JP2008175578A - Vibrator for piezoelectric vibrating gyroscope - Google Patents

Vibrator for piezoelectric vibrating gyroscope Download PDF

Info

Publication number
JP2008175578A
JP2008175578A JP2007007217A JP2007007217A JP2008175578A JP 2008175578 A JP2008175578 A JP 2008175578A JP 2007007217 A JP2007007217 A JP 2007007217A JP 2007007217 A JP2007007217 A JP 2007007217A JP 2008175578 A JP2008175578 A JP 2008175578A
Authority
JP
Japan
Prior art keywords
piezoelectric
vibration
vibrator
arm portion
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007007217A
Other languages
Japanese (ja)
Inventor
Takeshi Mizuno
豪 水野
Akiko Oshima
亜希子 大島
Mitsuharu Chiba
光晴 千葉
Koichi Shuda
浩一 習田
Koichi Okamoto
幸一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007007217A priority Critical patent/JP2008175578A/en
Publication of JP2008175578A publication Critical patent/JP2008175578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, low-cost and high-performance vibrator for piezoelectric vibrating gyroscope, which is in a simple shape, has a simple electrode structure and enables a vibrator configuration to be realized in a two-axis detection. <P>SOLUTION: The vibrator for piezoelectric vibrating gyroscope using a torsional vibration mode due to a piezoelectric slip effect as a drive vibration mode comprises two first columnar arm parts 43a, 43b each being vertically connected with a second columnar arm part 42. The vibrator in a flat-plate form is made up of a piezoelectric single crystal integrally. In the piezoelectric vibrating gyroscope-use vibrator, strip detection electrodes 45a, 45b, 45c and 45d, and reference potential electrodes 46a, 46b are formed on front-back both sides of the first arm parts 43a, 43b, and strip drive electrodes 44a, 44b are formed on front-back both sides of the second arm parts 42. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電材料による電気機械変換作用を用いた圧電振動ジャイロ用振動子に関する。   The present invention relates to a vibrator for a piezoelectric vibration gyro using an electromechanical conversion action by a piezoelectric material.

(1軸振動ジャイロ:基本原理)振動ジャイロとは、速度を持つ物体に回転角速度が与えられると、その物体自身に速度方向と直角な方向にコリオリ力が発生するという力学現象を利用した角速度センサである。振動ジャイロは電気的な信号を印加することで機械的な振動(以下、「駆動モード」と呼ぶ。)を励起することができ、且つ、駆動振動と直交する方向の機械的な振動(以下、「検出モード」と呼ぶ。)の大きさを電気的に検出可能とした系を有し、予め、駆動モードを励振した状態で、駆動モードの振動面と検出モードの振動面との交線と平行な軸を中心とした回転角速度を与えると、前述のコリオリ力の作用により、検出モードが発生し、出力電圧として検出できる。この検出された出力電圧は駆動モードの大きさ及び回転角速度に比例するので、駆動モードの大きさを一定にした状態では、出力電圧の大きさから回転角速度の大きさを求めることができる。 (Single axis vibratory gyro: Basic principle) A vibratory gyroscope is an angular velocity sensor that uses a mechanical phenomenon that when a rotational angular velocity is applied to an object having a velocity, a Coriolis force is generated in the direction perpendicular to the velocity direction. It is. The vibration gyro can excite mechanical vibration (hereinafter referred to as “driving mode”) by applying an electrical signal, and mechanical vibration in a direction orthogonal to the driving vibration (hereinafter, referred to as “driving mode”). A system in which the magnitude of “detection mode” can be electrically detected, and in a state where the drive mode is excited in advance, the line of intersection between the vibration surface in the drive mode and the vibration surface in the detection mode When a rotational angular velocity about a parallel axis is given, a detection mode is generated by the action of the aforementioned Coriolis force, and can be detected as an output voltage. Since the detected output voltage is proportional to the magnitude of the drive mode and the rotational angular velocity, the magnitude of the rotational angular velocity can be obtained from the magnitude of the output voltage when the magnitude of the drive mode is constant.

(1軸または2軸振動ジャイロ:主要な振動方式)振動ジャイロ用振動子は駆動モード、検出モードの振動モードを圧電横効果による屈曲振動を用いた圧電セラミック、圧電単結晶などの圧電材料を用いたものが多く、図10は従来の圧電振動ジャイロ用振動子を示す斜視図である。図10において、振動子111は、エリンバなどの恒弾性金属材料からなる正方形状の板状の振動体112と、振動体112の主面の中央部に配置された圧電素子113とからなる。圧電素子113の表面には、複数の分割された電極116が配されている。振動体112には各辺の中央から中心点に向う4本の切り欠き121、122、123、124によって4つの振動体111a、111b、111c、111dが形成されている。振動子111は、ノード軸N1及びノード軸N2を軸とする軸対称モードで振動し、ノード軸N1とノード軸N2の交点付近で支持固定される。角速度の検出は、振動子111の平面内で振動するモードを用い、平面内の直交する2軸の角速度の検出を可能としている。このような振動ジャイロは特許文献1に開示されている。 (Single-axis or two-axis vibration gyro: main vibration system) The vibrator for the vibration gyro uses piezoelectric materials such as piezoelectric ceramics and piezoelectric single crystals that use bending vibration due to the piezoelectric transverse effect as the drive mode and detection mode vibration mode. FIG. 10 is a perspective view showing a conventional piezoelectric vibration gyro vibrator. In FIG. 10, the vibrator 111 is composed of a square plate-like vibrating body 112 made of a constant elastic metal material such as an elimber, and a piezoelectric element 113 disposed at the center of the main surface of the vibrating body 112. A plurality of divided electrodes 116 are arranged on the surface of the piezoelectric element 113. In the vibrating body 112, four vibrating bodies 111a, 111b, 111c, and 111d are formed by four notches 121, 122, 123, and 124 from the center of each side to the center point. The vibrator 111 vibrates in an axially symmetric mode with the node axis N1 and the node axis N2 as axes, and is supported and fixed near the intersection of the node axis N1 and the node axis N2. The angular velocity is detected by using a mode that vibrates in the plane of the vibrator 111, and two angular velocities perpendicular to each other in the plane can be detected. Such a vibration gyro is disclosed in Patent Document 1.

(1軸振動ジャイロ:圧電横効果を利用したねじり振動方式)振動モードは屈曲振動を用いたものが多いが、圧電横効果によるねじり振動を利用した圧電振動ジャイロ用振動子が特許文献2、3に開示されている。 (Single-axis vibration gyro: torsional vibration method using the piezoelectric transverse effect) Many of the vibration modes use bending vibration, but a vibrator for a piezoelectric vibration gyro that uses torsional vibration due to the piezoelectric transverse effect is disclosed in Patent Documents 2 and 3. Is disclosed.

(1軸振動ジャイロ:屈曲振動を利用した振動子の材料)圧電振動ジャイロ用振動子の材料としては圧電セラミック、圧電単結晶材料が利用されている。その中でも圧電単結晶材料は、一般に機械的品質係数(以下、Qmと記す)が高い、温度変化に対する特性変化が小さい、材料が均一で信頼性が高い、材料の量産性が良い、等の特徴があり、特にセンサ、発振器、表面弾性波フィルタなど、電子部品向けの振動子としてよく用いられている。また、今後の電子部品業界では電子部品の非鉛化が奨励されており、環境に対しても適した材料とされる。 (Uniaxial Vibrating Gyro: Vibrator Material Using Bending Vibration) Piezoelectric ceramics and piezoelectric single crystal materials are used as the material of the vibrator for the piezoelectric vibrating gyroscope. Among them, the piezoelectric single crystal material generally has a high mechanical quality factor (hereinafter referred to as Qm), a small characteristic change with respect to a temperature change, a uniform material, a high reliability, and a mass productivity of the material. In particular, it is often used as a vibrator for electronic parts such as sensors, oscillators, and surface acoustic wave filters. Further, in the future electronic component industry, lead-free electronic components are encouraged, and the materials are suitable for the environment.

(1軸振動ジャイロ:単結晶材料の特徴)しかしながら圧電単結晶材料の多くは物性に異方性があり、結晶方向を回転させることにより圧電効果の大きさが変化する。この結晶方向の回転角度のことを結晶方位といい、屈曲振動、ねじり振動のための圧電横効果に有効な結晶方位が存在する。 (Uniaxial vibration gyro: characteristics of single crystal material) However, many piezoelectric single crystal materials have anisotropy in physical properties, and the magnitude of the piezoelectric effect changes by rotating the crystal direction. This rotation angle in the crystal direction is called crystal orientation, and there is a crystal orientation effective for the piezoelectric transverse effect for bending vibration and torsional vibration.

圧電効果の大きさの指標として電気エネルギを機械的エネルギに変換する効率の大きさとなる結合係数kijがあり、圧電材料の圧電定数、弾性定数、誘電率から計算される。結合係数kijが大きいほど駆動振動、検出振動の効率が良く高性能の圧電振動ジャイロ用振動子が製作できる。結合係数kijは3階のテンソルであり、添字iは電圧印加方向を示し、1から3までの数字が割り当てられ、添字jは圧電効果の方向を示し、1から6までの数字が割り当てられる。添字i、jに割り当てられる1、2、3はそれぞれ振動子に対して任意に設定したX軸方向、Y軸方向、Z軸方向、4、5、6はそれぞれX軸まわり、Y軸まわり、Z軸まわりの回転方向を示す。例えばX軸方向に電圧印加したときのY軸方向の圧電横効果の大きさはk12となる。また、X軸方向に電圧印加したときのZ軸まわりの圧電すべり効果の大きさはk16となる。また、圧電横効果で利用される結合係数は電圧印加方向に対して垂直な方向の圧電効果であるk12、k13、k21、k23、k31、k32となる。したがって、圧電単結晶材料で圧電振動ジャイロ用振動子を構成する場合、振動子構造に対してどの角度で結晶方位を設定するかが重要となる。 As an index of the magnitude of the piezoelectric effect, there is a coupling coefficient kij which is the efficiency of converting electrical energy into mechanical energy, and is calculated from the piezoelectric constant, elastic constant, and dielectric constant of the piezoelectric material. The higher the coupling coefficient kij is, the more efficient the drive vibration and the detection vibration, and the higher-performance piezoelectric vibration gyro vibrator can be manufactured. The coupling coefficient kij is a third-order tensor, the subscript i indicates the voltage application direction, and numbers 1 to 3 are assigned. The subscript j indicates the direction of the piezoelectric effect, and numbers 1 to 6 are assigned. The subscripts i, j assigned to the subscripts i, j are the X-axis direction, Y-axis direction, Z-axis direction, 4, 5, and 6 arbitrarily set for the vibrator, respectively, around the X-axis and Y-axis, The direction of rotation about the Z axis is shown. For example, the Y-axis direction of the size of the transverse piezoelectric effect when a voltage is applied to the X-axis direction is k 12. The size of the piezoelectric shear effect around the Z axis when the voltage applied to the X-axis direction is k 16. The coupling coefficient used in the piezoelectric lateral effect is k 12 , k 13 , k 21 , k 23 , k 31 , and k 32 which are piezoelectric effects in the direction perpendicular to the voltage application direction. Therefore, when a piezoelectric vibration gyro vibrator is formed of a piezoelectric single crystal material, it is important at which angle the crystal orientation is set with respect to the vibrator structure.

(振動ジャイロ:近年のジャイロ業界での2軸への展開)近年、振動ジャイロにおいても、その他の電子部品と同様に小型化、低価格化が急速に進められている。また、例えば、手振れ防止装置等では、一般に2軸の回転角速度の検出が必要であるため、1軸の回転角速度を検出できる製品を2つ使用している場合がほとんどである。このような状況の中で、振動ジャイロの小型化、低価格化へのアプローチの1つとして、2軸の回転角速度の検出を1つの製品内で可能にする検討がなされている。このような構成の場合、1軸の製品を別々に生産するのに比べ、回路や外部入出力端子等の共通部分を共有することが可能となり、小型・低価格化を図ることができる。また、携帯電話機をはじめとした、携帯機器への搭載の検討も始まり、これまで以上に耐衝撃性、高安定化が求められている。 (Vibration Gyro: Development in Two Axes in Gyro Industry in Recent Years) In recent years, vibration gyros have been rapidly reduced in size and price as with other electronic components. In addition, for example, an anti-shake device or the like generally requires detection of a biaxial rotational angular velocity, and therefore, in most cases, two products that can detect a uniaxial rotational angular velocity are used. Under such circumstances, as one approach to reducing the size and cost of a vibrating gyroscope, studies have been made to enable detection of a biaxial rotational angular velocity within one product. In such a configuration, it is possible to share common parts such as a circuit and an external input / output terminal as compared with the case where a single-axis product is produced separately, thereby achieving a reduction in size and price. In addition, studies on mounting on mobile devices such as mobile phones have begun, and more shock resistance and higher stability are required than ever.

特許第3206551号公報Japanese Patent No. 3206551 特許第2521493号公報Japanese Patent No. 2521493 特開2000−310534号公報JP 2000-310534 A

上記のように、小型・低価格化のためには、2軸の回転角速度の検出が1つの製品内で可能であるだけでなく、高効率の圧電振動を用いなければならない。   As described above, in order to reduce the size and cost, it is not only possible to detect the biaxial rotational angular velocity within one product, but also high-efficiency piezoelectric vibration must be used.

図11は水晶の代表的なZ軸回転時の結晶方位と結合係数のグラフである。結晶方位0°のとき結合係数はk12は最大であるがk12に対して垂直方向の結合係数k13はいずれの方位角でも0である。したがって、図12に斜視図で示したような垂直な2方向の屈曲振動の励起が困難である。たとえ結晶方位を回転させてもいずれの結合係数も最大効率が出せず高い効率での圧電横効果は得られない。 FIG. 11 is a graph of crystal orientation and coupling coefficient during typical Z-axis rotation of quartz. Coupling coefficient when the crystal orientation 0 ° is k 12 is the coupling coefficient k 13 in the direction perpendicular to it is a maximum k 12 is 0 at any azimuth. Therefore, it is difficult to excite bending vibrations in two vertical directions as shown in the perspective view of FIG. Even if the crystal orientation is rotated, the maximum efficiency cannot be obtained with any coupling coefficient, and the piezoelectric transverse effect with high efficiency cannot be obtained.

それに対して2方向の屈曲振動を可能とする技術が特許文献3に開示されている。特許文献3では圧電単結晶材料として水晶を使用しており、駆動振動を励振させる枝部に対して60°の傾きで検出振動を励振させる第2の枝部を接続させ、表裏面に電極を形成することによりk12の成分を利用している。しかしながら結晶方位が60°のとき結合係数が最大をとっても振動方向に対しては60°の傾きを持つため、エネルギを損失し高性能な圧電振動ジャイロ用振動子を得ることが困難である。 On the other hand, Patent Document 3 discloses a technique that enables bending vibration in two directions. In Patent Document 3, quartz is used as a piezoelectric single crystal material, and a second branch portion that excites detection vibration at an inclination of 60 ° is connected to a branch portion that excites drive vibration, and electrodes are provided on the front and back surfaces. utilizing the components of k 12 by forming. However, when the crystal orientation is 60 °, even if the coupling coefficient is maximized, it has an inclination of 60 ° with respect to the vibration direction, so it is difficult to obtain a high-performance piezoelectric vibratory gyro vibrator with loss of energy.

一般に圧電単結晶材料を使用した場合、このような結晶方位、電極、形状の構造制限があるため小型化、低価格、高性能が困難になるといった問題がある。   In general, when a piezoelectric single crystal material is used, there is a problem that miniaturization, low cost, and high performance become difficult because of such structural limitations of crystal orientation, electrodes, and shape.

この状況にあって、本発明の課題は、簡素な形状、電極構造、2軸検出での振動子構成が可能となり、小型、低価格、高性能な圧電振動ジャイロ用振動子を提供することにある。   In this situation, an object of the present invention is to provide a vibrator for a piezoelectric vibration gyro that has a simple shape, an electrode structure, and a vibrator structure with two-axis detection, and that is small, low in price, and high in performance. is there.

前述の課題を解決するために、本発明の請求項1によれば圧電すべり効果によるねじり振動モードを駆動振動モードまたは検出振動モードの少なくとも一方に用いる圧電振動ジャイロ用振動子の構成とすることにより高い結合係数を示す圧電すべり効果でのねじり振動を励振可能となり課題を解決できる。   In order to solve the above-described problems, according to claim 1 of the present invention, a torsional vibration mode based on a piezoelectric sliding effect is configured as a vibrator for a piezoelectric vibration gyro that uses at least one of a drive vibration mode and a detection vibration mode. It is possible to excite torsional vibration due to the piezoelectric sliding effect exhibiting a high coupling coefficient and solve the problem.

なお、圧電によるすべり効果には、例えば水晶や圧電セラミックの平板モデルでは、「圧電面すべり」によるものと、「圧電厚さすべり」によるものがあるが、本願では、それらを総称して、圧電すべり効果と呼ぶ。また、すべり効果を生じる圧電定数には、d14、d15、d16、d24、d25、d26、d34、d35、d36がある。 In addition, as for the sliding effect due to piezoelectricity, for example, in a flat plate model of crystal or piezoelectric ceramic, there are a “piezoelectric surface slip” and a “piezoelectric thickness slip”, but in this application, these are collectively referred to as piezoelectric. This is called a slip effect. Further, the piezoelectric constant slippage effect, there is a d 14, d 15, d 16 , d 24, d 25, d 26, d 34, d 35, d 36.

また、2方向の振動モードを構成するため、柱状の第2のアーム部に対して垂直に接続される2以上の柱状の第1のアーム部を有し、圧電単結晶材料で一体的に形成される平板状の圧電振動ジャイロ用振動子であって、該第1のアーム及び該第2のアーム部の表面に電気信号入力用の帯状駆動電極と、振動検出用の帯状検出電極及び基準電位用の電極が施された構成が望ましい。   In addition, in order to constitute a bi-directional vibration mode, it has two or more columnar first arm portions that are connected perpendicularly to the columnar second arm portion, and is integrally formed of a piezoelectric single crystal material. A piezoelectric vibrator for a piezoelectric vibration gyro that is formed on the surface of the first arm and the second arm portion, a belt-like drive electrode for electric signal input, a belt-like detection electrode for vibration detection, and a reference potential The structure to which the electrode for this was given is desirable.

また、2方向の振動モードの振動を安定させるため、前記第2のアーム部に垂直に接続される2以上の前記第1のアーム部を有する平板状の圧電振動ジャイロ用振動子であって、該振動子平面内に振動する第1及び第2の振動モードと、該第1及び第2の振動モードと振動方向が直交する第3の振動モードの振動を励起及び検出可能な構成とすることが望ましい。   Further, in order to stabilize the vibration in the two-direction vibration mode, the vibrator for a plate-like piezoelectric vibration gyro having two or more first arm portions connected perpendicularly to the second arm portion, The first and second vibration modes that vibrate in the plane of the vibrator and the third vibration mode whose vibration direction is orthogonal to the first and second vibration modes can be excited and detected. Is desirable.

また、駆動振動モードと検出振動モードを高効率とするため、駆動振動モードと検出振動モードの少なくとも1つの振動モードには、前記第2のアーム部の厚さ方向あるいは主面内方向の圧電厚さすべり効果による前記第2のアーム部の長手方向に対して垂直な面に関するねじり振動を用い、他の振動モードには前記第1のアーム部の厚さ方向あるいは主面内方向で且つ該ねじり振動の回転中心軸に垂直な方向の圧電横効果による該第1のアーム部に関する屈曲振動を用いる構成が望ましい。   In order to make the drive vibration mode and the detection vibration mode highly efficient, at least one vibration mode of the drive vibration mode and the detection vibration mode includes a piezoelectric thickness in the thickness direction of the second arm portion or in the main surface direction. Torsional vibration related to a plane perpendicular to the longitudinal direction of the second arm portion due to the slip effect is used, and in the other vibration modes, the torsional vibration is applied in the thickness direction of the first arm portion or in the main surface direction. A configuration using bending vibration related to the first arm portion by a piezoelectric lateral effect in a direction perpendicular to the rotation center axis of vibration is desirable.

また、振動子の組み立て性の向上及び2軸の角速度検出を可能とするため、枠体と、該枠体に両端が支持されてなる支持部と、該支持部と交差し形成される1以上の第2のアーム部と、該第2のアーム部に接続される2以上の第1のアーム部と、該第1のアーム部に支持される負荷質量部とからなり、前記第1の振動モード、前記第2の振動モード及び前記第3の振動モードにおいて、該記枠体が振動のノードとなる構成にすることが望ましい。   Further, in order to improve the assembly property of the vibrator and to detect the biaxial angular velocity, the frame body, a support part having both ends supported by the frame body, and one or more formed to intersect the support part The first arm portion, two or more first arm portions connected to the second arm portion, and a load mass portion supported by the first arm portion. In the mode, the second vibration mode, and the third vibration mode, it is desirable that the frame body be a vibration node.

また、大きな結合係数での圧電横効果、圧電厚さすべり効果を得るため、圧電単結晶材料がLiNbOであり、前記第1のアーム部及び前記第2のアーム部の厚さ方向が該圧電単結晶の結晶方位のX軸であり、前記第2のアーム部の長手方向と平行な方向が該圧電単結晶の結晶方位の140°±15°回転Y軸である構成にすることが望ましい。 Further, in order to obtain a piezoelectric lateral effect and a piezoelectric thickness sliding effect with a large coupling coefficient, the piezoelectric single crystal material is LiNbO 3 , and the thickness directions of the first arm portion and the second arm portion are the piezoelectric directions. It is desirable that the X axis is the crystal orientation of the single crystal, and the direction parallel to the longitudinal direction of the second arm portion is the Y axis of 140 ° ± 15 ° rotation of the crystal orientation of the piezoelectric single crystal.

同様に、大きな結合係数での圧電横効果、圧電厚さすべり効果を得るため、圧電単結晶材料がLiTaOであり、前記第1のアーム部及び前記第2のアーム部の厚さ方向が該圧電単結晶の結晶方位のX軸であり、前記第2のアーム部の長手方向と平行な方向が該圧電単結晶の結晶方位の140°±15°回転Y軸である構成にすることが望ましい。 Similarly, in order to obtain a piezoelectric lateral effect and a piezoelectric thickness slip effect with a large coupling coefficient, the piezoelectric single crystal material is LiTaO 3 , and the thickness directions of the first arm portion and the second arm portion are Desirably, the X-axis of the crystal orientation of the piezoelectric single crystal is parallel to the longitudinal direction of the second arm portion, and the Y-axis is rotated by 140 ° ± 15 ° of the crystal orientation of the piezoelectric single crystal. .

以上述べたように本発明の適用により、簡素な形状、電極構造、2軸検出での構成が可能となり、小型、低価格、高性能な圧電振動ジャイロ用振動子を得ることが可能である。   As described above, by applying the present invention, a simple shape, an electrode structure, and a configuration with two-axis detection are possible, and a small-sized, low-cost, high-performance vibrator for a piezoelectric vibration gyro can be obtained.

本発明の実施の形態を、本発明の圧電振動ジャイロ用振動子の例で図を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings using an example of a vibrator for a piezoelectric vibration gyro according to the present invention.

(実施の形態1)図1は本発明の実施の形態1における圧電振動ジャイロ用振動子41を示す斜視図である。LiNbOの圧電単結晶からなる1枚の圧電単結晶板の同一面内に第2のアーム部42と、第2のアーム部42にT字型となるように接続された2つの第1のアーム部43a、43bをフォトリソグラフィー技術を利用したブラスト加工、ドライエッチング加工などのパターン加工により形成した。本実施の形態では、第2のアーム部42の中心線に対して左右対称な形状とした。また、第2のアーム部42の端面47は固定面とした。 (Embodiment 1) FIG. 1 is a perspective view showing a piezoelectric vibration gyro vibrator 41 according to Embodiment 1 of the present invention. A second arm portion 42 is formed in the same plane of a single piezoelectric single crystal plate made of a LiNbO 3 piezoelectric single crystal, and the two first portions connected to the second arm portion 42 so as to be T-shaped. The arm portions 43a and 43b were formed by pattern processing such as blast processing and dry etching processing using a photolithography technique. In the present embodiment, the shape is bilaterally symmetric with respect to the center line of the second arm portion 42. Further, the end surface 47 of the second arm portion 42 is a fixed surface.

座標軸の配置は第2のアーム部42の長手方向と平行な軸をY軸、第1のアーム部43a、43bの長手方向と平行な軸をZ軸とし、YZ平面に対して垂直な方向をX軸とした。電極は、第2のアーム部42の表面には圧電すべり効果を使用したねじり振動用の駆動電極44a、44bを帯状に形成し、第1のアーム部43a、43bの表面には圧電横効果の屈曲振動用の検出電極45a、45b、45c、45dと基準電位電極46a、46bを帯状に形成した。図2(a)は第2のアーム部42の断面図であり、図2(b)は第1のアーム部43aの断面図である。このように平板裏面にも表面同様の電極を形成した。また、電極はクロムを下地とした金電極で形成した。   The arrangement of the coordinate axes is such that the axis parallel to the longitudinal direction of the second arm portion 42 is the Y axis, the axis parallel to the longitudinal direction of the first arm portions 43a and 43b is the Z axis, and the direction perpendicular to the YZ plane is The X axis was used. The electrodes are formed with belt-like drive electrodes 44a and 44b for torsional vibration using the piezoelectric sliding effect on the surface of the second arm portion 42, and the piezoelectric lateral effect is formed on the surfaces of the first arm portions 43a and 43b. Detection electrodes 45a, 45b, 45c, 45d for bending vibration and reference potential electrodes 46a, 46b were formed in a strip shape. 2A is a cross-sectional view of the second arm portion 42, and FIG. 2B is a cross-sectional view of the first arm portion 43a. Thus, an electrode similar to the surface was formed on the back surface of the flat plate. The electrode was formed of a gold electrode with chromium as a base.

上記の構成で必要となる結合係数はk21、k23、k16となる。図3はLiNbOのX軸まわりの結晶方位と結合係数k21、k23、k16のグラフである。 The coupling coefficients required in the above configuration are k 21 , k 23 , and k 16 . FIG. 3 is a graph of the crystal orientation around the X axis of LiNbO 3 and the coupling coefficients k 21 , k 23 , and k 16 .

140°付近で結合係数k21、k23、k16が高いので結晶方位は素子(圧電振動ジャイロ用振動子41)のY方向が結晶方位の±140°Yと一致するように配置した。したがって結合係数k21、k23、k16を利用することで圧電振動ジャイロ用振動子の第2のアーム部42、第1のアーム部43a、43bの表裏面だけの電極で圧電振動ジャイロ用振動子が構成できる。 Since the coupling coefficients k 21 , k 23 , and k 16 are high in the vicinity of 140 °, the crystal orientation is arranged so that the Y direction of the element (piezoelectric vibratory gyro vibrator 41) coincides with ± 140 ° Y of the crystal orientation. Therefore, by using the coupling coefficients k 21 , k 23 , and k 16 , the piezoelectric vibration gyro vibrations are formed by the electrodes of only the front and back surfaces of the second arm part 42 and the first arm parts 43 a and 43 b of the piezoelectric vibration gyro vibrator. Child can be configured.

ここで、上記実施の形態による構成の圧電振動ジャイロの動作原理について説明する。駆動電極44a、44bに互いに逆位相の交流電圧を印加することで圧電厚さすべり効果でねじり振動を駆動振動モード(Xモード)として励振する。   Here, the operation principle of the piezoelectric vibration gyro configured as described above will be described. By applying alternating voltages having opposite phases to the drive electrodes 44a and 44b, the torsional vibration is excited as a drive vibration mode (X mode) by the piezoelectric thickness sliding effect.

図4はXモードの第2のアーム部42と第1のアーム部43a、43bの挙動を示す斜視図である。第1のアーム部43aと43bとが互いにX軸方向に対して平行方向に逆位相で振動する。こうして、第2のアーム部42には、ねじり振動48が生じる。   FIG. 4 is a perspective view showing the behavior of the second arm portion 42 and the first arm portions 43a and 43b in the X mode. The first arm portions 43a and 43b vibrate in opposite phases in a direction parallel to the X-axis direction. Thus, torsional vibration 48 is generated in the second arm portion 42.

図5は第1のアーム部43aと43bが互いにY軸方向に対して逆位相で振動するYモードの斜視図である。   FIG. 5 is a perspective view of the Y mode in which the first arm portions 43a and 43b vibrate in opposite phases with respect to the Y-axis direction.

例えば、駆動振動であるXモードを励振した状態で、Y軸まわりに角速度を印加すると、2つの第1のアーム部に働くコリオリ力の影響で、Yモードが発生する。このとき、Xモードの振動速度が一定であれば、これらの発生した、Yモード振幅の大きさは、印加した角速度に比例し、これらの振動を電気的に取り出せば、角速度センサとして機能する。   For example, when an angular velocity is applied around the Y axis in the state where the X mode that is driving vibration is excited, the Y mode is generated due to the influence of the Coriolis force acting on the two first arm portions. At this time, if the vibration speed of the X mode is constant, the magnitude of the generated Y mode amplitude is proportional to the applied angular velocity, and functions as an angular velocity sensor if these vibrations are extracted electrically.

圧電単結晶材料としてはLiNbOのほかにLiTaOを適用しても本発明により有用な圧電振動ジャイロ用振動子が構成できる。また、その結晶方位については140°回転Y軸に対し±15°の回転範囲を許容しても、実用的には十分な高効率が得られる。 Even if LiTaO 3 is applied as the piezoelectric single crystal material in addition to LiNbO 3, a useful vibrator for a piezoelectric vibration gyro can be configured according to the present invention. Further, even if the crystal orientation allows a rotation range of ± 15 ° with respect to the 140 ° rotation Y axis, a sufficiently high efficiency can be obtained practically.

(実施の形態2)
図6は上記実施の形態1による圧電振動ジャイロ用振動子に加えさらに端面47(図1)を対称面にしてT字形状の同様な振動子を接続し、第1のアーム部91a、91b、91c、91dの先端に負荷質量部92a、92b、92c、92dを接続した圧電振動ジャイロ用振動子の上面図である。
(Embodiment 2)
FIG. 6 shows the first arm portions 91a, 91b, and the like, in addition to the piezoelectric vibration gyro vibrator according to the first embodiment, a similar T-shaped vibrator with the end face 47 (FIG. 1) as a symmetry plane is connected. It is a top view of the vibrator for piezoelectric vibration gyroscope which connected load mass parts 92a, 92b, 92c, and 92d to the tip of 91c and 91d.

本実施の形態2のXモードは図7に示すように第2のアーム部93a、93bがねじり振動を行い、第1のアーム部91a、91b、91c、91dが第2のアーム部93a、93bを軸に回転運動を行う。その結果、負荷質量部92a及び92dと、負荷質量部92b及び92cとが互いに逆位相で面外方向に振動を行う。   In the X mode of the second embodiment, as shown in FIG. 7, the second arm portions 93a, 93b perform torsional vibration, and the first arm portions 91a, 91b, 91c, 91d are the second arm portions 93a, 93b. Rotate around the axis. As a result, the load mass portions 92a and 92d and the load mass portions 92b and 92c vibrate out of plane with opposite phases.

また、Yモードは、図8に示すように、第1のアーム部91a及び91dと他の第1のアーム部91b及び91cとが、それぞれ互いにY軸方向に対して逆位相で面内方向に振動する。   Further, in the Y mode, as shown in FIG. 8, the first arm portions 91a and 91d and the other first arm portions 91b and 91c are in the in-plane direction in opposite phases with respect to the Y-axis direction. Vibrate.

加えて、Zモードとして図9に示すように第1のアーム部91a及び91cと他の第1のアーム部91b及び91dとが、負荷質量部92a及び92cと他の負荷質量部92b及び92dを伴って、それぞれ互いにZ軸方向に対して逆位相で面内方向に振動する。   In addition, as shown in FIG. 9, as the Z mode, the first arm portions 91a and 91c and the other first arm portions 91b and 91d are connected to the load mass portions 92a and 92c and the other load mass portions 92b and 92d. As a result, they vibrate in the in-plane direction with phases opposite to each other in the Z-axis direction.

したがって、Yモードの面内振動及びZモードの面内振動を各々の位相関係を基に分離出力すれば、1つの圧電振動ジャイロ用振動子で2軸の検出が可能となる。また、図6のように、第2のアーム部93a、93bのねじり振動のノード点近傍はビーム部(支持部)94a、94bによって外縁部(枠体)95へと接続されている。   Accordingly, if the Y-mode in-plane vibration and the Z-mode in-plane vibration are separated and output based on the respective phase relationships, two axes can be detected by one piezoelectric vibration gyro vibrator. Further, as shown in FIG. 6, the vicinity of the node point of the torsional vibration of the second arm portions 93a and 93b is connected to the outer edge portion (frame body) 95 by beam portions (support portions) 94a and 94b.

このように、互いに隣合う負荷質量が接続されたアームの振動が逆位相であるため振動エネルギが内部に閉じこもり、駆動モードの振動が枠体へ伝わり難くなる。したがって、駆動モードの振動を阻害することなく、安定な支持特性が得られる。そして、センサ出力が安定化し、出力ドリフトも低減する。また、外縁部95全周を支持できるので、圧電振動ジャイロ用振動子に衝撃が加わっても、力を分散でき、耐衝撃性の高い構造となる。加えて、外縁部95を支持固定することができるため、実装が容易で、生産性も高くなる。   Thus, since the vibrations of the arms connected to the load masses adjacent to each other are in opposite phases, the vibration energy is confined inside, and the vibration in the driving mode is difficult to be transmitted to the frame. Therefore, stable support characteristics can be obtained without impeding vibration in the drive mode. And a sensor output is stabilized and an output drift is also reduced. Further, since the entire circumference of the outer edge portion 95 can be supported, even if an impact is applied to the piezoelectric vibration gyro vibrator, the force can be dispersed and a structure having high impact resistance can be obtained. In addition, since the outer edge portion 95 can be supported and fixed, mounting is easy and productivity is increased.

その製造工程においては、圧電単結晶のウエハ上に複数個の前記振動ジャイロ用素子を同時に形成し、外縁部95同士が接合した状態であっても、特性を検査することが容易となる。したがって、振動ジャイロ用素子を1つずつ切り出すことなく、振動特性の検査、周波数調整、バランス調整を行うこともでき、容易に検査、調整可能で、後工程の歩留まりも改善できる。   In the manufacturing process, even when a plurality of the vibrating gyro elements are simultaneously formed on the piezoelectric single crystal wafer and the outer edge portions 95 are joined to each other, the characteristics can be easily inspected. Therefore, it is possible to perform vibration characteristic inspection, frequency adjustment, and balance adjustment without cutting out the vibration gyro elements one by one, which can be easily inspected and adjusted, and the yield of subsequent processes can be improved.

以上、圧電単結晶LiNbO回転140°板と、ねじり振動、屈曲振動を振動モードに適用した構造を組み合わせることにより、単純な構造で高性能、小型化、低コスト化を実現した量産性の高い圧電振動ジャイロ用振動子を得ることができる。 As described above, by combining a piezoelectric single crystal LiNbO 3 rotation 140 ° plate with a structure in which torsional vibration and bending vibration are applied to the vibration mode, high performance, small size, and low cost are realized with a simple structure and high mass productivity. A vibrator for a piezoelectric vibration gyro can be obtained.

ところで、上記の実施の形態では第1のアーム部が2個または4個の場合について説明したが、第1のアーム部の個数は3または5以上も可能であり、振動のバランスをとるため、あるいは感度を上げるためなど、その目的などに応じて、適切な個数を選択できる。   By the way, in said embodiment, although the case where the number of the 1st arm parts was 2 or 4 was demonstrated, the number of the 1st arm parts is 3 or 5 or more, and in order to balance vibration, Alternatively, an appropriate number can be selected according to the purpose, for example, to increase sensitivity.

また上記実施の形態では、「圧電厚さすべり」による圧電すべり効果を用いた場合を説明したが、「圧電面すべり」による圧電すべり効果を用いてもよいことは明らかである。   In the above embodiment, the case of using the piezoelectric sliding effect by “piezoelectric thickness sliding” has been described, but it is obvious that the piezoelectric sliding effect by “piezoelectric surface sliding” may be used.

本発明の圧電振動ジャイロ用振動子の実施の形態1の斜視図。1 is a perspective view of a first embodiment of a vibrator for a piezoelectric vibration gyro according to the present invention. 本発明の圧電振動ジャイロ用振動子の実施の形態1に係り、図2(a)は第2のアーム部の断面図、図2(b)は第1のアーム部の断面図。FIG. 2A is a cross-sectional view of a second arm portion, and FIG. 2B is a cross-sectional view of a first arm portion according to the first embodiment of a vibrator for a piezoelectric vibration gyro according to the present invention. LiNbOのX軸まわりの結晶方位と結合係数k21、k23、k16のグラフ。A graph of crystal orientation around the X axis of LiNbO 3 and coupling coefficients k 21 , k 23 , and k 16 . 本発明の圧電振動ジャイロ用振動子の実施の形態1でのXモードの振動方向を示す斜視図。The perspective view which shows the vibration direction of the X mode in Embodiment 1 of the vibrator | oscillator for piezoelectric vibration gyroscopes of this invention. 本発明の圧電振動ジャイロ用振動子の実施の形態1でのYモードの振動方向を示す外形斜視図。FIG. 3 is an external perspective view showing the Y-mode vibration direction in the first embodiment of the vibrator for piezoelectric vibration gyro according to the present invention. 本発明の圧電振動ジャイロ用振動子の実施の形態2での上面図。The top view in Embodiment 2 of the vibrator | oscillator for piezoelectric vibration gyroscopes of this invention. 本発明の圧電振動ジャイロ用振動子の実施の形態2でのXモードの振動方向を示し、図7(a)はその斜視図、図7(b)は上面図、図7(c)は側面図。FIG. 7A is a perspective view, FIG. 7B is a top view, and FIG. 7C is a side view, illustrating an X-mode vibration direction in the second embodiment of the vibrator for piezoelectric vibration gyro according to the present invention. Figure. 本発明の圧電振動ジャイロ用振動子の実施の形態2でのYモードの振動方向を示し、図8(a)はその斜視図、図8(b)は上面図、図8(c)は側面図。FIG. 8A is a perspective view, FIG. 8B is a top view, and FIG. 8C is a side view, illustrating a Y-mode vibration direction in the second embodiment of the vibrator for piezoelectric vibration gyro according to the present invention. Figure. 本発明の圧電振動ジャイロ用振動子の実施の形態2でのZモードの振動方向を示し、図9(a)は斜視図、図9(b)は上面図、図9(c)は側面図。FIG. 9A is a perspective view, FIG. 9B is a top view, and FIG. 9C is a side view, illustrating a Z-mode vibration direction in the second embodiment of the vibrator for piezoelectric vibration gyro according to the present invention. . 従来の技術説明するための圧電振動ジャイロ用振動子の斜視図。FIG. 6 is a perspective view of a vibrator for a piezoelectric vibration gyro for explaining a conventional technique. 従来の問題を説明するための水晶の結晶方位角と結合係数の関係のグラフ。The graph of the relationship between the crystal azimuth angle of a quartz crystal and a coupling coefficient for demonstrating the conventional problem. 従来の問題を説明するための圧電振動ジャイロ用振動子の斜視図。FIG. 6 is a perspective view of a piezoelectric vibration gyro vibrator for explaining a conventional problem.

符号の説明Explanation of symbols

41 圧電振動ジャイロ用振動子
42、93a、93b 第2のアーム部
43a、43b、91a、91b、91c、91d 第1のアーム部
44a、44b 駆動電極
45a、45b、45c、45d 検出電極
46a、46b 基準電位電極
47 端面
48 ねじり振動
92a、92b、92c、92d 負荷質量部
94a、94b ビーム部
95 外縁部
111 振動子
111a、111b、111c、111d、112 振動体
113 圧電素子
116 電極
121、122、123、124 切り欠き
N1、N2 ノード軸
41 Piezoelectric vibratory gyro vibrators 42, 93a, 93b Second arm parts 43a, 43b, 91a, 91b, 91c, 91d First arm parts 44a, 44b Drive electrodes 45a, 45b, 45c, 45d Detection electrodes 46a, 46b Reference potential electrode 47 End face 48 Torsional vibration 92a, 92b, 92c, 92d Load mass portion 94a, 94b Beam portion 95 Outer edge portion 111 Vibrators 111a, 111b, 111c, 111d, 112 Vibrating body 113 Piezoelectric element 116 Electrodes 121, 122, 123 , 124 Notch N1, N2 Node axis

Claims (7)

圧電すべり効果によるねじり振動モードを駆動振動モードまたは検出振動モードの少なくとも一方に用いたことを特徴とする圧電振動ジャイロ用振動子。   A vibrator for a piezoelectric vibration gyro, wherein a torsional vibration mode based on a piezoelectric sliding effect is used for at least one of a drive vibration mode and a detection vibration mode. 柱状の第2のアーム部に対して垂直に接続された2以上の柱状の第1のアーム部を有し、圧電単結晶で一体的に平板状に形成され、該第1のアーム部及び該第2のアーム部の表面に、電気信号入力用の帯状駆動電極と、振動検出用の帯状検出電極とが形成されたことを特徴とする請求項1記載の圧電振動ジャイロ用振動子。   Two or more columnar first arm portions connected perpendicularly to the columnar second arm portion are formed integrally with a piezoelectric single crystal in a flat plate shape, and the first arm portion and the The vibrator for a piezoelectric vibration gyro according to claim 1, wherein a band-shaped drive electrode for electric signal input and a band-shaped detection electrode for vibration detection are formed on the surface of the second arm portion. 柱状の第2のアーム部に対して垂直に接続された2以上の柱状の第1のアーム部を有し、圧電単結晶で一体的に平板状に形成され、該平板の面内で振動する第1及び第2の振動モードと該第1及び第2の振動モードに振動方向が直交する第3の振動モードとを、前記駆動振動モード及び検出振動モードに用いたことを特徴とする請求項1または請求項2記載の圧電振動ジャイロ用振動子。   It has two or more columnar first arm portions that are vertically connected to the columnar second arm portion, and is formed integrally with a piezoelectric single crystal in a flat plate shape, and vibrates in the plane of the flat plate. The first and second vibration modes and the third vibration mode whose vibration direction is orthogonal to the first and second vibration modes are used for the drive vibration mode and the detection vibration mode. 3. A vibrator for a piezoelectric vibration gyro according to claim 1 or 2. 前記駆動振動モード及び検出振動モードのうちの少なくとも1つの振動モードには前記第2のアーム部の厚さ方向または主面内方向の圧電厚さすべり効果により発生する前記第2のアーム部の長手方向に垂直な面内のねじり振動を用い、他の振動モードには前記第1のアーム部の厚さ方向または主面内方向で且つ該ねじり振動の回転中心軸に垂直な方向の圧電横効果による該第1のアーム部の屈曲振動を用いたことを特徴とする請求項2または請求項3記載の圧電振動ジャイロ用振動子。   In at least one of the drive vibration mode and the detection vibration mode, the longitudinal direction of the second arm portion generated by the piezoelectric thickness slip effect in the thickness direction of the second arm portion or in the main surface direction is used. The piezoelectric transverse effect in the direction perpendicular to the rotational center axis of the torsional vibration is used in the thickness direction or the principal plane direction of the first arm portion in other vibration modes. 4. The piezoelectric vibration gyro vibrator according to claim 2, wherein bending vibration of the first arm portion is used. 枠体と、該枠体に両端が支持されてなる支持部と、該支持部と交差し形成される1以上の第2のアーム部と、該第2のアーム部に接続される2以上の第1のアーム部と、該第1のアーム部に支持される負荷質量部とからなり、前記駆動振動モード及び前記検出モードのいずれに対しても、前記枠体が振動のノードとなることを特徴とする請求項3または請求項4記載の圧電振動ジャイロ用振動子。   A frame, a support part having both ends supported by the frame, one or more second arm parts formed to intersect the support part, and two or more connected to the second arm part The first arm portion and a load mass portion supported by the first arm portion, and the frame body is a vibration node for both the drive vibration mode and the detection mode. 5. The piezoelectric vibration gyro vibrator according to claim 3, wherein the piezoelectric vibration gyro vibrator is provided. 前記圧電単結晶がLiNbOであり、前記第1のアーム部及び前記第2のアーム部の厚さ方向が該圧電単結晶の結晶方位のX軸であり、前記第2のアーム部の長手方向と平行な方向が該圧電単結晶の結晶方位の140°±15°回転Y軸であることを特徴とする請求項2〜5のいずれか1項に記載の圧電振動ジャイロ用振動子。 The piezoelectric single crystal is LiNbO 3 , the thickness direction of the first arm portion and the second arm portion is the X axis of the crystal orientation of the piezoelectric single crystal, and the longitudinal direction of the second arm portion 6. The vibrator for a piezoelectric vibration gyro according to claim 2, wherein the direction parallel to the piezoelectric axis is a Y axis of 140 ° ± 15 ° rotation of the crystal orientation of the piezoelectric single crystal. 前記圧電単結晶がLiTaOであり、前記第1のアーム部及び前記第2のアーム部の厚さ方向が該圧電単結晶の結晶方位のX軸であり、前記第2のアーム部の長手方向と平行な方向が該圧電単結晶の結晶方位の140°±15°回転Y軸であることを特徴とする請求項2〜5のいずれか1項に記載の圧電振動ジャイロ用振動子。 The piezoelectric single crystal is LiTaO 3 , the thickness direction of the first arm portion and the second arm portion is the X axis of the crystal orientation of the piezoelectric single crystal, and the longitudinal direction of the second arm portion 6. The vibrator for a piezoelectric vibration gyro according to claim 2, wherein the direction parallel to the piezoelectric axis is a Y axis of 140 ° ± 15 ° rotation of the crystal orientation of the piezoelectric single crystal.
JP2007007217A 2007-01-16 2007-01-16 Vibrator for piezoelectric vibrating gyroscope Pending JP2008175578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007217A JP2008175578A (en) 2007-01-16 2007-01-16 Vibrator for piezoelectric vibrating gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007217A JP2008175578A (en) 2007-01-16 2007-01-16 Vibrator for piezoelectric vibrating gyroscope

Publications (1)

Publication Number Publication Date
JP2008175578A true JP2008175578A (en) 2008-07-31

Family

ID=39702718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007217A Pending JP2008175578A (en) 2007-01-16 2007-01-16 Vibrator for piezoelectric vibrating gyroscope

Country Status (1)

Country Link
JP (1) JP2008175578A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
WO2013184084A1 (en) * 2012-06-04 2013-12-12 Systron Donner Inertial Torsional rate measuring gyroscope
JP2015231045A (en) * 2014-06-09 2015-12-21 株式会社村田製作所 Piezoelectric film, vibration device and distortion detection device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120415A (en) * 1989-10-03 1991-05-22 Akai Electric Co Ltd Vibration gyro
JPH03162615A (en) * 1989-11-21 1991-07-12 Akai Electric Co Ltd Vibration gyro
JPH05218524A (en) * 1991-02-12 1993-08-27 Fujitsu Ltd Piezoelectric transformer, piezoelectric transformer assembly and piezoelectric oscillator
JPH0886802A (en) * 1994-09-14 1996-04-02 Murata Mfg Co Ltd Acceleration sensor
JPH09196682A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Angular velocity sensor and acceleration sensor
JPH10153433A (en) * 1996-09-24 1998-06-09 Seiko Epson Corp Piezoelectric gyro sensor
JPH10160478A (en) * 1996-11-28 1998-06-19 Ngk Insulators Ltd Vibrator, its adjusting method, and vibrational gyroscope using it
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JPH10239061A (en) * 1997-02-24 1998-09-11 Nikon Corp Oscillator for piezoelectric oscillating angular velocity meter
JPH10239062A (en) * 1997-02-24 1998-09-11 Nikon Corp Vibrator for piezoelectric vibrational angular velocimeter and its manufacture
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2003166828A (en) * 2001-11-30 2003-06-13 Ngk Insulators Ltd Physical quantity measuring device and vibrator
JP2004251663A (en) * 2003-02-18 2004-09-09 Fujitsu Media Device Kk Angular velocity sensor
JP2005189166A (en) * 2003-12-26 2005-07-14 Nec Tokin Corp Tuning fork type piezoelectric vibratory gyro
JP2005227299A (en) * 1996-11-28 2005-08-25 Ngk Insulators Ltd Vibration type gyroscope
JP2005257516A (en) * 2004-03-12 2005-09-22 Japan Aviation Electronics Industry Ltd Vibration gyroscope
JP2006084273A (en) * 2004-09-15 2006-03-30 Nec Tokin Corp Tuning fork type vibrator for piezoelectric vibration gyro
JP2006226802A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Compound sensor

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120415A (en) * 1989-10-03 1991-05-22 Akai Electric Co Ltd Vibration gyro
JPH03162615A (en) * 1989-11-21 1991-07-12 Akai Electric Co Ltd Vibration gyro
JPH05218524A (en) * 1991-02-12 1993-08-27 Fujitsu Ltd Piezoelectric transformer, piezoelectric transformer assembly and piezoelectric oscillator
JPH0886802A (en) * 1994-09-14 1996-04-02 Murata Mfg Co Ltd Acceleration sensor
JPH09196682A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Angular velocity sensor and acceleration sensor
JPH10153433A (en) * 1996-09-24 1998-06-09 Seiko Epson Corp Piezoelectric gyro sensor
JP2005227299A (en) * 1996-11-28 2005-08-25 Ngk Insulators Ltd Vibration type gyroscope
JPH10160478A (en) * 1996-11-28 1998-06-19 Ngk Insulators Ltd Vibrator, its adjusting method, and vibrational gyroscope using it
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JPH10239061A (en) * 1997-02-24 1998-09-11 Nikon Corp Oscillator for piezoelectric oscillating angular velocity meter
JPH10239062A (en) * 1997-02-24 1998-09-11 Nikon Corp Vibrator for piezoelectric vibrational angular velocimeter and its manufacture
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
JP2003166828A (en) * 2001-11-30 2003-06-13 Ngk Insulators Ltd Physical quantity measuring device and vibrator
JP2004251663A (en) * 2003-02-18 2004-09-09 Fujitsu Media Device Kk Angular velocity sensor
JP2005189166A (en) * 2003-12-26 2005-07-14 Nec Tokin Corp Tuning fork type piezoelectric vibratory gyro
JP2005257516A (en) * 2004-03-12 2005-09-22 Japan Aviation Electronics Industry Ltd Vibration gyroscope
JP2006084273A (en) * 2004-09-15 2006-03-30 Nec Tokin Corp Tuning fork type vibrator for piezoelectric vibration gyro
JP2006226802A (en) * 2005-02-17 2006-08-31 Matsushita Electric Ind Co Ltd Compound sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
US8584522B2 (en) 2010-04-30 2013-11-19 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
WO2013184084A1 (en) * 2012-06-04 2013-12-12 Systron Donner Inertial Torsional rate measuring gyroscope
US9581445B2 (en) 2012-06-04 2017-02-28 Systron Donner Inertial, Inc. Torsional rate measuring gyroscope
JP2015518971A (en) * 2012-06-04 2015-07-06 カスタム センサーズ アンド テクノロジーズ インコーポレイテッド Torsion speed measurement gyroscope
JP2015231045A (en) * 2014-06-09 2015-12-21 株式会社村田製作所 Piezoelectric film, vibration device and distortion detection device

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
JPWO2006075764A1 (en) Vibrating gyroscope
US20160187135A1 (en) Angular velocity detection device
US8065914B2 (en) Vibration gyro
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP4911690B2 (en) Vibrating gyro vibrator
US11112247B2 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JP2008058062A (en) Angular velocity sensor
US8910519B2 (en) Vibration gyro element
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
US9726492B2 (en) Angular velocity detection element
JP2007163248A (en) Piezoelectric vibration gyro
JP2007212355A (en) Piezoelectric vibrator for angular velocity sensor
JP2006267094A (en) Inertial sensor element
JP2011018959A (en) Piezoelectric vibrator
JP2001208545A (en) Piezoelectric vibration gyroscope
JPH08278141A (en) Ceramic piezoelectric complex type angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2004301510A (en) Tuning fork type angular velocity sensor
JP2009192403A (en) Angular velocity and acceleration detector
JP2010096695A (en) Vibration gyroscope
JP2015203627A (en) Multi-axis detection angular velocity sensor structure, multi-axis detection angular velocity sensor and sensor element base
WO2019017277A1 (en) Vibration type angular velocity sensor
JP2008145325A (en) Vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130306