JP3640004B2 - Piezoelectric vibration gyro using energy confinement vibration mode - Google Patents

Piezoelectric vibration gyro using energy confinement vibration mode Download PDF

Info

Publication number
JP3640004B2
JP3640004B2 JP20494796A JP20494796A JP3640004B2 JP 3640004 B2 JP3640004 B2 JP 3640004B2 JP 20494796 A JP20494796 A JP 20494796A JP 20494796 A JP20494796 A JP 20494796A JP 3640004 B2 JP3640004 B2 JP 3640004B2
Authority
JP
Japan
Prior art keywords
piezoelectric
vibration
electrode
electrodes
energy confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20494796A
Other languages
Japanese (ja)
Other versions
JPH1047967A (en
Inventor
哲男 吉田
直樹 若生
博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP20494796A priority Critical patent/JP3640004B2/en
Priority to US08/878,409 priority patent/US5887480A/en
Priority to EP97110056A priority patent/EP0814319B1/en
Priority to TW086108565A priority patent/TW334651B/en
Priority to DE69701595T priority patent/DE69701595T2/en
Priority to KR1019970025983A priority patent/KR100494967B1/en
Priority to CN97113960A priority patent/CN1086806C/en
Priority to CA002208369A priority patent/CA2208369C/en
Publication of JPH1047967A publication Critical patent/JPH1047967A/en
Priority to US09/217,561 priority patent/US6138510A/en
Application granted granted Critical
Publication of JP3640004B2 publication Critical patent/JP3640004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,自動車のナビゲーションシステムやカメラー体型VTRカメラの手ブレ補正などに用いられるジャイロスコープの内,圧電振動子の超音波振動を利用した振動ジャイロに関し,特に圧電振動子の振動モードとしてエネルギー閉じ込め振動モードを利用し,構造が簡単で支持が容易な耐振動特性及び耐衝撃性に優れた圧電振動ジャイロに関する。
【0002】
【従来の技術】
圧電振動ジャイロとは,振動している物体に回転角速度が加えられると,その振動方向と直角な方向にコリオリ力を生ずると言う力学現象を利用したジャイロスコープである。
【0003】
一般に,直交する二つの異なる方向の振動を励振可能に構成した複合振動系において,方の振動を励振した状態で,振動子を回転させると,前述のコリオリ力の作用によりこの振動と直角な方向に力が作用し,他方の振動が励振される。この振動の大きさは,入力側の振動の振幅及び回転角速度に比例するため,入力側の振動振幅を一定にした楊合,出力電圧の大きさから印加された回転角速度の大きさを求めることができる。
【0004】
図5は,従来の圧電振動ジャイロの構造例を示す斜視図である。図5を参照すると,正方形断面形状を有する金属角柱51の隣合う面のほぼ中央部に,圧電セラミックス薄板52,53が接合されている。これらの圧電セラミックス薄板52,53は,それぞれ両面に電極が形成され,厚さ方向に分極されている。
【0005】
正方形断面の金属角柱51には,互いに直交する二つの屈曲振動モードが存在し,材料の特性が均質である場合には,二つの屈曲振動モードの共振周波数は,ほぼ等しくなることが知られている。従つて,圧電セラミックス薄板52に,この金属角柱51の屈曲振動の共振周波数にほぼ等しい周波数の電圧を印加すると,圧電セラミックス52を接合した面が凹凸となる方向(y軸方向)に屈曲振動する。この状態で,金属角柱51を長さ方向ど平行な軸(z軸)の回りに回転させると,コリオリ力の作用により,金属角柱51は,圧電セラミックス薄板53を接合した面が凹凸となる方向(x軸方向)にも屈曲振動し,圧電効果により,圧電セラミックス薄板53に電圧が発生する。この電圧の大きさは,圧電セラミックス薄板52によって励振されている振動の大きさと印加した回転角速度の大きさとに比例する。従って,圧電セラミックス薄板52に印加する励振電圧の大きさを一定とすれば,圧電セラミックス薄板53に発生する電圧は,金属角柱51の回転角速度に比例した電圧となる。
【0006】
一方,FMラジオやテレビの中間周波数フイルタには,図6(a)の平面図,図6(b)の断面図,及び図7の側面図に示すようなエネルギー閉じ込め振動型フィルタが用いられている。このエネルギー閉じ込め振動とは,振動のエネルギーが駆動電極近傍に集中している振動モードで,圧電板の厚さ方向の縦振動やすべり振動,圧電矩形板の縦振動やすべり振動など多くの振動モードがある。
【0007】
図6(a)及び図6(b)を参照して,エネルギー閉じ込め振動は,振動のエネルギーが駆動電極の近傍に集中しているため,例えば,図に示すように,6mm×6mmで厚さ0.2mmの圧電板61を用いて,そのほぼ中央部の直径1.5mmの領域に駆動電極62,63及び対向電極64を形成したFMラジオ用10.7MHzセラミックフイルタにおいて,図7に示すように,前記駆動電極62,63及び前記対向電極64を中心として直径約3mmの領域の両面に空洞部分66を形成すれば,その他の部分を樹脂65で固定しても振動子特性にほとんど影響を与えない。すなわち,リード端子の形成が自由で,支持による影響の無い圧電振動子あるいはそれを利用したフィルタが得られる。
【0008】
【発明が解決しようとする課題】
図5に示した従来の圧電振動ジャイロにおいては,金属角柱51の屈曲振動モードを利用しているため,振動子の支持,固定は,振動の節の位置で行わなければならない。また,従来の圧電振動ジャイロにおいて,駆動,検出回路と振動子の電極をリード線で接続する必要があり,接続の状態のばらつきによる特性のばらつきを抑えることが難しかった。さらに,駆動,検出回路の構成された基板の上に,保持具により支持された振動子を載せて組み立てるため,形,薄形の圧電振動ジャイロを構成することが困難であった。
【0009】
一方,図6に示した圧電振動子を用いることができれば,上記したように小形,薄形であるという課題を解決できるものと考えられる。
【0010】
そこで,本発明の技術的課題は,以上に示した従来の圧電振動ジャイロにおける欠点を除去し,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,駆動,検出回路を振動ジャイロを構成した基板上に構成した,小形,薄形の圧電振動ジャイロを提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば,厚さ方向に分極軸を有する圧電板の一方の主面の略中央部の略二等辺三角形を構成する各頂点の位置に第1,第2,及び第3の電極を形成し,前記第1の電極を頂角の位置,前記第2及び第3の電極をそれぞれ底角の位置に配置し,前記第1の電極を接地し,前記第2及び第3の電極にそれぞれ抵抗を介して励振用の駆動電圧を印加し,前圧電板をその主面と直交する軸の回りに回転させたときに生ずるコリオリ力の作用により前記第2及び第3の電極に生ずる電圧の差を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0012】
また,本発明によれば,前記エネルギー閉じ込め振動を利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極が形成された領域近傍のみを厚さ方向に分極したことを特徴とする請求項1に記載のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロが得られる。
【0013】
【発明の実施の形態】
以下,本発明の実施の形態について説明する。
【0014】
図1は,本発明の実施の形態によるエネルギー閉じ込め型圧電振動ジャイロの圧電振動子構造を示す斜視図である。図1に示すように,圧電振動子1は,厚さ方向に分極軸を有する圧電板10の一方の主面のほぼ中央部のおよそ二等辺三角形を構成する各頂点の位置に第1の電極11,第2の電極12,及び第3の電極13が形成されている。
【0015】
図2は図1の圧電振動子1を含み,これに接続される回路構成を示すブロック図である。図2を参照すると,圧電振動子1は,第1の電極11は接地されており,第2及び第3の電極12及び13には,それぞれ抵抗20,21を介して交流電源22が接続され,第2及び第3の電極12及び13は,それぞれ差動増幅回路23の入力端子にも接続されている。
【0016】
差動増幅回路23の出力端子は,検波回路24を介して,圧電振動ジャイロのセンサ出力となる。
【0017】
次に,更に具体的に本発明の実施の形態による圧電振動子の駆動原理を図面を参照して説明する。図3(a)及び(b)は,図1及び図2示した平行電界励振型厚みすべりエネルギー閉じ込め振動子の基本的な構造を夫々示す平面図及び電極部分のみを示す断面図である。また,図4は図3(a)及び(b)に示す圧電振動子の振動の変位分布を示す図である。
【0018】
図3(a)及び(b)を参照すると,厚さ方向(z軸方向)に分極された圧電板10の中央部の同一面上に,x軸方向に対向する部分電極14,15が形成されている。部分電極14,15に挟まれている部分には,ほぼ板の面に平行な方向(x軸方向)の電界が印加されるため,この電界と直交する厚さ方向の分極との相互作用により,部分電極14,15の寸法を,使用する圧電材料の特性に合わせて適当に設計すると,この部分に平行電界励振型厚みすべりエネルギー閉じ込め振動子を構成することができる。この厚みすべり振動とは,変位の方向が板面に平行で,波の伝搬方向が板の厚さ方向の振動である。
【0019】
図4を参照すると,圧電振動子は,半波長で共振している場合の厚さ方向(z軸方向)の変位分布が示されている。
【0020】
図1に戻って,第1の電極11を頂角の位置に,第2の電極12及び第3の電極13をそれぞれ底角の位置に配置し,第1の電極11を接地し,第2の電極12及び第3の電極13は,それぞれ抵抗20及び21を介して交流電源22に接続する。交流電源からそれぞれ抵抗20及び21を介して,第2の電極12及び第3の電極13に前記圧電板の厚みすべりモードの共振周波数にほぼ等しい周波数の励振用の駆動電圧を印加すると,第1,第2,及び第3の電極11,12及び13によって囲まれる領域に,第1の電極11の中心と第2の電極12の中心を結ぶ方向のエネルギー閉じ込め振動モードのすべり振動と第1の電極11の中心と第3の電極13の中心を結ぶ方向のエネルギー閉じ込め振動モードのすべり振動が発生し,これらの振動は合成されて第1の電極11の中心と,第2及び第3の電極12及び13の中心を結ぶ直線の中点を結ぶ直線の方向のエネルギー閉じ込め振動モードのすべり振動が発生する。この状態で,前記圧電板10をその主面と直交する軸の回りに回転させると,コリオリ力の作用により,前記励振されている厚みすべり振動の方向と直角な方向の厚みすべり振動が発生する。このコリオリ力により発生した厚みすべり振動により,第1の電極11と第2の電極12間,及び第1の電極11と第3の電極13間のインピーダンスが変化し,その結果として,前記第2の電極12及び第3の電極13の端子電圧が変化する。このインピーダンスの変化は励振の電圧が一定の場合,加えられた回転角速度に比例する。
【0021】
従って,前記第2の電極12及び第3の電極13の端子電圧の差を差動増幅回路23により検出し,この電圧を所定のタイミングで同期検波をすることにより,印加した回転角速度に比例した出力電圧を得ることが出来る。
【0022】
従って,本発明の実施の形態において,重要な点は,各電極対が対向する領域に不要振動の無いきれいなエネルギー閉じ込め振動を励振することであり,特に圧電板10として圧電セラミックスを用いた場合には,第1から第3の電極11,12及び13が形成された領域近傍のみを厚さ方向に分極することにより,この目的を達成することが出来る。
【0023】
【発明の効果】
以上に示したように,本発明によれば,構造が簡単で,入出力用の端子をリード線を用いないで接続することが可能で,支持,固定によるジャイロ特性への影響がほとんど無く,強固に支持することが可能で,耐振動,耐衝撃特性の優れた小形の圧電振動ジャイロを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるエネルギー閉じ込め型振動ジャイロの圧電振動子を示す斜視図である。
【図2】図1の圧電振動子に接続される回路構成を示すブロック図である。
【図3】図1及び図2の圧電振動ジャイロに用いる平行電界励振型厚みすべりモードエネルギー閉じ込め振動子の駆動原理を説明するための基本構成を示す図である。
【図4】図3の厚みすべりモードエネルギー閉じ込め振動子の変位分布を示す図である。
【図5】従来の圧電振動ジャイロの一例を示す斜視図である。
【図6】従来のエネルギー閉じ込め振動子の構造図であり,(a)は平面図,(b)は断面図である。
【図7】図6のエネルギー閉じ込め振動子の支持構造を示す側面図である。
【符号の説明】
1 圧電振動子
10,61 圧電板
11 第1の電極
12 第2の電極
13 第3の電極
15 部分電極
20,21 抵抗
22 交流電源
23 差動増幅回路
24 検波回路
51 金属角柱
53 圧電セラミックス薄板
62,63 駆動電極
64 対向電極
65 樹脂
66 空洞
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration gyro using ultrasonic vibration of a piezoelectric vibrator among gyroscopes used for camera shake correction of a navigation system of a vehicle or a camera body type VTR camera, and in particular, energy confinement as a vibration mode of the piezoelectric vibrator. The present invention relates to a piezoelectric vibration gyro that uses a vibration mode, has a simple structure, is easy to support, and has excellent vibration resistance and shock resistance.
[0002]
[Prior art]
A piezoelectric vibratory gyroscope is a gyroscope that uses a mechanical phenomenon that when a rotational angular velocity is applied to a vibrating object, a Coriolis force is generated in a direction perpendicular to the vibration direction.
[0003]
In general, in a composite vibration system configured to be able to excite vibrations in two different directions orthogonal to each other, when the vibrator is rotated in a state in which one of the vibrations is excited, the direction perpendicular to this vibration is caused by the action of the Coriolis force described above. A force acts on the other, and the other vibration is excited. Since the magnitude of this vibration is proportional to the amplitude of the vibration on the input side and the rotational angular velocity, the magnitude of the applied rotational angular velocity should be determined from the magnitude of the output voltage when the vibration amplitude on the input side is constant. Can do.
[0004]
FIG. 5 is a perspective view showing an example of the structure of a conventional piezoelectric vibration gyro. Referring to FIG. 5, piezoelectric ceramic thin plates 52 and 53 are joined to substantially the center of adjacent surfaces of a metal prism 51 having a square cross-sectional shape. Each of these piezoelectric ceramic thin plates 52 and 53 has electrodes formed on both surfaces and is polarized in the thickness direction.
[0005]
It is known that the metal prism 51 having a square cross section has two bending vibration modes orthogonal to each other, and the resonance frequencies of the two bending vibration modes are substantially equal when the material characteristics are uniform. Yes. Accordingly, when a voltage having a frequency substantially equal to the resonance frequency of the bending vibration of the metal prism 51 is applied to the piezoelectric ceramic thin plate 52, the piezoelectric ceramic thin plate 52 bends and vibrates in the direction in which the surface where the piezoelectric ceramic 52 is joined becomes uneven (y-axis direction). . In this state, when the metal prism 51 is rotated around the axis parallel to the length direction (z-axis), the metal prism 51 is in a direction in which the surface where the piezoelectric ceramic thin plate 53 is joined becomes uneven by the action of the Coriolis force. Bending vibration is also generated (in the x-axis direction), and a voltage is generated in the piezoelectric ceramic thin plate 53 by the piezoelectric effect. The magnitude of this voltage is proportional to the magnitude of the vibration excited by the piezoelectric ceramic thin plate 52 and the magnitude of the applied rotational angular velocity. Therefore, if the magnitude of the excitation voltage applied to the piezoelectric ceramic thin plate 52 is constant, the voltage generated in the piezoelectric ceramic thin plate 53 is a voltage proportional to the rotational angular velocity of the metal prism 51.
[0006]
On the other hand, an energy confinement vibration type filter as shown in the plan view of FIG. 6A, the cross-sectional view of FIG. 6B, and the side view of FIG. Yes. This energy confinement vibration is a vibration mode in which the vibration energy is concentrated in the vicinity of the drive electrode. There are many vibration modes such as longitudinal vibration and sliding vibration in the thickness direction of the piezoelectric plate, and longitudinal vibration and sliding vibration of the piezoelectric rectangular plate. There is.
[0007]
Referring to FIGS. 6A and 6B, the energy confinement vibration has a thickness of 6 mm × 6 mm, for example, as shown in the figure because the energy of the vibration is concentrated in the vicinity of the drive electrode. As shown in FIG. 7, in a 10.7 MHz ceramic filter for FM radio, in which drive electrodes 62 and 63 and a counter electrode 64 are formed in a region having a diameter of 1.5 mm at a substantially central portion using a 0.2 mm piezoelectric plate 61. In addition, if the cavity portions 66 are formed on both sides of a region having a diameter of about 3 mm with the drive electrodes 62 and 63 and the counter electrode 64 as the center, even if the other portions are fixed with the resin 65, the vibrator characteristics are hardly affected. Don't give. That is, it is possible to obtain a piezoelectric vibrator or a filter using the piezoelectric vibrator that is free to form lead terminals and is not affected by the support.
[0008]
[Problems to be solved by the invention]
In the conventional piezoelectric vibration gyro shown in FIG. 5, since the bending vibration mode of the metal prism 51 is used, the vibrator must be supported and fixed at the position of the vibration node. In addition, in the conventional piezoelectric vibration gyro, it is necessary to connect the drive / detection circuit and the electrodes of the vibrator with lead wires, and it is difficult to suppress variations in characteristics due to variations in the connection state. Furthermore, since a vibrator supported by a holder is placed on a substrate on which a drive / detection circuit is configured, it is difficult to form a piezoelectric vibration gyro of a thin shape.
[0009]
On the other hand, if the piezoelectric vibrator shown in FIG. 6 can be used, it is considered that the problem of small size and thin size can be solved as described above.
[0010]
Therefore, the technical problem of the present invention is that the conventional piezoelectric vibration gyro described above is eliminated, the structure is simple, and the input / output terminals can be connected without using lead wires. An object of the present invention is to provide a small and thin piezoelectric vibration gyro in which a detection circuit is configured on a substrate having a vibration gyro.
[0011]
[Means for Solving the Problems]
According to the present invention, the first, second, and third electrodes are arranged at the positions of the vertices constituting the substantially isosceles triangle at the substantially central portion of one main surface of the piezoelectric plate having the polarization axis in the thickness direction. Forming the first electrode at the apex angle position, the second and third electrodes at the base angle position, grounding the first electrode, and connecting the second electrode and the third electrode to each other. A voltage generated in the second and third electrodes by the action of the Coriolis force generated when a driving voltage for excitation is applied via a resistor and the front piezoelectric plate is rotated about an axis orthogonal to the main surface. A piezoelectric vibration gyro using an energy confinement vibration mode characterized in that it is configured to detect the difference between the two is obtained.
[0012]
According to the invention, in the piezoelectric vibration gyro using the energy confinement vibration, piezoelectric ceramic is used as the piezoelectric plate, and only the vicinity of the region where the first to third electrodes are formed is polarized in the thickness direction. A piezoelectric vibration gyro using the energy confinement vibration mode according to claim 1 is obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
FIG. 1 is a perspective view showing a piezoelectric vibrator structure of an energy confinement piezoelectric vibration gyro according to an embodiment of the present invention. As shown in FIG. 1, the piezoelectric vibrator 1 has a first electrode at the position of each vertex constituting an approximately isosceles triangle at substantially the center of one main surface of the piezoelectric plate 10 having a polarization axis in the thickness direction. 11, a second electrode 12, and a third electrode 13 are formed.
[0015]
FIG. 2 is a block diagram showing a circuit configuration including and connected to the piezoelectric vibrator 1 of FIG. Referring to FIG. 2, in the piezoelectric vibrator 1, the first electrode 11 is grounded, and an AC power source 22 is connected to the second and third electrodes 12 and 13 via resistors 20 and 21, respectively. The second and third electrodes 12 and 13 are also connected to the input terminals of the differential amplifier circuit 23, respectively.
[0016]
The output terminal of the differential amplifier circuit 23 becomes the sensor output of the piezoelectric vibration gyro via the detection circuit 24.
[0017]
Next, the driving principle of the piezoelectric vibrator according to the embodiment of the present invention will be described more specifically with reference to the drawings. FIGS. 3A and 3B are a plan view and a cross-sectional view showing only the electrode part, respectively, showing the basic structure of the parallel electric field excitation type thickness shear energy confinement vibrator shown in FIGS. FIG. 4 is a diagram showing a vibration displacement distribution of the piezoelectric vibrator shown in FIGS.
[0018]
Referring to FIGS. 3A and 3B, partial electrodes 14 and 15 facing in the x-axis direction are formed on the same surface of the central portion of the piezoelectric plate 10 polarized in the thickness direction (z-axis direction). Has been. Since an electric field in a direction substantially parallel to the plane of the plate (x-axis direction) is applied to the portion sandwiched between the partial electrodes 14 and 15, due to the interaction with the polarization in the thickness direction perpendicular to the electric field. If the dimensions of the partial electrodes 14 and 15 are appropriately designed in accordance with the characteristics of the piezoelectric material to be used, a parallel electric field excitation type thickness shear energy confinement vibrator can be formed in this part. This thickness shear vibration is vibration in which the direction of displacement is parallel to the plate surface and the wave propagation direction is in the thickness direction of the plate.
[0019]
Referring to FIG. 4, the piezoelectric vibrator shows a displacement distribution in the thickness direction (z-axis direction) when resonating at a half wavelength.
[0020]
Returning to FIG. 1, the first electrode 11 is arranged at the apex angle position, the second electrode 12 and the third electrode 13 are arranged at the base angle positions, the first electrode 11 is grounded, and the second electrode 11 is grounded. The electrode 12 and the third electrode 13 are connected to an AC power source 22 via resistors 20 and 21, respectively. When an excitation driving voltage having a frequency substantially equal to the resonance frequency of the thickness-slip mode of the piezoelectric plate is applied to the second electrode 12 and the third electrode 13 from the AC power source via the resistors 20 and 21, respectively, In the region surrounded by the second, third, and third electrodes 11, 12, and 13, the sliding vibration of the energy confinement vibration mode in the direction connecting the center of the first electrode 11 and the center of the second electrode 12 and the first The sliding vibration of the energy confinement vibration mode in the direction connecting the center of the electrode 11 and the center of the third electrode 13 is generated, and these vibrations are combined to be combined with the center of the first electrode 11 and the second and third electrodes. The sliding vibration of the energy confinement vibration mode in the direction of the straight line connecting the midpoints of the straight lines connecting the centers of 12 and 13 occurs. In this state, when the piezoelectric plate 10 is rotated about an axis orthogonal to the main surface, thickness shear vibration in a direction perpendicular to the excited thickness shear vibration direction is generated by the action of Coriolis force. . Due to the thickness shear vibration generated by the Coriolis force, the impedance between the first electrode 11 and the second electrode 12 and between the first electrode 11 and the third electrode 13 changes, and as a result, the second electrode The terminal voltages of the electrode 12 and the third electrode 13 change. This change in impedance is proportional to the applied angular velocity when the excitation voltage is constant.
[0021]
Therefore, the difference between the terminal voltages of the second electrode 12 and the third electrode 13 is detected by the differential amplifier circuit 23, and this voltage is detected synchronously at a predetermined timing, so that it is proportional to the applied rotational angular velocity. Output voltage can be obtained.
[0022]
Therefore, in the embodiment of the present invention, an important point is to excite clean energy confinement vibration without unnecessary vibration in a region where each electrode pair is opposed, particularly when piezoelectric ceramic is used as the piezoelectric plate 10. This can be achieved by polarizing only the vicinity of the region where the first to third electrodes 11, 12 and 13 are formed in the thickness direction.
[0023]
【The invention's effect】
As described above, according to the present invention, the structure is simple, the input / output terminals can be connected without using lead wires, and there is almost no influence on the gyro characteristics due to support and fixation. A small piezoelectric vibration gyro that can be firmly supported and has excellent vibration resistance and shock resistance characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a piezoelectric vibrator of an energy confining vibration gyro according to an embodiment of the present invention.
2 is a block diagram showing a circuit configuration connected to the piezoelectric vibrator of FIG. 1;
3 is a diagram showing a basic configuration for explaining a driving principle of a parallel electric field excitation type thickness-slip mode energy confinement vibrator used in the piezoelectric vibration gyro shown in FIGS. 1 and 2. FIG.
4 is a diagram showing a displacement distribution of the thickness-slip mode energy confinement vibrator of FIG. 3; FIG.
FIG. 5 is a perspective view showing an example of a conventional piezoelectric vibration gyro.
FIGS. 6A and 6B are structural views of a conventional energy confinement vibrator, where FIG. 6A is a plan view and FIG. 6B is a cross-sectional view.
7 is a side view showing a support structure of the energy confinement vibrator of FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrators 10 and 61 Piezoelectric plate 11 1st electrode 12 2nd electrode 13 3rd electrode 15 Partial electrode 20 and 21 Resistance 22 AC power supply 23 Differential amplifier circuit 24 Detection circuit 51 Metal prism 53 Piezoelectric ceramic thin plate 62 63 Driving electrode 64 Counter electrode 65 Resin 66 Cavity

Claims (2)

厚さ方向に分極軸を有する圧電板の一方の主面の略中央部の略二等辺三角形を構成する各頂点の位置に第1,第2,及び第3の電極を形成し,前記第1の電極を頂角の位置,前記第2及び第3の電極をそれぞれ底角の位置に配置し,前記第1の電極を接地し,前記第2及び第3の電極にそれぞれ抵抗を介して励振用の駆動電圧を印加し,前記圧電板をその主面と直交する軸の回りに回転させたときに生ずるコリオリ力の作用により前記第2及び第3の電極に生ずる電圧の差を検出するように構成したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。First, second, and third electrodes are formed at the positions of vertices constituting a substantially isosceles triangle at a substantially central portion of one main surface of a piezoelectric plate having a polarization axis in the thickness direction, and the first electrode Are arranged at the apex angle, the second and third electrodes are arranged at the base angle, the first electrode is grounded, and the second and third electrodes are excited via resistors, respectively. And detecting a difference in voltage generated in the second and third electrodes by the action of Coriolis force generated when the piezoelectric plate is rotated about an axis orthogonal to the principal surface. A piezoelectric vibration gyro using an energy confinement vibration mode characterized in that it is configured as follows. 請求項1記載のエネルギー閉じ込め振動モードを利用した圧電振動ジャイロにおいて,前記圧電板として圧電セラミックスを用い,前記第1乃至第3の電極が形成された領域近傍のみを当該圧電セラミックスの厚さ方向に分極したことを特徴とするエネルギー閉じ込め振動モードを利用した圧電振動ジャイロ。2. The piezoelectric vibration gyro using the energy confinement vibration mode according to claim 1, wherein a piezoelectric ceramic is used as the piezoelectric plate, and only the vicinity of the region where the first to third electrodes are formed extends in the thickness direction of the piezoelectric ceramic. Piezoelectric vibration gyro using energy confinement vibration mode characterized by polarization.
JP20494796A 1996-06-20 1996-08-02 Piezoelectric vibration gyro using energy confinement vibration mode Expired - Fee Related JP3640004B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP20494796A JP3640004B2 (en) 1996-08-02 1996-08-02 Piezoelectric vibration gyro using energy confinement vibration mode
US08/878,409 US5887480A (en) 1996-06-20 1997-06-18 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
TW086108565A TW334651B (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
DE69701595T DE69701595T2 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope that uses an energy trapping vibration mode
EP97110056A EP0814319B1 (en) 1996-06-20 1997-06-19 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode
KR1019970025983A KR100494967B1 (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing an energy-trapping vibration mode
CN97113960A CN1086806C (en) 1996-06-20 1997-06-20 Piezoelectric vibrating gyroscope utilizing energy-confinement vibration mode
CA002208369A CA2208369C (en) 1996-06-20 1997-06-20 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibrationmode
US09/217,561 US6138510A (en) 1996-06-20 1998-12-21 Piezoelectric vibratory gyroscope utilizing an energy-trapping vibration mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20494796A JP3640004B2 (en) 1996-08-02 1996-08-02 Piezoelectric vibration gyro using energy confinement vibration mode

Publications (2)

Publication Number Publication Date
JPH1047967A JPH1047967A (en) 1998-02-20
JP3640004B2 true JP3640004B2 (en) 2005-04-20

Family

ID=16498970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20494796A Expired - Fee Related JP3640004B2 (en) 1996-06-20 1996-08-02 Piezoelectric vibration gyro using energy confinement vibration mode

Country Status (1)

Country Link
JP (1) JP3640004B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11039814B2 (en) * 2016-12-04 2021-06-22 Exo Imaging, Inc. Imaging devices having piezoelectric transducers

Also Published As

Publication number Publication date
JPH1047967A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3973742B2 (en) Vibrating gyroscope
KR100494967B1 (en) Piezoelectric vibrating gyroscope utilizing an energy-trapping vibration mode
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2001208545A (en) Piezoelectric vibration gyroscope
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3685224B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2590553Y2 (en) Piezoelectric vibration gyro
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JP2660940B2 (en) Piezoelectric vibration gyro
JP3240416B2 (en) Piezoelectric vibration gyro
JP3830056B2 (en) Piezoelectric vibration gyro
JP3698840B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3441932B2 (en) Piezoelectric vibrator
JP3172944B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JPH05264281A (en) Piezoelectric vibrating gyro
JPS6358111A (en) Tuning fork type piezo-electric angular velocity sensor
JP3690449B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP2557286B2 (en) Piezoelectric vibration gyro
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP2000241167A (en) Piezoelectric oscillation gyro
JPH10141960A (en) Piezoelectric oscillation gyro using energy-confinement oscillation mode
JPH11248463A (en) Piezoelectric oscillator for piezoelectric oscillation gyro
JP2003214855A (en) Angular velocity sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees