JPH07321593A - Electrode structure for thickness-shear crystal vibrator - Google Patents

Electrode structure for thickness-shear crystal vibrator

Info

Publication number
JPH07321593A
JPH07321593A JP6106897A JP10689794A JPH07321593A JP H07321593 A JPH07321593 A JP H07321593A JP 6106897 A JP6106897 A JP 6106897A JP 10689794 A JP10689794 A JP 10689794A JP H07321593 A JPH07321593 A JP H07321593A
Authority
JP
Japan
Prior art keywords
electrode
thickness
plane
electric field
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6106897A
Other languages
Japanese (ja)
Inventor
Hiromi Ueda
浩美 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6106897A priority Critical patent/JPH07321593A/en
Publication of JPH07321593A publication Critical patent/JPH07321593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To provide an electrode structure for enabling the excitation of even- order overtone which was not used at all before. CONSTITUTION:In a crystal vibrator operated by the even-order overtone of a thickness-shear vibration mode for which the shape of a crystal piece is rectangular, for the crystal piece 10, the electrode 11a of a+Y' plane and the electrode 11b of the -Y' plane are mutually electrically connected and turned to one -Y' plane electrode terminal 13 and the electrode 12b of the +Z' plane and the electrode 12a of the -Z' plane are mutually electrically connected and turned to the other electrode terminal 15. Thus, since the even-order overtone of the thickness-shear crystal vibrator can be excited, the degree of the freedom of the design of the crystal piece 10 is widened more compared to the case of only fundamental waves and odd-order overtone, frequencies for which the characteristics of the vibrator are hardly attained before are reduced further and product frequencies are enlarged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は厚みすべり水晶振動子の
偶数次オーバートン、特に2次オーバートンを励振する
ための電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure for exciting even-order overtons, especially quadratic overtons, of a thickness sliding crystal oscillator.

【0002】[0002]

【従来の技術】従来、厚みすべり水晶振動子で高い周波
数を必要とする場合は、基本波のほかに奇数次のオーバ
ートンを利用し、偶数次オーバートンは全く利用してい
なかった。これは厚みすべり水晶振動子の従来の電極構
造では基本波と奇数次のオーバートンだけが励振可能で
あり、偶数次オーバートンが励振不可能だったことによ
る。
2. Description of the Related Art Conventionally, when a high frequency is required for a thickness-sliding crystal oscillator, an odd-order overton is used in addition to the fundamental wave, and an even-order overton is not used at all. This is because only the fundamental wave and odd-order overtons can be excited and the even-order overtons cannot be excited in the conventional electrode structure of the thickness-sliding crystal unit.

【0003】以下これらのことを矩形の厚みすべり水晶
振動子で説明する。図3は従来の電極構造を有する矩形
の厚みすべり水晶振動子の斜視図であり、座標系X、
Y’、Z’はX軸が水晶片30の長手方向に、Y’軸が
厚み方向に、Z’軸が幅方向になるようにとられてい
る。図4は座標系X、Y’、Z’が水晶結晶固有の座標
系X、Y、Zに対して、X軸の回りに角度θ(以下カッ
ト角θと呼ぶ)回転していること説明する図である。以
下間単のため図3に示す水晶片を回転Y板と呼ぶことに
する。図3に示すように従来の電極構造は二面電極から
なる。即ち一方の電極31aは水晶片30の+Y’面に
設けられ、他方の電極31bは−Y’面に設けられてい
る。振動子の励振は二つの電極31aと31bの間に、
振動子の共振周波数に等しい周波数の電圧を印加しY’
方向の電界を励振電界として利用していた。
Hereinafter, these will be described with respect to a rectangular thickness-sliding quartz crystal resonator. FIG. 3 is a perspective view of a rectangular thickness-sliding quartz crystal resonator having a conventional electrode structure.
Y ′ and Z ′ are arranged such that the X axis is in the longitudinal direction of the crystal piece 30, the Y ′ axis is in the thickness direction, and the Z ′ axis is in the width direction. FIG. 4 illustrates that the coordinate systems X, Y ′ and Z ′ are rotated by an angle θ (hereinafter referred to as a cut angle θ) around the X axis with respect to the coordinate systems X, Y and Z specific to the crystal. It is a figure. The crystal piece shown in FIG. 3 will be referred to as a rotating Y plate for the sake of simplicity. As shown in FIG. 3, the conventional electrode structure is composed of two-sided electrodes. That is, one electrode 31a is provided on the + Y ′ surface of the crystal piece 30, and the other electrode 31b is provided on the −Y ′ surface. Excitation of the oscillator is between the two electrodes 31a and 31b,
Apply a voltage with a frequency equal to the resonance frequency of the oscillator
The electric field in the direction was used as the excitation electric field.

【0004】厚みすべり振動の基本波、2次オーバート
ン及び3次オーバートンのX方向振動変位に基ずくX
Y’面内の弾性すべり歪み成分の分布をそれぞれ図5
(A)(B)(C)に示す。水晶片50の厚み方向
(Y’方向)には、弾性すべり歪み成分が矢印51で示
すように分布している。圧電基本式によれば、上記弾性
すべり歪み成分と励振電界成分の関係は次式であらわさ
れる。
X based on the vibrational displacement of the fundamental wave of the thickness shear vibration, the second overtone and the third overton in the X direction
Fig. 5 shows the distribution of elastic slip strain components in the Y'plane.
It shows in (A) (B) (C). Elastic slip component is distributed as indicated by an arrow 51 in the thickness direction (Y ′ direction) of the crystal piece 50. According to the piezoelectric basic equation, the relationship between the elastic slip strain component and the excitation electric field component is expressed by the following equation.

【0005】 γxy’=d’26y ’+d’36z ’ (1) ここで γxy’:XY’面内の弾性すべり歪み成分 Ey ’:Y’方向の電界成分 Ez ’:Z’方向の電界成分 d’26、d’36:座標系X、Y’、Z’に関する水晶の
圧電定数
Γ xy ′ = d ′ 26 E y ′ + d ′ 36 E z ′ (1) where γ xy ′: XY ′ elastic slip strain component in the plane E y ′: Y ′ direction electric field component E z ′: Electric field components in Z'direction d' 26 , d' 36 : Piezoelectric constants of quartz crystal with respect to coordinate systems X, Y ', Z'

【0006】(1)式からも明らかなように、図5
(A)に示す弾性すべり歪み成分の分布は励振可能であ
るが、図5(B)に示す弾性すべり歪み成分の分布は励
振不可能である。これは、回転Y板の厚み方向中央面で
弾性すべり歪み成分の符号が反転しているために、電界
成分Ey ’の符号も厚みの中央面で反転しない限り電界
による駆動力は打ち消しあってしまうためである。即ち
厚みすべり振動の2次オーバートンは、従来の電極構造
では励振出来ない。図5(C)の場合にも、電界による
駆動力の打ち消しはあるが、水晶板の厚みの1/3の部
分には有効な駆動力が生じているので、駆動力は基本波
の場合に較べると小さくなるが、3次オーバートンの励
振は可能である。一般に従来の電極構造では、奇数次の
オーバートンが励振可能であり、偶数次のオーバートン
は励振不可能である。
As is clear from the equation (1), FIG.
The distribution of the elastic slip strain component shown in (A) can be excited, but the distribution of the elastic slip strain component shown in FIG. 5 (B) cannot be excited. This is because the sign of the elastic slip strain component is reversed at the center plane in the thickness direction of the rotating Y plate, so that the driving force due to the electric field is canceled out unless the sign of the electric field component E y 'is reversed at the center plane of the thickness. This is because it ends up. That is, the second overton of thickness shear vibration cannot be excited by the conventional electrode structure. In the case of FIG. 5C as well, although the driving force is canceled by the electric field, since the effective driving force is generated in a portion of 1/3 of the thickness of the crystal plate, the driving force is the case of the fundamental wave. Although it is smaller than the other, excitation of the third overton is possible. Generally, in the conventional electrode structure, odd-order overtons can be excited, and even-order overtons cannot be excited.

【0007】[0007]

【発明が解決しようとする課題】このため基本波と奇数
次のオーバートンだけで高周波帯のいろいろな周波数の
振動子を製作しようとすると、水晶片の最大寸法はパッ
ケージによって制限されるため、周波数によっては振動
子の特性をだすことが難しくなり、製品周波数の拡大に
支障を来していた。従来の矩形厚みすべり水晶振動子の
課題は、水晶片の設計自由度をひろげ、製作が難しくな
る周波数を出来るだけ減らし、製品周波数の拡大を計る
ことである。このためには、従来利用してこなかった偶
数次、特に2次のオーバートンを利用していく方法があ
り、偶数次のオーバートンを励振出来るような電極構造
を実現するのが課題となる。
Therefore, if an oscillator having various frequencies in the high frequency band is manufactured only by the fundamental wave and odd-order overtons, the maximum size of the crystal piece is limited by the package. In some cases, it became difficult to obtain the characteristics of the oscillator, which hindered the expansion of product frequencies. The problems of the conventional rectangular-thickness-slip crystal unit are to expand the design frequency of the crystal piece, reduce the frequency that makes it difficult to manufacture as much as possible, and expand the product frequency. For this purpose, there is a method of utilizing even-order overtones, particularly secondary-order overtons, which have not been used conventionally, and it is a problem to realize an electrode structure capable of exciting even-order overtons.

【0008】本発明の目的は、上記課題を解決しようと
するもので、従来全く利用してこなかった偶数次オーバ
ートンの励振を可能にする電極構造を提案することにあ
る。
An object of the present invention is to solve the above problems and to propose an electrode structure capable of exciting even-order overtons, which has never been used.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明の要旨は、水晶片形状が矩形で、厚みすべり振
動モードの偶数次オーバートンで動作する水晶振動子に
おいて、水晶片の±Y’面及び±Z’面の4面に設けら
れた金属膜から成る電極は、+Y’面の電極と−Y’面
の電極が互いに電気的に接続されて一方の電極端子にな
り、+Z’面の電極と−Z’面の電極が互いに電気的に
接続されて他方の電極端子になっていることを特徴とす
る。
Means for Solving the Problems The gist of the present invention for attaining the above object is to provide a crystal unit having a rectangular crystal piece shape and operating in an even-order overton of a thickness shear vibration mode. The electrodes made of metal films provided on the four surfaces of the Y ′ surface and the ± Z ′ surfaces become one electrode terminal by electrically connecting the + Y ′ surface electrode and the −Y ′ surface electrode to each other. The electrode on the'plane and the electrode on the -Z 'plane are electrically connected to each other to form the other electrode terminal.

【0010】[0010]

【実施例】図1(A)(B)は本発明の一実施例を示す
斜視図である。図1(A)は回転Y板からなる水晶片1
0の+Y’面を上面にして示した図であり、図1(B)
は水晶片10の−Y’面を上面にして示した図である。
±Y’面及び±Z’面には、それぞれ金属膜から成る電
極11a、11b及び12a、12bが蒸着等の手段で
設けられ、11aと11bは一方の電極端子13に接続
されており、12aと12bは連結部14で電気的に接
続されており、それらは他方の電極端子15に電気的に
接続されている。水晶片10は通常行われているように
電極端子13と15がパッケージ(図示しない)の水晶
片支持部に導電接着剤等で片持支持される。
1 (A) and 1 (B) are perspective views showing an embodiment of the present invention. FIG. 1A shows a crystal piece 1 made of a rotating Y plate.
FIG. 1B is a view showing the + Y ′ surface of 0 as the upper surface, and FIG.
FIG. 3 is a view showing the −Y ′ surface of the crystal blank 10 as an upper surface.
Electrodes 11a, 11b and 12a, 12b each made of a metal film are provided on the ± Y ′ plane and the ± Z ′ plane by means such as vapor deposition, and 11a and 11b are connected to one electrode terminal 13 and 12a And 12b are electrically connected to each other at the connecting portion 14, and they are electrically connected to the other electrode terminal 15. In the crystal piece 10, the electrode terminals 13 and 15 are supported by a crystal piece supporting portion of a package (not shown) in a cantilever manner by a conductive adhesive or the like, as is usually done.

【0011】以下本発明の電極構造で厚みすべり振動の
2次オーバートンの励振が可能であることを説明する。
図6は本発明の電極構造を回転Y板60に適用したとき
の振動子のY’Z’断面内で発生する励振電界の分布を
示す図である。電極端子61が電気的にプラスで、電極
端子62がマイナスになったときの励振電界の分布は、
おおよそ矢印63、64、65、66のようになる。図
6で発生する電界分布63、64、65、66をY’方
向電界成分Ey ’とZ’方向の電界成分Ez ’に分けて
示すと図7(A)(B)のようになる。矢印71は電界
成分Ey ’を示し、矢印72は電界成分Ez ’を示す。
図7(A)(B)で点線はそれぞれ回転Y板70の厚み
方向および幅方向の中央面を表す。また回転Y板70の
4面にある電極は記述を省略した。
It will be explained below that the electrode structure of the present invention can excite the second overton of thickness shear vibration.
FIG. 6 is a diagram showing the distribution of the excitation electric field generated in the Y′Z ′ cross section of the vibrator when the electrode structure of the present invention is applied to the rotating Y plate 60. The distribution of the excitation electric field when the electrode terminal 61 is electrically positive and the electrode terminal 62 is negative is
It becomes roughly like arrows 63, 64, 65, 66. The electric field distributions 63, 64, 65, 66 generated in FIG. 6 are divided into a Y′-direction electric field component E y ′ and a Z′-direction electric field component E z ′, as shown in FIGS. 7A and 7B. . The arrow 71 indicates the electric field component E y ′, and the arrow 72 indicates the electric field component E z ′.
Dotted lines in FIGS. 7A and 7B represent the center planes of the rotating Y plate 70 in the thickness direction and the width direction, respectively. The description of the electrodes on the four sides of the rotating Y plate 70 is omitted.

【0012】圧電基本式(1)によれば、厚みすべり振
動に必要な弾性すべり歪み成分γxy’の励振は一般に電
界成分Ey ’と電界成分Ez ’の二つの電界成分が利用
できる。ここで(1)式に現れる圧電定数d’26、d’
36がカット角θによってどのように変わるかは、水晶結
晶固有の圧電定数を用いて計算することが出来る。その
計算結果を図8に示す。圧電定数の単位はc.g.s.
単位で示す。よく使用されるATカット(θ=35.2
5度)やYカット(θ=0度)では圧電定数の絶対値は
d’26の方がd’36より大きい。即ちこれらのカット角
では励振電界の方向はY’方向がZ’方向より有利であ
ることを示している。
According to the piezoelectric basic equation (1), two electric field components, an electric field component E y ′ and an electric field component E z ′, can generally be used to excite the elastic slip strain component γ xy ′ necessary for thickness shear vibration. Here, the piezoelectric constants d' 26 and d'appearing in the equation (1)
How 36 changes with the cut angle θ can be calculated using the piezoelectric constant peculiar to the quartz crystal. The calculation result is shown in FIG. The unit of the piezoelectric constant is c. g. s.
Shown in units. AT cut often used (θ = 35.2
At 5 degrees) and Y-cut (θ = 0 degrees), the absolute value of the piezoelectric constant d' 26 is larger than d' 36 . That is, at these cut angles, the direction of the excitation electric field is more advantageous in the Y ′ direction than in the Z ′ direction.

【0013】さて2次オーバートンの弾性すべり歪み成
分を励振するのに必要な電界成分Ey ’、Ez ’の分布
は図5(B)と式(1)を考慮すると、理想的には図9
(A(B)のようなる。即ち図9(A)は電界成分
y ’で励振する場合の電界分布を示し、図9(B)は
電界成分Ez ’で励振する場合の電界分布を示す。本発
明の電極構造では、電界成分Ey ’は図7(A)のよう
になっており、これは図9(A)と同じであるから。2
次オーバートンの励振が可能である。しかし電界成分E
z ’は図7(B)のようになり、これは図9(B)とは
異なり、2次オーバトンの励振にたいしては有効な駆動
力にはならない。尚図8からも明らかなようにカット角
θ=0の場合、即ちYカットの場合はd’36=0とな
り、(1)式の第2項は電界成分Ez ’の如何にかかわ
らず零となるので、有効な駆動力だけで2次オーバトン
の励振が可能である。
The distribution of the electric field components E y 'and E z ' required to excite the elastic slip strain component of the second-order Overton is ideally, considering FIG. 5B and equation (1). Figure 9
(A (B). That is, FIG. 9 (A) shows the electric field distribution when excited by the electric field component E y ′, and FIG. 9 (B) shows the electric field distribution when excited by the electric field component E z ′. In the electrode structure of the present invention, the electric field component E y 'is as shown in FIG. 7 (A), which is the same as in FIG. 9 (A).
Excitation of the next overton is possible. However, the electric field component E
z 'is as shown in FIG. 7 (B), which is different from FIG. 9 (B), the not a valid driving force against the excitation of the secondary Obaton. As is apparent from FIG. 8, when the cut angle θ = 0, that is, when the Y cut is performed, d ′ 36 = 0, and the second term of the equation (1) is zero regardless of the electric field component E z ′. Therefore, it is possible to excite the secondary overton with only the effective driving force.

【0014】図2は本発明の他の実施例を示す斜視図で
ある。水晶片20の±Y’面及び±Z’面には、それぞ
れ金属膜から成る電極21a、21b及び22a、22
bが設けられ、水晶片はパッケージ(図示しない)に両
端支持を行うために、水晶片の両端にはそれぞれ電極端
子23、24がもうけられている。
FIG. 2 is a perspective view showing another embodiment of the present invention. Electrodes 21a, 21b and 22a, 22 made of metal films are formed on the ± Y ′ surface and the ± Z ′ surface of the crystal piece 20, respectively.
b, the crystal piece is provided with electrode terminals 23 and 24 at both ends of the crystal piece to support both ends of the crystal piece (not shown).

【0015】本実施例の電極構造で発生する電界分布お
よびそれらの電界により2次オーバートンの弾性すべり
歪み成分が励振可能なことは、第一実施例の場合と同じ
なので説明は省略する。本実施例では水晶片20は両端
支持になるので、水晶片20の寸法が大きくなるような
場合には、本実施の耐衝撃性は第一実施例に較べて、良
くすることが出来る。
The electric field distribution generated in the electrode structure of the present embodiment and the fact that the elastic slip strain component of the secondary overton can be excited by those electric fields are the same as in the case of the first embodiment, and the explanation thereof will be omitted. In this embodiment, the crystal piece 20 is supported at both ends. Therefore, when the size of the crystal piece 20 is large, the impact resistance of the present embodiment can be improved as compared with the first embodiment.

【0016】尚本発明の電極構造は、2次オーバートン
だけでなく、一般に偶数次のオーバートンに対して有効
であること、水晶片は回転Y板に限定されることなく、
水晶結晶固有の座標系X、Y、Zに対して任意の方位で
切り出された水晶片にも、圧電定数d’26が零でない限
り適用可能であること、水晶片形状もフラットなものに
限定されることなく、水晶片の厚み方向ないし、幅方向
にベベル加工やコンベックス加工を施したものにも適用
可能である。
The electrode structure of the present invention is generally effective not only for the second-order overtons but also for the even-ordered overtons, and the crystal piece is not limited to the rotating Y plate.
It can be applied to a crystal piece cut out in any direction with respect to the coordinate system X, Y, Z peculiar to the crystal, as long as the piezoelectric constant d' 26 is not zero, and the shape of the crystal piece is limited to a flat shape. It is also applicable to a crystal piece that is beveled or convexized in the thickness direction or the width direction.

【0017】[0017]

【発明の効果】本発明によれば、従来全く利用されてい
なかった厚みすべり振動の2次オーバートンが励振可能
になることから、水晶片の設計自由度が、基本波と奇数
次オーバートンだけの場合に較べて広がり、従来振動子
の特性をだすのが難しかった周波数がより少なく出来、
製品周波数の拡大が計れる効果がある。
According to the present invention, since the second-order overton of the thickness shear vibration, which has never been used in the past, can be excited, the degree of design freedom of the crystal piece is limited to the fundamental wave and the odd-order overton. Compared with the case of, the frequency that was difficult to obtain the characteristics of the conventional oscillator can be reduced,
This has the effect of expanding the product frequency.

【0018】又別の効果として、従来の電極構造ではオ
ーバートン発振をさせた場合に基本波発振の抑圧が一般
には困難であったが、本発明の電極構造によれば、基本
波発振の抑圧が完全に行える効果がある。
As another effect, in the conventional electrode structure, it is generally difficult to suppress the fundamental wave oscillation when overton oscillation is generated. However, according to the electrode structure of the present invention, the fundamental wave oscillation is suppressed. There is an effect that can be completely done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す電極構造の斜視図であ
る。(A)は回転Y板からなる水晶片10の+Y’面を
上面にして示した図であり、(B)は水晶片10の−
Y’面を上面にして示した図である。
FIG. 1 is a perspective view of an electrode structure showing an embodiment of the present invention. (A) is a view showing the + Y ′ surface of the crystal piece 10 made of a rotating Y plate as an upper surface, and (B) is a − of the crystal piece 10.
It is the figure which made the Y'plane the upper surface.

【図2】本発明の他の実施例を示す電極構造の斜視図で
ある。
FIG. 2 is a perspective view of an electrode structure showing another embodiment of the present invention.

【図3】従来の電極構造を有する矩形厚みすべり振動子
の斜視図である。
FIG. 3 is a perspective view of a rectangular thickness sliding oscillator having a conventional electrode structure.

【図4】回転Y板の座標系X、Y’、Z’と水晶結晶固
有の座標系X、Y、Zとの関係を説明する図である。
FIG. 4 is a diagram illustrating a relationship between coordinate systems X, Y ′, Z ′ of a rotating Y plate and coordinate systems X, Y, Z unique to a quartz crystal.

【図5】厚みすべり振動の基本波、2次オーバートン、
3次オーバートンの弾性すべり歪み成分の振動子厚み方
向の分布を説明する図である。
FIG. 5: Fundamental wave of thickness shear vibration, second overton,
It is a figure explaining distribution of the elastic slip strain component of a 3rd overton in the oscillator thickness direction.

【図6】本発明の電極構造を回転Y板に適用したときの
振動子のY’Z’断面内で発生する励振電界の分布を示
す図である。
FIG. 6 is a diagram showing a distribution of an excitation electric field generated in a Y′Z ′ cross section of a vibrator when the electrode structure of the present invention is applied to a rotating Y plate.

【図7】本発明の電極構造による励振電界分布をY’方
向の電界成分とZ’方向の電界成分に別けて示した図で
ある。
FIG. 7 is a diagram showing an excitation electric field distribution according to the electrode structure of the present invention separately for an electric field component in the Y ′ direction and an electric field component in the Z ′ direction.

【図8】座標系X,Y’,Z’に関する圧電定数
d’26、d’36がカット角θによってどのように変わる
かを示すグラフである。
FIG. 8 is a graph showing how the piezoelectric constants d ′ 26 and d ′ 36 relating to the coordinate systems X, Y ′ and Z ′ change depending on the cut angle θ.

【図9】2次オーバートンの弾性すべり歪み成分を励振
するのに必要な電界成分Ey ’、Ez ’の分布を示す図
である。
FIG. 9 is a diagram showing distributions of electric field components E y ′ and E z ′ necessary to excite a second-order Overton elastic slip component.

【符号の説明】[Explanation of symbols]

10、20 回転Y板厚みすべり振動水晶振動子 11a、11b、12a、12b、21a、21b、2
2a、22b 金属膜電極 13、15、23、24 電極端子
10, 20 rotation Y plate thickness sliding vibration crystal oscillator 11a, 11b, 12a, 12b, 21a, 21b, 2
2a, 22b Metal film electrode 13, 15, 23, 24 Electrode terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水晶片形状が矩形で、厚みすべり振動モ
ードの偶数次オーバートンで動作する水晶振動子におい
て、水晶片の±Y’面及び±Z’面の4面に設けられた
金属膜から成る電極は、+Y’面の電極と−Y’面の電
極が互いに電気的に接続されて一方の電極端子になり、
+Z’面の電極と−Z’面の電極が互いに電気的に接続
されて他方の電極端子になっていることを特徴とする厚
みすべり水晶振動子の電極構造。
1. A crystal resonator having a rectangular crystal piece shape and operating in an even-order overton of a thickness shear vibration mode, wherein a metal film provided on four surfaces of ± Y ′ plane and ± Z ′ plane of the crystal piece. In the electrode composed of, the + Y ′ surface electrode and the −Y ′ surface electrode are electrically connected to each other to form one electrode terminal,
An electrode structure of a thickness-sliding quartz crystal resonator, wherein an electrode on the + Z ′ surface and an electrode on the −Z ′ surface are electrically connected to each other to form the other electrode terminal.
JP6106897A 1994-05-20 1994-05-20 Electrode structure for thickness-shear crystal vibrator Pending JPH07321593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106897A JPH07321593A (en) 1994-05-20 1994-05-20 Electrode structure for thickness-shear crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106897A JPH07321593A (en) 1994-05-20 1994-05-20 Electrode structure for thickness-shear crystal vibrator

Publications (1)

Publication Number Publication Date
JPH07321593A true JPH07321593A (en) 1995-12-08

Family

ID=14445265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106897A Pending JPH07321593A (en) 1994-05-20 1994-05-20 Electrode structure for thickness-shear crystal vibrator

Country Status (1)

Country Link
JP (1) JPH07321593A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052821A1 (en) * 1999-03-01 2000-09-08 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibration device
JP2009130586A (en) * 2007-11-22 2009-06-11 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric device, and method of manufacturing piezoelectric vibration chip
JP2013102487A (en) * 2012-12-27 2013-05-23 Seiko Epson Corp Piezoelectric vibration piece, piezoelectric device and manufacturing method of piezoelectric vibration piece
JP2014045519A (en) * 2013-11-28 2014-03-13 Seiko Epson Corp Piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric vibration piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052821A1 (en) * 1999-03-01 2000-09-08 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibration device
US6518688B1 (en) 1999-03-01 2003-02-11 Matsushita Electric Industrial Co., Ltd. Piezoelectric vibration device
JP2009130586A (en) * 2007-11-22 2009-06-11 Epson Toyocom Corp Piezoelectric vibration chip, piezoelectric device, and method of manufacturing piezoelectric vibration chip
JP2013102487A (en) * 2012-12-27 2013-05-23 Seiko Epson Corp Piezoelectric vibration piece, piezoelectric device and manufacturing method of piezoelectric vibration piece
JP2014045519A (en) * 2013-11-28 2014-03-13 Seiko Epson Corp Piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric vibration piece

Similar Documents

Publication Publication Date Title
US6717336B2 (en) Width-extensional mode piezoelectric crystal resonator
JP5531319B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
US6545394B2 (en) Lame mode quartz crystal resonator
JP2004135357A (en) Quartz resonator, quartz unit, crystal oscillator, and manufacturing method thereof
JPH07321593A (en) Electrode structure for thickness-shear crystal vibrator
JP2008206079A (en) Profile crystal vibration chip
US20190165761A1 (en) Tuning-fork type quartz crystal vibrating element and piezoelectric device
JPH09172344A (en) Piezoelectric resonator
JPS5838015A (en) Piezoelectric oscillator
JP3109596B2 (en) Piezoelectric resonator with ring-shaped electrode
JP2003101378A (en) Lame mode quartz resonator
JP3240416B2 (en) Piezoelectric vibration gyro
JP3363457B2 (en) Torsional crystal oscillator
JP2007202210A (en) Crystal unit having flexural mode quartz crystal resonator
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP3176642B2 (en) KT cut crystal unit
JP2005094726A (en) Crystal unit, manufacturing method thereof and crystal oscillator
JPH04220009A (en) High-frequency piezoelectric resonator
JPH0989571A (en) Vibrating gyroscope adjusting method
JP2003115747A (en) Lame mode crystal oscillator
JP2001237670A (en) Piezoelectric vibrator
JPH0226282A (en) Ultrasonic motor
JP4697190B6 (en) Manufacturing methods for crystal units and crystal units
JP2004215205A (en) Crystal unit and crystal oscillator
JPH05129873A (en) Breadthwise longitudinal crystal vibrator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071020

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091020

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees