JP2011018959A - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator Download PDF

Info

Publication number
JP2011018959A
JP2011018959A JP2009160493A JP2009160493A JP2011018959A JP 2011018959 A JP2011018959 A JP 2011018959A JP 2009160493 A JP2009160493 A JP 2009160493A JP 2009160493 A JP2009160493 A JP 2009160493A JP 2011018959 A JP2011018959 A JP 2011018959A
Authority
JP
Japan
Prior art keywords
main surface
surface electrode
piezoelectric vibrator
piezoelectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009160493A
Other languages
Japanese (ja)
Inventor
Toshimaro Yoneda
年麿 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009160493A priority Critical patent/JP2011018959A/en
Publication of JP2011018959A publication Critical patent/JP2011018959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric vibrator including a structure capable of changing a plurality of characteristics of the piezoelectric vibrator including at least an electromechanical coupling coefficient even when adjusted separately from electrode thickness using a flexural vibration mode.SOLUTION: This piezoelectric vibrator 1 includes a vibration part flexurally vibrating in a normal direction of a principal surface by application of a frequency signal. The vibration part has a structure wherein a plurality of layers including an upper principal surface electrode 2, a piezoelectric substrate 3, a lower principal surface electrode 4 and a dielectric layer 5 are laminated in the principal surface normal direction. The upper principal surface electrode 2 is formed on the upper principal surface of the piezoelectric substrate 3. The lower principal surface electrode 4 is formed on the lower principal surface of the piezoelectric substrate 3. The dielectric layer 5 is laminated on the lower principal surface electrode 4.

Description

この発明は、板状の圧電体の両主面に設けた電極に周波数信号を印加することで主面法線方向に振動が励起する圧電振動子に関する。   The present invention relates to a piezoelectric vibrator in which vibration is excited in a normal direction of a main surface by applying a frequency signal to electrodes provided on both main surfaces of a plate-like piezoelectric body.

フィルタやジャイロで、圧電体の電気機械振動を利用する圧電振動体が利用されることがある。圧電振動体には様々な形状や振動モードのバリエーションがあり、例えばリング状の圧電振動体の面内振動モードを利用する圧電振動子がある(例えば、特許文献1参照。)。   Piezoelectric vibrators that use electromechanical vibrations of piezoelectric bodies may be used in filters and gyros. There are various shapes and variations of vibration modes in the piezoelectric vibrating body, for example, there is a piezoelectric vibrator that uses an in-plane vibration mode of a ring-shaped piezoelectric vibrating body (see, for example, Patent Document 1).

圧電振動子の主要な特性値として、電気機械結合係数がある。例えばジャイロの場合、回転の検出精度は圧電振動子の機械振幅と電圧との変換効率に依拠するため、電気機械結合係数を高めて、機械振幅と電圧との変換効率とを増大させる要望がある。   As a main characteristic value of the piezoelectric vibrator, there is an electromechanical coupling coefficient. For example, in the case of a gyro, since the rotation detection accuracy depends on the conversion efficiency between the mechanical amplitude and voltage of the piezoelectric vibrator, there is a demand to increase the conversion efficiency between mechanical amplitude and voltage by increasing the electromechanical coupling coefficient. .

従来、電極と空気との界面で全反射するバルク波の振動を利用するタイプの圧電振動子においては、圧電体の下面駆動電極を上面駆動電極よりも厚くすることで圧電体の電気機械結合係数を大きくすることがあった(例えば、特許文献2参照。)。   Conventionally, in a piezoelectric vibrator using a bulk wave vibration that is totally reflected at the interface between the electrode and air, the electromechanical coupling coefficient of the piezoelectric body is increased by making the lower surface driving electrode of the piezoelectric body thicker than the upper surface driving electrode. (See, for example, Patent Document 2).

特開平11−304494号公報Japanese Patent Laid-Open No. 11-304494 特開2006−319479号公報JP 2006-319479 A

面内振動モードとは異なる振動形態である屈曲振動モードを利用する圧電振動子においても、電極厚の変更により電気機械結合係数に影響を与えることができる。しかし、電気機械結合係数の他にも調整が必要な圧電振動子の諸特性として共振周波数や、反共振周波数、機械的品質係数Qmなどがあり、それらを電極厚の調整のみによって適正にすることはできない。   Even in a piezoelectric vibrator using a flexural vibration mode which is a vibration mode different from the in-plane vibration mode, the electromechanical coupling coefficient can be influenced by changing the electrode thickness. However, in addition to the electromechanical coupling coefficient, other characteristics of the piezoelectric vibrator that need to be adjusted include resonance frequency, anti-resonance frequency, mechanical quality factor Qm, etc., and make them appropriate only by adjusting the electrode thickness. I can't.

本発明の目的は、屈曲振動モードを利用し、電極厚とは別に調整しても、少なくとも電気機械結合係数を含む圧電振動子の複数の特性を変更できる構造を備える圧電振動子の提供を目的とする。   An object of the present invention is to provide a piezoelectric vibrator having a structure in which a plurality of characteristics of a piezoelectric vibrator including at least an electromechanical coupling coefficient can be changed by using a flexural vibration mode and adjusting separately from an electrode thickness. And

この発明の圧電振動子は、周波数信号の印加により主面法線方向に屈曲振動する振動部を備える。振動部は上主面電極と圧電単結晶基板と下主面電極と誘電体層とを含む複数の層を主面法線方向に積層した構成である。上主面電極は、圧電単結晶基板の上主面に設けられる。下主面電極は圧電単結晶基板の下主面に設けられる。誘電体層は上主面電極と下主面電極とのうちの少なくとも一方に積層される。
このような構成の圧電振動子について有限要素法解析を行えば、誘電体層の厚みを調整して振動部の両主面の構造を非対称にすることで、電気機械結合係数と共振周波数とが変化することを確認できる。したがって、上主面電極や下主面電極の電極厚とは別に、設計変数として誘電体層の厚みを利用して、圧電振動子の少なくとも電気機械結合係数と共振周波数とを含む諸特性を高い自由度で設定できる。なお、電気機械結合係数と共振周波数とを調整できれば、圧電単結晶基板の機械的品質係数と反共振周波数とについても調整することが可能になる。
The piezoelectric vibrator according to the present invention includes a vibration part that bends and vibrates in the normal direction of the principal surface when a frequency signal is applied. The vibration part has a configuration in which a plurality of layers including an upper main surface electrode, a piezoelectric single crystal substrate, a lower main surface electrode, and a dielectric layer are laminated in the main surface normal direction. The upper main surface electrode is provided on the upper main surface of the piezoelectric single crystal substrate. The lower main surface electrode is provided on the lower main surface of the piezoelectric single crystal substrate. The dielectric layer is laminated on at least one of the upper main surface electrode and the lower main surface electrode.
When the finite element method analysis is performed on the piezoelectric vibrator having such a configuration, the thickness of the dielectric layer is adjusted to make the structure of both main surfaces of the vibration part asymmetric, so that the electromechanical coupling coefficient and the resonance frequency are reduced. You can see that it changes. Therefore, using the thickness of the dielectric layer as a design variable separately from the electrode thicknesses of the upper main surface electrode and the lower main surface electrode, various characteristics including at least the electromechanical coupling coefficient and the resonance frequency of the piezoelectric vibrator are high. Can be set with degrees of freedom. If the electromechanical coupling coefficient and the resonance frequency can be adjusted, the mechanical quality factor and the anti-resonance frequency of the piezoelectric single crystal substrate can be adjusted.

この発明は、上主面電極と下主面電極との電極厚を相違させていてもよい。仮に誘電体層の厚みのみを調整すれば、電気機械結合係数と共振周波数とが同時に変化し、それぞれを任意に設定することが困難である。しかし、電極厚の調整を併用することで、少なくとも電気機械結合係数と共振周波数とをそれぞれ任意に設定できる。これにより、圧電単結晶基板の機械的品質係数と反共振周波数とについての設定が容易になる。   In the present invention, the upper main surface electrode and the lower main surface electrode may have different electrode thicknesses. If only the thickness of the dielectric layer is adjusted, the electromechanical coupling coefficient and the resonance frequency change at the same time, and it is difficult to arbitrarily set each of them. However, by using the adjustment of the electrode thickness in combination, at least the electromechanical coupling coefficient and the resonance frequency can be set arbitrarily. This facilitates the setting of the mechanical quality factor and antiresonance frequency of the piezoelectric single crystal substrate.

この発明の振動部は上主面電極と圧電単結晶基板と下主面電極と誘電体層とをこの順に積層した構成であり、下主面電極が基準電位に接続されると好適である。これにより、誘電体層と圧電単結晶基板との間を下主面電極によりシールドして、誘電体層を設けたことで電磁界に及ぶ影響を除くことができ
この発明の下主面電極および誘電体層は、前記振動部の下主面全体を覆うと好適である。これにより、主面に平行な方向での振動部の構成の連続性を高めて、圧電特性を改善できる。
The vibrating part of the present invention has a configuration in which an upper main surface electrode, a piezoelectric single crystal substrate, a lower main surface electrode, and a dielectric layer are laminated in this order, and it is preferable that the lower main surface electrode is connected to a reference potential. Thus, the lower main surface electrode can be shielded by the lower main surface electrode between the dielectric layer and the piezoelectric single crystal substrate, and the influence on the electromagnetic field can be eliminated by providing the dielectric layer. It is preferable that the dielectric layer covers the entire lower main surface of the vibration part. Thereby, the continuity of the structure of the vibration part in the direction parallel to the main surface can be increased, and the piezoelectric characteristics can be improved.

この発明の誘電体層は、窒化珪素を成膜したものであると好適である。窒化珪素は、スパッタリングなどの方法により成膜する事が可能である。したがって、誘電体層の厚み設定を精緻に行える。   The dielectric layer of the present invention is preferably formed by depositing silicon nitride. Silicon nitride can be formed by a method such as sputtering. Therefore, the thickness of the dielectric layer can be set precisely.

この発明の圧電振動子は、振動部を支持する支持部を備えると好適である。支持部は圧電単結晶基板と、誘電体層と、誘電体層の下主面に積層される支持基板と、を含む複数の層を積層した構成であると好適である。これにより、圧電単結晶基板や誘電体層を積層することで、振動部および支持部を同時に構成することができる。   The piezoelectric vibrator of the present invention preferably includes a support portion that supports the vibration portion. The support portion preferably has a structure in which a plurality of layers including a piezoelectric single crystal substrate, a dielectric layer, and a support substrate stacked on the lower main surface of the dielectric layer are stacked. As a result, by laminating the piezoelectric single crystal substrate and the dielectric layer, the vibration part and the support part can be configured at the same time.

この発明の圧電単結晶基板は、ニオブ酸リチウムまたはタンタル酸リチウムであると好適である。ニオブ酸リチウムまたはタンタル酸リチウムを採用することで電気機械結合係数とQ値とを大きくでき良好な感度特性が得られる。特にタンタル酸リチウムを採用することでニオブ酸リチウムよりも温度特性のバランスを改善できる。   The piezoelectric single crystal substrate of the present invention is preferably lithium niobate or lithium tantalate. By employing lithium niobate or lithium tantalate, the electromechanical coupling coefficient and the Q value can be increased, and good sensitivity characteristics can be obtained. In particular, the use of lithium tantalate can improve the balance of temperature characteristics as compared with lithium niobate.

この発明の圧電振動子は、主面に平行で互いに直交する2つの軸それぞれを中心として線対称な枠状の振動部と、2つの軸それぞれを中心として線対称に設けられた支持梁により振動部を支持する支持部と、を備え、上主面電極および下主面電極が、2つの軸それぞれを中心として線対称に設けられていると好適である。これにより、振動部の支持梁部に支持される位置は屈曲振動の節となり、振動部の検出軸上の位置が屈曲振動の腹となる。また、枠状の振動部を支持梁で支持する構成のため、振動部の屈曲振動を最大限、拘束せずに支持できる。   The piezoelectric vibrator according to the present invention is vibrated by a frame-shaped vibrating portion that is line-symmetrical about two axes that are parallel to the main surface and orthogonal to each other, and a support beam that is line-symmetrically about each of the two axes. It is preferable that the upper main surface electrode and the lower main surface electrode are provided symmetrically with respect to each of the two axes. As a result, the position of the vibrating portion supported by the support beam portion becomes a node of bending vibration, and the position of the vibrating portion on the detection axis becomes the antinode of bending vibration. In addition, since the frame-like vibrating portion is supported by the support beam, the bending vibration of the vibrating portion can be supported to the maximum extent without being constrained.

この発明によれば、誘電体層の厚みを調整することで、電気機械結合係数と共振周波数とを少なくとも含む圧電振動子の諸特性を変更できる。したがって、電極厚とは別の設計変数として誘電体層の厚みを利用することで、圧電振動子の複数の特性を高い自由度で設定できる。   According to the present invention, various characteristics of the piezoelectric vibrator including at least the electromechanical coupling coefficient and the resonance frequency can be changed by adjusting the thickness of the dielectric layer. Therefore, a plurality of characteristics of the piezoelectric vibrator can be set with a high degree of freedom by using the thickness of the dielectric layer as a design variable different from the electrode thickness.

本発明の実施形態に係る圧電振動子の構成例を説明する図である。It is a figure explaining the structural example of the piezoelectric vibrator which concerns on embodiment of this invention. 右手系のオイラー角表示について説明する図である。It is a figure explaining the Euler angle display of a right-hand system. 図1に示す圧電振動子を備える振動ジャイロ装置の回路構成を説明する図である。It is a figure explaining the circuit structure of a vibration gyro apparatus provided with the piezoelectric vibrator shown in FIG. 図1に示す圧電振動子の動作を説明する図である。It is a figure explaining operation | movement of the piezoelectric vibrator shown in FIG. 誘電体層の厚みの設定によって圧電振動子の諸特性に及ぶ影響を説明する図である。It is a figure explaining the influence on the various characteristics of a piezoelectric vibrator by the setting of the thickness of a dielectric material layer. 電極厚の設定によって圧電振動子の諸特性に及ぶ影響を説明する図である。It is a figure explaining the influence on the various characteristics of a piezoelectric vibrator by the setting of electrode thickness. 温度変化と周波数変化率の変動との関係を説明する図である。It is a figure explaining the relationship between a temperature change and the fluctuation | variation of a frequency change rate.

本発明の実施形態に係る圧電振動子について振動ジャイロ装置を構成例に説明する。
図1は圧電振動子の構成例を示す図である。図1(A)は平面図、図1(B)は中央断面図、図1(C)はA−A’断面図、図1(D)はB−B’断面図である。
A piezoelectric gyro vibrator according to an embodiment of the present invention will be described using a vibration gyro device as a configuration example.
FIG. 1 is a diagram illustrating a configuration example of a piezoelectric vibrator. 1A is a plan view, FIG. 1B is a central sectional view, FIG. 1C is an AA ′ sectional view, and FIG. 1D is a BB ′ sectional view.

圧電振動子1は、直交2軸(X軸およびX軸)を検出軸として、検出軸回りの回転を検出する。そのため、圧電振動子1はX軸を対称軸として線対称な形状、且つ、X軸を対称軸として線対称な形状で構成している。また、X−X面に垂直なX軸に沿って下から順に、支持基板6、誘電体層5、下主面電極4、圧電基板3、および上主面電極2を積層して構成している。 The piezoelectric vibrator 1, the detection axis orthogonal two axes (X 1 axis and the X 2 axis), for detecting the rotation of the detection axis. Therefore, line-symmetric shape of the piezoelectric vibrator 1 X 1 axis as a symmetrical axis, and constitute a line-symmetrical shape to the X 2 axis as a symmetrical axis. Further, the support substrate 6, the dielectric layer 5, the lower main surface electrode 4, the piezoelectric substrate 3, and the upper main surface electrode 2 are laminated in order from the bottom along the X 3 axis perpendicular to the X 1 -X 2 surface. It is composed.

圧電基板3および支持基板6はニオブ酸リチウム(LiNbO3)の圧電単結晶基板またはタンタル酸リチウム(LiTaO3)の圧電単結晶基板であり、支持基板6は0.34mm厚、圧電基板3は1μm厚である。誘電体層5は、1μm以下の窒化珪素である。下主面電極4は電極厚500nmのタングステン(W)電極であり、上主面電極2はアルミニウム(Al)電極である。タングステン電極は融点が高いため熱負荷による電極の拡散を抑えられ、比重が大きく固有音響インピーダンスが大きいため圧電振動子に励起する弾性波機械振動のダンピングを抑えられる。アルミニウム電極は比抵抗が小さいので、圧電振動子の直列等価抵抗を抑えられる。 The piezoelectric substrate 3 and the support substrate 6 are a lithium niobate (LiNbO 3 ) piezoelectric single crystal substrate or a lithium tantalate (LiTaO 3 ) piezoelectric single crystal substrate, the support substrate 6 is 0.34 mm thick, and the piezoelectric substrate 3 is 1 μm. It is thick. The dielectric layer 5 is silicon nitride of 1 μm or less. The lower main surface electrode 4 is a tungsten (W) electrode having an electrode thickness of 500 nm, and the upper main surface electrode 2 is an aluminum (Al) electrode. Since the tungsten electrode has a high melting point, it is possible to suppress diffusion of the electrode due to heat load, and since the specific gravity is large and the specific acoustic impedance is large, damping of the elastic wave mechanical vibration excited by the piezoelectric vibrator can be suppressed. Since the aluminum electrode has a small specific resistance, the series equivalent resistance of the piezoelectric vibrator can be suppressed.

圧電基板3は、圧電基板3の結晶座標系(X,Y,Z)からの右手系のオイラー角表示(φ,θ,ψ)=(0°,θ°,45°)で規定される変換座標系(X,X,X)で、X−X面が主面となり、結晶軸Xが検出軸X,Xの間を45°で等分する軸と一致するように構成する。図2は右手系のオイラー角表示(φ,θ,ψ)と変換座標系(X,X,X)との関係を示す図である(例えば、弾性波素子技術ハンドブック 日本学術振興会弾性波素子技術第150委員会編,オーム社,1991;P.549参照。)。 The piezoelectric substrate 3 is converted by a right-handed Euler angle display (φ, θ, ψ) = (0 °, θ °, 45 °) from the crystal coordinate system (X, Y, Z) of the piezoelectric substrate 3. In the coordinate system (X 1 , X 2 , X 3 ), the X 1 -X 2 plane is the principal plane, and the crystal axis X coincides with the axis that equally divides the detection axes X 1 , X 2 at 45 °. Configure. FIG. 2 is a diagram showing the relationship between the right-handed Euler angle display (φ, θ, ψ) and the transformed coordinate system (X 1 , X 2 , X 3 ) (for example, the Japan Society for the Promotion of Acoustic Wave Technology) (Refer to 150th Committee of Acoustic Wave Element Technology, Ohmsha, 1991; P.549.)

圧電基板3は圧電基板主面(X−X面)をX軸から見て、内側領域3Aと枠状領域3Bと外側領域3Cとに区分される。枠状領域3Bは内径400μmm、外径500μmの円形内形・円形外形の枠状である。内側領域3Aは直径300μmの円形である。外側領域3Cは内径600μmの円形内形・矩形外形である。内側領域3Aと枠状領域3Bとの間には4つの内側開放孔31と4つの内側梁部32とを設けていて、外側領域3Cと枠状領域3Bとの間には4つの外側開放孔33と4つの内側梁部32とを設けている。内側梁部32と外側梁部34とは、X−X面におけるX軸正方向を0°として、45°、135°、225°、315°の方向に沿う幅20μmの梁状の領域としている。これら内側梁部32と外側梁部34とは、枠状領域3Bを支持基板6から浮かせた状態に支持する。 The piezoelectric substrate 3 is viewed piezoelectric substrate main surface (X 1 -X 2 side) from the X 3 axis, it is divided into an inner region 3A and the frame-shaped region 3B and outer region 3C. The frame-shaped region 3B has a circular inner shape / circular outer shape with an inner diameter of 400 μm and an outer diameter of 500 μm. The inner region 3A is a circle having a diameter of 300 μm. The outer region 3C has a circular inner shape and a rectangular outer shape with an inner diameter of 600 μm. Four inner open holes 31 and four inner beam portions 32 are provided between the inner region 3A and the frame-like region 3B, and four outer open holes are provided between the outer region 3C and the frame-like region 3B. 33 and four inner beam portions 32 are provided. The inner beam portion 32 and the outer beam portion 34, the X 1 axis positive direction in the X 1 -X 2 side as 0 °, 45 °, 135 ° , 225 °, of width 20μm along the direction of 315 ° beam-like As an area. The inner beam portion 32 and the outer beam portion 34 support the frame-shaped region 3 </ b> B in a state where it floats from the support substrate 6.

下主面電極4は、圧電基板3の下主面の少なくとも枠状領域3Bを覆う領域に設けていて、基準電位に接続される。   The lower main surface electrode 4 is provided in a region covering at least the frame-shaped region 3B of the lower main surface of the piezoelectric substrate 3, and is connected to a reference potential.

誘電体層5は、圧電基板3および下主面電極4の下主面の全面に窒化珪素をスパッタリングにより成膜してなる。スパッタリングを用いることで、誘電体層5の膜厚を精緻に設定する事が可能になる。   Dielectric layer 5 is formed by sputtering silicon nitride over the entire lower main surface of piezoelectric substrate 3 and lower main surface electrode 4 by sputtering. By using sputtering, the thickness of the dielectric layer 5 can be set precisely.

支持基板6は、支持基板主面(X−X面)をX軸から見て、内側領域6Aと振動領域6Bと外側領域6Cとに区分される。振動領域6Bは内形300μm、外形600μmの円形内形・円形外形の枠状に支持基板6を上主面から深さ3μmで掘り下げて振動空間を設けた領域であり、圧電基板3の枠状領域3Bと内側開放孔31と内側梁部32と外側開放孔33と内側梁部32とに対面する位置に設けている。振動空間は、内側開放孔31および外側開放孔33に連通していて、枠状領域3Bと支持基板6との干渉を防ぐ。内側領域6Aは直径300μmの領域であり、圧電基板3の内側領域3Aが重なる領域である。外側領域6Cは内径600μmの領域であり、圧電基板3の外側領域3Cが重なる領域である。支持基板6には、圧電基板3と同じ圧電性材料を用いることで線膨脹係数差を抑制できる。なお、支持基板6として圧電基板3と熱膨張係数が異なるが耐熱性に優れ入手が容易で安価なSiやガラスを用いてもよい。 Supporting substrate 6, the supporting substrate principal (X 1 -X 2 side) as viewed from the X 3 axis, it is divided into an inner region 6A and vibration region 6B and the outer region 6C. The vibration region 6B is a region in which a vibration space is provided by digging the support substrate 6 at a depth of 3 μm from the upper main surface into a circular inner shape / circular outer shape with an inner shape of 300 μm and an outer shape of 600 μm. The region 3B, the inner opening hole 31, the inner beam portion 32, the outer opening hole 33, and the inner beam portion 32 are provided at positions facing each other. The vibration space communicates with the inner opening hole 31 and the outer opening hole 33 to prevent interference between the frame-shaped region 3 </ b> B and the support substrate 6. The inner region 6A is a region having a diameter of 300 μm, and is a region where the inner region 3A of the piezoelectric substrate 3 overlaps. The outer area 6C is an area having an inner diameter of 600 μm, and is an area where the outer area 3C of the piezoelectric substrate 3 overlaps. By using the same piezoelectric material as that of the piezoelectric substrate 3 for the support substrate 6, the difference in linear expansion coefficient can be suppressed. The support substrate 6 may be made of Si or glass, which has a thermal expansion coefficient different from that of the piezoelectric substrate 3 but has excellent heat resistance and is easily available and inexpensive.

上主面電極2は、8つの駆動検出電極2Aと、8つの回路接続電極2Bと、4つの基準電位接続電極2Cと、8つの配線2Dとを備えている。駆動検出電極2Aは枠状領域3Bの上面にパターニングしている。回路接続電極2Bおよび基準電位接続電極2Cは外側領域3Cの上面にパターンニングしている。配線2Dは、枠状領域3Bから外側領域3Cに架けて外側梁部を経由して設けている。駆動検出電極2Aは、2つずつ、正方向のX軸両側、負方向のX軸両側、正方向のX軸両側、負方向のX軸両側に約5μmの間隔で配置している。具体的には、各駆動検出電極2AはX−X面におけるX軸正方向を0°として、約0°〜30°、60°〜90°、90°〜120°、150°〜180°、180°〜210°、240°〜270°、270°〜300°、330°〜360°の範囲を占めている。なお、隣接する駆動検出電極2A間は約5μmの間隔を隔てている。回路接続電極2Bは詳細を後述する駆動検出回路に接続される。基準電位接続電極2Cはスルーホールを介して下主面電極4に接続される。配線2Dは駆動検出電極2Aと回路接続電極2Bとの間を接続し、絶縁層2Eを介して圧電基板3に接合されている。 The upper main surface electrode 2 includes eight drive detection electrodes 2A, eight circuit connection electrodes 2B, four reference potential connection electrodes 2C, and eight wirings 2D. The drive detection electrode 2A is patterned on the upper surface of the frame-like region 3B. The circuit connection electrode 2B and the reference potential connection electrode 2C are patterned on the upper surface of the outer region 3C. The wiring 2D is provided from the frame-like region 3B to the outer region 3C via the outer beam portion. Drive detection electrodes 2A is two by two, the positive direction of the X 1 axis sides, arranged in the negative direction of the X 1 axis sides, the positive direction of the X 2 axis sides, the spacing of the negative direction of the X 2 axis both sides about 5μm Yes. Specifically, each drive detection electrode 2A is about 0 ° to 30 °, 60 ° to 90 °, 90 ° to 120 °, 150 ° to 150 ° with the X 2 axis positive direction on the X 1 -X 2 plane being 0 °. It occupies ranges of 180 °, 180 ° to 210 °, 240 ° to 270 °, 270 ° to 300 °, 330 ° to 360 °. The adjacent drive detection electrodes 2A are spaced at an interval of about 5 μm. The circuit connection electrode 2B is connected to a drive detection circuit that will be described in detail later. Reference potential connection electrode 2C is connected to lower main surface electrode 4 through a through hole. The wiring 2D connects between the drive detection electrode 2A and the circuit connection electrode 2B, and is joined to the piezoelectric substrate 3 via the insulating layer 2E.

以上の構成では、圧電基板3における枠状領域3Bの上主面に駆動検出電極2Aを設けるとともに枠状領域3Bの下主面に下主面電極4と誘電体層5とを積層して設けて、本発明の振動部を構成している。振動部は周波数信号が印加されることで屈曲振動する。   In the above configuration, the drive detection electrode 2A is provided on the upper main surface of the frame-shaped region 3B in the piezoelectric substrate 3, and the lower main surface electrode 4 and the dielectric layer 5 are stacked on the lower main surface of the frame-shaped region 3B. Thus, the vibration part of the present invention is configured. The vibration part bends and vibrates when a frequency signal is applied.

図3は、圧電振動子1に駆動検出回路を接続して振動ジャイロ装置を構成する場合の回路構成例を説明する回路図である。駆動検出回路は、周波数信号発生回路9と差動回路7A,7Bと平滑回路8A,8Bとを備える。圧電振動子1の基準電位接続電極2Cにはグランドを接続する。   FIG. 3 is a circuit diagram illustrating an example of a circuit configuration when a drive detection circuit is connected to the piezoelectric vibrator 1 to configure a vibration gyro apparatus. The drive detection circuit includes a frequency signal generation circuit 9, differential circuits 7A and 7B, and smoothing circuits 8A and 8B. A ground is connected to the reference potential connection electrode 2 </ b> C of the piezoelectric vibrator 1.

周波数信号発生回路9は駆動抵抗Rを介して8つの回路接続電極2Bに接続され、8つの駆動検出電極2Aそれぞれに周波数信号を与える。各駆動検出電極2Aに与える周波数信号は、それぞれ同相・同振幅である。また周波数は枠状領域の共振周波数とする。共振周波数では、枠状領域3BのX軸方向の振動が、X−X面におけるX軸上およびX軸上の位置(0°、90°、180°、270°)に振動の腹を形成し、梁部により支持される位置(45°、135°、225°、315°)の位置に振動の節を形成する。 The frequency signal generation circuit 9 is connected to the eight circuit connection electrodes 2B via the drive resistor R, and gives a frequency signal to each of the eight drive detection electrodes 2A. The frequency signals given to each drive detection electrode 2A have the same phase and the same amplitude. The frequency is the resonance frequency of the frame region. The resonance frequency, the vibration of the X 3 axially of the frame-shaped region 3B is located on the X 1 axis and the X 2 axis in X 1 -X 2 side (0 °, 90 °, 180 °, 270 °) oscillating in A vibration node is formed at a position (45 °, 135 °, 225 °, 315 °) supported by the beam portion.

軸の両側に配置された4つの駆動検出電極2AのうちX軸負方向(図中左側)に配置された2つの駆動検出電極2Aは、差動回路7Aの第一の入力端に接続される。また、X軸正方向(図中右側)に配置された2つの駆動検出電極2Aは、差動回路7Aの第二の入力端に接続される。また、X軸の両側に配置された4つの駆動検出電極2AのうちX軸負方向(下側)に配置された2つの駆動検出電極2Aは、差動回路7Bの第一の入力端に接続される。X軸正方向(上側)に配置された2つの駆動検出電極2Aは、差動回路7Bの第二の入力端に接続される。 Two drive detection electrodes 2A disposed on the X 1 axis negative direction (the left side in the drawing) of the four drive detection electrodes 2A disposed on both sides of the X 2 axis, to a first input terminal of the differential circuit 7A Connected. Further, two drive detection electrodes 2A disposed on the X 1 axis positive direction (the right side in the drawing) is connected to a second input terminal of the differential circuit 7A. Further, two drive detection electrodes 2A disposed in the X 2 axis negative direction (lower side) of the four drive detection electrodes 2A disposed on both sides of X 1 axis, a first input terminal of the differential circuit 7B Connected to. Two drive detection electrodes 2A disposed in the X 2 axis positive direction (upward) is connected to a second input terminal of the differential circuit 7B.

差動回路7A,7Bの出力端は平滑回路8A、8Bに接続され、差動回路7A,7Bはそれぞれの第一の入力端と第二の入力端との電圧差を出力する。平滑回路8A、8Bは差動回路7A,7Bの出力電圧を平滑する。   The output terminals of the differential circuits 7A and 7B are connected to the smoothing circuits 8A and 8B, and the differential circuits 7A and 7B output the voltage difference between the first input terminal and the second input terminal. Smoothing circuits 8A and 8B smooth the output voltages of the differential circuits 7A and 7B.

図4は、圧電振動子1の動作を説明する図である。図4(A)はX軸回りに回転する例を、図4(B)はX軸回りに回転する例を示す。 FIG. 4 is a diagram for explaining the operation of the piezoelectric vibrator 1. Figure 4 is an example of rotation (A) in the X 1 axis, FIG. 4 (B) shows an example of rotating the X 2 axis.

上記共振周波数で屈曲振動する際には、振動ジャイロ装置にX軸回りの角速度が加わると、X軸方向にコリオリの力が加わる。すると、X軸の両側に配置された4つの駆動検出電極2Aに印加されている周波数信号の位相が、X軸正方向に配置された駆動検出電極2Aと、X軸負方向に配置された駆動検出電極2Aとで逆方向に変化する。このため、差動回路7Aによる差分出力は、コリオリの力の大きさに応じた電圧となる。 When bending vibration at the resonance frequency, when X 2 axes of angular velocity is applied to the vibration gyro device, the Coriolis force is applied to the X 1 axis direction. Then, the phase of the frequency signal being applied to the four drive detection electrodes 2A disposed on both sides of the X 2 axis, and drive detection electrodes 2A disposed on the X 1 axis positive direction, arranged in the X 1 axis negative direction The driving detection electrode 2A changes in the opposite direction. For this reason, the differential output by the differential circuit 7A becomes a voltage corresponding to the magnitude of the Coriolis force.

また、振動ジャイロ装置にX軸回りの角速度が加わると、X軸方向にコリオリの力が加わる。すると、X軸の両側に配置された4つの駆動検出電極2Aに印加されている周波数信号の位相が、X軸正方向に配置された駆動検出電極2Aと、X軸負方向に配置された駆動検出電極2Aとで逆方向に変化する。このため、差動回路7Bによるそれらの差分出力は、コリオリの力の大きさに応じた電圧となる。 Further, when the X 1 axis in the angular velocity is applied to the vibration gyro device, the Coriolis force is applied to the X 2 axis direction. Then, the phase of the frequency signal being applied to the four drive detection electrodes 2A disposed on both sides of X 1 axis, and the drive detection electrodes 2A disposed in the X 2 axis positive direction, arranged in the X 2 axis negative direction The driving detection electrode 2A changes in the opposite direction. For this reason, those differential outputs by the differential circuit 7B become voltages according to the magnitude of the Coriolis force.

なお、圧電振動子1が回転していない状態では、周波数信号は同相・同振幅なので差動回路7A,7Bによって取り除かれることになる。また、振動ジャイロ装置に衝撃などが作用する際に各駆動検出電極に励起する信号や、X軸回りの回転の際にX軸に沿って配置された駆動検出電極に励起する信号、X軸回りの回転の際にX軸に沿って配置された駆動検出電極に励起する信号は、やはり同相・同振幅となるので差動回路7A,7Bによって取り除かれることになる。 In the state where the piezoelectric vibrator 1 is not rotating, the frequency signals are removed in the differential circuits 7A and 7B because they have the same phase and the same amplitude. The signal for exciting the respective drive signals and for exciting the detection electrodes, the drive detection electrodes arranged along the X 2 axis when X 1 of the axis rotation when acting like impact on the vibration gyro apparatus, X signal to excite the arranged drive detection electrodes along the X 1 axis in the biaxial rotation about will be removed differential circuit 7A, by 7B since also in phase, same amplitude.

以下、圧電振動子の諸特性について例示して説明する。
図5は、右手系のオイラー角表示(0°,50°,45°)のニオブ酸リチウム基板を圧電基板3に用いた場合での、誘電体層の厚みと圧電振動子の諸特性との関係を示す図である。ここでは、上主面電極を500nm、下主面電極を500nmとした例を示している。
Hereinafter, various characteristics of the piezoelectric vibrator will be described by way of example.
FIG. 5 shows the thickness of the dielectric layer and various characteristics of the piezoelectric vibrator when a right-handed Euler angle display (0 °, 50 °, 45 °) lithium niobate substrate is used for the piezoelectric substrate 3. It is a figure which shows a relationship. In this example, the upper main surface electrode is 500 nm and the lower main surface electrode is 500 nm.

図5(A)は、電気機械結合係数と誘電体層の厚みとの関係を示す図である。   FIG. 5A is a diagram showing the relationship between the electromechanical coupling coefficient and the thickness of the dielectric layer.

電気機械結合係数は、圧電基板3の材料定数と振動子の構造を考慮したものであり、自由容量Cfと着目した振動モードの等価値容量Cnを用いてkv=(Cn/Cf)^(1/2)として定義される。具体的には両端子間の自由容量Cfと等価値容量Cnは、下部電極を0V、上部電極のX軸に隣接する電極を並列に接続した端子と、X軸に隣接する電極を並列に接続した端子とにそれぞれ逆極性の電圧を印加し求めることができる。図示するように、誘電体層(SiN)の膜厚を変更することで電気機械結合係数が変化し、誘電体層(SiN)の膜厚が増大するのに伴い電気機械結合係数も増大する。 The electromechanical coupling coefficient takes into consideration the material constant of the piezoelectric substrate 3 and the structure of the vibrator, and kv = (Cn / Cf) ^ (1 using the free capacity Cf and the equivalent vibration capacity Cn of the focused vibration mode. / 2). The free volume Cf and an equivalent value capacitor Cn between both terminals Specifically, 0V lower electrode, a terminal electrode adjacent to the X 1 axis of the upper electrode are connected in parallel, the electrode adjacent to the X 2 axis parallel It can be obtained by applying a voltage of opposite polarity to each of the terminals connected to. As shown in the figure, the electromechanical coupling coefficient is changed by changing the film thickness of the dielectric layer (SiN), and the electromechanical coupling coefficient is increased as the film thickness of the dielectric layer (SiN) is increased.

図5(B)は、共振周波数と誘電体層の厚みとの関係を示す図である。共振周波数は、圧電基板3の材料定数と振動子の構造を考慮したものである。図示するように、ニオブ酸リチウム基板では、誘電体層(SiN)の膜厚を変更することで共振周波数が変化し、誘電体層(SiN)の膜厚が増大するのに伴い共振周波数も増大する。   FIG. 5B is a diagram showing the relationship between the resonance frequency and the thickness of the dielectric layer. The resonance frequency takes into consideration the material constant of the piezoelectric substrate 3 and the structure of the vibrator. As shown in the figure, in the lithium niobate substrate, the resonant frequency changes by changing the thickness of the dielectric layer (SiN), and the resonant frequency increases as the thickness of the dielectric layer (SiN) increases. To do.

図6は、右手系のオイラー角表示(0°,132°,45°)のタンタル酸リチウム基板を圧電基板3に用いた場合での、上主面電極の電極厚と圧電振動子の諸特性との関係を説明する図である。ここでは、下主面電極500nmとし、上主面電極の電極厚と誘電体層の厚みとを変更した例を示している。   FIG. 6 shows the electrode thickness of the upper principal surface electrode and various characteristics of the piezoelectric vibrator when a right-handed Euler angle display (0 °, 132 °, 45 °) lithium tantalate substrate is used for the piezoelectric substrate 3. It is a figure explaining the relationship. Here, an example in which the lower main surface electrode is 500 nm and the electrode thickness of the upper main surface electrode and the thickness of the dielectric layer are changed is shown.

図6(A)は、電気機械結合係数と上主面電極の電極厚との関係を説明する図である。   FIG. 6A is a diagram illustrating the relationship between the electromechanical coupling coefficient and the electrode thickness of the upper principal surface electrode.

図示するように、上主面電極の電極厚を変更することで電気機械結合係数が変化し、上主面電極の電極厚が増大するのに伴い電気機械結合係数は低減する。   As shown in the figure, the electromechanical coupling coefficient is changed by changing the electrode thickness of the upper main surface electrode, and the electromechanical coupling coefficient is reduced as the electrode thickness of the upper main surface electrode is increased.

図6(B)は、共振周波数と上主面電極の電極厚との関係を説明する図である。図示するように、上主面電極の電極厚を変更しても共振周波数はほとんど変化しない。   FIG. 6B is a diagram for explaining the relationship between the resonance frequency and the electrode thickness of the upper principal surface electrode. As shown in the figure, the resonance frequency hardly changes even if the electrode thickness of the upper main surface electrode is changed.

以上の図5,6に示すデータから、電極厚の調整だけでは電気機械結合係数の設定しかできず、共振周波数の設定が行えないことがわかる。そのため、誘電体層の厚みまで調整することにより初めて共振周波数の設定が可能になり、電極厚の調整と誘電体層の厚み調整とを併用することにより、電気機械結合係数と共振周波数とをともに任意に設定することが可能になるといえる。電気機械結合係数と共振周波数とがともに任意に設定できれば、圧電単結晶基板の機械的品質係数と反共振周波数とについても設定することが容易になる。このように、電極厚とは別に設計変数として誘電体層の厚みを利用することで、圧電振動子の少なくとも電気機械結合係数と共振周波数とを含む諸特性を高い自由度で設定できる。   From the data shown in FIGS. 5 and 6, it can be seen that only the adjustment of the electrode thickness can set the electromechanical coupling coefficient, and the resonance frequency cannot be set. Therefore, it is possible to set the resonance frequency only by adjusting the thickness of the dielectric layer, and by using both the adjustment of the electrode thickness and the thickness adjustment of the dielectric layer, both the electromechanical coupling coefficient and the resonance frequency are set. It can be said that it can be set arbitrarily. If both the electromechanical coupling coefficient and the resonance frequency can be set arbitrarily, it becomes easy to set the mechanical quality coefficient and the anti-resonance frequency of the piezoelectric single crystal substrate. As described above, by using the thickness of the dielectric layer as a design variable in addition to the electrode thickness, various characteristics including at least the electromechanical coupling coefficient and the resonance frequency of the piezoelectric vibrator can be set with a high degree of freedom.

図7は、圧電基板3および支持基板6を右手系のオイラー角表示で(0°,120°,45°)とした場合の温度変化と、25℃を基準とした周波数変化率の変動との関係を説明する図である。図7(A)は圧電基板3としてニオブ酸リチウム基板を採用する例を、図7(B)は圧電基板3としてタンタル酸リチウム基板を採用する例を示す。ニオブ酸リチウム基板の場合、温度変動1℃当たりの周波数変化率の変動は−35.1ppmであった、一方、タンタル酸リチウムの場合、温度変動1℃当たりの周波数変化率の変動は−9.0ppmであった。このことから、共振周波数の温度特性を改善するためには、振動子の電気機械結合係数とQ値とを大きくでき良好な感度特性が得られるニオブ酸リチウム基板を採用するよりも、タンタル酸リチウム基板を採用することが望ましいといえる。   FIG. 7 shows a change in temperature when the piezoelectric substrate 3 and the support substrate 6 are set to (0 °, 120 °, 45 °) in a right-handed Euler angle display, and a change in the frequency change rate based on 25 ° C. It is a figure explaining a relationship. FIG. 7A shows an example in which a lithium niobate substrate is adopted as the piezoelectric substrate 3, and FIG. 7B shows an example in which a lithium tantalate substrate is adopted as the piezoelectric substrate 3. In the case of a lithium niobate substrate, the change in frequency change rate per 1 ° C. of temperature change was −35.1 ppm, while in the case of lithium tantalate, the change in frequency change rate per 1 ° C. of temperature change was −9. It was 0 ppm. Therefore, in order to improve the temperature characteristic of the resonance frequency, lithium tantalate is used rather than adopting a lithium niobate substrate that can increase the electromechanical coupling coefficient and the Q value of the vibrator and obtain good sensitivity characteristics. It can be said that it is desirable to employ a substrate.

以上の実施形態では、枠状領域の形状として円形のものを示したが、本発明はそれ以外にも、正方形、長円形、長方形、多角形など、様々な形状であっても実施できる。また、圧電基板の内側領域や外側領域の一方を省いた構成でも良く、両方を省いた構成でも良い。   In the above embodiment, although the circular shape is shown as the shape of the frame-like region, the present invention can be implemented with various shapes such as a square, an oval, a rectangle, and a polygon. Moreover, the structure which excluded either the inner side area | region and the outer side area | region of the piezoelectric substrate may be sufficient, and the structure which excluded both may be sufficient.

1…圧電振動子
2…上主面電極
2A…駆動検出電極
2B…回路接続電極
2C…基準電位接続電極
2D…配線
2E…絶縁層
3…圧電基板
31…内側開放孔
32…内側梁部
33…外側開放孔
34…外側梁部
3A…内側領域
3B…枠状領域
3C…外側領域
4…下主面電極
5…誘電体層
6…支持基板
6A…内側領域
6B…振動領域
6C…外側領域
7A,7B…差動回路
8A,8B…平滑回路
9…周波数信号発生回路
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric vibrator 2 ... Upper main surface electrode 2A ... Drive detection electrode 2B ... Circuit connection electrode 2C ... Reference potential connection electrode 2D ... Wiring 2E ... Insulating layer 3 ... Piezoelectric substrate 31 ... Inner opening hole 32 ... Inner beam part 33 ... Outer open hole 34 ... outer beam portion 3A ... inner region 3B ... frame-like region 3C ... outer region 4 ... lower main surface electrode 5 ... dielectric layer 6 ... support substrate 6A ... inner region 6B ... vibrating region 6C ... outer region 7A, 7B: Differential circuit 8A, 8B: Smoothing circuit 9: Frequency signal generation circuit

Claims (8)

周波数信号の印加により主面法線方向に屈曲振動する振動部を備える圧電振動子であって、
前記振動部は、上主面電極と圧電単結晶基板と下主面電極と誘電体層とを含む複数の層を主面法線方向に積層した構成であり、
前記上主面電極は、前記圧電単結晶基板の上主面に設けられ、
前記下主面電極は、前記圧電単結晶基板の下主面に設けられ、
前記誘電体層は、前記上主面電極と前記下主面電極とのうちの少なくとも一方に積層される、圧電振動子。
A piezoelectric vibrator including a vibration part that bends and vibrates in the principal surface normal direction by application of a frequency signal,
The vibrating portion is configured by laminating a plurality of layers including an upper main surface electrode, a piezoelectric single crystal substrate, a lower main surface electrode, and a dielectric layer in the main surface normal direction,
The upper main surface electrode is provided on the upper main surface of the piezoelectric single crystal substrate,
The lower main surface electrode is provided on the lower main surface of the piezoelectric single crystal substrate,
The dielectric layer is a piezoelectric vibrator laminated on at least one of the upper main surface electrode and the lower main surface electrode.
前記上主面電極と前記下主面電極との電極厚を相違させた、請求項1に記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the upper main surface electrode and the lower main surface electrode have different electrode thicknesses. 前記振動部は前記上主面電極と前記圧電単結晶基板と前記下主面電極と前記誘電体層とをこの順に積層した構成であり、前記下主面電極が基準電位に接続される、請求項1または2に記載の圧電振動子。   The vibrating section has a configuration in which the upper main surface electrode, the piezoelectric single crystal substrate, the lower main surface electrode, and the dielectric layer are stacked in this order, and the lower main surface electrode is connected to a reference potential. Item 3. The piezoelectric vibrator according to Item 1 or 2. 前記下主面電極および前記誘電体層は、前記振動部の下主面全体を覆う、請求項3に記載の圧電振動子。   The piezoelectric vibrator according to claim 3, wherein the lower main surface electrode and the dielectric layer cover the entire lower main surface of the vibration section. 前記誘電体層は、窒化珪素を成膜したものである、請求項1〜4に記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the dielectric layer is formed by depositing silicon nitride. 前記圧電振動子は、前記振動部を支持する支持部を備え、前記支持部は、前記圧電単結晶基板と前記誘電体層と前記誘電体層の下主面に積層される支持基板と、を含む複数の層を積層した構成である、請求項1〜5のいずれかに記載の圧電振動子。   The piezoelectric vibrator includes a support unit that supports the vibration unit, and the support unit includes the piezoelectric single crystal substrate, the dielectric layer, and a support substrate laminated on a lower main surface of the dielectric layer. The piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrator has a configuration in which a plurality of layers are stacked. 前記振動部は、主面に平行で互いに直交する2つの軸それぞれを中心として線対称な枠状であり、
前記支持部は、前記2つの軸それぞれを中心として線対称に設けられた支持梁により振動部を支持し、
前記上主面電極および前記下主面電極は、前記2つの軸それぞれを中心として線対称に設けられる、請求項6に記載の圧電振動子。
The vibrating portion has a frame shape that is axisymmetric about each of two axes that are parallel to the main surface and orthogonal to each other.
The support portion supports the vibration portion by a support beam provided symmetrically about each of the two axes.
The piezoelectric vibrator according to claim 6, wherein the upper main surface electrode and the lower main surface electrode are provided line-symmetrically with respect to each of the two axes.
前記圧電単結晶基板は、ニオブ酸リチウムまたはタンタル酸リチウムである、請求項1〜7のいずれかに記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the piezoelectric single crystal substrate is lithium niobate or lithium tantalate.
JP2009160493A 2009-07-07 2009-07-07 Piezoelectric vibrator Pending JP2011018959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160493A JP2011018959A (en) 2009-07-07 2009-07-07 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160493A JP2011018959A (en) 2009-07-07 2009-07-07 Piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JP2011018959A true JP2011018959A (en) 2011-01-27

Family

ID=43596445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160493A Pending JP2011018959A (en) 2009-07-07 2009-07-07 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP2011018959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506130A (en) * 2012-12-06 2016-02-25 エプコス アクチエンゲゼルシャフトEpcos Ag Electroacoustic transducer
JP2016537877A (en) * 2013-11-04 2016-12-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Battery charging based on intelligent context
CN106527292A (en) * 2016-12-26 2017-03-22 中国工程物理研究院总体工程研究所 Control method and control device of multi-piezoelectric-ceramic-vibrator parallel combined system
WO2021100248A1 (en) * 2019-11-21 2021-05-27 株式会社村田製作所 Piezoelectric device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506130A (en) * 2012-12-06 2016-02-25 エプコス アクチエンゲゼルシャフトEpcos Ag Electroacoustic transducer
US9497551B2 (en) 2012-12-06 2016-11-15 Epcos Ag Electroacoustic transducer
JP2016537877A (en) * 2013-11-04 2016-12-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Battery charging based on intelligent context
CN106527292A (en) * 2016-12-26 2017-03-22 中国工程物理研究院总体工程研究所 Control method and control device of multi-piezoelectric-ceramic-vibrator parallel combined system
CN106527292B (en) * 2016-12-26 2023-07-28 中国工程物理研究院总体工程研究所 Control method and control device of multi-piezoelectric ceramic vibration exciter parallel combination system
WO2021100248A1 (en) * 2019-11-21 2021-05-27 株式会社村田製作所 Piezoelectric device

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
EP2012087B1 (en) Vibration gyro
WO2013005625A1 (en) Vibrator and vibratory gyroscope
JPH1054723A (en) Angular velocity detecting device
US9337803B2 (en) Piezoelectric device and electronic apparatus
JP2011193399A (en) Resonator element, resonator and piezoelectric device
US20110221312A1 (en) Vibrator element, vibrator, sensor, and electronic apparatus
US9140549B2 (en) Physical quantity detection element, physical quantity detection device, and electronic apparatus
US8065914B2 (en) Vibration gyro
JP5093405B2 (en) Vibrating gyro element
JP2011018959A (en) Piezoelectric vibrator
JP2012149961A (en) Vibration gyro
JP2007163248A (en) Piezoelectric vibration gyro
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP5810685B2 (en) Vibrator and vibratory gyro
JP2015099039A (en) Piezoelectric acceleration sensor
JP4309814B2 (en) Method for adjusting vibrator for piezoelectric vibration gyro
JPH10221087A (en) Vibrator, vibration-type gyroscope, its manufacture, method for excitation of vibrator and method for detection of vibration of vibrator
JP2010145122A (en) Piezoelectric vibrator and vibrating gyroscope device
JP2010145121A (en) Piezoelectric vibrator and vibrating gyroscope device
JP2009128351A (en) Vibrator used in gyro sensor
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3287201B2 (en) Vibrating gyro
JP3371609B2 (en) Vibrating gyro