置、及び構成が本振動子にも適用される。本実施例では、振動部の両側にそれぞれ3個の接続部を設けているが、さらに多くの接続部を設けてもよく、実際には、オーバートーン次数の数と同じだけ設けることができるが、実際にはより少ない接続部を設けることが好ましい。このように、本発明の幅縦水晶振動子は接続部を振動部の長さ方向の両側の端部にそれぞれ複数個設けているので、高い周波数の厚みの薄い振動子でも耐衝撃性に強い、等価直列抵抗Rの小さい、品質係数Q値の高い幅縦水晶振動子が得られる。FIG. 7 is a top view of a width-longitudinal crystal resonator housed in the crystal unit according to the fifth embodiment of the present invention. The width-longitudinal crystal resonator 64 includes a vibrating portion 65, connecting portions 66, 67, 68, 71, 72, 73 and support portions 69, 74 including mount portions 70, 75, respectively. The support 69 has a hole 69a, and the support 74 has a hole 74a. In the present embodiment, a plurality of first, third, and fifth connection portions 66, 67, and 68 and second, fourth, and sixth connection portions 71, 72, and 73 are provided on both sides of the vibration portion 65 in the length direction. And are provided. And the 1st connection part and the 2nd connection part, the 3rd connection part and the 4th connection part, the 5th connection part and the 6th connection part are provided in opposition to the end of the length direction of a vibration part, respectively. . Furthermore, one connection part 66, 67, 68 is connected to the support part 69, and the other connection part 71, 72, 73 is connected to the support part 74. The vibration part, the connection part and the support part of the vibrator are integrally formed. In addition, the vibrating portion of the width-longitudinal crystal resonator has a width W 0 , a length L 0 , and a thickness T 0 (not shown), and electrodes arranged on the vibrator are not shown. The arrangement and configuration of the electrodes described in Examples 1 to 4 are also applied to this vibrator. In this embodiment, three connection portions are provided on both sides of the vibration portion, but more connection portions may be provided. In practice, the same number as the number of overtone orders can be provided. In practice, it is preferable to provide fewer connections. As described above, the width-longitudinal crystal resonator of the present invention is provided with a plurality of connection portions at both ends in the longitudinal direction of the vibration portion, so that even a high-frequency thin resonator is strong in impact resistance. , small equivalent series resistance R n, high width longitudinal quartz crystal resonator quality factor Q value is obtained.

実施例6の水晶ユニットCrystal unit of Example 6

図8は本発明の実施例6の水晶ユニットの断面図である。水晶ユニット110は表面実装型のケース112と蓋114と輪郭水晶振動子113から構成されている。ケース112の両側に固定部が設けられていて、例えば、本実施例では、実施例1と実施例4と実施例5の水晶振動子について述べた幅縦水晶振動子が収納され、その振動子のマウント部が接着剤等により固定部で固定されている。更に、図示されていないが、ケース112の下面には少なくとも2分割された電極が設けられていて、振動子113の各電極と接続されている。即ち、2電極端子構造を形成している。  FIG. 8 is a cross-sectional view of a crystal unit according to Embodiment 6 of the present invention. The crystal unit 110 includes a surface mount type case 112, a lid 114, and a contour crystal resonator 113. Fixed portions are provided on both sides of the case 112. For example, in the present embodiment, the width-longitudinal crystal resonator described in the crystal resonators of the first embodiment, the fourth embodiment, and the fifth embodiment is housed. The mounting portion is fixed to the fixing portion by an adhesive or the like. Further, although not shown, at least two divided electrodes are provided on the lower surface of the case 112 and are connected to the electrodes of the vibrator 113. That is, a two-electrode terminal structure is formed.

実施例7の水晶ユニットCrystal unit of Example 7

図9は本発明の実施例7の水晶ユニットの断面図である。水晶ユニット120は表面実装型のケース122と蓋124と輪郭水晶振動子123から構成されている。ケース122の片側に固定部が設けられていて、例えば、本実施例では、実施例2と実施例3の水晶振動子について述べた幅縦水晶振動子が収納され、その振動子のマウント部が接着剤等により固定部で固定されている。更に、図示されていないが、ケース122の下面には少なくとも2分割された電極が設けられていて、振動子123の各々の電極と接続されている。即ち、2電極端子構造を形成している。また、振動子は真空中で封止されている。更に、上記実施例6と実施例7の水晶ユニットでは幅縦水晶振動子を収納しているが、幅縦水晶振動子の代わりに他の輪郭水晶振動子、例えば、長さ縦水晶振動子、又はラーメ水晶振動子を収納しても良い。  FIG. 9 is a cross-sectional view of the crystal unit according to the seventh embodiment of the present invention. The crystal unit 120 includes a surface mount type case 122, a lid 124, and a contour crystal resonator 123. A fixing portion is provided on one side of the case 122. In the present embodiment, for example, the width-long vertical crystal resonator described in the crystal resonators of the second and third embodiments is accommodated, and the mount portion of the resonator is It is fixed at the fixing part with an adhesive or the like. Furthermore, although not shown, at least two divided electrodes are provided on the lower surface of the case 122 and are connected to the respective electrodes of the vibrator 123. That is, a two-electrode terminal structure is formed. The vibrator is sealed in a vacuum. Further, in the crystal units of the sixth and seventh embodiments, the width-longitudinal crystal resonator is housed, but instead of the width-vertical crystal resonator, another contour crystal resonator, for example, a length-longitudinal crystal resonator, Alternatively, a lame crystal resonator may be accommodated.

更に、上記各実施例の幅縦水晶振動子は、振動部、接続部と支持部とを具えて構成されているように複雑な形状をしている。又、本発明のカット角を有する幅縦水晶振動子の場合、水晶の分子間の結合エネルギーが非常に大きいために、化学的エッチング法ではそのエッチング速度が極めて遅く、特に、このような複雑な形状を有する振動子を上手く加工することが難しい。それ故、本発明の幅縦水晶振動子の加工は、物理的、あるいは機械的な方法を用いて行われ、前記振動子は一体に形成される。即ち、質量を有する粒子を水晶板に物理的、あるいは機械的方法で衝突させ、それにより水晶板の原子、分子を飛散させて振動子の形状を加工するものである。ここではこの方法を粒子法と呼ぶことにする。この方法は化学的エッチング法による加工法とは異なる方法であると同時に、加工速度が極めて早いのが特長である。外形形状の加工時間が非常に短縮されるので安価な振動子を提供することができる。しかし、輪郭水晶振動子の一つである、例えば、ラーメ水晶振動子は化学的エッチング法にて容易に形成できるので、この方法が用いられる。即ち、本発明の輪郭水晶振動子は粒子法及び/又は化学的エッチングによって形成される。  Furthermore, the width-longitudinal crystal resonator of each of the above embodiments has a complicated shape so as to include a vibrating portion, a connecting portion, and a supporting portion. Further, in the case of the width longitudinal crystal resonator having the cut angle according to the present invention, since the binding energy between the molecules of the crystal is very large, the etching rate is extremely slow in the chemical etching method. It is difficult to process a vibrator having a shape well. Therefore, the processing of the width-longitudinal crystal resonator of the present invention is performed using a physical or mechanical method, and the resonator is integrally formed. That is, particles having mass are made to collide with the quartz plate by a physical or mechanical method, whereby atoms and molecules of the quartz plate are scattered to process the shape of the vibrator. Here, this method is called a particle method. This method is different from the chemical etching method, and at the same time has a very high processing speed. Since the processing time of the outer shape is greatly shortened, an inexpensive vibrator can be provided. However, this method is used because, for example, a lame crystal resonator, which is one of contour quartz resonators, can be easily formed by a chemical etching method. That is, the contour quartz crystal resonator of the present invention is formed by a particle method and / or chemical etching.

次に、本発明の水晶ユニットの製造方法について述べる。まず、実施例1の図1で述べたように、幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向をz軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°を有すると同時に、前記幅縦水晶振動子は振動部と接続部と支持部とを具えて構成され、前記接続部は少なくとも第一接続部と第二接続部が設けられていて、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい幅縦水晶振動子が水晶板から粒子法により形成される。Next, the manufacturing method of the crystal unit of the present invention will be described. First, as described with reference to FIG. 1 of the first embodiment, the thickness direction of the width-long quartz crystal unit coincides with the electric axis x-axis direction, the width direction coincides with the mechanical axis y-axis direction, and the length direction coincides with the z-axis direction. is allowed, the angle theta is x rotated width longitudinal quartz crystal resonator initially in the thickness direction axis as a rotation axis, then, either by the angle theta y rotating the shaft in the width direction as a rotation axis, or the width longitudinal quartz crystal resonator The child is first rotated by the angle θ y with the width direction axis as the rotation axis, and then rotated by the angle θ x with the thickness direction axis as the rotation axis, so that the angle θ x and the angle θ y are θ x = −, respectively. While having 25 ° to + 25 ° and θ y = −30 ° to + 30 °, the width-longitudinal crystal resonator includes a vibrating portion, a connecting portion, and a supporting portion, and the connecting portion is at least a first connection. And the second connecting portion, the width dimension of the vibrating part is smaller than the length dimension and the thickness dimension. A larger vertical crystal unit is formed by a particle method from a crystal plate.

次に、振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置される。(図2、図3、図4と図6参照)。更に詳細には、幅縦モードの対称モードでは、n対の電極(n:奇数)が、非対称モードでは、m対の電極(m:偶数)が配置される。本粒子法による加工では水晶ウエハ内に一度に多数の振動子が形成される。それ故、最初の周波数調整はウエハの状態で行われ、基準周波数に対して、−9000ppm〜+5000ppmの範囲内にあるように周波数が調整される、及び/又はウエハの状態で良振動子か不良振動子かの検査が行われる。もし不良振動子が存在するときには、不良振動子はマーキングされるか、又はウエハから取り除かれるか、又はコンピュターに記憶される。更に、幅縦水晶振動子はケース、又は、蓋に接着材や半田等で固定部に固定される。その後に、2回目の周波数調整が最初の周波数調整と同じ方法であるイオンエッチング法(スパッタリング法)、又は蒸着法、又はレーザ法によって行われる。本工程では、出力される発振の周波数偏差が基準周波数に対して−100ppm〜+100ppmの範囲内にあるように発振周波数が調整される。  Next, at least a pair of electrodes having different polarities are arranged on the upper and lower surfaces of the vibration part so as to face each other. (See FIGS. 2, 3, 4 and 6). More specifically, n pairs of electrodes (n: odd number) are arranged in the symmetric mode of the width-longitudinal mode, and m pairs of electrodes (m: even number) are arranged in the asymmetric mode. In the processing by this particle method, a large number of vibrators are formed in the quartz wafer at a time. Therefore, the first frequency adjustment is performed in the state of the wafer, the frequency is adjusted to be within a range of −9000 ppm to +5000 ppm with respect to the reference frequency, and / or a good resonator or a defect is detected in the state of the wafer. An inspection of the vibrator is performed. If a defective transducer is present, the defective transducer is marked, removed from the wafer, or stored on a computer. Further, the width-longitudinal crystal resonator is fixed to the fixing portion with an adhesive or solder on the case or the lid. Thereafter, the second frequency adjustment is performed by an ion etching method (sputtering method), a vapor deposition method, or a laser method, which is the same method as the first frequency adjustment. In this step, the oscillation frequency is adjusted so that the frequency deviation of the output oscillation is within the range of −100 ppm to +100 ppm with respect to the reference frequency.

最後に、ガラスやセラミック等からなる前記ケースとガラスや金属からなる前記蓋が接合部材(金属やガラス)を介して真空中あるいは窒素の雰囲気中で接合される。本実施例では、ウエハの状態で周波数調整をしているが、この周波数調整は省略してもよく、幅縦水晶振動子をケース又は、蓋に接着材や半田等で固定した後に周波数調整をしても良い。そして、その時の周波数偏差が振動子の基準周波数に対して通常は+/−100ppm以内になるように、発振周波数は調整される。また、ケースあるいは蓋に穴を設けて、当該ケースと当該蓋とを接合部材を介して接合した後に、周波数を調整(基準周波数に対して、−950ppm〜+950ppmの範囲内にある)して、その後にこの穴を真空中で金属やガラスを用いてレーザ、又は赤外線で封止し、更に、封止後に発振周波数が基準周波数に対して、−50ppm〜+50ppmの範囲内にあるように周波数をレーザにて調整しても良い。  Finally, the case made of glass or ceramic and the lid made of glass or metal are bonded together in a vacuum or nitrogen atmosphere via a bonding member (metal or glass). In this embodiment, the frequency adjustment is performed in the state of the wafer, but this frequency adjustment may be omitted, and the frequency adjustment is performed after fixing the width-long vertical crystal unit to the case or the lid with an adhesive or solder. You may do it. The oscillation frequency is adjusted so that the frequency deviation at that time is usually within +/− 100 ppm with respect to the reference frequency of the vibrator. Moreover, after providing a hole in the case or the lid and joining the case and the lid via the joining member, the frequency is adjusted (within a range of −950 ppm to +950 ppm with respect to the reference frequency), After that, the hole is sealed with a laser or infrared ray using metal or glass in vacuum, and the frequency is set so that the oscillation frequency is within a range of −50 ppm to +50 ppm with respect to the reference frequency after sealing. You may adjust with a laser.

実施例1の水晶発振器Example 1 Crystal Oscillator

図10は本発明の実施例1の水晶発振器を構成する水晶発振回路図の一例である。本実施例では、水晶発振回路181は増幅器(CMOSインバータ)182、帰還抵抗184、ドレイン抵抗187、コンデンサー185,186と輪郭水晶振動子183から構成されている。即ち、水晶発振回路181は、増幅器182と帰還抵抗184から成る増幅回路188とドレイン抵抗187、コンデンサー185,186と輪郭水晶振動子183から成る帰還回路189から構成されている。詳細には、本実施例の水晶発振器は、増幅回路188と帰還回路189から構成され、増幅回路は少なくとも増幅器から構成され、帰還回路は少なくとも輪郭水晶振動子とコンデンサーから構成されている。又、本実施例の水晶発振器に用いられる輪郭水晶振動子については既に実施例1から実施例7の水晶ユニットの説明で詳述されている。  FIG. 10 is an example of a crystal oscillation circuit diagram constituting the crystal oscillator according to the first embodiment of the present invention. In this embodiment, the crystal oscillation circuit 181 includes an amplifier (CMOS inverter) 182, a feedback resistor 184, a drain resistor 187, capacitors 185 and 186, and a contour crystal resonator 183. That is, the crystal oscillation circuit 181 includes an amplifier circuit 188 including an amplifier 182 and a feedback resistor 184, a drain resistor 187, capacitors 185 and 186, and a feedback circuit 189 including a contour crystal resonator 183. More specifically, the crystal oscillator of this embodiment includes an amplifier circuit 188 and a feedback circuit 189, the amplifier circuit includes at least an amplifier, and the feedback circuit includes at least a contour crystal resonator and a capacitor. The contour crystal resonator used in the crystal oscillator according to the present embodiment has already been described in detail in the description of the crystal units according to the first to seventh embodiments.

図11は図10の帰還回路図を示す。今、輪郭水晶振動子の角周波数ω、ドレイン抵抗187の抵抗をR、コンデンサー185、186の容量をC、C、水晶のクリスタルインピーダンスをRei、帰還回路のドレイン側の入力電圧をV,ゲート側の出力電圧をVとすると、帰還率βはβ=|V/|Vで定義される。但し、iは輪郭モード振動の振動次数を表す。例えば、i=1のとき、基本波モード振動(1次高調波モード振動)、i=2のとき、2次高調波モード振動、i=3のとき、3次高調波モード振動である。即ち、i=nのとき、n次高調波モード振動である。ここでは、単にn次モード振動と言う。又、n対の電極構成で、n次モードで振動する輪郭モード振動(例えば、幅縦モード振動、又はラーメモード振動、又は長さ縦モード振動)を主振動と言い、主振動と同じモードで振動し、主振動以外の輪郭モード振動を副振動と言う。又、主振動は他の振動モードと結合しない単一モードの振動子である。更に、負荷容量CはC=C/(C+C)で与えられ、C=C=CgdとR>>Reiとすると、帰還率βはβ=1/(1+kC )で与えられる。但し、kはω、R、Reiの関数で表される。又、Reiは近似的に等価直列抵抗Rに等しくなる。このように、帰還率βと負荷容量Cとの関係から、負荷容量Cが小さくなると、n次モード振動の共振周波数の帰還率はそれぞれ大きくなる。FIG. 11 shows the feedback circuit diagram of FIG. Now, the angular frequency ω i of the contour crystal resonator, the resistance of the drain resistor 187 is R d , the capacitances of the capacitors 185 and 186 are C g and C d , the crystal impedance of the crystal is R ei , and the input voltage on the drain side of the feedback circuit Is V 1 and the output voltage on the gate side is V 2 , the feedback rate β i is defined by β i = | V 2 | i / | V 1 | i . However, i represents the vibration order of the contour mode vibration. For example, when i = 1, fundamental mode vibration (first harmonic mode vibration), when i = 2, second harmonic mode vibration, and when i = 3, third harmonic mode vibration. That is, when i = n, it is n-order harmonic mode vibration. Here, it is simply referred to as n-order mode vibration. In addition, contour mode vibration (for example, width longitudinal mode vibration, lame mode vibration, or length longitudinal mode vibration) that vibrates in an n-th mode with an n-pair electrode configuration is called a main vibration, and in the same mode as the main vibration. A contour mode vibration other than the main vibration is called a secondary vibration. The main vibration is a single mode vibrator that is not coupled with other vibration modes. Further, the load capacity C L is given by C L = C g C d / (C g + C d ). When C g = C d = C gd and R d >> R ei , the feedback rate β i is β i = 1 / (1 + kC L 2 ). However, k is expressed by a function of ω i , R d , and R ei . R ei is approximately equal to the equivalent series resistance R i . Thus, from the relationship between the feedback rate β i and the load capacitance C L , when the load capacitance C L decreases, the feedback rate of the resonance frequency of the n-th mode vibration increases.

本発明の水晶発振器は、消費電流が少なく、しかも、出力周波数が高い周波数安定性(高い時間精度)を有する水晶発振器を提供することを目的としている。それ故、消費電流を少なくするために、本実施例では、負荷容量Cは30pF以下を用いる。より消費電流を少なくするには、消費電流は負荷容量に比例するので、C=20pF以下が好ましい。又、副振動の周波数を抑え、n対の電極構成で主振動がn次モードの振動する発振器の出力信号が主振動の発振周波数を得るために、α/α>β/βとαβ>1を満足するように本実施例の水晶発振回路は構成される。好ましくは、α/α>1.12を満たすように構成される。但し、α、αは主振動と副振動の増幅回路の増幅率で、β、βは主振動と副振動の帰還回路の帰還率である。換言するならば、増幅回路の主振動の増幅率αと副振動の増幅率αとの比が帰還回路の副振動の帰還率βと主振動の帰還率βとの比より大きく、かつ、主振動の増幅率αと主振動の帰還率βの積が1より大きくなるように構成される。即ち、消費電流の少ない、出力信号が主振動の発振周波数である水晶発振器が実現できる。又、出力信号はバッファ回路を介して出力される。An object of the crystal oscillator of the present invention is to provide a crystal oscillator that has low current consumption and high frequency stability (high time accuracy). Therefore, in order to reduce current consumption, in the present embodiment, the load capacitance C L is used below 30 pF. In order to further reduce the current consumption, since the current consumption is proportional to the load capacity, C L = 20 pF or less is preferable. In addition, in order to suppress the frequency of the secondary vibration and to obtain the oscillation frequency of the main vibration from the output signal of the oscillator in which the main vibration vibrates in the n-th mode with the n-pair electrode configuration, α n / α f > β f / β n And α n β n > 1 are configured in the crystal oscillation circuit of this embodiment. Preferably, it is configured to satisfy α n / α f > 1.12. Here, α n and α f are the amplification factors of the main vibration and sub vibration amplifying circuits, and β n and β f are the feedback factors of the main vibration and sub vibration feedback circuits. In other words, the ratio between the amplification factor α n of the main vibration of the amplifier circuit and the amplification factor α f of the secondary vibration is larger than the ratio of the feedback factor β f of the secondary vibration of the feedback circuit and the feedback factor β n of the main vibration. In addition, the product of the amplification factor α n of the main vibration and the feedback factor β n of the main vibration is configured to be greater than 1. That is, it is possible to realize a crystal oscillator that consumes less current and whose output signal is the oscillation frequency of the main vibration. The output signal is output via a buffer circuit.

又、本実施例の水晶発振回路を構成する増幅回路の増幅部は負性抵抗−RLでその特性を示すことができる。i=1のとき基本波モード振動(1次モード振動)の負性抵抗で、i=nのときn次モード振動の負性抵抗である。即ち、n=2,3,4,5・・・・のとき、2次、3次、4次、5次・・・モード振動の負性抵抗の値である。本実施例の水晶発振器は、増幅回路の主振動の負性抵抗の絶対値|−RL|と主振動の等価直列抵抗Rとの比が増幅回路の副振動の負性抵抗の絶対値|−RL|と副振動の等価直列抵抗Rとの比より大きくなるように発振回路が構成されている。即ち、|−RL|/R>|−RL|/Rを満足するように回路は構成されている。好ましくは、|−RL|/R>1.12と|−RL|/R<1を満たすように構成される。このように水晶発振回路を構成することにより、副振動の発振起動が抑えられ、その結果、主振動の発振起動が得られるので主振動の発振周波数が出力信号として得られる。同時に、消費電流の少ない水晶発振器が実現できる。Further, the amplifying part of the amplifying circuit constituting the crystal oscillation circuit of the present embodiment can exhibit the characteristic by a negative resistance -RL i . When i = 1, it is a negative resistance of fundamental mode vibration (first-order mode vibration), and when i = n, it is a negative resistance of n-order mode vibration. That is, when n = 2, 3, 4, 5,..., The value of the negative resistance of the second, third, fourth, fifth,. In the crystal oscillator according to the present embodiment, the ratio of the absolute value | -RL n | of the main vibration negative resistance of the amplifier circuit to the equivalent series resistance R n of the main vibration is the absolute value of the negative resistance of the secondary vibration of the amplifier circuit. The oscillation circuit is configured to be larger than the ratio of | −RL f | and the equivalent series resistance R f of the secondary vibration. That is, the circuit is configured to satisfy | −RL n | / R n > | −RL f | / R f . Preferably, it is configured to satisfy | −RL n | / R n > 1.12 and | −RL f | / R f <1. By configuring the crystal oscillation circuit in this manner, the oscillation activation of the secondary vibration is suppressed, and as a result, the oscillation activation of the main vibration can be obtained, so that the oscillation frequency of the main vibration is obtained as the output signal. At the same time, a crystal oscillator with low current consumption can be realized.

また、輪郭水晶振動子の誘導性と電気機械変換効率と品質係数を表すフイガーオブメリットMは品質係数Q値と容量比rとの比(Q/r)によって定義され(i=1のとき基本波モード振動、i=2のとき2次モード振動、i=3のとき3次モード振動)、輪郭水晶振動子の並列容量に依存しない機械的直列共振周波数fと並列容量に依存する直列共振周波数fの周波数差ΔfはフイガーオブメリットMに反比例し、その値M大きい程Δfは小さくなる。従って、Mが大きい程、輪郭水晶振動子の共振周波数は並列容量の影響を受けないので、輪郭水晶振動子の周波数安定性は良くなる。即ち、時間精度の高い輪郭水晶振動子が得られる。In addition, the fibre-of-merit M i representing the inductivity, electromechanical conversion efficiency, and quality factor of the contour crystal resonator is defined by the ratio (Q i / r i ) between the quality factor Q i value and the capacitance ratio r i ( fundamental mode vibration when i = 1, 2-order mode vibration when i = 2, 3 order mode vibration when i = 3), parallel with the mechanical series resonance frequency f s that is independent of the parallel capacitance of the contour crystal oscillator the frequency difference Δf of the series resonance frequency f r which depends on the capacitance is inversely proportional to the off Iga of merit M i, the value M i larger Δf becomes smaller. Therefore, as M i is large, the resonance frequency of the contour crystal oscillator is not affected by the parallel capacitance, the frequency stability of the contour crystal oscillator is improved. That is, a contour crystal resonator with high time accuracy can be obtained.

詳細には、前記した輪郭水晶振動子の振動子形状と電極と振動子寸法の構成により、n対の電極構成によって、主振動がn次モードで振動する輪郭水晶振動子のフイガーオブメリットMが副振動のフイガーオブメリットMより大きくなる。即ち、M>Mとなる。本発明の輪郭水晶振動子では、通常、Mは45より大きく、Mは32以下になるように振動部の電極は構成、配置される。但し、Mは主振動のフイガーオブメリットである。その結果、主振動の周波数安定性が副振動の周波数安定性より良くなると共に、副振動を抑圧することができる。従って、上記実施例の輪郭水晶振動子から構成される水晶発振器は主振動の発振周波数が出力信号として得られ、かつ、高い周波数安定性(優れた時間精度)を有する。尚、本発明の輪郭水晶振動子は幅縦水晶振動子、又は長さ縦水晶振動子、又はラーメ水晶振動子が用いられる。又、同じ振動モードで振動する輪郭水晶振動子の主振動の等価直列抵抗Rは副振動の等価直列抵抗Rより小さい。Specifically, according to the configuration of the contour shape of the contour crystal resonator, the electrode, and the size of the resonator, the finger of merit M of the contour crystal resonator in which the main vibration vibrates in the n-order mode by the n-pair electrode configuration. n becomes larger than the fibber of merit Mf of the secondary vibration. That is, M n > M f . In the contoured crystal resonator of the present invention, the electrodes of the vibrating part are usually configured and arranged so that Mn is greater than 45 and Mf is 32 or less. However, M n is the fibre of merit of the main vibration. As a result, the frequency stability of the main vibration becomes better than the frequency stability of the secondary vibration, and the secondary vibration can be suppressed. Therefore, the crystal oscillator composed of the contoured crystal resonator of the above embodiment can obtain the oscillation frequency of the main vibration as an output signal and has high frequency stability (excellent time accuracy). For the contour crystal resonator of the present invention, a width vertical crystal resonator, a length vertical crystal resonator, or a lame crystal resonator is used. Also, the equivalent series resistance R n of the main vibration of the contour crystal oscillator that oscillates at the same vibration mode is less than the secondary vibration of the equivalent series resistance R f.

実施例2の水晶発振器Example 2 Crystal Oscillator

図12は本発明の実施例2の水晶発振器を示す構成図である。発振器は増幅器(CMOSインバータ)150、帰還抵抗151、ドレイン抵抗152、ゲート側のコンデンサ153、ドレイン側のコンデンサ154、158、輪郭水晶振動子155、バラクタダイオード156、抵抗159と可変電圧157とを具えて構成されている。輪郭水晶振動子155は実施例1から実施例7の水晶ユニットに収納される幅縦水晶振動子、又は長さ縦水晶振動子、又はラーメ水晶振動子が用いられる。本実施例の水晶発振器では、可変電圧157によってバラクタダイオード156の容量を変化させ、周波数を可変できるいわゆる電圧制御型の水晶発振器、VCXO(Voltage Controlled Crystal Oscillator)である。また、本実施例では、水晶発振器は輪郭水晶振動子155を具えているが、輪郭水晶振動子は水晶ユニットの中に収納されている。あるいは、前記構成要素の全部又は一部が水晶ユニットに収納されていても良い。  FIG. 12 is a block diagram showing a crystal oscillator according to a second embodiment of the present invention. The oscillator includes an amplifier (CMOS inverter) 150, a feedback resistor 151, a drain resistor 152, a gate-side capacitor 153, drain-side capacitors 154 and 158, a contour crystal resonator 155, a varactor diode 156, a resistor 159, and a variable voltage 157. Configured. As the contour crystal resonator 155, a width vertical crystal resonator, a length vertical crystal resonator, or a lame crystal resonator housed in the crystal units of the first to seventh embodiments is used. The crystal oscillator according to the present embodiment is a so-called voltage controlled crystal oscillator (VCXO) that can change the frequency by changing the capacitance of the varactor diode 156 by the variable voltage 157. In this embodiment, the crystal oscillator includes the contour crystal resonator 155, but the contour crystal resonator is housed in the crystal unit. Alternatively, all or part of the constituent elements may be accommodated in the crystal unit.

実施例3の水晶発振器Example 3 Crystal Oscillator

図13は本発明の実施例3の水晶発振器を示す構成図である。本実施例の水晶発振器は輪郭水晶振動子160を具えて構成される水晶発振回路162と温度補償回路161から構成されている。通常、温度補償回路は、ダイオード、コンデンサ、抵抗素子等から構成されている。図14には図12の水晶発振器の周波数温度特性163と温度補償回路161によって補正された周波数温度特性164を示す。図14から明らかなように、周波数温度特性が改善できることが分かる。更に、図12のバラクタダイオードと可変電圧を含む回路と温度補償回路とを一緒に構成することにより、電圧制御、温度補償型水晶発振器、いわゆるVCTCXO(Voltage Controlled Temperature Compensated Crystal Oscillator)が構成できる。  FIG. 13 is a block diagram showing a crystal oscillator according to a third embodiment of the present invention. The crystal oscillator according to this embodiment includes a crystal oscillation circuit 162 including a contour crystal resonator 160 and a temperature compensation circuit 161. Usually, the temperature compensation circuit includes a diode, a capacitor, a resistance element, and the like. FIG. 14 shows the frequency temperature characteristic 163 of the crystal oscillator of FIG. 12 and the frequency temperature characteristic 164 corrected by the temperature compensation circuit 161. As is apparent from FIG. 14, it can be seen that the frequency temperature characteristic can be improved. Further, by configuring the circuit including the varactor diode of FIG. 12 and the variable voltage and the temperature compensation circuit together, a voltage control, temperature compensation type crystal oscillator, so-called VCTCXO (Voltage Controlled Temperature Compensated Crystal Oscillator) can be configured.

更に、本発明の輪郭水晶振動子として幅縦水晶振動子、又は長さ縦水晶振動子、又はラーメ水晶振動子が用いられる。特に、ラーメ水晶振動子は振動部と接続部と支持部とを具えて構成されていて、振動部の対角する位置の2つの角に各々1個の接続部が接続され、接続部を介して振動部と支持部は接続されている。又、接続部の幅と長さとの比が0.05〜1.5の範囲内に、好ましくは、0.05〜1.0の範囲内にある。加えて、振動部の一辺と接続部は大略135°の角度を有する。更に、支持部の形状は実施例1の水晶ユニットで述べた幅縦水晶振動子の支持部の形状と同じ形状をしている。更に詳述するならば、支持部は振動部の一つの対角線上に2個設けられていて、ラーメ水晶振動子は各々の支持部のマウント部(固定部)がケース、又は蓋に接着剤、又は半田によってマウントされる。また、振動部の上下面には互いに極性の異なる一対の電極が配置されて、上面の電極は一方の支持部のマウント部まで延在して配置され、下面の電極は他方の支持部のマウント部まで延在して配置されている。即ち、2電極端子を構成している。更に、ラーメ水晶振動子を駆動する圧電定数e′21、e′23の絶対値は0.41〜1.2C/mの範囲内にある。と同時に、e′21とe′23は符号が反対で、絶対値は大略同じ値を持つ。Furthermore, a width vertical crystal resonator, a length vertical crystal resonator, or a lame crystal resonator is used as the contour crystal resonator of the present invention. In particular, the lame crystal resonator includes a vibration part, a connection part, and a support part. One connection part is connected to each of two corners of the vibration part opposite to each other. The vibration part and the support part are connected. Further, the ratio of the width and the length of the connecting portion is in the range of 0.05 to 1.5, preferably in the range of 0.05 to 1.0. In addition, one side of the vibration part and the connection part have an angle of approximately 135 °. Further, the shape of the support portion is the same as the shape of the support portion of the width-longitudinal crystal resonator described in the crystal unit of the first embodiment. More specifically, two support portions are provided on one diagonal line of the vibration portion, and the lame crystal resonator has a mount portion (fixing portion) of each support portion as an adhesive on the case or the lid, Or it mounts with solder. In addition, a pair of electrodes having different polarities are arranged on the upper and lower surfaces of the vibration part, the upper electrode extends to the mounting part of one supporting part, and the lower electrode is mounted on the other supporting part. It extends to the part. That is, a two-electrode terminal is configured. Further, the absolute values of the piezoelectric constants e ′ 21 and e ′ 23 for driving the lame crystal resonator are in the range of 0.41 to 1.2 C / m 2 . At the same time, e ′ 21 and e ′ 23 are opposite in sign and have almost the same absolute value.

以上、図示例に基づき説明したが、この発明は上述の実施例に限定されるものではなく、例えば、本発明の輪郭水晶振動子の支持部の形状は実施例1から実施例5で述べた形状に限定されるものでなく、本発明の支持部の形状は、接続部を介して振動部と接続されるいかなる形状をも包含するものである。更に、本発明の水晶ユニットは少なくとも1個の輪郭水晶振動子、例えば、幅縦水晶振動子、又は長さ縦水晶振動子、又はラーメ水晶振動子を収納していれば良く、本発明の幅縦水晶振動子と音叉型屈曲水晶振動子を一緒に水晶ユニットに収納しても良い。又、前記実施例1、2、3の水晶発振器は少なくとも増幅器としてCMOSインバータ、抵抗として帰還抵抗、コンデンサとしてゲート側のコンデンサとドレイン側のコンデンサと輪郭水晶振動子とを具えて構成されていれば良い。  As mentioned above, although demonstrated based on the example of illustration, this invention is not limited to the above-mentioned Example, For example, the shape of the support part of the outline quartz crystal resonator of this invention was described in Example 1-5 The shape of the support portion of the present invention is not limited to the shape, and includes any shape that is connected to the vibration portion via the connection portion. Furthermore, the crystal unit of the present invention only needs to accommodate at least one contour crystal resonator, for example, a width vertical crystal resonator, a length vertical crystal resonator, or a lame crystal resonator. A vertical crystal unit and a tuning-fork type bent crystal unit may be housed together in a crystal unit. In addition, the crystal oscillators of the first, second, and third embodiments may be configured to include at least a CMOS inverter as an amplifier, a feedback resistor as a resistor, a gate side capacitor, a drain side capacitor, and a contour crystal resonator as capacitors. good.

本発明の水晶ユニットと水晶発振器は超小型で、高い周波数安定性を有するので、特に、超小型で、高い周波数安定性を必要とする携帯機器や民生機器等に適用できる。  Since the crystal unit and the crystal oscillator of the present invention are ultra-compact and have high frequency stability, they are particularly applicable to portable devices and consumer devices that are ultra-compact and require high frequency stability.

本発明の輪郭水晶振動子の一つである幅縦水晶振動子の形成に用いる水晶板のカット角とその座標系との関係である。It is the relationship between the cut angle of a crystal plate used for forming a width-longitudinal crystal resonator that is one of the contour crystal resonators of the present invention and its coordinate system. 本発明の実施例1の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と側面図(b)である。It is the upper side figure (a) and side view (b) of the width-longitudinal crystal oscillator accommodated in the crystal unit of Example 1 of this invention. 本発明の実施例2の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と下面図(b)である。It is the upper side figure (a) and bottom view (b) of the width-longitudinal crystal oscillator accommodated in the crystal unit of Example 2 of this invention. 本発明の実施例3の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と下面図(b)である。It is the upper side figure (a) and bottom view (b) of the width-longitudinal crystal oscillator accommodated in the crystal unit of Example 3 of this invention. 上記実施例1から実施例3の幅縦水晶振動子の周波数温度特性の一例を示す線図である。It is a diagram which shows an example of the frequency temperature characteristic of the width longitudinal crystal oscillator of the said Example 1- Example 3. FIG. 本発明の実施例4の水晶ユニットに収納される幅縦水晶振動子の上面図(a)と下面図(b)である。It is the upper side figure (a) and bottom view (b) of the width-longitudinal crystal oscillator accommodated in the crystal unit of Example 4 of this invention. 本発明の実施例5の水晶ユニットに収納される幅縦水晶振動子の上面図である。It is a top view of the width-longitudinal crystal resonator housed in the crystal unit according to the fifth embodiment of the present invention. 本発明の実施例6の水晶ユニットの断面図である。It is sectional drawing of the crystal unit of Example 6 of this invention. 本発明の実施例7の水晶ユニットの断面図である。It is sectional drawing of the crystal unit of Example 7 of this invention. 本発明の実施例1の水晶発振器を示す。1 shows a crystal oscillator according to a first embodiment of the present invention. 図10の帰還回路図である。FIG. 11 is a feedback circuit diagram of FIG. 10. 本発明の実施例2の水晶発振器を示す。4 shows a crystal oscillator according to a second embodiment of the present invention. 本発明の実施例3の水晶発振器を示す。4 shows a crystal oscillator according to a third embodiment of the present invention. 図12の水晶発振器の周波数温度特性の一例と図13の温度補償回路によって補正された周波数温度特性の一例を示す。An example of the frequency temperature characteristic of the crystal oscillator of FIG. 12 and an example of the frequency temperature characteristic corrected by the temperature compensation circuit of FIG. 13 are shown. NS−GTカット幅・長さ縦結合水晶振動子の上面図である。FIG. 6 is a top view of an NS-GT cut width / length longitudinally coupled crystal resonator. NS−GTカット幅・長さ縦結合水晶振動子の側面図である。FIG. 3 is a side view of a NS-GT cut width / length longitudinally coupled crystal resonator.

符号の説明Explanation of symbols

x,y,z 水晶の電気軸,機械軸,光軸
振動部の幅
振動部の長さ
振動部の厚み
θ,θ 角度
x, y, z Crystal electrical axis, mechanical axis, optical axis W 0 width of vibration part L 0 length of vibration part T 0 thickness of vibration part θ x , θ y angle

Claims (9)

水晶振動子とケースと蓋とを具えて構成されていて、前記水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい輪郭水晶振動子を具えて構成される水晶ユニットであって、
前記輪郭水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸z軸方向にそれぞれ一致させ、前記輪郭水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記輪郭水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、
振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子の振動部は、少なくとも第一接続部と第二接続部を介して支持部に接続され、前記接続部は振動部の長さ方向に設けられていて、更に、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きく、かつ、前記振動部と前記接続部と前記支持部とを具えて構成される輪郭水晶振動子は粒子法により一体に形成されていて、
前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置され、基本波モード振動、又はオーバートンモード振動の振動次数が圧電定数に依存しないように、前記振動部に電極が配置されている横効果型の輪郭水晶振動子を具えて構成されていることを特徴とする水晶ユニット。
The crystal unit is configured to include a case, a lid, and the crystal unit includes a vibration unit, a connection unit, and a support unit, and the width dimension of the vibration unit is smaller than the length dimension and the thickness. A quartz unit comprising a contoured crystal unit larger than the dimensions,
The thickness direction of the contour crystal resonator is aligned with the electric axis x-axis direction, the width direction is aligned with the mechanical axis y-axis direction, and the length direction is aligned with the optical axis z-axis direction. Then, the angle θ x is rotated with the axis of the rotation axis as the rotation axis, and then the angle θ y is rotated with the axis in the width direction as the rotation axis, or the angle θ by y rotation, then the thickness direction axis angle theta is x as a rotation axis, the angle theta x and the angle theta y respectively θ x = -25 ° ~ + 25 °, θ y = -30 ° ~ + 30 Within the range of °
The vibration part of the contour crystal resonator configured to include a vibration part, a connection part, and a support part is connected to the support part via at least a first connection part and a second connection part, and the connection part is a vibration part. Furthermore, the width dimension of the vibration part is smaller than the length dimension and larger than the thickness dimension, and includes the vibration part, the connection part, and the support part. Contour quartz crystal unit is formed by particle method,
At least a pair of electrodes having different polarities are arranged opposite to each other on the upper and lower surfaces of the vibration part, and electrodes are provided on the vibration part so that the vibration order of fundamental wave mode vibration or overton mode vibration does not depend on the piezoelectric constant. A crystal unit comprising a lateral effect type contoured crystal resonator arranged.
輪郭水晶振動子は幅縦モードで振動する幅縦水晶振動子で、前記幅縦水晶振動子の圧電定数e12の絶対値が0.095〜0.19C/mの範囲内にあり、前記幅縦水晶振動子の角度θと寸法比(W/L)と電極対数n(奇数)との関係が、[20{W/(nL)}−25]°<θ<[20{W/(nL)}−5]°で与えられることを特徴とする請求項1に記載の水晶ユニット。Contour crystal oscillators width longitudinal quartz crystal resonator which vibrates in the width longitudinal mode, the absolute value of piezoelectric constant e 12 of the width longitudinal crystal oscillator is in the range of 0.095~0.19C / m 2, wherein The relationship between the angle θ x of the width-longitudinal crystal resonator, the dimension ratio (W 0 / L 0 ), and the number of electrode pairs n (odd number) is [20 {W 0 / (nL 0 )} − 25] ° <θ x < The crystal unit according to claim 1, wherein the crystal unit is given by [20 {W 0 / (nL 0 )} − 5] °. 輪郭水晶振動子の一つである幅縦水晶振動子の厚みTが0.01mm〜0.18mmの範囲内にあり、更に、振動部の幅方向に分割されたn対(奇数対)の電極を有するとき、振動部の幅Wは(0.01〜0.96)nmmの範囲内にあることを特徴とする請求項1、又は請求項2に記載の水晶ユニット。The thickness T 0 of the width vertical crystal unit which is one of the contour crystal units is in the range of 0.01 mm to 0.18 mm, and n pairs (odd number pairs) divided in the width direction of the vibration part. 3. The crystal unit according to claim 1, wherein when the electrode is provided, the width W 0 of the vibration part is in a range of (0.01 to 0.96) nmm. 水晶振動子とケースと蓋とを具えて構成されていて、前記水晶振動子は振動部と接続部と支持部とを具えて構成される輪郭水晶振動子を具えて構成される水晶ユニットで、
振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子の振動部は、少なくとも第一接続部と第二接続部を介して支持部に接続され、かつ、振動部と接続部と支持部とを具えて構成される前記輪郭水晶振動子は粒子法及び/又は化学的エッチング法により一体に形成されていて、
前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置され、輪郭水晶振動子の振動次数が圧電定数に依存しないように、前記振動部に電極が配置されている横効果型の輪郭水晶振動子で、前記輪郭水晶振動子の主振動と副振動の周波数安定係数をそれぞれSとSとするとき、SとSがS=r/2Q とS=r/2Q で与えられ、S<Sの関係を有することを特徴とする水晶ユニット。
The crystal unit includes a crystal unit, a case, and a lid, and the crystal unit is a crystal unit configured to include a contour crystal unit including a vibration unit, a connection unit, and a support unit.
The vibration part of the contour crystal resonator configured to include a vibration part, a connection part, and a support part is connected to the support part through at least the first connection part and the second connection part, and is connected to the vibration part. The contour quartz crystal resonator comprising a portion and a support portion is integrally formed by a particle method and / or a chemical etching method,
A lateral effect in which at least a pair of electrodes having different polarities are arranged opposite to each other on the upper and lower surfaces of the vibrating part, and the electrodes are arranged on the vibrating part so that the vibration order of the contour crystal resonator does not depend on the piezoelectric constant. in the form of contour crystal oscillator, when the said contour of the main vibration and secondary vibration of the crystal oscillator frequency stability factor respectively S n and S f, S n and S f is the S n = r n / 2Q n 2 A crystal unit given by S f = r f / 2Q f 2 and having a relationship of S n <S f .
水晶振動子とケースと蓋とを具えて構成される水晶ユニットの製造方法において、
前記水晶ユニットを構成する前記水晶振動子は幅縦モードで振動する幅縦水晶振動子で、前記幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸z軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、更に、前記幅縦水晶振動子は振動部と接続部と支持部とを具えて構成され、前記接続部は少なくとも第一接続部と第二接続部とを有し、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい幅縦水晶振動子を粒子法により一体に形成する工程と、
振動部の上下面には極性の異なる少なくとも一対の電極を対抗して配置する工程と、
前記幅縦水晶振動子を前記ケース、又は、前記蓋に固定する工程と、
発振の周波数を調整する工程と、
前記ケースと前記蓋とを接合部材を介して接合する工程と、
を有する事を特徴とする水晶ユニットの製造方法。
In the manufacturing method of a crystal unit comprising a crystal resonator, a case and a lid,
The crystal unit constituting the crystal unit is a width-vertical crystal unit that vibrates in a width-longitudinal mode. The thickness direction of the width-vertical crystal unit is the electric axis x-axis direction, and the width direction is the mechanical axis y-axis direction. , the angle the length directions to match the optical axis z-axis direction, first to the angle theta x rotated in the thickness direction axis as a rotation axis the width longitudinal quartz crystal resonator, then, as a rotation axis the axis of the width direction θ y is rotated, or the width vertical crystal resonator is first rotated by an angle θ y with the axis in the width direction as a rotation axis, and then rotated by an angle θ x with the axis in the thickness direction as a rotation axis. θ x and the angle θ y are in the range of θ x = −25 ° to + 25 ° and θ y = −30 ° to + 30 °, respectively, and the width-longitudinal crystal resonator supports the vibrating portion, the connecting portion, and the support portion And the connecting part has at least a first connecting part and a second connecting part, The width dimension of the vibration portion is smaller than the length dimension, and the step of integrally forming the width vertical crystal resonator larger than the thickness dimension by the particle method,
A step of opposingly arranging at least a pair of electrodes having different polarities on the upper and lower surfaces of the vibration part;
Fixing the width-longitudinal crystal resonator to the case or the lid;
Adjusting the oscillation frequency;
Joining the case and the lid via a joining member;
A method for manufacturing a crystal unit, comprising:
水晶振動子と増幅器とコンデンサーと抵抗とを具えて構成される水晶発振器で、
前記水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の上下面には極性の異なる少なくとも一対の電極が対抗して配置されていて、前記水晶振動子は輪郭モードで振動する輪郭水晶振動子で、
振動部と接続部と支持部とを具えて構成される前記水晶振動子は粒子法及び/又は化学的エッチング法により一体に形成され、
輪郭水晶振動子の主振動の等価直列抵抗Rが副振動の等価直列抵抗Rより小さい輪郭水晶振動子を具えて水晶発振器は構成されると共に、
増幅回路と帰還回路とを具えて構成される前記水晶発振器の増幅回路の主振動の負性抵抗の絶対値|−RL|と主振動の等価直列抵抗Rとの比が、増幅回路の副振動の負性抵抗の絶対値|−RL|と副振動の等価直列抵抗Rとの比より大きくなるように前記水晶発振器は構成され、
前記輪郭水晶振動子を具えて構成された前記水晶発振器の出力信号が主振動の発振周波数で、かつ、主振動は輪郭水晶振動子の基本波モード振動、又は高調波モード振動であることを特徴とする水晶発振器。
A crystal oscillator composed of a crystal resonator, amplifier, capacitor, and resistor.
The crystal unit includes a vibration unit, a connection unit, and a support unit, and at least a pair of electrodes having different polarities are arranged opposite to each other on the upper and lower surfaces of the vibration unit. Contour quartz crystal that vibrates in mode
The crystal unit comprising a vibrating part, a connecting part and a support part is integrally formed by a particle method and / or a chemical etching method,
The crystal oscillator is configured to include a contour crystal resonator in which the equivalent series resistance R n of the main vibration of the contour crystal resonator is smaller than the equivalent series resistance R f of the sub vibration,
The ratio of the absolute value | −RL n | of the negative resistance of the main vibration of the amplification circuit of the crystal oscillator including the amplification circuit and the feedback circuit is equal to the equivalent series resistance R n of the main vibration. The crystal oscillator is configured to be larger than the ratio of the absolute value | -RL f | of the negative resistance of the secondary vibration to the equivalent series resistance R f of the secondary vibration,
The output signal of the crystal oscillator configured to include the contour crystal resonator is an oscillation frequency of the main vibration, and the main vibration is a fundamental mode vibration or a harmonic mode vibration of the contour crystal resonator. A crystal oscillator.
輪郭水晶振動子の振動部は接続部を介して支持部に接続され、前記接続部は少なくとも第一接続部と第二接続部とを有し、前記輪郭水晶振動子の主振動と副振動の周波数安定係数をそれぞれSとSとするとき、SとSがS=r/2Q とS=r/2Q で与えられ、S<Sの関係を有することを特徴とする請求項6に記載の水晶発振器。The vibrating portion of the contour crystal resonator is connected to the support portion via a connection portion, and the connection portion has at least a first connection portion and a second connection portion, and the main and sub vibrations of the contour crystal resonator are when the frequency stability factor respectively S n and S f, S n and S f is given by S n = r n / 2Q n 2 and S f = r f / 2Q f 2, the relationship of S n <S f The crystal oscillator according to claim 6, comprising: 輪郭水晶振動子は振動部と接続部と支持部とを具えて構成され、前記振動部の幅寸法は長さ寸法より小さく、厚み寸法より大きい幅縦モードで振動する幅縦水晶振動子で、水晶発振器は前記幅縦水晶振動子を具えて構成され、前記幅縦水晶振動子の厚み方向を電気軸x軸方向に、幅方向を機械軸y軸方向に、長さ方向を光軸z軸方向にそれぞれ一致させ、前記幅縦水晶振動子を最初に厚み方向の軸を回転軸として角度θ回転させ、次に、幅方向の軸を回転軸として角度θ回転させるか、又は、前記幅縦水晶振動子を最初に幅方向の軸を回転軸として角度θ回転させ、次に、厚み方向の軸を回転軸として角度θ回転させ、前記角度θと前記角度θがそれぞれθ=−25°〜+25°、θ=−30°〜+30°の範囲内にあり、前記幅縦水晶振動子は、その主振動の共振周波数が圧電定数に依存しない横効果型の水晶振動子で、前記水晶発振器は少なくとも増幅器としてCMOSインバータ、抵抗として帰還抵抗、コンデンサとしてゲート側のコンデンサとドレイン側のコンデンサと前記幅縦水晶振動子とを具えて構成されていることを特徴とする請求項6、又は請求項7に記載の水晶発振器。The contour crystal resonator includes a vibration portion, a connection portion, and a support portion, and the width dimension of the vibration portion is smaller than the length dimension and is a width longitudinal crystal vibrator that vibrates in a width longitudinal mode larger than the thickness dimension. The crystal oscillator includes the width-longitudinal crystal resonator. The thickness direction of the width-longitudinal crystal resonator is the electric axis x-axis direction, the width direction is the mechanical axis y-axis direction, and the length direction is the optical axis z-axis. The width longitudinal crystal unit is first rotated by an angle θ x with the axis in the thickness direction as the rotation axis and then rotated by the angle θ y with the axis in the width direction as the rotation axis, or The width longitudinal crystal unit is first rotated by an angle θ y with the axis in the width direction as the rotation axis, and then rotated by the angle θ x with the axis in the thickness direction as the rotation axis. The angle θ x and the angle θ y are respectively θ x = −25 ° to + 25 °, θ y = −30 ° to + 30 ° The vertical width crystal resonator is a lateral effect type crystal resonator whose resonance frequency of the main vibration does not depend on the piezoelectric constant. The crystal oscillator is at least a CMOS inverter as an amplifier, a feedback resistor as a resistor, and a gate side capacitor as a capacitor. The crystal oscillator according to claim 6, further comprising: a drain side capacitor; and the width-longitudinal crystal resonator. 輪郭水晶振動子は幅縦水晶振動子、又はラーメ水晶振動子、又は長さ縦水晶振動子で、前記水晶振動子の主振動の容量比rが大略60〜490の範囲内にあり、かつ、副振動のフイガーオブメリットMが32より小さいことを特徴とする請求項6から請求項8の何れかに記載の水晶発振器。Contour crystal oscillators width longitudinal quartz crystal resonator, or a Lame crystal oscillator, or a length of the longitudinal crystal oscillator, the capacitance ratio r n of the main vibration of the crystal oscillator is in the range of approximately 60 to 490, and 9. The crystal oscillator according to claim 6, wherein a sub-vibration finger of merit M f is smaller than 32.
JP2003402262A 2002-11-11 2003-10-27 Crystal unit, manufacturing method thereof and crystal oscillator Pending JP2005094726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402262A JP2005094726A (en) 2002-11-11 2003-10-27 Crystal unit, manufacturing method thereof and crystal oscillator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002363088 2002-11-11
JP2003323729 2003-08-12
JP2003402262A JP2005094726A (en) 2002-11-11 2003-10-27 Crystal unit, manufacturing method thereof and crystal oscillator

Publications (1)

Publication Number Publication Date
JP2005094726A true JP2005094726A (en) 2005-04-07

Family

ID=34468233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402262A Pending JP2005094726A (en) 2002-11-11 2003-10-27 Crystal unit, manufacturing method thereof and crystal oscillator

Country Status (1)

Country Link
JP (1) JP2005094726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311229A (en) * 2005-04-28 2006-11-09 Kyocera Kinseki Corp Lame mode crystal vibrator
CN113285686A (en) * 2020-02-19 2021-08-20 瑞昱半导体股份有限公司 Low-noise low-radiation crystal oscillator and method thereof
CN114244313A (en) * 2021-12-02 2022-03-25 泰晶科技股份有限公司 High fundamental frequency quartz crystal resonator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311229A (en) * 2005-04-28 2006-11-09 Kyocera Kinseki Corp Lame mode crystal vibrator
JP4712430B2 (en) * 2005-04-28 2011-06-29 京セラキンセキ株式会社 Lame mode quartz crystal
CN113285686A (en) * 2020-02-19 2021-08-20 瑞昱半导体股份有限公司 Low-noise low-radiation crystal oscillator and method thereof
CN113285686B (en) * 2020-02-19 2024-02-13 瑞昱半导体股份有限公司 Low noise low radiation crystal oscillator and method thereof
CN114244313A (en) * 2021-12-02 2022-03-25 泰晶科技股份有限公司 High fundamental frequency quartz crystal resonator

Similar Documents

Publication Publication Date Title
JP5531319B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP3743913B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, and manufacturing method thereof
JP2003023338A (en) Vertical-width piezoelectric crystal vibrator
JP2005094726A (en) Crystal unit, manufacturing method thereof and crystal oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP2005094727A (en) Crystal resonator, crystal unit, crystal oscillator and manufacturing method of these
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP2004215205A (en) Crystal unit and crystal oscillator
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JP4697190B6 (en) Manufacturing methods for crystal units and crystal units
JP4697190B2 (en) Manufacturing methods for crystal units and crystal units
JP2004215204A (en) Crystal oscillator, and method of manufacturing crystal oscillator
JP4697196B2 (en) Crystal unit and crystal oscillator manufacturing method
JP4697196B6 (en) Crystal unit and crystal oscillator manufacturing method
JP2005094732A (en) Crystal resonator, crystal unit and crystal oscillator
JP2005094734A (en) Resonator, resonator unit, oscillator, and electronic apparatus
JP4074935B2 (en) Quartz crystal oscillator and crystal oscillator manufacturing method
JP2003273647A (en) Crystal oscillator and method of manufacturing the same
JP2003115747A (en) Lame mode crystal oscillator
JP2003273695A (en) Crystal unit and crystal oscillator
JP2004023780A (en) Breadthwise longitudinal crystal vibrator and crystal unit
JP2003273702A (en) Quartz unit, its manufacturing method, and quartz oscillator
JP2003229721A (en) Quartz-crystal oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522