JP2557286B2 - Piezoelectric vibration gyro - Google Patents

Piezoelectric vibration gyro

Info

Publication number
JP2557286B2
JP2557286B2 JP3053721A JP5372191A JP2557286B2 JP 2557286 B2 JP2557286 B2 JP 2557286B2 JP 3053721 A JP3053721 A JP 3053721A JP 5372191 A JP5372191 A JP 5372191A JP 2557286 B2 JP2557286 B2 JP 2557286B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
voltage
vibration
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3053721A
Other languages
Japanese (ja)
Other versions
JPH05306935A (en
Inventor
洋 清水
哲男 吉田
力 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12950697&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2557286(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP3053721A priority Critical patent/JP2557286B2/en
Priority to EP91120513A priority patent/EP0488370B1/en
Priority to DE69119715T priority patent/DE69119715T2/en
Priority to US08/053,963 priority patent/US5336960A/en
Publication of JPH05306935A publication Critical patent/JPH05306935A/en
Application granted granted Critical
Publication of JP2557286B2 publication Critical patent/JP2557286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は船舶や自動車等の移動体
に搭載される機器の姿勢制御システムや自動車のナビゲ
ーションシステムなどに用いられるジャイロスコープの
内、圧電振動子の超音波振動を用いた、いわゆる圧電振
動ジャイロに関し、特に圧電セラミックス単体振動子を
用いた構造が簡単な圧電セラミックス振動ジャイロに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses ultrasonic vibration of a piezoelectric vibrator in a gyroscope used in a posture control system of equipment mounted on a moving body such as a ship or an automobile and a navigation system of an automobile. The present invention relates to a so-called piezoelectric vibrating gyro, and particularly to a piezoelectric ceramic vibrating gyro having a simple structure using a piezoelectric ceramic simple substance vibrator.

【0002】[0002]

【従来の技術】圧電振動ジャイロは、振動している物体
に回転加速度を与えられると、その振動方向と直角な方
向にコリオリ力を生ずるという力学現象を利用したジャ
イロスコープである。
2. Description of the Related Art A piezoelectric vibrating gyro is a gyroscope which utilizes a mechanical phenomenon in which a Coriolis force is generated in a direction perpendicular to the vibrating direction when a rotational acceleration is applied to a vibrating object.

【0003】一般に直交する二つの異なる方向の振動を
励振可能に構成した複合振動系において、一方の振動を
励振した状態で、振動子を回転させると、前述のコリオ
リ力の作用によりこの振動と直角な方向に力が働き、他
方の振動が励振される。この振動の大きさは入力側の振
動の大きさおよび回転角速度に比例するため、入力電圧
を一定にした状態では、この振動の大きさに比例した出
力電圧の大きさから回転角速度の大きさを求めることが
出来る。
Generally, in a composite vibration system configured to be able to excite vibrations in two different directions which are orthogonal to each other, when one of the vibrations is excited and the vibrator is rotated, it is orthogonal to this vibration due to the action of the above-mentioned Coriolis force. Force acts in one direction, and the other vibration is excited. Since the magnitude of this vibration is proportional to the magnitude of the vibration on the input side and the rotational angular velocity, the magnitude of the rotational angular velocity is changed from the magnitude of the output voltage proportional to the magnitude of this vibration when the input voltage is constant. You can ask.

【0004】図9は圧電振動ジャイロの第1の従来例の
構造概略図であり、音叉振動子を構成する振動音片10
1,101′の先端に振動音片101,101′の振動
方向と直角に振動するように構成された振動音片10
2,102′が付加されている。振動音片101,10
1′および102,102′は金属で構成され、各々の
音片には両面に電極が形成され、厚さ方向に分極された
圧電セラミックス薄板103,104,105,106
が接合されている。
FIG. 9 is a schematic structural view of a first conventional example of a piezoelectric vibrating gyro, and a vibrating sound piece 10 constituting a tuning fork vibrator.
Vibrating sound piece 10 configured to vibrate at the tip of 1, 101 'at a right angle to the vibration direction of the vibrating sound piece 101, 101'.
2, 102 'are added. Vibrating sound piece 101, 10
Reference numerals 1'and 102, 102 'are made of metal, and electrodes are formed on both sides of each sound piece, and piezoelectric ceramic thin plates 103, 104, 105, 106 polarized in the thickness direction.
Are joined.

【0005】入力側の圧電セラミックス薄板103,1
04に、先端部の振動音片102,102′を含めた振
動音片101,101′の共振周波数に等しい周波数の
駆動電圧を印加して振動音片を101,101′を励振
する。このとき振動音片102,102′はそれぞれ振
動音片1,1′と一緒に振動するが、振動音片102,
102′自身は振動音片101,101′の振動方向と
直角な方向には振動しない。しかし、この状態で音叉振
動子を図に示すように振動音片101,101′,10
2,102′の中心を軸にして回転させると、コリオリ
力の作用により振動音片101,101′の振動方向と
直角な方向に力が作用し振動音片102,102′を振
動させる。その結果、出力側の圧電セラミックス薄板1
05,106には回転角速度に比例した電圧が発生す
る。
Piezoelectric ceramic thin plates 103, 1 on the input side
To 04, a drive voltage having a frequency equal to the resonance frequency of the vibrating sound piece 101, 101 'including the vibrating sound piece 102, 102' at the tip is applied to excite the vibrating sound piece 101, 101 '. At this time, the vibrating sound pieces 102 and 102 'vibrate together with the vibrating sound pieces 1 and 1', respectively.
102 'itself does not vibrate in the direction perpendicular to the vibrating direction of the vibrating sound pieces 101, 101'. However, in this state, the tuning fork vibrator is vibrated as shown in the figure.
When rotated about the center of 2, 102 'as an axis, a force acts in a direction perpendicular to the vibrating direction of the vibrating sound pieces 101, 101' due to the action of Coriolis force to vibrate the vibrating sound pieces 102, 102 '. As a result, the output side piezoelectric ceramic thin plate 1
At 05 and 106, a voltage proportional to the rotational angular velocity is generated.

【0006】図10は圧電振動ジャイロの第2の従来例
の構造概略図である。この圧電振動ジャイロは、断面が
正方形である金属角柱107の隣合う面に、両面に電極
が形成されるとともに厚さ方向に分極された圧電セラミ
ックス薄板108,109が接合されている。金属角柱
107は互いに直角な二つの方向に、ほぼ同じ共振周波
数で屈曲振動が可能であり、かつ、圧電セラミックス薄
板108にこの共振周波数に等しい周波数の電圧を印加
すると、圧電セラミックス薄板108を接合した面が凹
凸となる方向に屈曲振動する。この状態では金属角柱1
07の圧電セラミックス薄板109には電圧が発生しな
いが、金属角柱107を長さ方向を軸として回転させる
と、コリオリ力の作用により金属角柱107は圧電セラ
ミックス薄板109を接合した面が凹凸となる方向に屈
曲振動し、圧電セラミックス109に回転角速度に比例
した電圧が発生する。
FIG. 10 is a structural schematic view of a second conventional example of a piezoelectric vibrating gyro. In this piezoelectric vibrating gyro, electrodes are formed on both surfaces and piezoelectric ceramic thin plates 108 and 109 polarized in the thickness direction are joined to adjacent surfaces of a metal prism 107 having a square cross section. The metal prism 107 can flexurally vibrate in two directions perpendicular to each other at substantially the same resonance frequency, and when a voltage having a frequency equal to this resonance frequency is applied to the piezoelectric ceramic thin plate 108, the piezoelectric ceramic thin plate 108 is bonded. Flexural vibration occurs in the direction in which the surface becomes uneven. In this state, the metal prism 1
No voltage is generated on the piezoelectric ceramic thin plate 109 of No. 07, but when the metal prism 107 is rotated about the length direction, the surface of the metal prism 107 to which the piezoelectric ceramic thin plate 109 is bonded becomes uneven due to the action of the Coriolis force. Then, the piezoelectric ceramics 109 generate a voltage proportional to the rotational angular velocity.

【0007】図11は、圧電振動ジャイロの第3の従来
例を示す概略図である。この圧電振動ジャイロは、断面
が正三角形である金属三角柱110の三つの面のほぼ中
央部に、それぞれ両面に電極が形成されているととも
に、厚さ方向に分極された圧電セラミックス薄板11
1,112,113が接合されている。金属三角柱11
0はそれぞれの辺とこれに向かい合う頂点を結ぶ方向
に、ほぼ同じ共振周波数で屈曲振動が可能であり、図1
2に示すように、一枚の圧電セラミックス薄板111に
この共振周波数にほぼ等しい周波数の電圧を印加する
と、圧電セラミックス薄板111を接合した面が凹凸と
なる方向に屈曲振動する。
FIG. 11 is a schematic view showing a third conventional example of a piezoelectric vibrating gyro. In this piezoelectric vibrating gyro, electrodes are formed on both sides of each of the three surfaces of a metal triangular prism 110 having an equilateral cross section, and the piezoelectric ceramic thin plate 11 is polarized in the thickness direction.
1, 112, 113 are joined. Metal triangular prism 11
0 indicates that bending vibration is possible at almost the same resonance frequency in the direction connecting each side and the facing vertex.
As shown in FIG. 2, when a voltage having a frequency substantially equal to this resonance frequency is applied to one piezoelectric ceramic thin plate 111, the surface to which the piezoelectric ceramic thin plate 111 is bonded is flexed and vibrated in a direction in which it becomes uneven.

【0008】図13を参照して、隣合う2つの圧電セラ
ミックス薄板111,112に同一振幅、同一位相の金
属三角柱110の共振周波数に等しい周波数の電圧を印
加すると、金属三角柱110は圧電セラミックス薄板1
11を接合した面が凹凸となる方向の屈曲振動と圧電セ
ラミックス薄板112を接合した面が凹凸となる方向の
屈曲振動とが合成されて、残りの圧電セラミックス薄板
113を接合した面が凹凸となる方向(矢印方向)に屈
曲振動する。
Referring to FIG. 13, when a voltage having a frequency equal to the resonance frequency of the metal triangular prism 110 having the same amplitude and the same phase is applied to two adjacent piezoelectric ceramic thin plates 111 and 112, the metal triangular prism 110 causes the piezoelectric ceramic thin plate 1 to move.
The bending vibration in the direction in which the surface to which 11 is joined becomes uneven is combined with the bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 112 is joined becomes uneven, and the surface on which the remaining piezoelectric ceramic thin plate 113 is joined becomes uneven. Flexural vibration occurs in the direction (arrow direction).

【0009】図14に示すように、隣合う2つの圧電セ
ラミックス薄板111,112に同一振幅、逆位相の金
属三角柱10の共振周波数に等しい周波数の電圧を印加
すると、金属三角柱110は圧電セラミックス薄板11
1を接合した面が凹凸となる方向の屈曲振動と圧電セラ
ミックス薄板112を接合した面が凹凸となる方向の屈
曲振動とが合成されて、残りの圧電セラミックス薄板1
13を接合した面と平行な方向(矢印方向)に屈曲振動
する。
As shown in FIG. 14, when a voltage having a frequency equal to the resonance frequency of the metal triangular prism 10 having the same amplitude and the opposite phase is applied to two adjacent piezoelectric ceramic thin plates 111 and 112, the metal triangular prism 110 causes the piezoelectric ceramic thin plate 11 to move.
The bending vibration in the direction in which the surface to which 1 is joined becomes uneven is combined with the bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 112 is joined becomes uneven, and the remaining piezoelectric ceramic thin plate 1
Flexural vibration occurs in the direction (arrow direction) parallel to the surface on which 13 is joined.

【0010】図13の状態で金属三角柱110を長さ方
向の中心を軸にして回転させるとコリオリ力の作用によ
り金属三角柱110には図15に示すように、圧電セラ
ミックス薄板113を接合した面が凹凸となる方向と直
角な方向に屈曲振動する。図14に示したように、金属
三角柱110の圧電セラミックス薄板113と平行な方
向の屈曲振動は圧電セラミックス薄板111,112に
同一振幅、逆位相の電圧を印加することによって得られ
るため、逆の効果により金属三角柱110を圧電セラミ
ックス薄板113と平行な方向に屈曲振動した場合には
圧電セラミックス薄板111,112に印加されている
電圧の一方がその分減少し、他方がその分増加する。従
って、圧電セラミックス薄板111,112の端子電圧
の差の電圧は金属三角柱110の回転角速度に比例した
電圧となる。
When the metal triangular prism 110 is rotated about the center in the lengthwise direction in the state shown in FIG. 13, the surface of the metal triangular prism 110 to which the piezoelectric ceramic thin plate 113 is bonded as shown in FIG. 15 due to the action of Coriolis force. Flexural vibration occurs in a direction perpendicular to the direction of the unevenness. As shown in FIG. 14, since the bending vibration of the metal triangular prism 110 in the direction parallel to the piezoelectric ceramic thin plate 113 is obtained by applying voltages of the same amplitude and opposite phase to the piezoelectric ceramic thin plates 111 and 112, the opposite effect is obtained. Thus, when the metal triangular prism 110 is flexurally vibrated in a direction parallel to the piezoelectric ceramic thin plate 113, one of the voltages applied to the piezoelectric ceramic thin plates 111 and 112 is reduced by that amount and the other voltage is increased by that amount. Therefore, the voltage of the difference between the terminal voltages of the piezoelectric ceramic thin plates 111 and 112 becomes a voltage proportional to the rotational angular velocity of the metal triangular prism 110.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
圧電振動ジャイロにおいては、いずれも金属音片と圧電
セラミックス薄板とを接着剤を用いて接合しており、接
着位置のばらつきあるいは接着層のばらつきなどによ
り、圧電振動ジャイロの特性が変動するという欠点があ
った。
However, in all of the conventional piezoelectric vibrating gyros, the metal sound piece and the piezoelectric ceramic thin plate are joined together by using an adhesive agent, which causes variations in the bonding position or variations in the adhesive layer. Therefore, there is a drawback that the characteristics of the piezoelectric vibration gyro vary.

【0012】また、音叉振動子を用いた第1の例では、
振動音片101,101′と102,102′を直角に
接合する必要があり、精度良く組み立てるのが難しいと
言う欠点があった。
In the first example using the tuning fork vibrator,
The vibrating sound pieces 101, 101 'and 102, 102' must be joined at a right angle, which is a drawback that it is difficult to assemble them with high precision.

【0013】本発明の技術的課題は、構造が簡単で、接
着工程が不要で、かつ、特性のばらつきの少ない圧電振
動ジャイロを得ることにある。
A technical object of the present invention is to obtain a piezoelectric vibrating gyro which has a simple structure, does not require a bonding step, and has a small variation in characteristics.

【0014】[0014]

【課題を解決するための手段】本発明によれば、圧電セ
ラミックス円柱の外周面に該圧電セラミックス円柱の周
方向のほぼ3分の2の領域に、該圧電セラミックス円柱
の長さ方向と平行な奇数個の帯状電極を等間隔に形成
し、これらの帯状電極を互いに一つおきに電気的に接続
して2端子として分極処理を施し、分極処理後、中央部
の帯状電極を含む端子をアース電極とし、中央部の帯状
電極を含まない帯状電極の組を中央部の帯状電極を中心
にして2つの組に電気的に分離して2個の入出力端子と
し、これら2個の入出力端子にそれぞれ位相および電圧
振幅が等しく、前記圧電セラミックス円柱の屈曲振動モ
ードの共振周波数にほぼ等しい周波数の励振用の交流電
圧を印加すると同時に、これら2個の入出力端子の差動
電圧を検出するように構成したことを特徴とする圧電振
動ジャイロが得られる。
According to the present invention, the outer peripheral surface of a piezoelectric ceramics cylinder is provided in a region of approximately two-thirds of the circumference of the piezoelectric ceramics cylinder parallel to the lengthwise direction of the piezoelectric ceramics cylinder. An odd number of strip electrodes are formed at equal intervals, every other strip electrodes are electrically connected to each other and subjected to polarization treatment as two terminals, and after the polarization treatment, the terminal including the strip electrodes in the central portion is grounded. A pair of strip-shaped electrodes that do not include the strip-shaped electrode in the central portion is electrically separated into two sets centering on the strip-shaped electrode in the central portion to form two input / output terminals. These two input / output terminals Is applied with an AC voltage for excitation having a frequency and a voltage amplitude which are equal to each other and which is approximately equal to the resonance frequency of the bending vibration mode of the piezoelectric ceramic cylinder, and at the same time, the differential voltage between these two input / output terminals is detected. Piezoelectric vibrating gyroscope is obtained, characterized in that the configuration was.

【0015】[0015]

【実施例】本発明の一実施例の圧電振動ジャイロを図面
を用いて説明する。図1は本発明の一実施例の圧電振動
ジャイロの要部を示す斜視図である。図1において符号
10は本発明の圧電振動ジャイロに用いられる圧電セラ
ミックス円柱を示している。この圧電セラミックス円柱
の外周面には円周方向のほぼ3分の2の領域に長さ方向
と平行な奇数個の帯状電極Lが等間隔に形成されてい
る。これらの帯状電極は曲面スクリーン印刷で直接形成
するか、あるいはメッキ等で全面に形成された電極の不
要部分をフォトエッチングにより不要部分を除去するこ
とにより形成することが出来る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A piezoelectric vibrating gyroscope according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a main part of a piezoelectric vibrating gyroscope according to an embodiment of the present invention. In FIG. 1, reference numeral 10 indicates a piezoelectric ceramic cylinder used in the piezoelectric vibration gyro of the present invention. On the outer peripheral surface of this piezoelectric ceramic cylinder, an odd number of strip electrodes L parallel to the length direction are formed at equal intervals in a region of approximately two-thirds in the circumferential direction. These strip electrodes can be formed directly by curved surface screen printing, or can be formed by removing unnecessary portions of the electrodes formed on the entire surface by plating or the like by photoetching.

【0016】以下説明を簡単にするために圧電セラミッ
クス円柱10に帯状電極5個の場合を示す一実施例を説
明する。図2は図1に示した圧電セラミックス円柱10
の外周面に、5個の帯状電極11,12,13,14,
及び15を形成し、かつ、これらを互いに1個おきに接
続して分極した場合に圧電セラミックス円柱10の断面
方向における分極の向きを示す説明図であり、分極の向
きは点線で示されている。
In order to simplify the description, an embodiment will be described in which the piezoelectric ceramic cylinder 10 has five strip electrodes. FIG. 2 shows the piezoelectric ceramic cylinder 10 shown in FIG.
On the outer peripheral surface of the five strip-shaped electrodes 11, 12, 13, 14,
FIG. 5 is an explanatory view showing the polarization direction in the cross-sectional direction of the piezoelectric ceramic cylinder 10 when the electrodes 15 and 15 are connected to each other and polarized, and the polarization direction is indicated by a dotted line. .

【0017】図3は、本発明の圧電振動ジャイロの動作
原理の基本原理の説明図である。図3において、帯状電
極11,12,13,14,15の間に位置する圧電セ
ラミックス円柱10の帯状電極間隙部をそれぞれG1,
G2,G3,及びG4とする。今、間隙部G1に交流電
圧を印加すると、印加電界の向きが分極の向きと等しい
場合は間隙部G1に伸び歪が発生し、印加電界の向きが
分極の向きと逆向きの場合は間隙部G1に縮み歪が発生
する。従って帯状電極間隙部G1に圧電セラミックス円
柱10の屈曲振動モードの共振周波数にほぼ等しい周波
数の励振用の交流電圧を印加すると圧電セラミックス円
柱10は圧電横効果によりほぼ帯状電極間隙部G1の中
心線と圧電セラミックス円柱の中心軸とを含む面に沿う
矢印方向に屈曲振動する。図3において別の駆動源によ
り圧電セラミックス円柱10が矢印方向に振動している
場合、圧電効果により帯状電極11−12間に電圧が発
生する。
FIG. 3 is an explanatory view of the basic principle of the operation principle of the piezoelectric vibrating gyro of the present invention. In FIG. 3, the strip-shaped electrode gap portions of the piezoelectric ceramic cylinder 10 located between the strip-shaped electrodes 11, 12, 13, 14, and 15 are respectively denoted by G1,
Let G2, G3, and G4. Now, when an alternating voltage is applied to the gap G1, elongation strain occurs in the gap G1 when the direction of the applied electric field is equal to the direction of polarization, and when the direction of the applied electric field is opposite to the direction of polarization, the gap is generated. Shrinkage distortion occurs in G1. Therefore, when an AC voltage for excitation having a frequency substantially equal to the resonance frequency of the bending vibration mode of the piezoelectric ceramic cylinder 10 is applied to the strip electrode gap G1, the piezoelectric ceramic column 10 is substantially aligned with the center line of the strip electrode gap G1 due to the piezoelectric lateral effect. Flexural vibration occurs in the direction of the arrow along the plane including the central axis of the piezoelectric ceramic cylinder. In FIG. 3, when the piezoelectric ceramic cylinder 10 is vibrating in the arrow direction by another drive source, a voltage is generated between the strip electrodes 11-12 by the piezoelectric effect.

【0018】図4は帯状電極12を挟む帯状電極11お
よび13を接続し、これらの帯状電極11および13と
帯状電極12との間に交流電圧を印加した場合に圧電セ
ラミックス円柱10の断面方向に発生する歪の状態及び
振動方向を示す説明図である。図4に示すように、間隙
部G1部とG2部のそれぞれの分極の向きに対して印加
する電界の極性を同じになるようにして、圧電セラミッ
クス円柱10の屈曲振動モードの共振周波数にほぼ等し
い周波数の励振用の交流電圧を印加すると圧電セラミッ
クス円柱10には図3で説明したように、それぞれ実線
の矢印で示すようにほぼ帯状電極間隙部G1及びG2の
中心線圧電セラミックス円柱の中心軸とを含む面に沿う
方向と同じ向きの振動駆動力が発生し、これらが図5に
示すように合成されて圧電セラミックス円柱10はほぼ
帯状電極12の中心線と圧電セラミックス円柱の中心軸
とを含む面に沿う矢印方向に屈曲振動する。図4におい
て別の駆動源により圧電セラミックス円柱10が矢印方
向に振動している場合、圧電効果により帯状電極11と
12の間および帯状電極12と13の間に帯状電極12
を基準として同相の電圧が発生する。
FIG. 4 shows that the strip-shaped electrodes 11 and 13 sandwiching the strip-shaped electrode 12 are connected to each other, and when an alternating voltage is applied between the strip-shaped electrodes 11 and 13 and the strip-shaped electrode 12, the piezoelectric ceramic column 10 is cross-sectioned. It is explanatory drawing which shows the state of the generated distortion and the vibration direction. As shown in FIG. 4, the polarities of the applied electric fields are set to be the same with respect to the respective polarization directions of the gap portion G1 portion and the gap portion G2, and are substantially equal to the resonance frequency of the bending vibration mode of the piezoelectric ceramic cylinder 10. When an alternating voltage for exciting a frequency is applied, the piezoelectric ceramic cylinder 10 is substantially aligned with the central axis of the piezoelectric ceramic cylinder as shown in FIG. 3 by the center lines of the strip electrode gaps G1 and G2 as indicated by solid arrows. A vibration driving force is generated in the same direction as the direction along the plane including the, and these are combined as shown in FIG. 5, so that the piezoelectric ceramic cylinder 10 substantially includes the center line of the strip electrode 12 and the center axis of the piezoelectric ceramic cylinder. Flexural vibration occurs in the direction of the arrow along the surface. In FIG. 4, when the piezoelectric ceramic cylinder 10 is vibrating in the direction of the arrow by another drive source, the strip electrode 12 is formed between the strip electrodes 11 and 12 and between the strip electrodes 12 and 13 by the piezoelectric effect.
In-phase voltage is generated with reference to.

【0019】図6は、一方の帯状電極12及び14と他
方の帯状電極11、13、及び15との間に交流電圧V
iを印加し、他方の帯状電極11、13、及び15とを
アースする。これにより、圧電セラミックス円柱10の
断面に実線の矢印X′、Y′の方向に歪みが夫々生じ
る。これら歪みX′、Y′が合成されて白抜きの矢印
R′で示された屈曲振動が発生する。逆に、外力を加え
ることによりこの屈曲振動を起こすと、一方の帯状電極
12及び14と他方の帯状電極11、13、及び15と
の間に交流電圧Viが発生する。 図7を参照して、交流
電圧Viと逆相のVi′を帯状電極14とアースとの間
に印加した場合が示され、圧電効果により歪みY″が発
生する。この場合、圧電セラミックス円柱10が白抜き
の矢印R″方向に振動する。逆に、外力を加えることに
よりこの振動を起こすと、アースに対して一方の帯状電
極12には交流電圧Viが発生し、他方の帯状電極14
には交流電圧Viと逆相の電圧が発生する。
FIG . 6 shows one of the strip electrodes 12 and 14 and the other.
AC voltage V between the other strip electrodes 11, 13, and 15
i is applied, and the other strip electrodes 11, 13, and 15 are connected to each other.
Ground. As a result, the piezoelectric ceramic cylinder 10
Distortion occurs in the directions of solid arrows X'and Y'on the cross section.
It These distortions X'and Y'are combined to create a white arrow.
A bending vibration indicated by R'is generated. On the contrary, apply external force
If this bending vibration is caused by
12 and 14 and the other strip electrodes 11, 13, and 15
AC voltage Vi is generated during the period. AC with reference to FIG.
Between the voltage Vi and the opposite phase Vi ′ is applied between the strip electrode 14 and the ground.
Is shown, and strain Y ″ is generated due to the piezoelectric effect.
To live. In this case, the piezoelectric ceramic cylinder 10 is outlined
Oscillates in the direction of the arrow R ″. Conversely, when external force is applied
If this vibration is caused more, one belt-shaped electric charge will be
An alternating voltage Vi is generated at the pole 12, and the other strip electrode 14
A voltage having a phase opposite to that of the AC voltage Vi is generated in the.

【0020】図8は、前述の5個の帯状電極を有する圧
電セラミックス円柱10を用いて構成した本発明の圧電
振動ジャイロの動作原理を説明するための説明図であ
る。図8に示す実施例においては、アースされている帯
状電極11,13および15と帯状電極12,14との
間に上述した交流電圧Viを印加する。この状態は図6
と同様であるから、圧電セラミックス円柱10は白抜き
の矢印R′の方向に振動する。
FIG . 8 shows a pressure sensor having the above-mentioned five strip electrodes.
Piezoelectric of the present invention constituted by using the electroceramic cylinder 10
It is an explanatory view for explaining the operating principle of the vibration gyro.
It In the embodiment shown in FIG. 8, a grounded band
Of the strip electrodes 11, 13 and 15 and the strip electrodes 12, 14
The above-mentioned AC voltage Vi is applied between them. This state is shown in Figure 6.
Since it is the same as,
It vibrates in the direction of arrow R '.

【0021】この状態で圧電セラミックス円柱10をこ
れの軸を中心として矢印Aの方向に90°回転させる
と、矢印R′の振動方向と直角な方向にコリオリ力が発
生し、圧電セラミックス円柱10は、矢印Cの方向に振
動する。この場合、図7で示された状態になり、帯状電
極12と14とには、この矢印Cの方向の振動のレベル
に比例するレベルの互いに逆位相の電圧が発生し、帯状
電極12と14とに接続されている差動増幅器20の入
力端子に入力され、差動増幅器20の出力端子にはコリ
オリ力により発生した矢印R′の方向の振動のレベルに
比例した電圧、即ち、加えられた回転速度に比例した電
圧が出力される。
In this state, the piezoelectric ceramic cylinder 10 is
Rotate 90 ° in the direction of arrow A around these axes
And Coriolis force is generated in the direction perpendicular to the vibration direction of arrow R '.
The piezoelectric ceramic cylinder 10 is shaken in the direction of arrow C.
Move. In this case, the state shown in FIG.
The poles 12 and 14 have a vibration level in the direction of the arrow C.
The voltage of opposite phase with the level proportional to
Input of the differential amplifier 20 connected to the electrodes 12 and 14.
Input to the output terminal of the differential amplifier 20
The vibration level in the direction of arrow R'generated by the tilting force
Proportional voltage, i.e., a voltage proportional to the applied rotation speed
Pressure is output.

【0022】以上の説明は帯状電極11〜15の数が5
個の場合について行ったが、帯状電極の数を3個、7個
などの奇数個とすることにより、同様の原理の圧電振動
ジャイロが得られる。ただし、この場合に、これらの帯
状電極を圧電セラミックス円柱10の外周面の内、ほぼ
円周方向の3分の2の領域に形成する必要がある。これ
は、本発明の圧電振動ジャイロにおいては、帯状電極を
中央部の帯状電極に対して両側の2つの帯状電極の組に
分けて考えた時、それぞれの帯状電極の組のほぼ中心線
と圧電セラミックス円柱10の中心軸とを含む面に沿う
方向の2つ屈曲振動の和が合成されて駆動用の振動が励
振され、2つの屈曲振動の差が合成されて、圧電セラミ
ックス円柱10をこれの軸を中心として回転させたとき
のコリオリ力にともなう出力電圧を検出しており、駆動
される振動振幅はそれぞれの帯状電極の組が形成された
面積が広い方が大きくなるが、各々の帯状電極を形成す
る領域をほぼ円周方向の3分の1以上の領域にすると駆
動用の2つの屈曲振動の方向の間の角度が120°以上
となり、合成された振動の振幅は、ベクトルの合成の法
則から明らかなように、一方の駆動用の振動振幅より小
さくなるためである。
In the above description, the number of strip electrodes 11 to 15 is five.
Although the case where the number of strip electrodes is set to 3 is set to an odd number such as 3 and 7, a piezoelectric vibration gyro having the same principle can be obtained. However, in this case, it is necessary to form these strip electrodes on the outer circumferential surface of the piezoelectric ceramic cylinder 10 in a region of approximately two-thirds in the circumferential direction. This is because, in the piezoelectric vibrating gyroscope of the present invention, when the strip electrode is divided into two sets of strip electrodes on both sides of the strip electrode in the central portion, it is considered that the center line and the piezoelectric of each strip electrode set are equal to each other. The sum of two bending vibrations in the direction along the plane including the central axis of the ceramic cylinder 10 is combined to excite the driving vibration, and the difference between the two bending vibrations is combined to form the piezoelectric ceramic cylinder 10 The output voltage due to the Coriolis force when rotating about the axis is detected, and the vibration amplitude to be driven becomes larger when the area where each set of strip electrodes is formed is larger. If the region forming the is approximately one third or more of the circumferential direction, the angle between the two bending vibration directions for driving becomes 120 ° or more, and the amplitude of the combined vibration is Clear from law As is because smaller than the vibration amplitude of the one drive.

【0023】また帯状電極の個数については、個数を増
すことにより、静電容量が大きくなり、インピーダンス
が小さくなって、ノイズに対する信号の取扱が有利にな
るが、これを余り多くすると電極形成精度を高くするこ
とが難しくなったり、印加電界が圧電セラミックス円柱
10の表面層にしか作用しなくなり、検出感度が低下す
るなどのデメリットが生ずる。
With respect to the number of strip electrodes, the capacitance increases and the impedance decreases as the number increases, which makes it advantageous to handle signals with respect to noise. It is difficult to raise the height, and the applied electric field acts only on the surface layer of the piezoelectric ceramic cylinder 10, which causes demerits such as a decrease in detection sensitivity.

【0024】[0024]

【発明の効果】以上示したよう本発明によれば、圧電振
動子が、圧電セラミックス単体円柱を用いているため、
寸法精度の高い振動子が得られ、材質特性的に均質な材
利用を用いることにより、直交する二つの振動モードの
特性を精度良く合わせることができ、構造が簡単である
上に、接着剤が不要で、接着位置や接着層のばらつきな
どによる特性のばらつきの無い圧電振動ジャイロが得ら
れる。
As described above, according to the present invention, since the piezoelectric vibrator uses the piezoelectric ceramic unit cylinder,
A vibrator with high dimensional accuracy can be obtained, and by using a material that is homogeneous in terms of material characteristics, it is possible to accurately match the characteristics of two orthogonal vibration modes, the structure is simple, and the adhesive is used. A piezoelectric vibration gyro that does not require variations in characteristics due to variations in the bonding position and the adhesive layer can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の圧電振動ジャイロに用いら
れる圧電セラミックス円柱10を示す斜視図である。
FIG. 1 is a perspective view showing a piezoelectric ceramic cylinder 10 used in a piezoelectric vibrating gyroscope according to an embodiment of the present invention.

【図2】図1の圧電セラミックス円柱10の他の実施例
を示し、断面方向の分極の向きを説明するための説明図
である。
FIG. 2 is an explanatory view showing another embodiment of the piezoelectric ceramic cylinder 10 of FIG. 1 and explaining the direction of polarization in the cross-sectional direction.

【図3】本発明の動作を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the operation of the present invention.

【図4】本発明の動作を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining the operation of the present invention.

【図5】本発明の動作を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining the operation of the present invention.

【図6】本発明の動作を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the operation of the present invention.

【図7】本発明の動作を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the operation of the present invention.

【図8】本発明の動作を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the operation of the present invention.

【図9】圧電振動ジャイロの第1の従来例を示す概略図
である。
FIG. 9 is a schematic view showing a first conventional example of a piezoelectric vibrating gyro.

【図10】従来の圧電振動ジャイロの第2の従来例を示
す概略図である。
FIG. 10 is a schematic view showing a second conventional example of a conventional piezoelectric vibration gyro.

【図11】従来の圧電振動ジャイロの第3の従来例を示
す概略図である。
FIG. 11 is a schematic view showing a third conventional example of a conventional piezoelectric vibration gyro.

【図12】従来の圧電振動ジャイロの動作を説明するた
めの説明図である。
FIG. 12 is an explanatory diagram for explaining the operation of the conventional piezoelectric vibration gyro.

【図13】従来の圧電振動ジャイロの動作を説明するた
めの説明図である。
FIG. 13 is an explanatory diagram for explaining the operation of the conventional piezoelectric vibration gyro.

【図14】従来の圧電振動ジャイロの動作を説明するた
めの説明図である。
FIG. 14 is an explanatory diagram for explaining the operation of the conventional piezoelectric vibration gyro.

【図15】従来の圧電振動ジャイロの動作を説明するた
めの説明図である。
FIG. 15 is an explanatory diagram for explaining the operation of the conventional piezoelectric vibration gyro.

【符号の説明】[Explanation of symbols]

10 圧電セラミックス円柱 11〜15 帯状電極(L) 20 差動増幅器 101,101′,102,102′ 金属音片振動
子 103,104,105,106 圧電セラミックス
薄板 107 金属角柱 108,109 圧電セラミックス薄板 110 金属三角柱 111,112,113 圧電セラミックス薄板
10 Piezoelectric Ceramics Cylinders 11 to 15 Strip Electrodes (L) 20 Differential Amplifiers 101, 101 ', 102, 102' Metallic Tone Vibrators 103, 104, 105, 106 Piezoelectric Ceramics Thin Plates 107 Metal Rectangular Pillars 108, 109 Piezoelectric Ceramics Thin Plates 110 Metal triangular prism 111, 112, 113 Piezoelectric ceramic thin plate

フロントページの続き (72)発明者 増子 力 宮城県仙台市太白区郡山六丁目7番1号 株式会社トーキン内 (56)参考文献 特開 平5−79844(JP,A) 特開 平4−106407(JP,A) 特開 平2−82164(JP,A) 特開 平3−130611(JP,A) 特開 平2−266214(JP,A)Front Page Continuation (72) Inventor Riki Masuko 6-7-1, Koriyama, Taichiro-ku, Sendai City, Miyagi Prefecture Tokin Co., Ltd. (56) Reference JP-A-5-79844 (JP, A) JP-A-4-106407 (JP, A) JP-A-2-82164 (JP, A) JP-A-3-130611 (JP, A) JP-A-2-266214 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧電セラミックス円柱の外周面に該圧電
セラミックス円柱の周方向のほぼ3分の2の領域に、該
圧電セラミックス円柱の長さ方向と平行な奇数個の帯状
電極を等間隔に形成し、これらの帯状電極を互いに一つ
おきに電気的に接続して2端子として分極処理を施し、
分極処理後、中央部の帯状電極を含む端子をアース電極
とし、中央部の帯状電極を含まない帯状電極の組を中央
部の帯状電極を中心にして2つの組に電気的に分離して
2個の入出力端子とし、これら2個の入出力端子にそれ
ぞれ位相および電圧振幅が等しく、前記圧電セラミック
ス円柱の屈曲振動モードの共振周波数にほぼ等しい周波
数の励振用の交流電圧を印加すると同時に、これら2個
の入出力端子の差動電圧を検出するように構成したこと
を特徴とする圧電振動ジャイロ。
1. An odd number of strip electrodes parallel to the length direction of the piezoelectric ceramic cylinder are formed on the outer peripheral surface of the piezoelectric ceramic cylinder at approximately two-thirds of the circumferential direction of the piezoelectric ceramic cylinder at equal intervals. Then, every other one of these strip electrodes is electrically connected to each other and is polarized as two terminals,
After the polarization treatment, the terminal including the central strip electrode is used as the ground electrode, and the group of strip electrodes not including the central strip electrode is electrically separated into two groups with the central strip electrode as the center. These two input / output terminals are applied with an AC voltage for excitation having a phase and a voltage amplitude equal to each other, and a frequency substantially equal to the resonance frequency of the bending vibration mode of the piezoelectric ceramic cylinder. A piezoelectric vibration gyro characterized by being configured to detect a differential voltage between two input / output terminals.
JP3053721A 1990-11-29 1991-02-27 Piezoelectric vibration gyro Expired - Fee Related JP2557286B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3053721A JP2557286B2 (en) 1991-02-27 1991-02-27 Piezoelectric vibration gyro
EP91120513A EP0488370B1 (en) 1990-11-29 1991-11-29 Gyroscope using circular rod type piezoelectric vibrator
DE69119715T DE69119715T2 (en) 1990-11-29 1991-11-29 Gyro with round rod as a piezo vibrator
US08/053,963 US5336960A (en) 1990-11-29 1993-04-27 Gyroscope using circular rod type piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053721A JP2557286B2 (en) 1991-02-27 1991-02-27 Piezoelectric vibration gyro

Publications (2)

Publication Number Publication Date
JPH05306935A JPH05306935A (en) 1993-11-19
JP2557286B2 true JP2557286B2 (en) 1996-11-27

Family

ID=12950697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053721A Expired - Fee Related JP2557286B2 (en) 1990-11-29 1991-02-27 Piezoelectric vibration gyro

Country Status (1)

Country Link
JP (1) JP2557286B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544338A1 (en) * 1994-11-28 1996-05-30 Nippon Denso Co Angular velocity sensor for vehicle movement control, navigation system or video camera

Also Published As

Publication number Publication date
JPH05306935A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
KR19990076780A (en) Vibrating gyroscope
JP2000337881A (en) Drive detecting apparatus for gyroscope
JP3494096B2 (en) Vibrating gyro
JP2557286B2 (en) Piezoelectric vibration gyro
JP2660940B2 (en) Piezoelectric vibration gyro
JP3292934B2 (en) Piezoelectric vibrating gyroscope and method of adjusting resonance frequency of piezoelectric vibrating gyroscope
JP2557287B2 (en) Piezoelectric vibration gyro
JPH09113279A (en) Vibrational gyro
JPH09105638A (en) Vibrating gyro
JP2540098Y2 (en) Piezoelectric vibration gyro device
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3136545B2 (en) Piezoelectric vibration gyro
JP3136544B2 (en) Gyro device
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP3312260B2 (en) Piezoelectric vibration gyro
JP3473241B2 (en) Vibrating gyroscope and method for manufacturing vibrating gyroscope
JP3511243B2 (en) Piezoelectric vibration gyro
JPH0663773B2 (en) Piezoelectric vibration gyro
JP3291664B2 (en) Piezoelectric vibration gyro
JPH05264281A (en) Piezoelectric vibrating gyro
JPS6358111A (en) Tuning fork type piezo-electric angular velocity sensor
JPH08178666A (en) Piezoelectric vibration gyroscope
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JPH06273175A (en) Piezoelectric vibration gyro
JPH06273176A (en) Piezoelectric vibration gyro

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees