JP3521315B2 - Piezoelectric vibration gyro - Google Patents
Piezoelectric vibration gyroInfo
- Publication number
- JP3521315B2 JP3521315B2 JP2001244679A JP2001244679A JP3521315B2 JP 3521315 B2 JP3521315 B2 JP 3521315B2 JP 2001244679 A JP2001244679 A JP 2001244679A JP 2001244679 A JP2001244679 A JP 2001244679A JP 3521315 B2 JP3521315 B2 JP 3521315B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- partial electrodes
- pair
- piezoelectric
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Gyroscopes (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、自動車のナビゲー
ションシステムやカメラ一体型VTRの手ブレ補正など
に用いられるジャイロスコープのうち、圧電振動子の超
音波振動を用いた圧電振動ジャイロに関する。
【0002】
【従来の技術】圧電振動ジャイロは、振動している物体
に回転角度速度が加えられると、その振動方向と直角な
方向にコリオリ力を生ずるという力学現象を利用したジ
ャイロスコープである。一般に直交する二つの異なる方
向の振動を励振可能に構成した複合振動系において、一
方の振動を励振した状態で、振動子を回転させると、前
述のコリオリ力の作用によりこの振動と直角な方向に力
が働き、他方の振動が励振される。この振動の大きさは
入力側の振動の大きさおよび回転角速度に比例するた
め、入力側の振動の大きさを一定にした場合、出力電圧
の大きさから回転角速度の大きさを求めることができ
る。
【0003】図7は従来の圧電振動ジャイロの構造を示
す斜視図である。図7に示すように、正三角形断面形状
を有する金属三角柱110の三つの面のほぼ中央部に、
それぞれ両面に電極が形成され、厚さ方向に分極された
圧電セラミックス薄板111,112,113が接合さ
れている。金属三角柱110はそれぞれの辺とこれに向
かい合う頂点を結ぶ方向に、ほぼ同じ共振周波数で屈曲
振動が可能であり、図8に示すように、一枚の圧電セラ
ミックス薄板111にこの共振周波数にほぼ等しい周波
数の電圧を印加すると、圧電セラミックス薄板111を
接合した面が凹凸となる方向に屈曲振動する。
【0004】また、図9に示すように、隣合う2枚の圧
電セラミックス薄板111,112に同一振幅、同一位
相の金属三角柱110の共振周波数にほぼ等しい周波数
の電圧を印加すると、金属三角柱110は圧電セラミッ
クス薄板111を接合した面が凹凸となる方向の屈曲振
動と圧電セラミックス薄板112を接合した面が凹凸と
なる方向の屈曲振動とが合成されて、残りの圧電セラミ
ックス薄板113を接合した面が凹凸となる方向に屈曲
振動する。
【0005】一方、図10に示すように、隣合う2枚の
圧電セラミックス薄板111,112に同一振幅、逆位
相の金属三角柱110の共振周波数にほぼ等しい周波数
の電圧を印加すると、金属三角柱110は圧電セラミッ
クス薄板111を接合した面が凹凸となる方向の屈曲振
動と圧電セラミックス薄板112を接合した面が凹凸と
なる方向の屈曲振動とが合成されて、残りの圧電セラミ
ックス薄板113を接合した面と平行な方向に屈曲振動
する。
【0006】図9の状態で金属三角柱110を長さ方向
の中心を軸にして回転させるとコリオリ力の作用により
金属三角柱110には図11に示すように、圧電セラミ
ックス薄板113を接合した面が凹凸となる方向と直角
な方向に屈曲振動する。図10に示したように、金属三
角柱110の圧電セラミックス薄板113と平行な方向
の屈曲振動は圧電セラミックス薄板111,112に同
一振幅、逆位相の電圧を印加することによって得られる
ため、逆の効果により金属三角柱110を圧電セラミッ
クス薄板113と平行な方向に屈曲振動させた場合には
圧電セラミックス薄板111,112に同一振幅、逆位
相の電圧が発生し、駆動のために圧電セラミックス薄板
111,112に印加されている電圧の一方がその分減
少し、他方がその分増加する。従って、圧電セラミック
ス薄板111,112の端子電圧の差の電圧は金属三角
柱110の回転角速度に比例した電圧となる。
【0007】
【発明が解決しようとする課題】図7〜図11に示した
従来の圧電振動ジャイロにおいては、柱状音辺の屈曲振
動モードを利用しているため、振動子の支持・固定は振
動の節の位置で行わなければならない。しかし、振動の
節点は理論的に、幅あるいは面積を持たない、点あるい
は線となるため、有限の寸法の線等で支持した場合、支
持の影響を受けることは避けられず、ジャイロ特性の劣
化を生じていた。さらに、支持の影響を少なくとようと
して、支持線の線径を細くすると外部からの振動や衝撃
に耐する耐久性が悪くなるという問題を有していた。
【0008】図12は従来の型のエネルギー閉じ込め振
動子の構造を示す平面図である。図13は従来の型のエ
ネルギー閉じ込め振動子の構造を示す断面図である。エ
ネルギー閉じ込め振動とは、振動のエネルギーが駆動電
極近傍に集中している振動モードで、圧電板の厚さ方向
の縦振動やすべり振動、圧電矩形板の幅方向の縦振動や
すべり振動など多くの振動モードがあり、FMラジオや
テレビの中間周波数フィルタに広く用いられている。エ
ネルギー閉じ込め振動は前述したように、振動のエネル
ギーが駆動電極の近傍に集中しているため、例えば、図
12に示すような、6mm×6mmで厚さ0.2mmの
圧電板10を用いて、そのほぼ中央部の直径1.5mm
の領域に駆動電極11,11′及び12を形成したFM
ラジオ用10.7MHzセラミックフィルタにおいて、
図14に示すように、前記駆動電極11,11′及び1
2を中心に直径3mmの領域の両面に空洞部分を形成す
れば、その他部分を樹脂13で固定しても振動子特性に
ほとんど影響を与えない。すなわち、リード端子の形成
が自由で支持による影響の無い圧電振動子が得られる。
しかし、この圧電振動子は、圧電振動ジャイロを構成す
ることが困難であるという問題がある。
【0009】本発明の課題は、構造が簡単で、入出力用
のリード端子の取り出しおよび支持および固定によるジ
ャイロ特性への影響が少ない、強固に支持することが可
能で、かつ、耐振動および耐衝撃特性の優れた圧電振動
ジャイロを提供することにある。
【0010】
【課題を解決するための手段】本発明によれば、厚さ方
向に分極軸を有する圧電板で該圧電板の平行する二つの
平面上で中央部分にあって、所定間隔を隔てて対向する
第一の一対の部分電極を形成し、該第一の一対の部分電
極の一方を同一平面上および反対平面上のいずれか一方
に配置して第一の平行電界励振型厚みすべりモードのエ
ネルギー閉じ込め振動子を構成し、かつ、前記第一の一
対の部分電極が形成する対向線に直交する方向に所定間
隔を隔てて対向する第二の一対の部分電極を形成し、該
第二の一対の部分電極の一方を同一平面上および反対平
面上のいずれか一方に配置して第二の平行電界励振型厚
みすべりモードのエネルギー閉じ込め振動子を構成した
ことを特徴とする圧電振動ジャイロが得られる。
【0011】
【発明の実施の形態】次に、本発明の実施例を図面に基
いて詳細に説明する。
【0012】まず、本発明に用いる平行電界励振型厚み
すべりモードのエネルギー閉じ込め振動子について図1
〜図3に基いて説明する。図1および図2に示すよう
に、分極方向が厚さ方向の圧電板14の中央部の同一面
上に、一対の部分電極15,15´が対向するように形
成されている。部分電極15,15´に挟まれている部
分にはほぼ圧電板14の面に平行な方向の電界が印加さ
れるため、直交する厚さ方向の分極との相互作用によ
り、部分電極15,15´の寸法、使用する圧電材料の
特性に合わせて適当に設計すると、この部分に平行電界
励振型厚みすべりエネルギ−閉じ込め振動子を構成する
ことができる。厚みすべり振動とは、変位及び波の伝搬
方向が共に板面に平行な振動であり、その半波長で共振
している場合の厚さ方向の変位分布は図3に示すように
なる。
【0013】図4は、本発明の圧電振動ジャイロの実施
例の構造を示す斜視図である。図4に示すように、分極
方向が厚さ方向の圧電板14のほぼ中央部の一面に、第
一の一対の部分電極15,15′が所定間隔を隔てて対
向するように形成されている。また、前記圧電板14の
ほぼ中央部の一面には、第二の一対の部分電極16,1
6′が前記第一の一対の部分電極15,15を結ぶ線と
直交する方向に所定間隔を隔てて対向するように形成さ
れている。図4においては、部分電極15,15′によ
り変位方向すなわち振動方向が前記部分電極15,1
5′の対向する方向の第一の厚みすべりモードエネルギ
ー閉じ込め振動子が構成できると同時に、部分電極1
6,16′により同様に振動方向が前記部分電極16,
16′の対向する方向の第二の厚みすべりモードエネル
ギー閉じ込め振動子が構成された複合振動子17を得る
ことができる。厚みすべりモードの共振周波数は材料が
同じ場合、ほぼ厚さによって決定されるため、第一と第
二の厚みすべりモードエネルギー閉じ込め振動子の共振
周波数はそれぞれ等しくなる。
【0014】図4において、一方の部分電極15,1
5′間に、厚みすべりモードの共振周波数にほぼ等しい
周波数の交流電圧を印加すると、電極の近傍のみに厚み
すべり振動が励振される。その時の変位の方向は図5に
示すように励振している部分電極15,15′の対向し
ている方向と一致し、x方向となる。この状態では部分
電極16,16′間にはほとんど出力電圧が発生しな
い。今、この複合振動子17を圧電板の面と垂直な軸の
回りに回転させると、振動方向と直角な方向にコリオリ
力が発生し、図2に示すように、励振している振動方向
と直角なy方向の振動が発生する。この振動方向は部分
電極16,16′による振動方向と同じになるため、部
分電極16,16′間に回転角速度に比例した電圧が発
生する。
【0015】図4に示した複合振動子17は、エネルギ
ー閉じ込めモードで振動するため、図11に基いて説明
したように、部分電極15,15´,16,16´の面
積のおよそ2倍の径の部分に空洞部が形成された樹脂で
複合振動子17を固定すれば、支持による振動特性の影
響はほとんど無い。したがって、支持によるジャイロ特
性の変化もほとんど無くなる。
【0016】図6は本発明の他の実施例を示す斜視図で
ある。図6において、分極方向が厚さ方向の圧電板14
のほぼ中央部の一方の面に、第一の一対の部分電極1
8,18′が所定間隔を隔てて対向するように形成され
ている。また、前記圧電板14のほぼ中央部の他方の面
には、第二の一対の部分電極19,19′が前記第一の
一対の部分電極18,18を結ぶ線と直交する方向に所
定間隔を隔てて対向するように形成されている。これら
の圧電板14と第一の一対の部分電極18,18′と第
二の一対の部分電極19,19′とにより複合振動子1
7´が構成される。
【0017】図6に示す実施例においても、図4に示し
た実施例と同様に、一方の部分電極18,18′間に、
厚みすべりモードの共振周波数にほぼ等しい周波数の交
流電圧を印加すると、電極の近傍のみに厚みすべり振動
が励振される。その時の変位の方向は図5の場合と同様
に部分電極18,18′の対向している方向と一致し、
x方向となる。この状態では部分電極19,19′間に
はほとんど出力電圧が発生しない。今、この複合振動子
17′を圧電板14の面と垂直な軸の回りに回転させる
と、振動方向と直角な方向にコリオリ力が発生し、やは
り図5の場合と同様に、励振している振動方向と直角な
y方向の振動が発生する。この振動方向は部分電極1
9,19′による振動方向と同じになるため、部分電極
19,19′間に回転角速度に比例した電圧が発生す
る。
【0018】図4に示した実施例では第一の一対の部分
電極と第二の一対の部分電極を圧電板14の同一面に形
成し、また、図6に示した実施例では第一の一対の部分
電極と第二の一対の部分電極を圧電板14の異なる面に
形成したが、これに限定されず、第一の一対の部分電極
と第二の一対の部分電極のそれぞれ一方を圧電板14の
異なる面に形成してもよい。
【0019】
【発明の効果】本発明の圧電振動ジャイロは、構造が簡
単で、支持および固定によるジャイロ特性への影響がほ
とんど無く、強固に支持することが可能で、かつ、耐振
動および耐衝撃特性の優れている。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibration of a piezoelectric vibrator in a gyroscope used for a camera navigation system or a camera-integrated VTR. The present invention relates to a piezoelectric vibrating gyroscope using the same. 2. Description of the Related Art A piezoelectric vibrating gyroscope is a gyroscope utilizing a mechanical phenomenon that, when a rotating angular velocity is applied to a vibrating object, a Coriolis force is generated in a direction perpendicular to the direction of the vibration. In general, in a composite vibration system configured to be able to excite vibrations in two different directions that are orthogonal to each other, when one of the vibrations is excited and the vibrator is rotated, the aforementioned Coriolis force acts in a direction perpendicular to this vibration. The force works and the other vibration is excited. Since the magnitude of this vibration is proportional to the magnitude of the vibration on the input side and the rotational angular velocity, when the magnitude of the vibration on the input side is constant, the magnitude of the rotational angular velocity can be obtained from the magnitude of the output voltage. . FIG. 7 is a perspective view showing the structure of a conventional piezoelectric vibrating gyroscope. As shown in FIG. 7, the metal triangular prism 110 having a regular triangular cross-sectional shape is substantially at the center of the three surfaces,
Electrodes are formed on both sides, and piezoelectric ceramic thin plates 111, 112, 113 polarized in the thickness direction are joined. The metal triangular prism 110 can bend and vibrate at substantially the same resonance frequency in the direction connecting each side and the apex facing the same, and as shown in FIG. 8, a single piezoelectric ceramic thin plate 111 has almost the same resonance frequency. When a voltage having a frequency is applied, the surface to which the piezoelectric ceramic thin plate 111 is bonded vibrates in a bending direction in a direction in which the surface becomes uneven. Further, as shown in FIG. 9, when a voltage having a frequency substantially equal to the resonance frequency of a metal triangular prism 110 having the same amplitude and the same phase is applied to two adjacent piezoelectric ceramic thin plates 111 and 112, the metal triangular prism 110 becomes The bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 111 is bonded becomes uneven and the bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 112 is bonded becomes uneven are combined, and the surface to which the remaining piezoelectric ceramic thin plate 113 is bonded is formed. It bends and vibrates in the direction of unevenness. On the other hand, as shown in FIG. 10, when a voltage having a frequency substantially equal to the resonance frequency of a metal triangular prism 110 having the same amplitude and opposite phase is applied to two adjacent piezoelectric ceramic thin plates 111 and 112, the metal triangular prism 110 becomes The bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 111 is bonded becomes uneven and the bending vibration in the direction in which the surface to which the piezoelectric ceramic thin plate 112 is bonded becomes uneven are combined with the surface to which the remaining piezoelectric ceramic thin plate 113 is bonded. Bending vibration occurs in parallel directions. When the metal triangular prism 110 is rotated around the center in the longitudinal direction in the state of FIG. 9, the surface of the metal triangular prism 110 to which the piezoelectric ceramic thin plate 113 is joined is formed on the metal triangular prism 110 by the action of Coriolis force, as shown in FIG. Bending vibration occurs in a direction perpendicular to the direction of the unevenness. As shown in FIG. 10, the bending vibration of the metal triangular prism 110 in the direction parallel to the piezoelectric ceramic thin plate 113 is obtained by applying voltages of the same amplitude and opposite phases to the piezoelectric ceramic thin plates 111 and 112, so that the opposite effects are obtained. When the metal triangular prism 110 is bent and vibrated in a direction parallel to the piezoelectric ceramic thin plate 113, a voltage of the same amplitude and opposite phase is generated in the piezoelectric ceramic thin plates 111 and 112, and the piezoelectric ceramic thin plates 111 and 112 are driven for driving. One of the applied voltages decreases correspondingly, and the other increases accordingly. Therefore, the voltage of the difference between the terminal voltages of the piezoelectric ceramic thin plates 111 and 112 is a voltage proportional to the rotational angular velocity of the metal triangular prism 110. In the conventional piezoelectric vibrating gyroscope shown in FIGS. 7 to 11, since the bending vibration mode of the columnar sound side is used, the vibrator is supported and fixed by vibration. Must be done at the position of the clause. However, the nodes of vibration are theoretically points or lines that have no width or area, so if they are supported by a line with finite dimensions, etc., it is inevitable that they will be affected by the support, and the gyro characteristics will deteriorate. Was occurring. Further, if the diameter of the support wire is reduced to reduce the influence of the support, there is a problem that the durability against external vibrations and impacts is deteriorated. FIG. 12 is a plan view showing the structure of a conventional type energy trapping vibrator. FIG. 13 is a cross-sectional view showing the structure of a conventional type energy trapping vibrator. Energy trapped vibration is a vibration mode in which the energy of the vibration is concentrated near the drive electrode, and many vibrations such as longitudinal vibration and sliding vibration in the thickness direction of the piezoelectric plate and longitudinal vibration and sliding vibration in the width direction of the piezoelectric rectangular plate There is a vibration mode, which is widely used for intermediate frequency filters of FM radios and televisions. As described above, since the energy of the energy confinement vibration is concentrated near the driving electrode, for example, as shown in FIG. 12, a piezoelectric plate 10 having a size of 6 mm × 6 mm and a thickness of 0.2 mm is used. 1.5mm diameter at the center
Where drive electrodes 11, 11 'and 12 are formed in the region of
In a 10.7MHz ceramic filter for radio,
As shown in FIG. 14, the drive electrodes 11, 11 'and 1
If hollow portions are formed on both sides of a region having a diameter of 3 mm around the center 2, even if other portions are fixed with the resin 13, the characteristics of the vibrator are hardly affected. That is, a piezoelectric vibrator in which the formation of the lead terminals is free and which is not affected by the support can be obtained.
However, this piezoelectric vibrator has a problem that it is difficult to configure a piezoelectric vibrating gyroscope. SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure which is simple in structure, has little influence on gyro characteristics due to taking out and supporting and fixing of input / output lead terminals, can be firmly supported, and has vibration and vibration resistance. An object of the present invention is to provide a piezoelectric vibrating gyroscope having excellent impact characteristics. According to the present invention, a piezoelectric plate having a polarization axis in a thickness direction is located at a central portion on two parallel planes of the piezoelectric plate and is separated by a predetermined distance. Forming a first pair of partial electrodes facing each other, and arranging one of the first pair of partial electrodes on one of the same plane and the opposite plane to form a first parallel electric field excitation type thickness shear mode. Forming a second pair of partial electrodes facing each other at a predetermined interval in a direction orthogonal to a facing line formed by the first pair of partial electrodes, A piezoelectric vibration gyro is characterized in that one of the pair of partial electrodes is arranged on one of the same plane and on the opposite plane to constitute a second parallel electric field excitation type thickness-shear mode energy trapping vibrator. can get. Next, embodiments of the present invention will be described in detail with reference to the drawings. First, a parallel electric field excitation type thickness-shear mode energy trapping oscillator used in the present invention is shown in FIG.
This will be described with reference to FIG. As shown in FIGS. 1 and 2, a pair of partial electrodes 15 and 15 ′ are formed so as to face each other on the same plane at the center of the piezoelectric plate 14 whose polarization direction is the thickness direction. Since an electric field in a direction substantially parallel to the surface of the piezoelectric plate 14 is applied to the portion sandwiched between the partial electrodes 15 and 15 ′, the interaction between the partial electrodes 15 and 15 ′ is caused by the interaction with the polarization in the orthogonal thickness direction. By appropriately designing according to the dimensions of 'and the characteristics of the piezoelectric material to be used, a parallel electric field excitation type thickness-shear energy-trapping oscillator can be formed in this portion. The thickness shear vibration is a vibration in which both the displacement and the propagation direction of the wave are parallel to the plate surface, and the displacement distribution in the thickness direction when resonating at a half wavelength is as shown in FIG. FIG. 4 is a perspective view showing the structure of an embodiment of the piezoelectric vibrating gyroscope according to the present invention. As shown in FIG. 4, a first pair of partial electrodes 15, 15 'are formed on one surface of a substantially central portion of the piezoelectric plate 14 whose polarization direction is the thickness direction so as to oppose at a predetermined interval. . A second pair of partial electrodes 16 and 1 are provided on one surface of the piezoelectric plate 14 at a substantially central portion thereof.
6 'are formed so as to face each other at a predetermined interval in a direction perpendicular to a line connecting the first pair of partial electrodes 15, 15. In FIG. 4, the displacement direction, that is, the vibration direction is changed by the partial electrodes 15 and 15 '.
The first thickness-shear mode energy trapping oscillator in the opposing direction of 5 ′ can be formed, and at the same time, the partial electrode 1
6 and 16 ', the vibration direction is similarly changed to the partial electrode 16,
A composite vibrator 17 having a second thickness-shear mode energy trapping vibrator in the direction opposite to 16 'can be obtained. Since the resonance frequency of the thickness-shear mode is substantially determined by the thickness when the material is the same, the resonance frequencies of the first and second thickness-shear mode energy confinement vibrators are respectively equal. In FIG. 4, one of the partial electrodes 15, 1
When an AC voltage having a frequency substantially equal to the resonance frequency of the thickness-shear mode is applied during 5 ′, thickness-shear vibration is excited only in the vicinity of the electrode. The direction of the displacement at that time coincides with the direction in which the exciting partial electrodes 15 and 15 'face each other as shown in FIG. In this state, almost no output voltage is generated between the partial electrodes 16 and 16 '. Now, when the composite vibrator 17 is rotated around an axis perpendicular to the surface of the piezoelectric plate, Coriolis force is generated in a direction perpendicular to the vibration direction, and as shown in FIG. A right-angled vibration in the y-direction occurs. Since the vibration direction is the same as the vibration direction of the partial electrodes 16, 16 ', a voltage proportional to the rotational angular velocity is generated between the partial electrodes 16, 16'. Since the composite vibrator 17 shown in FIG. 4 vibrates in the energy confinement mode, as described with reference to FIG. 11, the area of the partial electrodes 15, 15 ', 16, 16' is approximately twice as large. If the composite vibrator 17 is fixed with a resin having a cavity formed in a diameter portion, there is almost no influence of the vibration characteristics by the support. Therefore, there is almost no change in the gyro characteristics due to the support. FIG. 6 is a perspective view showing another embodiment of the present invention. In FIG. 6, the piezoelectric plate 14 whose polarization direction is the thickness direction is shown.
A first pair of partial electrodes 1
8, 18 'are formed so as to face each other at a predetermined interval. A second pair of partial electrodes 19, 19 ′ are provided on the other surface at the substantially central portion of the piezoelectric plate 14 at a predetermined interval in a direction orthogonal to a line connecting the first pair of partial electrodes 18, 18. Are formed so as to face each other. The composite vibrator 1 is composed of the piezoelectric plate 14, the first pair of partial electrodes 18, 18 'and the second pair of partial electrodes 19, 19'.
7 'is constituted. In the embodiment shown in FIG. 6, similarly to the embodiment shown in FIG.
When an AC voltage having a frequency substantially equal to the resonance frequency of the thickness-shear mode is applied, thickness-shear vibration is excited only in the vicinity of the electrode. The direction of displacement at that time coincides with the direction in which the partial electrodes 18 and 18 'face each other as in the case of FIG.
It becomes the x direction. In this state, almost no output voltage is generated between the partial electrodes 19 and 19 '. Now, when the composite vibrator 17 'is rotated around an axis perpendicular to the surface of the piezoelectric plate 14, Coriolis force is generated in a direction perpendicular to the vibration direction, and as in the case of FIG. Vibration occurs in the y-direction perpendicular to the direction of vibration. This vibration direction is the partial electrode 1
Since the vibration direction is the same as that of the partial electrodes 19 and 19 ', a voltage proportional to the rotational angular velocity is generated between the partial electrodes 19 and 19'. In the embodiment shown in FIG. 4, a first pair of partial electrodes and a second pair of partial electrodes are formed on the same surface of the piezoelectric plate 14, and in the embodiment shown in FIG. Although the pair of partial electrodes and the second pair of partial electrodes are formed on different surfaces of the piezoelectric plate 14, the present invention is not limited to this. One of the first pair of partial electrodes and the second pair of It may be formed on a different surface of the plate 14. The piezoelectric vibrating gyroscope of the present invention has a simple structure, has almost no influence on the gyro characteristics due to support and fixation, can be firmly supported, and is resistant to vibration and shock. Excellent characteristics.
【図面の簡単な説明】
【図1】本発明に用いられる平行電界励振型厚みすべり
モードのエネルギー閉じ込め振動子を示す平面図であ
る。
【図2】本発明に用いられる平行電界励振型厚みすべり
モードのエネルギー閉じ込め振動子を示す断面図であ
る。
【図3】本発明に用いられる平行電界励振型厚みすべり
モードのエネルギー閉じ込め振動子における変位分布を
説明するための説明図である。
【図4】本発明の圧電振動ジャイロの一実施例を示す斜
視図である。
【図5】本発明の圧電振動ジャイロにおける変位分布を
説明するための説明図である。
【図6】本発明の圧電振動ジャイロの他の実施例を示す
斜視図である。
【図7】従来の圧電振動ジャイロの構造及び動作原理を
説明するための説明図である。
【図8】従来の圧電振動ジャイロの構造及び動作原理を
説明するための説明図である。
【図9】従来の圧電振動ジャイロの構造及び動作原理を
説明するための説明図である。
【図10】従来の圧電振動ジャイロの構造及び動作原理
を説明するための説明図である。
【図11】従来の圧電振動ジャイロの構造及び動作原理
を説明するための説明図である。
【図12】従来のエネルギー閉じ込め振動子を示す平面
図である。
【図13】従来のエネルギー閉じ込め振動子を示す断面
図である。
【図14】従来のエネルギヘ閉じ込め振動子の支持手段
を示す断面図である。
【符号の説明】
14 圧電板
15,16,18,19,15′,16′,18′,1
9′ 部分電極
17,17′ 複合振動子BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing a parallel electric field excitation type thickness-shear mode energy trapping oscillator used in the present invention. FIG. 2 is a cross-sectional view showing a parallel electric field excitation type thickness-shear mode energy trapping vibrator used in the present invention. FIG. 3 is an explanatory diagram for explaining a displacement distribution in a parallel electric field excitation type thickness-shear mode energy trapping oscillator used in the present invention. FIG. 4 is a perspective view showing an embodiment of a piezoelectric vibrating gyroscope according to the present invention. FIG. 5 is an explanatory diagram for explaining a displacement distribution in the piezoelectric vibrating gyroscope according to the present invention. FIG. 6 is a perspective view showing another embodiment of the piezoelectric vibrating gyroscope according to the present invention. FIG. 7 is an explanatory diagram for explaining the structure and operating principle of a conventional piezoelectric vibrating gyroscope. FIG. 8 is an explanatory diagram for explaining the structure and operation principle of a conventional piezoelectric vibrating gyroscope. FIG. 9 is an explanatory diagram for explaining the structure and operation principle of a conventional piezoelectric vibrating gyroscope. FIG. 10 is an explanatory diagram for explaining the structure and operating principle of a conventional piezoelectric vibrating gyroscope. FIG. 11 is an explanatory diagram for explaining the structure and operation principle of a conventional piezoelectric vibrating gyroscope. FIG. 12 is a plan view showing a conventional energy trapping vibrator. FIG. 13 is a cross-sectional view showing a conventional energy trapping vibrator. FIG. 14 is a cross-sectional view showing a conventional means for supporting an energy-trapped oscillator. [Description of Signs] 14 Piezoelectric plates 15, 16, 18, 19, 15 ', 16', 18 ', 1
9 'partial electrode 17, 17' composite oscillator
Claims (1)
電板の平行する二つの平面上で中央部分にあって、所定
間隔を隔てて対向する第一の一対の部分電極を形成し、
該第一の一対の部分電極の一方を同一平面上および反対
平面上のいずれか一方に配置して第一の平行電界励振型
厚みすべりモードのエネルギー閉じ込め振動子を構成
し、かつ、前記第一の一対の部分電極が形成する対向線
に直交する方向に所定間隔を隔てて対向する第二の一対
の部分電極を形成し、該第二の一対の部分電極の一方を
同一平面上および反対平面上のいずれか一方に配置して
第二の平行電界励振型厚みすべりモードのエネルギー閉
じ込め振動子を構成したことを特徴とする圧電振動ジャ
イロ。(57) [Claim 1] A piezoelectric plate having a polarization axis in a thickness direction, which is located at a central portion on two parallel planes of the piezoelectric plate and faces at a predetermined interval. Forming a pair of partial electrodes,
One of the first pair of partial electrodes is arranged on one of the same plane and on the opposite plane to form a first parallel electric field excitation type thickness-shear mode energy trapping oscillator, and Forming a second pair of partial electrodes facing each other at a predetermined interval in a direction orthogonal to the opposing line formed by the pair of partial electrodes, and placing one of the second pair of partial electrodes on the same plane and on the opposite plane. A piezoelectric vibratory gyroscope comprising a second parallel electric field excitation type thickness-shear mode energy trapping vibrator arranged on one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001244679A JP3521315B2 (en) | 2001-08-10 | 2001-08-10 | Piezoelectric vibration gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001244679A JP3521315B2 (en) | 2001-08-10 | 2001-08-10 | Piezoelectric vibration gyro |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13256592A Division JP3240416B2 (en) | 1992-05-25 | 1992-05-25 | Piezoelectric vibration gyro |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002062136A JP2002062136A (en) | 2002-02-28 |
JP3521315B2 true JP3521315B2 (en) | 2004-04-19 |
Family
ID=19074576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001244679A Expired - Fee Related JP3521315B2 (en) | 2001-08-10 | 2001-08-10 | Piezoelectric vibration gyro |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3521315B2 (en) |
-
2001
- 2001-08-10 JP JP2001244679A patent/JP3521315B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002062136A (en) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3240416B2 (en) | Piezoelectric vibration gyro | |
JP3521315B2 (en) | Piezoelectric vibration gyro | |
JP4356881B2 (en) | Vibrating gyroscope | |
JP3172924B2 (en) | Piezoelectric vibration gyro | |
JP2011018959A (en) | Piezoelectric vibrator | |
JP3355998B2 (en) | Vibrating gyro | |
JP2590553Y2 (en) | Piezoelectric vibration gyro | |
JP3690448B2 (en) | Piezoelectric vibrator for piezoelectric vibration gyro | |
JP2005345404A (en) | Vibrator for piezoelectric vibration gyroscope, and its manufacturing method | |
JPH10170270A (en) | Vibrator and vibratory gyroscope using it | |
JP3640003B2 (en) | Piezoelectric vibration gyro using energy confinement vibration mode | |
JP3685224B2 (en) | Piezoelectric vibration gyro using energy confinement vibration mode | |
JP3172943B2 (en) | Piezoelectric vibratory gyro using energy trapped vibration mode | |
JP3698840B2 (en) | Piezoelectric vibrator for piezoelectric vibration gyro | |
JP3172944B2 (en) | Piezoelectric vibratory gyro using energy trapped vibration mode | |
JPH10221087A (en) | Vibrator, vibration-type gyroscope, its manufacture, method for excitation of vibrator and method for detection of vibration of vibrator | |
JP3640004B2 (en) | Piezoelectric vibration gyro using energy confinement vibration mode | |
JP3312260B2 (en) | Piezoelectric vibration gyro | |
JP4044519B2 (en) | Tuning fork type piezoelectric vibration gyro | |
JP3211183B2 (en) | Piezoelectric vibratory gyroscope using energy trapped vibration mode | |
JP2008283665A (en) | Contour resonator | |
JPH10141960A (en) | Piezoelectric oscillation gyro using energy-confinement oscillation mode | |
JPH10239062A (en) | Vibrator for piezoelectric vibrational angular velocimeter and its manufacture | |
JPH11248463A (en) | Piezoelectric oscillator for piezoelectric oscillation gyro | |
JP2003273698A (en) | Electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031015 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031212 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20031224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |