JP3640003B2 - Piezoelectric vibration gyro using energy confinement vibration mode - Google Patents

Piezoelectric vibration gyro using energy confinement vibration mode Download PDF

Info

Publication number
JP3640003B2
JP3640003B2 JP16892696A JP16892696A JP3640003B2 JP 3640003 B2 JP3640003 B2 JP 3640003B2 JP 16892696 A JP16892696 A JP 16892696A JP 16892696 A JP16892696 A JP 16892696A JP 3640003 B2 JP3640003 B2 JP 3640003B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
vibration
energy confinement
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16892696A
Other languages
Japanese (ja)
Other versions
JPH1068625A (en
Inventor
哲男 吉田
洋 阿部
博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP16892696A priority Critical patent/JP3640003B2/en
Priority to US08/878,409 priority patent/US5887480A/en
Priority to EP97110056A priority patent/EP0814319B1/en
Priority to TW086108565A priority patent/TW334651B/en
Priority to DE69701595T priority patent/DE69701595T2/en
Priority to KR1019970025983A priority patent/KR100494967B1/en
Priority to CN97113960A priority patent/CN1086806C/en
Priority to CA002208369A priority patent/CA2208369C/en
Publication of JPH1068625A publication Critical patent/JPH1068625A/en
Priority to US09/217,561 priority patent/US6138510A/en
Application granted granted Critical
Publication of JP3640003B2 publication Critical patent/JP3640003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,自動車のナビゲーションシステムやカメラ一体型VTRカメラの手ブレ補正などに用いられるジャイロスコープの内,圧電振動子の超音波振動を利用した振動ジャイロに関し,特に圧電振動子の振動モードとしてエネルギー閉じ込め振動モードを利用し,構造が簡単で支持が容易な耐振動特性及び耐衝撃性に優れた圧電振動ジャイロに関する。
【0002】
【従来の技術】
圧電振動ジャイロとは,振動している物体に回転角速度が加えられると,その振動方向と直角な方向にコリオリ力を生ずると言う力学現象を利用したジャイロスコープである。
【0003】
一般に,直交する二つの異なる方向の振動を励振可能に構成した複合振動系において,一方の振動を励振した状態で,振動子を回転させると,前述のコリオリ力の作用によりこの振動と直角な方向に力が作用し,他方の振動が励振される。この振動の大きさは,入力側の振動の振幅及び回転角速度に比例するため,入力側の振動振幅を一定にした場合,出力電圧の大きさから印加された回転角速度の大きさを求めることができる。
【0004】
図6は,従来の圧電振動ジャイロの構造を示す斜視図である。図6を参照すると,正方形断面形状を有する金属角柱51の隣合う面のほぼ中央部に,圧電セラミックス薄板52,53が接合されている。これらの圧電セラミックス薄板52,53は,それぞれ両面に電極が形成され,厚さ方向に分極されている。
【0005】
正方形断面の金属角柱51には,互いに直交する二つの屈曲振動モードが存在し,材料の特性が均質である場合には,二つの屈曲振動モードの共振周波数はほぼ等しくなることが知られている。従って,圧電セラミックス薄板52に,この金属角柱の屈曲振動の共振周波数にほぼ等しい周波数の電圧を印加すると,圧電セラミックス52を接合した面が凹凸となる方向(y軸方向)に屈曲振動する。この状態で,金属角柱51を長さ方向と平行な軸(z軸)の回りに回転させると,コリオリ力の作用により,金属角柱51は,圧電セラミックス薄板53を接合した面が凹凸となる方向(x軸方向)にも屈曲振動し,圧電効果により,圧電セラミックス薄板53に電圧が発生する。この電圧の大きさは,圧電セラミックス薄板52により励振されている振動の大きさと印加した回転角速度の大きさに比例する。従って,圧電セラミックス薄板52に印加する励振電圧の大きさを一定とすれば,圧電セラミックス薄板53に発生する電圧は,金属角柱51の回転角速度に比例した電圧となる。
【0006】
一方,FMラジオやテレビの中間周波数フィルタには,図7(a)の平面図,図7(b)の断面図,及び図8の側面図に示すようなエネルギー閉じ込め振動型フィルタが用いられている。このエネルギー閉じ込め振動とは,振動のエネルギーが駆動電極近傍に集中している振動モードで,圧電板の厚さ方向の縦振動やすべり振動,圧電矩形板の幅方向の縦振動やすべり振動など多くの振動モードがある。
【0007】
図7(a)及び(b)を参照して,エネルギー閉じ込め振動は,振動のエネルギーが駆動電極の近傍に集中しているため,例えば,図に示すように,6mm×6mmで厚さ0.2mmの圧電板61を用いて,そのほぼ中央部の直径1.5mmの領域に駆動電極62,63及び64を形成したFMラジオ用10.7MHzセラミックフィルタにおいて,図8に示すように,駆動電極62,63及び64を中心として直径約3mmの両面に空洞部分66を形成すれば,その他の部分を樹脂65で固定しても振動子特性にほとんど影響を与えない。すなわち,リード端子の形成が自由で,支持による影響の無い圧電振動子あるいはそれを利用したフィルタが得られる。
【0008】
【発明が解決しようとする課題】
図6に示した従来の圧電振動ジャイロにおいては,金属角柱の屈曲振動モードを利用しているため,振動子の支持,固定は振動の節の位置で行わなければならない。また,従来の圧電振動ジャイロにおいて,駆動,検出回路と振動子の電極をリード線で接続する必要があり,接続の状態のばらつきによる特性のばらつきを抑えることが難しかった。さらに,駆動,検出回路の構成された基板の上に,保持具により支持された振動子を載せて組み立てるため,小形,薄形の圧電振動ジャイロを構成することが困難であった。
【0009】
一方,図7に示した圧電振動子を用いることができれば,上記したように小形,薄形であるという課題を解決できるものと考えられる。
【0010】
そこで,本発明の技術的課題は,以上に示した従来の圧電振動ジャイロにおける欠点を除去し,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,駆動,検出回路を振動ジャイロを構成した基板上に構成した,小形,薄形の圧電振動ジャイロを提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば,厚さ方向に分極軸を有する圧電板の一方の主面のほぼ中央部のおよそ二等辺三角形を構成する各頂点の位置に第1,第2,及び第3の電極を形成し,前記第1の電極を頂角の位置,前記第2及び第3の電極をそれぞれ底角の位置に配置し,前記第2及び第3の電極をそれぞれ仮想接地機能を有する第1及び第2の電流検出回路に接続し,前記第1の電極に励振用の駆動電圧を印加し,前記圧電板を主面と直交する軸の回りに回転させたときに前記第1及び第2の電流検出回路出力間に生ずる差を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0012】
また,本発明によれば,前記エネルギー閉じ込め振動モードを利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極が形成された領域近傍のみを厚さ方向に分極したことを特徴とする請求項1に記載のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0013】
【発明の実施の形態】
以下,本発明の実施の形態について説明する。
【0014】
図1は,本発明の実施の形態によるエネルギー閉じ込め型圧電振動ジャイロの圧電振動子の構造を示す斜視図である。図1に示すように,圧電振動子1は,厚さ方向に分極軸を有する圧電板10の一方の主面のほぼ中央部の及び二等辺三角形を構成する各頂点の位置に第1の電極11,第2の電極12,及び第3の電極13が形成されている。
【0015】
図2は図1の圧電振動子1に接続される回路構成を示すブロック図である。図2を参照すると,圧電振動子1は,第1の電極11には,交流電源21が接続され,第2及び第3の電極12及び13に,電流検出回路18,19がそれぞれ接続されている。電流検出回路18,19の出力側には,差動増幅回路22が接続され,検波回路23を介して,圧電振動ジャイロのセンサ出力となる。
【0016】
図3は,図2のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロに用いた仮想接地機能を有する電流検出回路の構成例を示す図である。図3に示す電流検出回路18,19は,機能的には入力インピーダンスがほぼ0で,入力電流に比例した出力電圧を得ることが出来る回路である。
【0017】
次に更に具体的に本発明の実施の形態による圧電振動子の駆動原理を図面を参照して説明する。
【0018】
図4(a)及び(b)は,図1及び2に示した平行電界励振型厚みすべりエネルギー閉じ込め振動子の基本構造を夫々示す平面図及び電極部分のみを示す断面図である。図4(a)及び(b)を参照すると,厚さ方向(z軸方向)に分極された圧電板10の中央部の同一面上に,x軸方向に対向する部分電極14,15が形成されている。部分電極14,15に挟まれている部分には,ほぼ板の面に平行な方向(x軸方向)の電界が印加されるため,この電界と直交する厚さ方向の分極との相互作用により,部分電極14,15の寸法を,使用する圧電材料の特性に合わせて適当に設計すると,この部分に平行電界励振型厚みすべりエネルギー閉じ込め振動子を構成することができる。この厚みすべり振動とは,変位方向が板面に平行で,波の伝搬方向が板の厚さ方向の振動である。図5に示すように,半波長で共振している場合,厚さ方向(z)の変位分布が示されている。
【0019】
図1に戻って,第1の電極11を頂角の位置に,第2の電極12及び第3の電極13をそれぞれ底角の位置に配置し,第2の電極12及び第3の電極13をそれぞれ仮想接地機能を有する電流検出回路18及び19に接続する。第2の電極12及び第3の電極13は,仮想接地回路に接続されているため,電位的にはアース端子とみなすことができる。
【0020】
従って,第1の電極11に圧電板10の厚みすべりモードの共振周波数にほぼ等しい周波数の励振用の駆動電圧を印加すると,第1,第2,及び第3の電極11,12及び13によって囲まれる領域に,第1の電極11の中心と,第2及び第3の電極12及び13の中心を結ぶ直線の中点を結ぶ直線の方向のエネルギー閉じ込め振動モードのすべり振動が発生する。この状態で,圧電板10をその主面と直交する軸の回りに回転させると,コリオリ力の作用により,励振されている厚みすべり振動の方向と直角な方向の厚みすべり振動が発生する。このコリオリ力により発生した厚みすべり振動により,第1の電極11と第2の電極12間及び第1の電極11と第3の電極13間のインピーダンスが変化し,その結果として,電流検出回路18及び19に流れ込む電流値が変化する。第2の電極12と第2の電極13は,前述したように,励振されている厚みすべり振動の方向に対して対称に配置されているため,コリオリ力により変化する電流は,振幅が等しく,互いに180度位相の異なった電圧となる。
【0021】
従って,電流検出回路18及び19の出力電圧も振幅が等しく,互いに180度位相の異なった電圧となり,これらの出力電圧の差の電圧を検出し,この電圧を所定のタイミングで同期検波をすることにより,印加した回転角速度に比例した出力電圧を得ることが出来る。
【0022】
従って,本発明において,重要な点は,各電極対が対向する領域に不要振動の無いきれいなエネルギー閉じ込め振動を励振することであり,特に,圧電板10として圧電セラミックスを用いた場合には,第1から第3の電極11,12,13が形成された領域近傍のみを厚さ方向に分極することにより,この目的を達成することが出来る。
【0023】
【発明の効果】
以上に示したように,本発明によれば,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,支持,固定によるジャイロ特性への影響がほとんど無く,強固に支持することが可能で,耐振動,耐衝撃特性の優れた小形の圧電振動ジャイロが得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるエネルギー閉じ込め型振動ジャイロの圧電振動子を示す斜視図である。
【図2】図1の圧電振動子に接続される回路構成を示すブロック図である。
【図3】図2のエネルギー閉じ込め型振動ジャイロに用いた仮想接地機能を有する電流検出回路の一例を示す回路図である。
【図4】図1及び図2の圧電振動ジャイロに用いる平行電界励振型厚みすべりモードエネルギー閉じ込め振動子の駆動原理を説明するための基本構成を示す図である。
【図5】図4の厚みすべりモードエネルギー閉じ込め振動子の変位分布を示す図である。
【図6】従来の圧電振動ジャイロの一例を示す斜視図である。
【図7】従来のエネルギー閉じ込め振動子の構造図であり,(a)は平面図,(b)は断面図である。
【図8】図7のエネルギー閉じ込め振動子の支持構造を示す側面図である。
【符号の説明】
1 圧電振動子
10,61 圧電板
11 第1の電極
12 第2の電極
13 第3の電極
14,15 部分電極
18,19 電流検出回路
21 交流電源
22 差動増幅回路
23 検波回路
51 金属角柱
52,53 圧電セラミックス薄板
54,55 リード端子
62,63,64 駆動電極
65 樹脂
66 空洞
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration gyro using ultrasonic vibration of a piezoelectric vibrator among gyroscopes used for camera shake correction of an automobile navigation system or a camera-integrated VTR camera, and in particular, energy as a vibration mode of the piezoelectric vibrator. The present invention relates to a piezoelectric vibration gyro that uses a confined vibration mode, has a simple structure and is easy to support, and has excellent vibration resistance and shock resistance.
[0002]
[Prior art]
A piezoelectric vibratory gyroscope is a gyroscope that uses a mechanical phenomenon that when a rotational angular velocity is applied to a vibrating object, a Coriolis force is generated in a direction perpendicular to the vibration direction.
[0003]
In general, in a composite vibration system configured to excite vibrations in two different directions orthogonal to each other, when one of the vibrations is excited and the vibrator is rotated, the direction perpendicular to this vibration is caused by the action of the Coriolis force described above. A force acts on the other, and the other vibration is excited. Since the magnitude of this vibration is proportional to the amplitude of the vibration on the input side and the rotational angular velocity, if the vibration amplitude on the input side is constant, the magnitude of the applied rotational angular velocity can be obtained from the magnitude of the output voltage. it can.
[0004]
FIG. 6 is a perspective view showing the structure of a conventional piezoelectric vibration gyro. Referring to FIG. 6, piezoelectric ceramic thin plates 52 and 53 are bonded to substantially the center of adjacent surfaces of a metal prism 51 having a square cross-sectional shape. Each of these piezoelectric ceramic thin plates 52 and 53 has electrodes formed on both surfaces and is polarized in the thickness direction.
[0005]
It is known that the metal prism 51 having a square cross section has two bending vibration modes orthogonal to each other, and the resonance frequencies of the two bending vibration modes are substantially equal when the material characteristics are uniform. . Accordingly, when a voltage having a frequency substantially equal to the resonance frequency of the bending vibration of the metal prism is applied to the piezoelectric ceramic thin plate 52, the piezoelectric ceramic 52 is bent and vibrated in a direction (y-axis direction) where the surface on which the piezoelectric ceramic 52 is bonded becomes uneven. In this state, when the metal prism 51 is rotated around an axis parallel to the length direction (z axis), the metal prism 51 has a direction in which the surface where the piezoelectric ceramic thin plate 53 is joined becomes uneven due to the action of the Coriolis force. Bending vibration is also generated (in the x-axis direction), and a voltage is generated in the piezoelectric ceramic thin plate 53 by the piezoelectric effect. The magnitude of this voltage is proportional to the magnitude of vibration excited by the piezoelectric ceramic thin plate 52 and the magnitude of the applied rotational angular velocity. Therefore, if the magnitude of the excitation voltage applied to the piezoelectric ceramic thin plate 52 is constant, the voltage generated in the piezoelectric ceramic thin plate 53 is a voltage proportional to the rotational angular velocity of the metal prism 51.
[0006]
On the other hand, an energy confinement vibration type filter as shown in the plan view of FIG. 7A, the cross-sectional view of FIG. 7B, and the side view of FIG. Yes. This energy confinement vibration is a vibration mode in which the energy of the vibration is concentrated near the drive electrode. There are many such as longitudinal vibration and sliding vibration in the thickness direction of the piezoelectric plate, and longitudinal vibration and sliding vibration in the width direction of the piezoelectric rectangular plate. There are vibration modes.
[0007]
Referring to FIGS. 7A and 7B, since the energy of the energy confinement vibration is concentrated in the vicinity of the drive electrode, for example, as shown in FIG. In the 10.7 MHz ceramic filter for FM radio in which the drive electrodes 62, 63, and 64 are formed in a region having a diameter of 1.5 mm in the substantially central portion using a 2 mm piezoelectric plate 61, as shown in FIG. If the hollow portions 66 are formed on both surfaces having a diameter of about 3 mm centering on 62, 63 and 64, even if the other portions are fixed with the resin 65, the vibrator characteristics are hardly affected. That is, it is possible to obtain a piezoelectric vibrator or a filter using the piezoelectric vibrator that is free to form lead terminals and is not affected by the support.
[0008]
[Problems to be solved by the invention]
Since the conventional piezoelectric vibration gyro shown in FIG. 6 uses a bending vibration mode of a metal prism, the vibrator must be supported and fixed at the position of the vibration node. In addition, in the conventional piezoelectric vibration gyro, it is necessary to connect the drive / detection circuit and the electrodes of the vibrator with lead wires, and it is difficult to suppress variations in characteristics due to variations in the connection state. Furthermore, since a vibrator supported by a holder is assembled on a substrate on which a drive / detection circuit is configured, it is difficult to construct a small and thin piezoelectric vibration gyro.
[0009]
On the other hand, if the piezoelectric vibrator shown in FIG. 7 can be used, it is considered that the problem of being small and thin as described above can be solved.
[0010]
Therefore, the technical problem of the present invention is that the conventional piezoelectric vibration gyro described above is eliminated, the structure is simple, and the input / output terminals can be connected without using lead wires. An object of the present invention is to provide a small and thin piezoelectric vibration gyro in which a detection circuit is configured on a substrate having a vibration gyro.
[0011]
[Means for Solving the Problems]
According to the present invention, the first, second, and third electrodes are provided at the positions of the vertices constituting approximately an isosceles triangle at approximately the center of one main surface of the piezoelectric plate having a polarization axis in the thickness direction. Forming the first electrode at the apex angle position, the second and third electrodes at the base angle position, and the second and third electrodes having the first and second virtual ground functions, respectively. When connected to a second current detection circuit, an excitation drive voltage is applied to the first electrode, and the piezoelectric plate is rotated about an axis orthogonal to the main surface, the first and second electrodes A piezoelectric vibration gyro using an energy confinement vibration mode characterized in that a difference generated between the outputs of the current detection circuit is detected.
[0012]
According to the present invention, in the piezoelectric vibration gyro using the energy confinement vibration mode, piezoelectric ceramic is used as the piezoelectric plate, and only the vicinity of the region where the first to third electrodes are formed is arranged in the thickness direction. The piezoelectric vibration gyro using the energy confinement vibration mode according to claim 1 is obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
FIG. 1 is a perspective view showing a structure of a piezoelectric vibrator of an energy confinement piezoelectric vibration gyro according to an embodiment of the present invention. As shown in FIG. 1, the piezoelectric vibrator 1 has a first electrode at the position of each apex that constitutes an isosceles triangle at substantially the center of one principal surface of a piezoelectric plate 10 having a polarization axis in the thickness direction. 11, a second electrode 12, and a third electrode 13 are formed.
[0015]
FIG. 2 is a block diagram showing a circuit configuration connected to the piezoelectric vibrator 1 of FIG. Referring to FIG. 2, in the piezoelectric vibrator 1, an AC power supply 21 is connected to the first electrode 11, and current detection circuits 18 and 19 are connected to the second and third electrodes 12 and 13, respectively. Yes. A differential amplifier circuit 22 is connected to the output side of the current detection circuits 18 and 19 and becomes a sensor output of the piezoelectric vibration gyro via the detection circuit 23.
[0016]
FIG. 3 is a diagram illustrating a configuration example of a current detection circuit having a virtual ground function used in the piezoelectric vibration gyro using the energy confinement vibration mode of FIG. The current detection circuits 18 and 19 shown in FIG. 3 are circuits that have an input impedance substantially zero and can obtain an output voltage proportional to the input current.
[0017]
Next, the driving principle of the piezoelectric vibrator according to the embodiment of the present invention will be described more specifically with reference to the drawings.
[0018]
FIGS. 4A and 4B are a plan view and a cross-sectional view showing only the electrode portion, respectively, showing the basic structure of the parallel electric field excitation type thickness-slip energy confinement oscillator shown in FIGS. 4A and 4B, partial electrodes 14 and 15 facing in the x-axis direction are formed on the same surface of the central portion of the piezoelectric plate 10 polarized in the thickness direction (z-axis direction). Has been. Since an electric field in a direction substantially parallel to the plane of the plate (x-axis direction) is applied to the portion sandwiched between the partial electrodes 14 and 15, due to the interaction with the polarization in the thickness direction perpendicular to the electric field. If the dimensions of the partial electrodes 14 and 15 are appropriately designed in accordance with the characteristics of the piezoelectric material to be used, a parallel electric field excitation type thickness shear energy confinement vibrator can be formed in this part. The thickness shear vibration is vibration in which the displacement direction is parallel to the plate surface and the wave propagation direction is in the thickness direction of the plate. As shown in FIG. 5, when resonating at half wavelength, a displacement distribution in the thickness direction (z) is shown.
[0019]
Returning to FIG. 1, the first electrode 11 is arranged at the apex angle position, the second electrode 12 and the third electrode 13 are arranged at the base angle position, and the second electrode 12 and the third electrode 13 are arranged. Are connected to current detection circuits 18 and 19 each having a virtual ground function. Since the second electrode 12 and the third electrode 13 are connected to the virtual ground circuit, they can be regarded as ground terminals in terms of potential.
[0020]
Therefore, when a driving voltage for excitation having a frequency substantially equal to the resonance frequency of the thickness-shear mode of the piezoelectric plate 10 is applied to the first electrode 11, the first electrode 11 is surrounded by the first, second, and third electrodes 11, 12, and 13. In this region, the sliding vibration of the energy confinement vibration mode in the direction of the straight line connecting the center of the straight line connecting the center of the first electrode 11 and the center of the second and third electrodes 12 and 13 occurs. In this state, when the piezoelectric plate 10 is rotated around an axis orthogonal to the main surface, thickness shear vibration in a direction perpendicular to the direction of excited thickness shear vibration is generated by the action of the Coriolis force. The thickness shear vibration generated by the Coriolis force changes the impedance between the first electrode 11 and the second electrode 12 and between the first electrode 11 and the third electrode 13, and as a result, the current detection circuit 18. And the value of the current flowing into 19 changes. As described above, since the second electrode 12 and the second electrode 13 are arranged symmetrically with respect to the direction of the excited thickness shear vibration, the currents that change due to the Coriolis force have the same amplitude, The voltages are 180 degrees out of phase with each other.
[0021]
Accordingly, the output voltages of the current detection circuits 18 and 19 have the same amplitude and are 180 degrees out of phase with each other. The voltage difference between these output voltages is detected, and this voltage is synchronously detected at a predetermined timing. Thus, an output voltage proportional to the applied rotational angular velocity can be obtained.
[0022]
Therefore, in the present invention, an important point is to excite clean energy confinement vibration without unnecessary vibration in a region where each electrode pair is opposed, particularly when piezoelectric ceramic is used as the piezoelectric plate 10. This object can be achieved by polarizing only the vicinity of the region where the first to third electrodes 11, 12, 13 are formed in the thickness direction.
[0023]
【The invention's effect】
As described above, according to the present invention, the structure is simple, the input / output terminals can be connected without using lead wires, and there is almost no influence on the gyro characteristics due to support and fixing. A small piezoelectric vibration gyro that can be firmly supported and has excellent vibration resistance and shock resistance is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a piezoelectric vibrator of an energy confining vibration gyro according to an embodiment of the present invention.
2 is a block diagram showing a circuit configuration connected to the piezoelectric vibrator of FIG. 1;
3 is a circuit diagram showing an example of a current detection circuit having a virtual ground function used in the energy confinement type vibration gyro shown in FIG. 2;
4 is a diagram showing a basic configuration for explaining a driving principle of a parallel electric field excitation type thickness-slip mode energy confinement vibrator used in the piezoelectric vibration gyro shown in FIGS. 1 and 2. FIG.
5 is a diagram showing a displacement distribution of the thickness-slip mode energy confinement oscillator of FIG. 4; FIG.
FIG. 6 is a perspective view showing an example of a conventional piezoelectric vibration gyro.
7A and 7B are structural views of a conventional energy confinement vibrator, where FIG. 7A is a plan view and FIG.
8 is a side view showing a support structure of the energy confinement vibrator of FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrators 10 and 61 Piezoelectric plate 11 1st electrode 12 2nd electrode 13 3rd electrode 14 and 15 Partial electrodes 18 and 19 Current detection circuit 21 AC power supply 22 Differential amplification circuit 23 Detection circuit 51 Metal prism 52 , 53 Piezoelectric ceramic thin plates 54, 55 Lead terminals 62, 63, 64 Drive electrode 65 Resin 66 Cavity

Claims (2)

厚さ方向に分極軸を有する圧電板の一方の主面のほぼ中央部のおよそ二等辺三角形を構成する各頂点の位置に第1,第2,及び第3の電極を形成し,前記第1の電極を頂角の位置,前記第2及び第3の電極をそれぞれ底角の位置に配置し,前記第2及び第3の電極をそれぞれ仮想接地機能を有する第1及び第2の電流検出回路に接続し,前記第1の電極に励振用の駆動電圧を印加し,前記圧電板を主面と直交する軸の回りに回転させたときに前記第1及び第2の電流検出回路出力間に生ずる差を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。A first electrode, a second electrode, and a third electrode are formed at positions of apexes forming approximately an isosceles triangle at a substantially central portion of one main surface of the piezoelectric plate having a polarization axis in the thickness direction, and the first electrode is formed. The first and second current detection circuits each having a first ground electrode, the second and third electrodes disposed at a bottom angle, and the second and third electrodes having a virtual ground function, respectively. Connected to the first electrode, an excitation drive voltage is applied to the first electrode, and when the piezoelectric plate is rotated about an axis orthogonal to the main surface, the output between the first and second current detection circuits is A piezoelectric vibration gyro using an energy confinement vibration mode characterized by detecting a difference that occurs. 請求項1記載のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極が形成された領域近傍のみを厚さ方向に分極したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。2. The piezoelectric vibration gyro using the energy confinement vibration mode according to claim 1, wherein piezoelectric ceramic is used as the piezoelectric plate, and only the vicinity of the region where the first to third electrodes are formed is polarized in the thickness direction. Piezoelectric vibration gyro using the energy confinement vibration mode.
JP16892696A 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode Expired - Fee Related JP3640003B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP16892696A JP3640003B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode
US08/878,409 US5887480A (en) 1996-06-20 1997-06-18 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
TW086108565A TW334651B (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
DE69701595T DE69701595T2 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope that uses an energy trapping vibration mode
EP97110056A EP0814319B1 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
KR1019970025983A KR100494967B1 (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing an energy-trapping vibration mode
CN97113960A CN1086806C (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing energy-confinement vibration mode
CA002208369A CA2208369C (en) 1996-06-20 1997-06-20 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibrationmode
US09/217,561 US6138510A (en) 1996-06-20 1998-12-21 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15947096 1996-06-20
JP8-159470 1996-06-20
JP16892696A JP3640003B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode

Publications (2)

Publication Number Publication Date
JPH1068625A JPH1068625A (en) 1998-03-10
JP3640003B2 true JP3640003B2 (en) 2005-04-20

Family

ID=26486264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16892696A Expired - Fee Related JP3640003B2 (en) 1996-06-20 1996-06-28 Piezoelectric vibration gyro using energy confinement vibration mode

Country Status (1)

Country Link
JP (1) JP3640003B2 (en)

Also Published As

Publication number Publication date
JPH1068625A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US6138510A (en) Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2001208545A (en) Piezoelectric vibration gyroscope
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3355998B2 (en) Vibrating gyro
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3685224B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3172924B2 (en) Piezoelectric vibration gyro
JP3240416B2 (en) Piezoelectric vibration gyro
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP2590553Y2 (en) Piezoelectric vibration gyro
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP3698840B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JPH116738A (en) Angular velocity sensor
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JP3172944B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP4044519B2 (en) Tuning fork type piezoelectric vibration gyro
JP3521315B2 (en) Piezoelectric vibration gyro
JP3830056B2 (en) Piezoelectric vibration gyro
JPH10141960A (en) Piezoelectric oscillation gyro using energy-confinement oscillation mode
JPH10246638A (en) Piezoelectric oscillation gyro
JPH11248463A (en) Piezoelectric oscillator for piezoelectric oscillation gyro
JP2001021361A (en) Energy confining piezoelectric oscillator and gyroscope
JPH1123286A (en) Piezoelectric vibrating gyro
JPH04307322A (en) Piezoelectric vibrating gyro

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees