JPH0338770B2 - - Google Patents

Info

Publication number
JPH0338770B2
JPH0338770B2 JP57001435A JP143582A JPH0338770B2 JP H0338770 B2 JPH0338770 B2 JP H0338770B2 JP 57001435 A JP57001435 A JP 57001435A JP 143582 A JP143582 A JP 143582A JP H0338770 B2 JPH0338770 B2 JP H0338770B2
Authority
JP
Japan
Prior art keywords
electrode
vibrator
crystal resonator
present
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57001435A
Other languages
Japanese (ja)
Other versions
JPS58119215A (en
Inventor
Hiromi Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP143582A priority Critical patent/JPS58119215A/en
Publication of JPS58119215A publication Critical patent/JPS58119215A/en
Publication of JPH0338770B2 publication Critical patent/JPH0338770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は厚み屈曲振動モードで振動する圧電振
動子、特に水晶振動子の電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure of a piezoelectric vibrator, particularly a crystal vibrator, which vibrates in a thickness bending vibration mode.

水晶振動子の表面には、振動子を電気的に励振
するための金属薄膜電極が固着されている。一般
に電極構造の設計は、水晶振動子のクリスタルイ
ンピーダンス(CI値)を小さくするように行わ
れている。
A metal thin film electrode for electrically exciting the vibrator is fixed to the surface of the crystal vibrator. Generally, the electrode structure is designed to reduce the crystal impedance (CI value) of the crystal resonator.

Z板水晶振動子を厚み屈曲振動モードで励振す
る場合、従来の電極構造は、有効な電界成分を多
くすることが困難なため、振動子のCI値が大き
くなる欠点を有していた。
When a Z-plate crystal resonator is excited in the thickness bending vibration mode, the conventional electrode structure has the disadvantage that the CI value of the resonator increases because it is difficult to increase the effective electric field component.

本発明の目的は、上記欠点のない電極構造を提
案することにある。この目的を達成するために、
本発明は厚み屈曲振動モードで励振される圧電振
動子において、電気極性を有する金属薄膜電極と
電気的にはどちらの極性にも接続されていない金
属薄膜電極とを有することを特徴とするものであ
る。
The object of the present invention is to propose an electrode structure that does not have the above-mentioned drawbacks. to this end,
The present invention is a piezoelectric vibrator excited in a thickness bending vibration mode, which is characterized by having a metal thin film electrode having electrical polarity and a metal thin film electrode not electrically connected to either polarity. be.

以下本発明の実施例を従来例と比較しながら詳
細に説明する。
Embodiments of the present invention will be described in detail below while comparing them with conventional examples.

第1図は従来及び本発明に係る矩形Z板水晶振
動子の斜視図である。X軸、Y軸及びZ軸は、そ
れぞれ水晶の電気軸、機械軸及び光軸を示す。
FIG. 1 is a perspective view of a rectangular Z-plate crystal resonator according to the prior art and the present invention. The X, Y, and Z axes indicate the electrical, mechanical, and optical axes of the crystal, respectively.

第2図は矩形Z板水晶振動子が、厚み屈曲1次
振動モードで振動する場合の振動モードの説明図
で、第1図のX方向から見た場合を示す。振動子
1は振動変位が零となる時刻から(1/4)周期後
の時刻には点線で示す位置2にくる。第3図は厚
み屈曲振動モードにおけるy方向のσyの板厚方
向(Z方向)に沿つた分布を示すX軸に垂直な断
面図である。応力σyは矢印3で示すように、Z
方向に沿つてほぼ直線的に分布しており、応力
σyの符号は、板厚の上半分と下半分で逆転して
いる。
FIG. 2 is an explanatory diagram of the vibration mode when the rectangular Z-plate crystal resonator vibrates in the thickness bending primary vibration mode, and is shown when viewed from the X direction of FIG. 1. The vibrator 1 comes to position 2 shown by the dotted line at a time (1/4) period after the time when the vibration displacement becomes zero. FIG. 3 is a cross-sectional view perpendicular to the X-axis showing the distribution of σy in the y-direction along the plate thickness direction (Z-direction) in the thickness bending vibration mode. As shown by arrow 3, the stress σy is Z
The stress σy is distributed almost linearly along the direction, and the sign of the stress σy is reversed between the upper and lower half of the plate thickness.

水晶の圧電基本式によれば、応力σyとx方向
の電界成分Exとの間には次式のような関係があ
る。
According to the fundamental piezoelectric equation of crystal, there is a relationship between stress σy and electric field component Ex in the x direction as shown in the following equation.

σy=−e11Ex ……(1) ここでe11:圧電定数 第3図及び(1)式から、厚み屈曲振動モードの励
振には、振動子1の上半分及び下半分にそれぞれ
向きの異る電界成分Exが必要であり、電界成分
Exは、出来るだけ振動子1の表面近くに分布さ
せる必要がある。
σy=-e11Ex...(1) where e11: Piezoelectric constant From Figure 3 and equation (1), it is clear that for excitation of the thickness bending vibration mode, electric fields are applied to the upper and lower halves of the vibrator 1 in different directions. The component Ex is required, and the electric field component
Ex needs to be distributed as close to the surface of the vibrator 1 as possible.

第4図A,B,Cは、Z板水晶振動子における
従来の電極構造例を示すY軸に垂直な断面図であ
る。簡単のため以下では、電気極性の異る金属薄
膜電極を第1電極、第2電極と称して区別する。
又電気端子40がプラスで電気端子41はマイナ
ナスとする。第4図Aでは振動子1の上面に、第
1電極4、第2電極5が固着されていて、振動子
1の上半分を通る電気力線6の電界成分Exは励
振力に寄与するが、下半分を通る電気力線7の電
界成分Exは上半分の電界成分と符号が同じにな
るため抵抗力として働く。従つてこの電極構造で
はCI値はかなり大きくなる。第4図Bでは、第
1電極8,9、第2電極10,11が振動子1の
上下面に固着されていて、振動子1の上半分及び
下半分には、有効な電気力線12,13がわずか
に発生する。しかし無効な電気力線14が多く、
振動子1のCI値は小さくならない。第4図Cで
は、第1電極15,16、第2電極17,18
が、振動子1の両側面に固着されていて、板厚の
上半分及び下半分には、それぞれ必要な成分Ex
が側面の近くで発生する。この電極構造は、前記
2例の電極構造よりもCI値は小さくなるが、そ
の程度は十分でない。
4A, B, and C are cross-sectional views perpendicular to the Y-axis showing examples of conventional electrode structures in a Z-plate crystal resonator. For the sake of simplicity, metal thin film electrodes with different electrical polarities will be referred to as a first electrode and a second electrode to distinguish them below.
Further, it is assumed that the electric terminal 40 is positive and the electric terminal 41 is negative. In FIG. 4A, a first electrode 4 and a second electrode 5 are fixed to the top surface of the vibrator 1, and the electric field component Ex of the electric lines of force 6 passing through the top half of the vibrator 1 contributes to the excitation force. , the electric field component Ex of the electric line of force 7 passing through the lower half has the same sign as the electric field component in the upper half, so it acts as a resistance force. Therefore, with this electrode structure, the CI value becomes quite large. In FIG. 4B, the first electrodes 8, 9 and the second electrodes 10, 11 are fixed to the upper and lower surfaces of the vibrator 1, and the effective lines of electric force 12 are in the upper and lower halves of the vibrator 1. , 13 occur slightly. However, there are many invalid electric lines of force 14,
The CI value of vibrator 1 does not become small. In FIG. 4C, first electrodes 15, 16, second electrodes 17, 18
are fixed to both sides of the vibrator 1, and the necessary components Ex
occurs near the sides. Although this electrode structure has a smaller CI value than the two electrode structures described above, the CI value is not sufficient.

第5図A,B,Cは、Z板水晶振動子における
本発明の実施例を示す電極構造のY軸に垂直な断
面の説明図である。第5図A,B,Cは、いずれ
も電気的には、第1電極、第2電極のどちらにも
接続されていない他の電極19(以下簡単なため
第3電極と呼ぶ)がもうけられている。第3電極
19をもうけることによつて、第1電極と第2電
極の間の電気力線の分布は変る。即ち第1電極か
ら出た電気力線50は、一度第3電極19の一端
に入り、再び第3電極19の他端から出て第2電
極に入るようになる。その結果、電気力線50
は、振動子1の表面近くに多く分布するようにな
ると共に、有効な電界成分Exが多くなり、無効
な電界成分Ezは少なくなる。従つて振動子1の
CI値は、第3電極があるときの方がないときよ
りも小さな値になる。
5A, B, and C are explanatory diagrams of a cross section perpendicular to the Y axis of an electrode structure showing an embodiment of the present invention in a Z-plate crystal resonator. In each of FIGS. 5A, B, and C, another electrode 19 (hereinafter referred to as the third electrode for simplicity) that is not electrically connected to either the first electrode or the second electrode is provided. ing. By providing the third electrode 19, the distribution of electric lines of force between the first electrode and the second electrode changes. That is, the electric line of force 50 coming out of the first electrode once enters one end of the third electrode 19, comes out again from the other end of the third electrode 19, and enters the second electrode. As a result, electric field lines 50
becomes more distributed near the surface of the vibrator 1, the effective electric field component Ex increases, and the invalid electric field component Ez decreases. Therefore, the oscillator 1
The CI value is smaller when the third electrode is present than when it is absent.

次に本発明の電極構造をE型Z板水晶振動子に
適用した場合について説明する。第6図は本発明
に係るE型Z板水晶振動子の斜視図である。E型
Z板水晶振動子が、厚み屈曲振動モードで振動す
る場合、振動子20の両側の振動枝21,23は
同相で+Z方向に変位するとしたとき、真中の振
動枝22は、−Z方向に変位する。矢印24,2
5,26はこれらの関係を示す。第7図A,B,
Cは、E型Z板水晶振動子における本発明の実施
例電極構造の斜視図である。第7図Aは第1電極
71a、第2電極72a及び第3電極73aが振
動子20の上面のみにもうけられている場合を示
す。第7図Bは第1電極71b、第2電極72b
及び第3電極73bが、振動子20の上面と下面
にもうけられている場合を示す。第7図Cは第1
電極71c、第2電極72cが振動子20の側面
にもうけられており、第3電極は振動子20の上
面と下面にもうけられている場合を示す。第8図
A,B,Cは第7図A,B,CのAA断面図で、
各振動枝にもうけられている第1電極及び第2電
極の接続状態を示す。電気端子80がプラスで、
電気端子81がマイナスになつているとき、各振
動枝の中には矢印82で示すような電気力線が発
生し、振動子20を厚み屈曲1次振動モードで振
動させることができる。このとき振動子20の
CI値は、第3電極のおかげで比較的小さな値に
なる。
Next, a case will be described in which the electrode structure of the present invention is applied to an E-type Z-plate crystal resonator. FIG. 6 is a perspective view of an E-type Z-plate crystal resonator according to the present invention. When the E-type Z-plate crystal resonator vibrates in the thickness bending vibration mode, when the vibrating branches 21 and 23 on both sides of the vibrator 20 are in phase and displaced in the +Z direction, the middle vibrating branch 22 is displaced in the -Z direction. Displaced to. arrow 24,2
5 and 26 indicate these relationships. Figure 7 A, B,
C is a perspective view of an electrode structure according to an embodiment of the present invention in an E-type Z-plate crystal resonator. FIG. 7A shows a case where a first electrode 71a, a second electrode 72a, and a third electrode 73a are provided only on the top surface of the vibrator 20. FIG. 7B shows the first electrode 71b and the second electrode 72b.
A case is shown in which third electrodes 73b are provided on the upper and lower surfaces of the vibrator 20. Figure 7 C is the first
The case is shown in which the electrode 71c and the second electrode 72c are provided on the side surface of the vibrator 20, and the third electrode is provided on the top and bottom surfaces of the vibrator 20. Figures 8A, B, and C are AA cross-sectional views of Figure 7A, B, and C.
The connection state of the first electrode and the second electrode provided on each vibrating branch is shown. Electrical terminal 80 is positive,
When the electric terminal 81 is negative, electric lines of force as shown by arrows 82 are generated in each vibrating branch, and the vibrator 20 can be vibrated in the thickness bending primary vibration mode. At this time, the vibrator 20
The CI value is relatively small due to the third electrode.

以上の説明では、水晶振動子はZ板に限定して
きたが、一般には回転Z板、即ちX軸のまわりで
Z板をある角度だけ回転したものでも、本発明の
電極構造は有効である。さらに一般には、本発明
はどのようなカツト方位であろうと、板厚の上半
分と下半分で、互に逆平行となる電界成分によつ
て励振される厚み屈曲水晶振動子に有効である。
又、本発明は振動子の材質が水晶に限定されるこ
となく、他の圧電材例えば、セラミツクス、タン
タル酸リチウムなどにおいても有効である。
In the above description, the crystal resonator has been limited to a Z plate, but the electrode structure of the present invention is generally effective even with a rotating Z plate, that is, a Z plate rotated by a certain angle around the X axis. More generally, the present invention is effective for thickness-bending crystal resonators that are excited by electric field components that are antiparallel to each other in the upper and lower halves of the plate thickness, regardless of the cut orientation.
Further, the present invention is not limited to crystal as the material of the vibrator, but is also effective in other piezoelectric materials such as ceramics, lithium tantalate, etc.

本発明によれば、比較的簡単な手段によつて、
厚み屈曲振動モードで動作する振動子のCI値を
小さくできるため、電子時計のような低い電源電
圧動作が要求される分野では、本発明の効果は特
に大きい。
According to the invention, by relatively simple means,
Since the CI value of a vibrator operating in the thickness bending vibration mode can be reduced, the effect of the present invention is particularly great in fields such as electronic watches that require low power supply voltage operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来及び本発明に係る矩形Z板水晶振
動子の斜視図。第2図は矩形Z板水晶振動子にお
ける厚み屈曲1次振動モードのX軸に垂直な断面
図、第3図は厚み屈曲振動モードにおけるy方向
の垂直応力σyの板厚方向に沿つた分布を示すx
軸に垂直な断面図、第4図A,B,Cは矩形Z板
水晶振動子における従来例の電極構造のY軸に垂
直な断面の説明図、第5図A,B,Cは矩形Z板
水晶振動子における本発明実施例電極構造のY軸
に垂直な断面の説明図、第6図は従来及び本発明
に係るE型Z板水晶振動子の斜視図、第7図A,
B,CはE型Z板水晶振動子における本発明の実
施例を示す電極構造の斜視図、第8図A,B,C
は第7図A,B,CのAA断面からみた第1電
極、第2電極の接続を示す説明図である。 1……矩形Z板水晶振動子、4,8,9,1
5,16,71a,71b,71c……第1電
極、5,10,11,17,18,72a,72
b,72c……第2電極、6,7,12,13,
14,50,82……電気力線、19,73a,
73b,73c……第3電極、20……E型Z板
水晶振動子。
FIG. 1 is a perspective view of a rectangular Z-plate crystal resonator according to the prior art and the present invention. Figure 2 is a cross-sectional view perpendicular to the X-axis of the primary thickness-bending vibration mode in a rectangular Z-plate crystal resonator, and Figure 3 shows the distribution of normal stress σy in the y direction along the plate thickness direction in the thickness-bending vibration mode. show x
4A, B and C are explanatory diagrams of a cross section perpendicular to the Y axis of a conventional electrode structure in a rectangular Z-plate crystal resonator, and FIGS. 5A, B and C are rectangular Z An explanatory diagram of a cross section perpendicular to the Y-axis of the electrode structure of the embodiment of the present invention in a plate crystal resonator, FIG. 6 is a perspective view of an E type Z plate crystal resonator according to the conventional and the present invention, and FIG.
B and C are perspective views of an electrode structure showing an embodiment of the present invention in an E-type Z-plate crystal resonator, and FIGS. 8A, B, and C are
7 is an explanatory diagram showing the connection of the first electrode and the second electrode as seen from the AA cross section of FIGS. 7A, B, and C. FIG. 1... Rectangular Z-plate crystal oscillator, 4, 8, 9, 1
5, 16, 71a, 71b, 71c...first electrode, 5, 10, 11, 17, 18, 72a, 72
b, 72c...second electrode, 6, 7, 12, 13,
14, 50, 82... Lines of electric force, 19, 73a,
73b, 73c...Third electrode, 20...E type Z plate crystal resonator.

Claims (1)

【特許請求の範囲】 1 振動変位が厚さ方向で3本の振動枝をもつ厚
み屈曲振動モードで励振される圧電振動子と、該
圧電振動子に設ける電気極性を有し且つ電気極性
の異なる第1電極および第2電極と、前記圧電振
動子に設ける電気的に中性な第3電極とを備え、 該第1電極と第2電極とは前記振動枝の側面に
設け、 該第3電極は前記振動枝の上面と下面とに設け
且つそれぞれ独立していることを特徴とする圧電
振動子の電極構造。
[Claims] 1. A piezoelectric vibrator whose vibration displacement is excited in a thickness bending vibration mode having three vibration branches in the thickness direction, and a piezoelectric vibrator having electric polarities provided therein and having different electric polarities. The piezoelectric vibrator includes a first electrode, a second electrode, and an electrically neutral third electrode provided on the piezoelectric vibrator, the first electrode and the second electrode being provided on a side surface of the vibrating branch, and the third electrode An electrode structure of a piezoelectric vibrator, characterized in that electrodes are provided on the upper surface and the lower surface of the vibrating branch and are independent from each other.
JP143582A 1982-01-08 1982-01-08 Electrode construction of piezoelectric oscillator Granted JPS58119215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP143582A JPS58119215A (en) 1982-01-08 1982-01-08 Electrode construction of piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP143582A JPS58119215A (en) 1982-01-08 1982-01-08 Electrode construction of piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS58119215A JPS58119215A (en) 1983-07-15
JPH0338770B2 true JPH0338770B2 (en) 1991-06-11

Family

ID=11501361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP143582A Granted JPS58119215A (en) 1982-01-08 1982-01-08 Electrode construction of piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS58119215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031975A1 (en) * 2000-10-10 2002-04-18 Citizen Watch Co., Ltd. Torsional vibrator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056889A (en) * 1973-09-14 1975-05-17
JPS5253687A (en) * 1975-10-28 1977-04-30 Citizen Watch Co Ltd Piezoelectric flexural vibrator
JPS56158520A (en) * 1980-05-12 1981-12-07 Seiko Instr & Electronics Ltd Oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056889A (en) * 1973-09-14 1975-05-17
JPS5253687A (en) * 1975-10-28 1977-04-30 Citizen Watch Co Ltd Piezoelectric flexural vibrator
JPS56158520A (en) * 1980-05-12 1981-12-07 Seiko Instr & Electronics Ltd Oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031975A1 (en) * 2000-10-10 2002-04-18 Citizen Watch Co., Ltd. Torsional vibrator

Also Published As

Publication number Publication date
JPS58119215A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
WO2019167920A1 (en) Vibration substrate, vibration element, and vibrator
JP2002158559A (en) Lame-mode crystal vibrator
JPH0338770B2 (en)
JPS6365243B2 (en)
JPS5912811Y2 (en) Thickness sliding piezoelectric vibrator
JP4571264B2 (en) Piezoelectric vibrator
JPS5838015A (en) Piezoelectric oscillator
JPS5851689B2 (en) Tuning fork crystal oscillator
JPH04216208A (en) Piezoelectric resonator
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3240416B2 (en) Piezoelectric vibration gyro
JPS6364925B2 (en)
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JPH07321593A (en) Electrode structure for thickness-shear crystal vibrator
JPH0219700A (en) Piezoelectric fan
JPS6365167B2 (en)
JP3172944B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JPH0349467Y2 (en)
JPH0344451B2 (en)
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JPH08154032A (en) Piezoelectric resonator
GB1573815A (en) Vibrator unit
JPH05264281A (en) Piezoelectric vibrating gyro
JPH04220009A (en) High-frequency piezoelectric resonator
JPH0141223Y2 (en)