JPH08278141A - Ceramic piezoelectric complex type angular velocity sensor - Google Patents

Ceramic piezoelectric complex type angular velocity sensor

Info

Publication number
JPH08278141A
JPH08278141A JP7078713A JP7871395A JPH08278141A JP H08278141 A JPH08278141 A JP H08278141A JP 7078713 A JP7078713 A JP 7078713A JP 7871395 A JP7871395 A JP 7871395A JP H08278141 A JPH08278141 A JP H08278141A
Authority
JP
Japan
Prior art keywords
tuning fork
detection
axis
drive
vibrating arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7078713A
Other languages
Japanese (ja)
Other versions
JP3360478B2 (en
Inventor
Tadashi Konno
正 近野
Sumio Sugawara
澄夫 菅原
Nobuhisa Atoji
信久 跡地
Jiro Terada
二郎 寺田
Masami Tamura
雅巳 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07871395A priority Critical patent/JP3360478B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US08/750,072 priority patent/US5824900A/en
Priority to EP96908344A priority patent/EP0764828B1/en
Priority to DE69628981T priority patent/DE69628981T2/en
Priority to PCT/JP1996/000926 priority patent/WO1996031754A1/en
Publication of JPH08278141A publication Critical patent/JPH08278141A/en
Priority to US09/126,277 priority patent/US6119519A/en
Priority to US09/503,737 priority patent/US6237415B1/en
Priority to US09/503,727 priority patent/US6298723B1/en
Application granted granted Critical
Publication of JP3360478B2 publication Critical patent/JP3360478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE: To provide a ceramic piezoelectric complex type angular velocity sensor having high sensitivity, a large signal-noise ratio, an excellent temperature drift characteristic, high impact resistance and a low price. CONSTITUTION: A comb type tuning fork is integrally formed to have four parallel vibration arms 11 to 14 of a ceramic piezoelectric material, and tuning fork supports 15 and 16 in common, and only the section of the tuning fork effective for drive and a detected vibration is polarized in an X-direction or a Y-direction. Also, drive electrodes 20 and 21, and detection electrodes 22 and 23 are arranged in a section corresponding to the polarized section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機・自動車・船舶・
車両等の移動体の姿勢制御やナビゲーションシステムあ
るいはカメラやビデオカメラ等の手振れ防止用、オーデ
ィオ;ビデオ機器、パソコン等の遠隔操作のリモコン用
あるいは回転を伴う動きを検出するシステム等に用いる
セラミック圧電複合形角速度センサに関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to aircraft, automobiles, ships,
Ceramic-piezoelectric composite used for posture control of moving objects such as vehicles, navigation systems, camera shake prevention for cameras and video cameras, audio; remote control for remote control of video equipment, personal computers, etc., or systems for detecting movements involving rotation The present invention relates to a angular velocity sensor.

【0002】[0002]

【従来の技術】従来の角速度センサとしては種々の形態
があるが、先行技術として、音叉全体がセラミック圧電
体で形成される視点から、特開平3−120415号公
報に、2本の矩形状腕部分と、これらの腕部分をそれら
の下端部で相互連結する基台部分とを圧電材料にて一体
成形して全体形状を音叉状とし、基台部分をY軸方向に
分極させた振動ジャイロが開示されている。
2. Description of the Related Art There are various conventional angular velocity sensors, but as a prior art, two rectangular arms are disclosed in Japanese Unexamined Patent Publication No. 3-120415 from the viewpoint that the entire tuning fork is formed of a piezoelectric ceramic material. A vibration gyro that has a tuning fork in its overall shape by integrally molding a portion and a base portion interconnecting these arm portions at their lower ends with a piezoelectric material is used. It is disclosed.

【0003】以下に、この従来の角速度センサを図を用
いて説明する。図15は、特開平3−120415号公
報に開示された単一形状音叉の斜視図である。
The conventional angular velocity sensor will be described below with reference to the drawings. FIG. 15 is a perspective view of a single-shaped tuning fork disclosed in Japanese Patent Laid-Open No. 3-120415.

【0004】分極方向は、基台部分をY軸方向に、駆動
側振動腕はX軸方向に直交した分極をする発明である。
また、駆動電極3,4は振動腕の約半分の部分電極であ
り、駆動力は四側面全部利用から見れば、2/8倍とな
る。
The polarization direction is an invention in which the base portion is polarized in the Y-axis direction and the driving-side vibrating arm is polarized in the X-axis direction.
The driving electrodes 3 and 4 are partial electrodes of about half of the vibrating arm, and the driving force is 2/8 times when viewed from the use of all four side surfaces.

【0005】また、コリオリの力によって振動腕1,2
はX方向に逆相の屈曲振動するから基台部分5にY軸回
りの捩れモーメントが発生する。検出電極6,7は基台
部分5の捩れ振動を検出するもので、共振周波数が高
く、出力感度が低いものである。
Further, the vibrating arms 1 and 2 are driven by the Coriolis force.
Causes a bending vibration in the opposite phase in the X direction, so that a torsion moment about the Y axis is generated in the base portion 5. The detection electrodes 6 and 7 detect torsional vibrations of the base portion 5, and have high resonance frequency and low output sensitivity.

【0006】1は駆動側振動腕、2は安定振動するため
のモニタ振動腕であり、分極方向を明示してないが、そ
の機能上X方向と思われる。
Reference numeral 1 is a drive-side vibrating arm, and 2 is a monitor vibrating arm for stable vibration, and although the polarization direction is not explicitly shown, it is considered to be in the X direction due to its function.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図15
は振動腕1,2を駆動用に、基台部分5を検出用に、そ
の役割機能を分離しており、基台部分5の取り付けある
いは保持方法が開示されていないので類推の域を出ない
が、(1)駆動振動(Y方向の互いに逆相の屈曲振動)
による基台部分5内の振動成分と、(2)コリオリの力
が働いた時のX方向の互いに逆相の屈曲振動による基台
部分5内の振動成分と、(3)基台部分5のY軸回りの
捩れ振動成分と、(4)保持部分からの外乱ノイズ成分
とがミックスし、複雑な振動姿態となることが予想され
る。4つの各振動成分の分離回路が複雑となる。音叉の
基台部分の振動解析は、今日の機械振動工学でも明らか
にされていなくその制御は困難と思われる。従って、振
動分離が困難なため、実用面でジャイロとしての誤動作
を起こす原因となる。特に保持部分から伝達する外乱ノ
イズに弱く自動車等への実用化が困難であった。
However, as shown in FIG.
Separates the role and function of the vibrating arms 1 and 2 for driving and the base portion 5 for detection, and there is no disclosure of how to attach or hold the base portion 5, so that no analogy can be made. However, (1) Drive vibration (Bending vibration of opposite phases in the Y direction)
Of the vibration component in the base portion 5 due to (2) the vibration component in the base portion 5 due to the bending vibrations of the opposite phases in the X direction when the Coriolis force is applied, and (3) It is expected that the torsional vibration component around the Y-axis and the disturbance noise component from (4) the holding portion are mixed to form a complicated vibration mode. The separation circuit for each of the four vibration components becomes complicated. Vibration analysis of the base part of a tuning fork has not been clarified even in today's mechanical vibration engineering, and its control seems difficult. Therefore, it is difficult to separate the vibration, which causes a malfunction as a gyro in practical use. In particular, it was vulnerable to the disturbance noise transmitted from the holding portion, and it was difficult to put it into practical use in automobiles and the like.

【0008】捩れ振動は片持支持棒の屈曲振動に比べ共
振周波数が高く振動振幅が小さいため感度が小さい。従
って、出力感度が低下すれば、温度ドリフト(入力角速
度が0のとき、周囲の温度変化による検出値変動)の原
因になっていた。
The torsional vibration has a higher resonance frequency and a smaller vibration amplitude than the bending vibration of the cantilever support rod, and therefore has a low sensitivity. Therefore, if the output sensitivity is lowered, it causes the temperature drift (when the input angular velocity is 0, the detection value changes due to the ambient temperature change).

【0009】さらに、図10の駆動電極3,4は振動腕
のY軸方向の先端まで設けているから、音叉の振動理論
によれば、先端20〜30%は浮遊容量として働き、何
ら駆動力に寄与せず、電気ノイズを拾う原因となり、検
出信号と電気系のノイズの比(以下、S/Nという)を
悪くしていた。
Further, since the drive electrodes 3 and 4 in FIG. 10 are provided up to the tip in the Y-axis direction of the vibrating arm, according to the vibration theory of the tuning fork, the tip 20 to 30% acts as a stray capacitance and no driving force is applied. However, the electrical noise is not picked up, and electrical noise is picked up, and the ratio between the detection signal and electrical system noise (hereinafter referred to as S / N) is deteriorated.

【0010】上記従来の課題を解決するために本発明
は、振動姿態の複雑な基台部分、即ち支持部を検出用に
使わず、駆動側音叉と検出側音叉の機能を独立分離し、
支持部の機械的結合振動の除去、駆動信号の検出側への
回り込み防止やドリフト性能向上のために、音叉振動の
安定な部分の振動腕を使うものである。
In order to solve the above-mentioned conventional problems, the present invention does not use a complicated base portion having a vibrating form, that is, a support portion, for detection, and separates the functions of the drive side tuning fork and the detection side tuning fork independently.
In order to eliminate mechanical coupling vibration of the support part, to prevent the drive signal from wrapping around to the detection side, and to improve drift performance, the vibrating arm in the part where the tuning fork vibration is stable is used.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明のセラミック圧電複合形角速度センサは、平板
状のセラミック圧電材料から成る4本の平行な振動腕と
音叉支持部を共通とした櫛形状の音叉を一体形成し、三
次元座標系のX軸を振動腕及び支持部の幅方向に、Y軸
を振動腕の長手方向に、Z軸を音叉全体の厚み方向とし
て、振動腕及び支持部のY軸に沿った一部分を外部印加
電圧によりX方向に予め部分分極を行い、外側の2本組
を駆動側音叉、内側の2本組を検出側音叉とし、あるい
は内側の2本組を駆動側音叉、外側の2本組を検出側音
叉とし、櫛形状の音叉の駆動側振動腕及び支持部の一部
分の表裏面、側面にはY軸に沿った駆動電極を、検出側
振動腕及び支持部の一部分の表裏面にはY軸に沿った2
分割の検出電極を部分分極部に対応して配設し、前記駆
動側音叉の駆動電極に交流信号を印加して、X方向に互
いに逆相の屈曲振動(以下XDモードという)を発生さ
せ、前記検出側音叉に支持部の機械的結合を介して互い
に逆相の屈曲振動(以下XSモードという)を誘起さ
せ、外部から印加されるY軸回りの回転角速度に基づく
コリオリの力によって発生するZ軸方向の互いに逆相の
屈曲振動(以下ZSモードという)によって発生した電
荷量を検出側音叉の検出電極により検出する構成とした
ものである。
In order to solve the above-mentioned problems, a ceramic piezoelectric composite angular velocity sensor of the present invention has four parallel vibrating arms made of a flat plate-shaped ceramic piezoelectric material and a tuning fork support portion in common. A comb-shaped tuning fork is integrally formed, and the X-axis of the three-dimensional coordinate system is the width direction of the vibrating arm and the supporting portion, the Y-axis is the longitudinal direction of the vibrating arm, and the Z-axis is the thickness direction of the entire tuning fork. Part of the support along the Y axis is pre-polarized in the X direction by an externally applied voltage, and the outer two sets are the drive side tuning forks, the inner two sets are the detection side tuning forks, or the inner two sets. Is the driving side tuning fork, and the outer two sets are the detecting side tuning forks. The driving side vibrating arm of the comb-shaped tuning fork and the drive electrodes along the Y axis on the front and back surfaces and part of the side surface of the supporting portion are provided on the detecting side vibrating arm. And 2 along the Y-axis on the front and back of part of the support
Divided detection electrodes are arranged corresponding to the partially polarized portions, and an AC signal is applied to the drive electrode of the drive side tuning fork to generate bending vibrations of opposite phases in the X direction (hereinafter referred to as X D mode). Generated by Coriolis force based on the rotational angular velocity about the Y axis applied from the outside by inducing bending vibrations (hereinafter, referred to as X S modes) of opposite phases to each other on the detection side tuning fork via mechanical coupling of the supporting portion. The amount of charges generated by bending vibrations in the Z-axis direction opposite to each other (hereinafter referred to as Z S mode) is detected by the detection electrode of the detection side tuning fork.

【0012】[0012]

【作用】上記構成とすることにより、振動伝達効率を良
くし、検出感度の向上が図れ、駆動信号の回り込みを防
止し、電気的、機械的S/Nの改善が図れ、高性能で安
定なものとすることができる。
With the above structure, the vibration transmission efficiency is improved, the detection sensitivity is improved, the sneak of the drive signal is prevented, the electrical / mechanical S / N is improved, the performance is high and stable. Can be one.

【0013】[0013]

【実施例】以下、本発明のセラミック圧電複合形角速度
センサについて説明する。
The ceramic piezoelectric composite angular velocity sensor of the present invention will be described below.

【0014】本発明の基本とするところは、振動姿態の
複雑な基台部分、即ち、支持部を検出用に使わず、駆動
側音叉と検出側音叉の機能を独立分離し、支持部の機械
的結合振動の除去、駆動信号の機械的結合振動の除去、
駆動信号の検出側への回り込み防止やドリフト性能向上
のため、音叉振動の安定な部分の振動腕を使うものであ
る。
The basis of the present invention is that the base portion having a complicated vibration mode, that is, the support portion is not used for detection, but the functions of the drive side tuning fork and the detection side tuning fork are independently separated, and the machine of the support portion is separated. Of mechanical coupling vibration of drive signal, elimination of mechanical coupling vibration,
In order to prevent the drive signal from wrapping around to the detection side and to improve the drift performance, the vibrating arm of the part where the tuning fork vibration is stable is used.

【0015】次に、振動工学の理論によれば、振動腕全
体を分極せず、その長さの約半分〜80%、正確には機
械振動学の規準関数、及び容量比(棒の機械的コンプラ
イアンスと電気的静電容量の比)から62%を分極し、
その分極に相当する部分に駆動電極面積や検出電極面積
を配設すれば、駆動力による振動振幅や検出感度を最大
にする電極面積の最適化をすることができる。
Next, according to the theory of vibration engineering, the entire vibrating arm is not polarized, and about half to 80% of its length, to be precise, the standard function of mechanical vibrations, and the volume ratio (mechanical ratio of rod) Polarize 62% from the ratio of compliance to electrical capacitance)
By disposing the drive electrode area and the detection electrode area in the portion corresponding to the polarization, the electrode area that maximizes the vibration amplitude and the detection sensitivity due to the driving force can be optimized.

【0016】さらに、共振周波数に寄与する音叉振動腕
の有効長さは、振動腕の長さだけでなく支持部も振動し
ており、古典力学によれば振動腕の支持部付け根からの
長さにほぼ振動腕の幅に相当した長さを加算すれば、特
異な形状の音叉でない限り、設計的に共振周波数を的中
することができる。従って、振動腕の有効長さに相当す
る部分を分極し電極を配設すれば、無駄無く出力を取り
出すことができるものであり、また不要な駆動振動を起
こすこともないものである。
Furthermore, the effective length of the tuning fork vibrating arm that contributes to the resonance frequency is that not only the length of the vibrating arm but also the supporting portion vibrates, and according to classical mechanics, the length from the root of the supporting portion of the vibrating arm. If the length corresponding to the width of the vibrating arm is added to, the resonance frequency can be designed accurately by design unless the tuning fork has a unique shape. Therefore, by polarizing the portion corresponding to the effective length of the vibrating arm and disposing the electrode, the output can be taken out without waste, and unnecessary driving vibration is not generated.

【0017】また、駆動振動や検出振動に寄与しない余
分な所に分極や電極が無いから、電極の引き回しによる
電気結合による回り込み信号の防止、浮遊容量によるS
/N悪化の防止ができる特徴があり、この効果をも狙っ
たものである。
Further, since there is no polarization or electrode in an extra portion that does not contribute to drive vibration or detection vibration, the sneak signal is prevented by the electric coupling due to the wiring of the electrode, and the S due to the stray capacitance.
/ N is a feature that can prevent deterioration, and this effect is also aimed at.

【0018】上記記載の機械振動学の規準関数と共振素
子の等価回路における容量比を考慮した部分分極及び部
分電極の手段は水晶材料に適用できないもので、セラミ
ック圧電材料でのみその効力を発揮する。
The means of partial polarization and partial electrode in consideration of the standard function of mechanical vibration and the capacitance ratio in the equivalent circuit of the resonant element cannot be applied to the quartz material, and are effective only in the ceramic piezoelectric material. .

【0019】さらに、機械的結合振動の除去や温度ドリ
フト性能の向上には、音叉の安定駆動が非常に重要であ
る。本発明においてはモニタ電極に発生する電流(以
下、モニタ電流とする)を電圧零で検出する電流増幅
器、その電流増幅器の出力をその振幅に比例した直流電
圧信号に変換する交直変換器、電流増幅器の出力を変換
器の出力に応じて増幅し、駆動電極への印加電圧(以
下、駆動電圧とする)とすることにより、モニタ電流、
すなわち駆動振幅を常に一定にする働きをもつ駆動レベ
ルコントローラを備える。
Further, stable driving of the tuning fork is very important for eliminating mechanical coupling vibration and improving temperature drift performance. In the present invention, a current amplifier for detecting a current generated in a monitor electrode (hereinafter referred to as a monitor current) at zero voltage, an AC / DC converter for converting an output of the current amplifier into a DC voltage signal proportional to its amplitude, and a current amplifier. The output of is amplified according to the output of the converter and used as the voltage applied to the drive electrode (hereinafter referred to as drive voltage),
That is, a drive level controller having a function of keeping the drive amplitude constant is provided.

【0020】また、角速度入力に比例した信号を検出用
電極電流(以下、検出電流とする)信号から抽出する手
段として直交検波方式が用いられており、検波のための
タイミング信号が必要となる。本発明においては、前記
電流アンプの出力信号の零クロスを検出する零クロスコ
ンパレータによりこのタイミング信号を得る。
The quadrature detection method is used as a means for extracting a signal proportional to the input of the angular velocity from a detection electrode current (hereinafter referred to as detection current) signal, and a timing signal for detection is required. In the present invention, this timing signal is obtained by a zero cross comparator which detects a zero cross of the output signal of the current amplifier.

【0021】本発明は、従来の振動腕と支持部の分極方
向を異ならせ、支持部を検出音叉としたセラミック圧電
材料の一体構成の角速度センサの課題を解決するため
に、セラミック圧電材料から、櫛形状の複合音叉を一体
形成し、複合音叉に適用できる部分分極、部分電極の方
式で、出力電圧の最適化を狙って、支持部の複雑な振動
を分離した構成で具現化するものである。
In order to solve the problem of the conventional angular velocity sensor integrally formed of a ceramic piezoelectric material in which the supporting portion is a detection tuning fork, the polarization direction of the vibrating arm and the supporting portion are made different from each other. A comb-shaped compound tuning fork is integrally formed, and a partial polarization and partial electrode method applicable to the compound tuning fork is used to embody the complex vibration of the support part with the aim of optimizing the output voltage. .

【0022】ここで、部分分極、部分電極の作用、効果
について図13、図14を用いて説明する。
Here, the operation and effect of partial polarization and partial electrodes will be described with reference to FIGS. 13 and 14.

【0023】図13は音叉の振動腕と支持部の極一部を
片持支持棒と仮定したとき、その棒の長手方向(即ち、
音叉の長手方向)をx軸、x軸と直交する上下振動の振
幅をξ、腕の付け根をx=0、振動腕の先端をx=lと
置けば、その振幅ξ及び棒内に生じた歪みδは、振動工
学理論より、ハイパボリックsin,cosで表され、
図14に示すように一次関数で表されない。但し、縦軸
はモード関数を基準化し、ξ=1、δ=1とした。
In FIG. 13, assuming that the vibrating arm of the tuning fork and a part of the supporting portion are cantilevered support rods, the rods in the longitudinal direction (that is,
If the vertical axis of the tuning fork is x-axis, the amplitude of vertical vibration perpendicular to the x-axis is ξ, the base of the arm is x = 0, and the tip of the vibrating arm is x = 1, then the amplitude ξ and the vibration occur in the rod. The strain δ is represented by hyperbolic sin and cos from the vibration engineering theory,
It is not represented by a linear function as shown in FIG. However, the vertical axis standardizes the mode function, and ξ = 1 and δ = 1.

【0024】これよりセラミック圧電棒の歪みδに比例
した検出電荷は、x=0に近い所ほど出力が大きく、先
端にいくほど出力が小さくなり、x=lで出力はゼロと
なる。
As a result, the detected charge proportional to the strain δ of the ceramic piezoelectric rod has a larger output at a position closer to x = 0 and a smaller output at the tip, and becomes zero at x = 1.

【0025】一方、電気−機械圧電変換器の理論より、
出力電圧は振動腕の容量比γに反比例し、静電容量が小
さければ良いと言う条件がある。この歪みδ曲線と容量
比γ関数を演算すれば、出力の最適化ができ、一般にx
=0.62lの時、最大となる。従ってx=0.62l
の所まで分極し、即ち先端の約38%は非分極部分と
し、同じく電極も配設しないで済むので、先端部の浮遊
容量が無くなりS/Nが向上する。
On the other hand, from the theory of electro-mechanical piezoelectric transducers,
The output voltage is inversely proportional to the capacitance ratio γ of the vibrating arm, and there is a condition that the electrostatic capacitance should be small. If this distortion δ curve and the capacity ratio γ function are calculated, the output can be optimized, and generally x
It becomes the maximum when = 0.62 l. Therefore x = 0.62l
That is, since about 38% of the tip is a non-polarized portion and no electrode is provided, the stray capacitance at the tip is eliminated and the S / N is improved.

【0026】これは理想の片持支持棒として解析してい
るが、実際には音叉形状により異なり、本発明では振動
の節線α上で、支持部の下端を保持し、且つ支持部は機
械的結合の作用が有るので、僅かばかり振動しており、
古典的な片持支持棒としての解析が取り扱えない。そこ
で、シミュレーションと実験により、本発明では、おお
よそx=0.5〜0.8lの範囲とした。
Although this is analyzed as an ideal cantilever support rod, it actually differs depending on the tuning fork shape. In the present invention, the lower end of the support portion is held on the nodal line α of vibration, and the support portion is mechanical. Since there is a function of dynamic coupling, it vibrates slightly,
The analysis as a classical cantilever support bar cannot be handled. Therefore, according to the present invention, the range of x = 0.5 to 0.8 l was set by simulation and experiment.

【0027】同様に、支持部についても振動に寄与しな
い部分の分極や電極配設を避ける方が不要振動の検出
や、不要駆動が無くなり、S/Nを大幅に改善できるも
のである。
Similarly, in the support portion, it is possible to avoid unnecessary vibration detection and unnecessary driving by avoiding polarization or electrode arrangement in a portion that does not contribute to vibration, and S / N can be greatly improved.

【0028】本発明の第2の特徴として、セラミック圧
電材料から成る一体形成の櫛形状の音叉に有る。即ち、
体積の大きい外側を駆動側音叉とし、面積あるいは体積
の小さい内側を検出側音叉とする構成に特徴を有するも
ので、外側の大きい駆動側音叉の上に内側の小さい検出
側音叉が乗る形態であるから、駆動側音叉振動を効率良
く検出側音叉に伝達することができる。駆動側音叉を親
亀とし、検出側音叉を子亀とすれば、俗に言う親亀の上
に子亀が乗った格好になって振動する音叉である。
The second feature of the present invention resides in an integrally formed comb-shaped tuning fork made of a ceramic piezoelectric material. That is,
It is characterized in that the outer side having a large volume is the driving side tuning fork and the inner side having a small area or volume is the detecting side tuning fork, and the small inner detecting side tuning fork rides on the large outer driving side tuning fork. Therefore, the driving-side tuning fork vibration can be efficiently transmitted to the detection-side tuning fork. If the driving-side tuning fork is the main turtle and the detection-side tuning fork is the sub-turtle, it is a tuning fork that vibrates as if the sub-turtle was on top of the so-called pro-turtle.

【0029】あるいは逆に、内側の2本組を駆動側音叉
とし、外側の2本組を検出側音叉とした場合でも、その
作用は同じで、俗に言う親亀の両肩に子亀が乗った格好
になっている。この場合は内側音叉の寸法を大きくする
か、印加電圧を高くするかして、駆動力を大きくする必
要があり、特に音叉の付け根の形状を考慮することが望
ましい。
On the contrary, even when the inner two sets are used as the driving side tuning forks and the outer two sets are used as the detection side tuning forks, the operation is the same. It's dressed up as a rider. In this case, it is necessary to increase the driving force by increasing the size of the inner tuning fork or increasing the applied voltage, and it is particularly desirable to consider the shape of the root of the tuning fork.

【0030】本発明の第3の特徴は、自励発振回路によ
るモニタ駆動方式は単一音叉より各機能を分離した複合
音叉が適している。その作用は電圧零で検出するモニタ
電流の振幅は純粋に音叉の振動レベル(速度)に比例し
ている。前記手段によると交直変換器出力はモニタ電流
に比例し、コントローラは交直変換器出力を常に一定に
なるようにドライブ電圧を調整する。
A third feature of the present invention is that a monitor driving method using a self-excited oscillation circuit is suitable for a compound tuning fork having each function separated from a single tuning fork. The effect is that the amplitude of the monitor current detected at zero voltage is purely proportional to the vibration level (speed) of the tuning fork. According to the above means, the output of the AC / DC converter is proportional to the monitor current, and the controller adjusts the drive voltage so that the output of the AC / DC converter is always constant.

【0031】音叉の振動レベルはドライブ電圧に比例し
て変化するので、結果として音叉の振動レベルは常に一
定に保たれる。この結果、音叉振動は安定し、ドリフト
性能が向上する。
Since the vibration level of the tuning fork changes in proportion to the drive voltage, as a result, the vibration level of the tuning fork is always kept constant. As a result, the tuning fork vibration is stable and the drift performance is improved.

【0032】以下に、本発明のセラミック圧電複合形角
速度センサの具体的な実施例について、図面を参照しな
がら説明する。
Specific examples of the ceramic piezoelectric composite angular velocity sensor of the present invention will be described below with reference to the drawings.

【0033】まず、図1は平板状のセラミック圧電材料
から成る4本の平行な振動腕11,12,13,14で
振動腕11,12が駆動用、振動腕13,14は検出用
として利用され、この振動腕11〜14と音叉の支持部
15,16を共通とした櫛形状の音叉を一体形成した実
施例で、三次元座標系のX軸を振動腕及び支持部の幅方
向に、Y軸を櫛形状の長手方向に、Z軸を音叉全体の厚
み方向として部分分極する部分と寸法記号を示す。
First, in FIG. 1, four parallel vibrating arms 11, 12, 13, and 14 made of a flat plate-shaped ceramic piezoelectric material are used for driving the vibrating arms 11 and 12, and for vibrating arms 13 and 14 for detecting. In the embodiment in which a comb-shaped tuning fork having the vibrating arms 11 to 14 and the tuning fork supporting portions 15 and 16 in common is integrally formed, the X axis of the three-dimensional coordinate system is set in the width direction of the vibrating arms and the supporting portion. The Y-axis is the longitudinal direction of the comb shape, and the Z-axis is the thickness direction of the entire tuning fork.

【0034】lDおよびlSは夫々駆動側振動腕11,1
2、検出側振動腕13,14の長さを表し、振動腕1
1,12の付け根17,17′及び振動腕13,14の
付け根18から先端までの長さである。lSBは検出側音
叉の支持部16の長さを示し、付け根17と18の距離
である。
[0034] l D and l S are each drive-side vibration arms 11,1
2, the length of the detection side vibrating arms 13 and 14,
It is the length from the roots 17 and 17 'of 1 and 12 and the roots 18 of the vibrating arms 13 and 14 to the tip. l SB represents the length of the support portion 16 of the detection side tuning fork, and is the distance between the roots 17 and 18.

【0035】WDは駆動側振動腕11,12の幅、WS
検出側振動腕13,14の幅、tは振動腕11〜14、
支持部15,16すなわち音叉全体の厚み、g1は駆動
側振動腕11,12のスリット間隔、g2は検出側振動
腕13,14のスリット間隔を夫々示す。19はコリオ
リの力が働いた時のZ軸方向の逆相屈曲振動、即ち、Z
Sモードの振動の節線α(図1では点線で示す)上にあ
って、支持部15の下部に設けた切欠き部であり、角速
度センサを保持あるいは取り付け用に供するものであ
る。また、19は切欠きでなく小孔であってもその作用
は同じである。
[0035] W D is the width of the driving side oscillating arms 11, 12, W S is the width of the detecting side oscillating arms 13, 14, t is the vibrating arms 11 to 14,
The support portions 15 and 16, that is, the thickness of the entire tuning fork, g 1 represents the slit spacing of the drive-side vibrating arms 11 and 12, and g 2 represents the slit spacing of the detection-side vibrating arms 13 and 14. 19 is the anti-phase bending vibration in the Z-axis direction when the Coriolis force acts, that is, Z
It is a notch provided on the nodal line α (shown by the dotted line in FIG. 1) of the S- mode vibration and provided in the lower portion of the supporting portion 15, and serves to hold or mount the angular velocity sensor. Further, the function is the same even if 19 is a small hole instead of a notch.

【0036】白抜きの矢印が分極方向を示し、斜線部が
分極部分を、白抜き部が非分極部を示す。即ち、外側2
本組の駆動側音叉にあっては振動腕11,12の約0.
7l Dと支持部15側に約WDの長さを、内側2本組の検
出側音叉にあっては振動腕13,14の約0.7lS
支持部16側にlSB+約WDの長さからできた体積部分
を、直流電圧が3〜4KV/mmの外部印加電圧により
X方向に貫通するように予め部分分極を行う。
The white arrow indicates the polarization direction, and the shaded area indicates the polarization direction.
White areas indicate polarized portions and non-polarized portions. That is, outside 2
In the driving side tuning fork of this set, the vibrating arms 11 and 12 are about 0.
7l DAnd about W on the support 15 sideDThe length of the
About 0.7 l of vibrating arms 13 and 14 on the output side tuning forkSWhen
L on the support 16 sideSB+ About WDVolume part made from the length of
By an externally applied voltage with a DC voltage of 3 to 4 KV / mm
Partial polarization is performed in advance so as to penetrate in the X direction.

【0037】図2は部分分極後の駆動電極、検出電極の
構成を示し、基本的には図1の分極部分に対応して電極
が設けられる。駆動電極に関しては分極電極をそのまま
利用できるが、内側の検出側音叉の振動腕13,14の
側面に分極電極を設け、分極後は取り除かれる。図は取
り除かれた後の状態を示している。また、駆動電極の支
持部側の長さは振動腕の幅WDの約0.5〜1倍が望ま
しい。
FIG. 2 shows the structure of the drive electrodes and the detection electrodes after the partial polarization. Basically, the electrodes are provided corresponding to the polarized parts in FIG. Regarding the drive electrodes, the polarization electrodes can be used as they are, but the polarization electrodes are provided on the side surfaces of the vibrating arms 13 and 14 of the inner detection side tuning fork, and are removed after polarization. The figure shows the state after removal. Further, it is desirable that the length of the drive electrode on the supporting portion side is about 0.5 to 1 times the width W D of the vibrating arm.

【0038】図2において、駆動側振動腕11,12の
4面には+側と−側の駆動電極20,21が形成され、
検出側振動腕13,14の表面と裏面には+側と−側の
検出電極22,23が並んで形成されている。
In FIG. 2, + -side and-side drive electrodes 20 and 21 are formed on the four surfaces of the drive-side vibrating arms 11 and 12, respectively.
On the front and back surfaces of the detection-side vibrating arms 13 and 14, + -side and-side detection electrodes 22 and 23 are formed side by side.

【0039】図3は分極方向をすべてZ方向、即ち、音
叉の厚み方向に施した実施例であり、その分極部分は図
1と同様である。分極方向がZ軸方向の場合は、駆動と
検出電極の構成が逆になり、図4に示すように駆動電極
20,21は振動腕11,12のY軸方向に2分割電
極、検出電極22,23は振動腕13,14の表裏面、
両側面に電極を設けることが必要となる。
FIG. 3 shows an embodiment in which the polarization directions are all in the Z direction, that is, the thickness direction of the tuning fork, and the polarization portion is the same as in FIG. When the polarization direction is the Z-axis direction, the configurations of the drive and detection electrodes are reversed, and the drive electrodes 20 and 21 are divided into two electrodes in the Y-axis direction of the vibrating arms 11 and 12, and the detection electrode 22 as shown in FIG. , 23 are front and back surfaces of the vibrating arms 13 and 14,
It is necessary to provide electrodes on both sides.

【0040】図5、図6は図1、図3に対応した電極構
成と結線図を示している。これについて説明する。
FIGS. 5 and 6 show electrode configurations and connection diagrams corresponding to FIGS. 1 and 3. This will be described.

【0041】図5に示すように、駆動側振動腕12の表
裏面を+側の駆動電極20、側面を−側の駆動電極21
とし、駆動側振動腕11はその逆で、表裏面が−側の駆
動電極21、側面が+側の駆動電極20となるように共
通結線し、センサの入力端子24を駆動信号の正極、入
力端子25を負極とする。入力端子24,25間に交流
信号を印加し続ければ、駆動側振動腕11,12はX軸
のi,j方向に、互いに逆相の屈曲振動(XDモード)
を持続する。このXDモードの振動が支持部15,16
の機械的結合を介して検出側振動腕12,13のX軸の
q,r方向に、互いに逆相の屈曲振動(XSモード)を
誘起する。
As shown in FIG. 5, the front and back surfaces of the drive-side vibrating arm 12 are positive side drive electrodes 20, and the side surfaces are negative side drive electrodes 21.
The drive-side vibrating arm 11 is reversely connected, and the front and back sides are commonly connected so that the drive electrode 21 on the − side and the side face are the drive electrodes 20 on the + side, and the input terminal 24 of the sensor is connected to the positive electrode of the drive signal and input. The terminal 25 is the negative electrode. If the AC signal is continuously applied between the input terminals 24 and 25, the driving-side vibrating arms 11 and 12 have bending vibrations in opposite phases in the X-axis i and j directions (X D mode).
To last. This X D mode vibration is generated by the support portions 15 and 16
Bending vibrations (X S mode) of opposite phases are induced in the q- and r-directions of the X-axis of the detection-side vibrating arms 12 and 13 through the mechanical coupling of.

【0042】検出側音叉の振動腕13,14の表裏面の
みに2分割の検出電極22,23を施し、Y軸回りに外
部から回転角速度(ω)が加わると、コリオリの力によ
り、振動腕13は矢印k方向に動けば、振動腕14は矢
印p方向に動く(ZSモード)ので、図5に示すように
振動腕13の表面の検出電極22,23には(−,+)
の、その裏面の検出電極22,23には(+,−)の逆
の電荷が発生する。
When the detection electrodes 22 and 23 are divided into two parts only on the front and back surfaces of the vibrating arms 13 and 14 of the detection side tuning fork, and when a rotational angular velocity (ω) is applied from the outside around the Y axis, the vibrating arms are generated by the Coriolis force. If 13 moves in the direction of arrow k, the vibrating arm 14 moves in the direction of arrow p (Z S mode), so that the detection electrodes 22, 23 on the surface of the vibrating arm 13 are (-, +) as shown in FIG.
, The opposite electric charges of (+,-) are generated on the detection electrodes 22 and 23 on the back surface thereof.

【0043】一方、振動腕14の表面の検出電極22,
23には上記と全く逆で(+,−)の、その裏面の検出
電極22,23には(−,+)の電荷が発生する。これ
等の電荷の同極どうしを結線して、+側を検出端子26
に、−側を検出端子27に接続すれば、検出端子26,
27間の電位差として検出できる。
On the other hand, the detection electrodes 22 on the surface of the vibrating arm 14,
In contrast to the above, (+, −) is generated in 23, and (−, +) charges are generated in the detection electrodes 22, 23 on the back surface thereof. Connect the same polarity of these charges to each other, and connect the positive side to the detection terminal 26.
If the negative side is connected to the detection terminal 27,
It can be detected as a potential difference between 27.

【0044】図6の駆動電極20,21は2分割電極で
あり、振動腕12の表裏面の対角どうしを+側の駆動電
極20、−側の駆動電極21とし、振動腕11はそれと
対称に、+側の駆動電極20、−側の駆動電極21とな
るように共通結線し、センサの入力端子24を駆動信号
の正極、入力端子25を負極とする。入力端子24,2
5間に交流信号を印加し続ければ、振動腕11,12,
13,14は図5と同様に、i,j方向の振動(XD
ード)により、q,r方向の振動(XSモード)を誘起
する。
The drive electrodes 20 and 21 shown in FIG. 6 are two-divided electrodes, and the diagonal sides of the front and back surfaces of the vibrating arm 12 are used as the + side drive electrode 20 and the-side drive electrode 21, and the vibrating arm 11 is symmetrical thereto. In addition, common connection is made so as to be the + side drive electrode 20 and the-side drive electrode 21, and the input terminal 24 of the sensor is the positive electrode of the drive signal and the input terminal 25 is the negative electrode. Input terminals 24, 2
If the AC signal is continuously applied for 5 seconds, the vibrating arms 11, 12,
Similar to FIG. 5, 13 and 14 induce vibrations in the q and r directions (X S mode) by vibrations in the i and j directions (X D mode).

【0045】検出側音叉の振動腕13,14の表裏面、
側面に検出電極22,23を施し、Y軸回りに外部から
回転角速度(ω)が加わると、コリオリの力により、振
動腕13,14はk,p方向に逆相の振動(ZSモー
ド)を起こし、振動腕13の表裏面には(+)の、両側
面には(−)の電荷が発生し、振動腕14には全く逆の
電荷が発生する。これらの電荷の同極どうしを結線し、
+側を検出端子26に、−側を検出端子27に接続すれ
ば検出端子26,27間の電位差として検出できる。
The front and back surfaces of the vibrating arms 13 and 14 of the detection side tuning fork,
When the detection electrodes 22 and 23 are provided on the side surfaces and a rotational angular velocity (ω) is applied from the outside about the Y axis, the Coriolis force causes the vibrating arms 13 and 14 to vibrate in opposite phases in the k and p directions (Z S mode). As a result, (+) charges are generated on the front and back surfaces of the vibrating arm 13, and (-) charges are generated on both side surfaces, and quite the opposite charges are generated on the vibrating arm 14. Connect the same polarity of these charges,
If the + side is connected to the detection terminal 26 and the − side is connected to the detection terminal 27, it can be detected as a potential difference between the detection terminals 26 and 27.

【0046】図3の実施例について具体的な設計寸法の
1例を次に示し、保持、あるいは取り付け位置は小孔1
9(図7参照)で実施した。
One example of specific design dimensions for the embodiment of FIG. 3 is shown below, and the holding or mounting position is the small hole 1
9 (see FIG. 7).

【0047】 *駆動側振動腕11,12の長さ ……………… lD =20mm、 *音叉の厚み ……………………………………… t =1.5mm、 *駆動側振動腕11,12の幅 ………………… WD =2.9mm、 *検出側振動腕13,14の幅 ………………… WS =2.0mm、 *検出側振動腕13,14の長さ ……………… lS =17mm、 *検出側音叉の支持部16の長さ ……………… lSB=3.1mm、 *駆動側振動腕11,12のスリット間隔 …… s1 =3.0mm、 *検出側振動腕13,14のスリット間隔 …… s2 =4.0mm、 の寸法に設定し、トリミングにより共振周波数を調整
し、XDモードの共振周波数fDX=9830Hz、fSZ
=5335Hzに設定した。この実施例は駆動共振周波
数fDXと検出共振周波数fSZとが異なる場合である。こ
のセラミック材料はPb(Mg1/3Nb2/3)O3−Pb
TiO3−PbZrO3の三成分を主成分とする組成(以
下PCM系という)からなり、焼結させて得たものであ
る。このPCM系のX方向ヤング率EX=7.945×
1011(N/m2)、Z方向ヤング率E Z=7.862×
1011(N/m2)、密度ρ=7.645×103(kg
/m3)を使用した。
* Length of drive-side vibrating arms 11 and 12 ………………D = 20mm, * Tuning fork thickness …………………………………… t = 1.5mm, * Width of the vibrating arms 11 and 12 on the drive side ……………… WD = 2.9 mm, * width of the vibrating arms 13 and 14 on the detection side …………………… WS = 2.0 mm, * Length of the vibrating arms 13 and 14 on the detection side ……………… lS = 17mm, * Length of the support part 16 of the detection side tuning fork ……………… lSB= 3.1 mm, * Slit spacing between the vibrating arms 11 and 12 on the driving side ... s1 = 3.0 mm, * Slit spacing between the vibrating arms 13 and 14 on the detection side ... s2 = 4.0mm, and adjust the resonance frequency by trimming.
Then XDMode resonance frequency fDX= 9830 Hz, fSZ
= 5335 Hz. This example shows the drive resonance frequency
Number fDXAnd the detected resonance frequency fSZWhen is different from. This
Ceramic material is Pb (Mg1/3Nb2/3) O3-Pb
TiO3-PbZrO3The composition of the three main components of
The lower PCM system) and obtained by sintering.
It This PCM system Young's modulus E in the X directionX= 7.945 ×
1011(N / m2), Young's modulus in the Z direction E Z= 7.862 ×
1011(N / m2), Density ρ = 7.645 × 103(Kg
/ M3)It was used.

【0048】なお、上記実施例で用いた組成以外に、ペ
ロブスカイト型結晶構造のPbTiO3、Pb(Zr−
Ti)O3、LiNbO3、LiTaO3やタングステン
ブロンズ型結晶構造のPbNb26などを主成分とする
組成、さらに、これらの複合金属酸化物も同様に用いる
ことができ、同じ効果を得ることができる。
In addition to the compositions used in the above examples, PbTiO 3 and Pb (Zr- having a perovskite type crystal structure are used.
Ti) O 3, LiNbO 3, LiTaO 3 or the composition as a main component such as PbNb 2 O 6 tungsten bronze type crystal structure, further, these complex metal oxide can be used as well, to obtain the same effect You can

【0049】第2の具体的設計例として、fDX≠f
SXで、且つfDX≒fSZの場合は上記の例で、振動腕の長
さを変えないで、便宜上WDで調節するとすれば、 *駆動側振動腕11,12の幅 ………………… WD =1.66mm、 *他の諸元 ………………………………………… 上記に全て同じ となり、共振周波数fDX=5345Hz、fSZ=533
5Hzとなり、多少異なるのは、振動腕の幅WD、WS
及び厚みtによって振動腕の有効長さが異なるからで、
トリミングにより共振周波数fDX≒fSZ≒5342Hz
に設定した。
As a second concrete design example, f DX ≠ f
In the case of SX and f DX ≈f SZ , in the above example, if the length of the vibrating arm is not changed and adjustment is made by W D for convenience, then * width of the driving side vibrating arms 11 and 12 ...... ………… W D = 1.66 mm, * Other specifications ………………………………………… All the same as above, resonance frequency f DX = 5345 Hz, f SZ = 533
5 Hz, which is slightly different is the width of the vibrating arm W D , W S ,
And the effective length of the vibrating arm varies depending on the thickness t,
Resonance frequency f DX ≈ f SZ ≈ 5342Hz by trimming
Set to.

【0050】尚、共振形の設計におけるfDX≒fSZの近
似度は、外部から加わる入力角速度ωに対するセンサ出
力の周波数特性に応じて設定されるべきである。
The degree of approximation of f DX ≈f SZ in the resonance type design should be set according to the frequency characteristics of the sensor output with respect to the input angular velocity ω applied from the outside.

【0051】トリミングは、既に発表されている公知な
方法に従い、振動腕先端の角を斜めにカットしたり、振
動腕の付け根をV溝カットしたり、支持部の底部をカッ
トしたり、先端に小さい質量を接着添加する方法等で実
施した。
Trimming is performed by cutting the corners of the vibrating arm diagonally, cutting the root of the vibrating arm by V-grooves, cutting the bottom of the support portion, or cutting the tip of the vibrating arm according to a known method already announced. It was carried out by a method of adhesively adding a small mass.

【0052】次に、音叉を保持あるいは取り付ける位置
について図7を用いて説明する。図7は振動モードを説
明する図で、+,−の符号はコリオリの力が働いた時、
検出側音叉のZSモードの振幅位相を表している。
Next, the position where the tuning fork is held or attached will be described with reference to FIG. FIG. 7 is a diagram for explaining the vibration mode, where the + and-signs indicate when Coriolis force is applied.
The amplitude phase of the detection side tuning fork in the Z S mode is shown.

【0053】駆動側振動腕11,12がX方向の駆動モ
ード、即ちXDモードの時、検出側音叉の振動腕13,
14は内側に狭まるq,rの振動モード、即ちXSモー
ドが誘起される。この時Y軸回りに外部からωなる角速
度が加わると、振動腕13は手前のk方向に、振動腕1
4は向側のp方向に振動し、これをZSモードと定義す
ると、音叉の厚み方向のZSモードは音叉の中心線がY
軸方向の振動の節線α(点線で表示)となり、検出側音
叉の支持部16はα線を境にして、左右の振幅位相は図
示したように、+,−となり、振動腕13,14はその
逆相となる。このα線上を支持すれば、検出音叉の振動
を制動することなく、また、外部騒乱ノイズにも強い支
持方法と言える。さらに、駆動側の機械インピーダンス
に対しても影響の少ない場所は、α線上でできるだけ下
方が良い。
When the drive-side vibrating arms 11 and 12 are in the X-direction drive mode, that is, in the X D mode, the vibrating arm 13 of the detection-side tuning fork is
In 14, vibration modes of q and r narrowing inward, that is, an X S mode is induced. At this time, when an angular velocity ω is applied from the outside about the Y axis, the vibrating arm 13 moves in the front k direction to the vibrating arm 1.
4 vibrates in the p direction countercurrent side, when this is defined as Z S mode, Z S mode in the thickness direction of the tuning fork is the centerline of the tuning fork is Y
It becomes a nodal line α (indicated by a dotted line) of the vibration in the axial direction, and the support part 16 of the detection side tuning fork becomes +, − as shown in the figure with the α line as a boundary, and the vibrating arms 13, 14 Is the opposite phase. It can be said that supporting on the α line does not dampen the vibration of the detected tuning fork, and is strong against external noise. Further, the place where the influence on the mechanical impedance on the drive side is small is preferably as low as possible on the α line.

【0054】現在、時計等に使われている音叉形水晶振
動子はX方向、即ち、音叉の幅方向だけの共振であるか
ら、音叉支持部の底面を固定しても、共振に与える影響
は殆ど無視できたが、Z方向、即ち音叉の厚み方向の逆
相振動では、支持部の底面を固定あるいは支持すると共
振に非常に影響を与えるので、本発明の支持法が理にか
なった方法と言える。
Since the tuning-fork type crystal resonator currently used in a clock or the like has resonance only in the X direction, that is, in the width direction of the tuning fork, even if the bottom surface of the tuning fork support portion is fixed, there is no influence on the resonance. Although almost negligible, in the Z-direction, that is, the anti-phase vibration in the thickness direction of the tuning fork, fixing or supporting the bottom surface of the supporting portion greatly affects resonance, so that the supporting method of the present invention is a reasonable method. I can say.

【0055】次に、参考までに、共振周波数の設計方法
を実施例の図1を用いて説明する。図1に示す音叉振動
腕は、「電気音響振動工学」の理論から片持支持棒とし
て取り扱えるが、音叉振動腕の有効長さはlDより長
く、hDとすれば、そのXDモードの共振周波数をf
DXは、(数1)で示すようになる。
Next, for reference, a method of designing the resonance frequency will be described with reference to FIG. 1 of the embodiment. The tuning fork vibrating arm shown in FIG. 1 can be handled as a cantilever support rod based on the theory of "electroacoustic vibration engineering", but the effective length of the tuning fork vibrating arm is longer than l D , and if h D , the X D mode Resonance frequency f
DX becomes as shown in (Equation 1).

【0056】[0056]

【数1】 [Equation 1]

【0057】XDモードにより誘起された検出音叉側の
Sモードの共振周波数fSXは、検出側振動腕の有効長
さをhSとすれば、同様に(数2)となる。
The resonance frequency f SX of the detection tuning fork side X S mode induced by the X D mode is similarly (Equation 2) when the effective length of the detection side vibrating arm is h S.

【0058】[0058]

【数2】 [Equation 2]

【0059】XSモードを誘起させるための音叉支持部
の機械結合の設計条件は、(数1)=(数2)とすれば
良いから次の(数3)となる。
The design condition of the mechanical coupling of the tuning fork supporting portion for inducing the X S mode may be (Equation 1) = (Equation 2), and therefore the following (Equation 3) is obtained.

【0060】[0060]

【数3】 (Equation 3)

【0061】従って、音叉の形状寸法の設計目安とし
て、(数3)を満足するように設計すれば良いことが分
かる。
Therefore, it can be seen that the design guide for the shape and size of the tuning fork may be designed so as to satisfy (Equation 3).

【0062】又、3つの共振周波数の選択によるWD
S、lDの設計によっては、 lS ≧ lD の場合もありうる。
Further, by selecting three resonance frequencies, W D ,
Depending on the design of W S and I D , there may be a case where I S ≧ I D.

【0063】次に、Zモードの共振周波数fSZは、Zモ
ードの振動腕の有効長さは実験的にhSより長いことが
分かっているから、これをhZとすれば(数4)とな
る。
Next, the resonance frequency f SZ of the Z mode is experimentally known to be longer than h S as the effective length of the vibrating arm of the Z mode. Therefore, if this is h Z (Equation 4) Becomes

【0064】[0064]

【数4】 [Equation 4]

【0065】若し、共振形の音叉設計を条件とするなら
ば、(数2)=(数4)、あるいは(数1)=(数4)
を満足させれば良い、即ち、(数5)、あるいは(数
6)となる。
If the resonance type tuning fork design is a condition, (Equation 2) = (Equation 4) or (Equation 1) = (Equation 4)
Should be satisfied, that is, (Equation 5) or (Equation 6).

【0066】[0066]

【数5】 (Equation 5)

【0067】[0067]

【数6】 (Equation 6)

【0068】従って、検出側音叉の振動腕の厚み(t)
と幅(WS)、(WD)の比は、そのヤング率EZ、EX
測定し、振動腕の有効長さ(hZ/hS2、及び(hZ
D2から求めることができる。
Therefore, the thickness (t) of the vibrating arm of the detection-side tuning fork
The ratio of the width (W S ) and the width (W D ) is measured by measuring the Young's modulus E Z , E X, and the effective length of the vibrating arm (h Z / h S ) 2 and (h Z /
It can be obtained from h D ) 2 .

【0069】(数3)及び(数5)の両方を満たす設計
条件、即ち、fDX、fSX、fSZの3つの周波数を等しく
すれば、高感度が期待できるが、製造での周波数調整に
手間どり、反ってコスト高になるので、fDX=fSX≠f
SZとfSZ=fDX≠fSXの場合が望ましい。又、セラミッ
ク材料の共振のQ値は水晶より低く、ここで使用したP
CM系材料ではQ≒800〜1000位で、fDX=fSX
とすることは製造的には水晶に比較して容易である。更
に縮退現象を利用して、近似的にfDX≒fSXとすること
ができる。
High sensitivity can be expected if the design conditions satisfying both (Equation 3) and (Equation 5), that is, the three frequencies of f DX , f SX , and f SZ are made equal, but frequency adjustment in manufacturing is possible. However, f DX = f SX ≠ f
It is desirable that SZ and f SZ = f DX ≠ f SX . Also, the Q value of the resonance of the ceramic material is lower than that of quartz, and the P value used here
For CM-based materials, Q DX is about 800 to 1000, f DX = f SX
This is easier to manufacture than quartz. Further, by utilizing the degeneracy phenomenon, it is possible to approximate f DX ≈f SX .

【0070】最後に、上記実施例のセラミック圧電材料
から成る角速度センサ素子と、それを駆動し、検出する
回路方式の実施例について図面を用いて説明する。図
8、図9は図5、図6に相当するモニタ方式の結線図で
ある。図8、図9は駆動、検出回路のブロック図、図1
0は各部の定性的な動作波形を示している。
Finally, an embodiment of the angular velocity sensor element made of the ceramic piezoelectric material of the above embodiment and a circuit system for driving and detecting it will be described with reference to the drawings. 8 and 9 are connection diagrams of a monitor method corresponding to FIGS. 5 and 6. 8 and 9 are block diagrams of drive and detection circuits, and FIG.
0 indicates a qualitative operation waveform of each part.

【0071】図8、図9において28は信号の基準電位
となるGND電極、29は駆動電極、30は検出電極、
31はモニタ電極である。図10において32はモニタ
回路の電流増幅器、33は検出回路の電荷増幅器、3
4,35は交流電圧増幅器、36は駆動電圧コントロー
ラ、37は交直変換器、38は零クロスコンパレータ、
39は直交検波器、40は積分直流増幅器である。
In FIGS. 8 and 9, 28 is a GND electrode serving as a reference potential of a signal, 29 is a drive electrode, 30 is a detection electrode,
Reference numeral 31 is a monitor electrode. In FIG. 10, 32 is a current amplifier of a monitor circuit, 33 is a charge amplifier of a detection circuit, 3
4, 35 are AC voltage amplifiers, 36 is a drive voltage controller, 37 is an AC / DC converter, 38 is a zero cross comparator,
Reference numeral 39 is a quadrature detector, and 40 is an integrating DC amplifier.

【0072】図8、図9、図10は自励発振を安定させ
る周知なモニタ方式であるが複合形のセラミック圧電音
叉に適用させ、新しい効果を得るのも本発明の特徴でも
ある。駆動電極29に駆動電圧コントローラ36より図
11(a)に示す交流電圧を加えると、櫛形状の音叉の
振動腕はXDモード、XSモードの振動を、モニタ電極3
1に交流的に電荷が発生(発生によって流れる電流を、
以下モニタ電流という)し、電流増幅器32によって電
圧零のまま電流検出され、交流電圧増幅器34,35、
駆動電圧コントローラ36の作用を経て駆動電極29に
正帰還される。音叉は共振周波数のみを増幅する一種の
機械フィルタであるから、振動腕11から振動腕12へ
の正帰還ループは先鋭度(Q値)の非常に大きい共振周
波数自励発振回路となる。単一音叉では1本の振動腕で
モニタ電極と検出電極を配設しなければならず、またf
DX=fSZ方式(共振形の音叉設計)では信号処理の回路
が複雑となり、S/Nが悪くコストも高くなる欠点があ
った。
FIG. 8, FIG. 9 and FIG. 10 are known monitor methods for stabilizing self-excited oscillation, but it is also a feature of the present invention that they are applied to a composite type ceramic piezoelectric tuning fork to obtain a new effect. When an alternating voltage shown in FIG. 11A is applied to the drive electrode 29 from the drive voltage controller 36, the vibrating arm of the comb-shaped tuning fork produces vibrations in the X D mode and the X S mode, and the monitor electrode 3
An electric charge is generated in AC in 1 (current flowing by generation is
(Hereinafter referred to as monitor current), the current is detected by the current amplifier 32 while the voltage is zero, and the AC voltage amplifiers 34, 35,
Positive feedback is provided to the drive electrode 29 through the action of the drive voltage controller 36. Since the tuning fork is a kind of mechanical filter that amplifies only the resonance frequency, the positive feedback loop from the vibrating arm 11 to the vibrating arm 12 is a resonance frequency self-excited oscillation circuit having a very large sharpness (Q value). In a single tuning fork, one vibrating arm must be provided with the monitor electrode and the detection electrode, and f
The DX = f SZ method (resonance type tuning fork design) has a drawback in that the signal processing circuit becomes complicated, the S / N is poor, and the cost is high.

【0073】次に図11を含めて説明する。X方向と9
0°位相のずれたZSモードのコリオリ振動は図11
(c)に示すモニタ電流と90°位相のずれた図11
(d)に示す検出電流(電圧零の電流)として、検出電
極30によって検出される。
Next, description will be made with reference to FIG. X direction and 9
Figure 11 shows the Z S mode Coriolis vibration with 0 ° phase shift.
FIG. 11 shows a 90 ° phase shift from the monitor current shown in (c).
The detection current (current of zero voltage) shown in (d) is detected by the detection electrode 30.

【0074】一方、検出電極30からはXDモード振動
と機械的に結合したXSモード結合振動(以下ZMSとい
う)によるモニタ電流と同相の電圧零の図11(d)に
示す結合検出電流a′も検出される。この結合検出電流
a′は通常コリオリの力による検出電流aに比べて非常
に大きく、重畳して検出されるので両者を分離する必要
がある。そこで、両電流を電荷増幅器33で積分して図
11(e)に示す電荷信号とし、次に図11(c)に示
すモニタ電流の同相比例信号から零クロスコンパレータ
38を使って図11(g)に示す直交検波タイミング信
号を作る。これを検波信号として直交検波器39によっ
て図11(e)の電荷信号を直交検波すると、図11
(c)のモニタ電流の零クロスポイントによって図11
(e)の電荷信号bは反転し、図11(f)の直交検波
出力cが得られる。これを積分直流増幅器40に通すと
図11(f)の直交検波出力cに示すコリオリの力によ
る検出電流由来の波形は有効DC値として出力され、結
合電流由来の波形c′は積分の結果、零となり両者は分
離される。
On the other hand, from the detection electrode 30, the coupled detection current shown in FIG. 11 (d) at a voltage zero in phase with the monitor current due to the X S mode coupling vibration (hereinafter referred to as Z MS ) mechanically coupled to the X D mode vibration. a'is also detected. This combined detection current a'is usually much larger than the detection current a due to the Coriolis force and is detected in a superimposed manner, so it is necessary to separate the two. Therefore, both currents are integrated by the charge amplifier 33 into the charge signal shown in FIG. 11E, and then the zero-cross comparator 38 is used from the in-phase proportional signal of the monitor current shown in FIG. The quadrature detection timing signal shown in FIG. When the charge signal of FIG. 11E is quadrature-detected by the quadrature detector 39 using this as a detection signal,
FIG. 11 shows the zero cross point of the monitor current in (c).
The charge signal b in (e) is inverted, and the quadrature detection output c in FIG. 11 (f) is obtained. When this is passed through the integrating DC amplifier 40, the waveform derived from the detection current due to the Coriolis force shown in the quadrature detection output c in FIG. 11 (f) is output as an effective DC value, and the waveform c ′ derived from the coupling current is the result of integration. It becomes zero and the two are separated.

【0075】図12は本発明の第3の実施例で、振動腕
の内側の2本を駆動側振動腕11,12として駆動側音
叉とし、外側の2本を検出側振動腕13,14として検
出側音叉とし、且つ音叉の厚み方向(Z軸方向)に部分
分極した場合である。電極番号は図9に対応している。
FIG. 12 shows a third embodiment of the present invention, in which the inner two vibrating arms are drive side vibrating arms 11 and 12 used as drive side tuning forks, and the outer two vibrating arms are used as detection side vibrating arms 13 and 14. This is a case where the tuning fork is used as the detection side and partially polarized in the thickness direction of the tuning fork (Z-axis direction). The electrode numbers correspond to those in FIG.

【0076】以上の方法で実施したセラミック圧電複合
形角速度センサのコリオリの力による出力感度のS/N
は図15の従来に比べ約15〜18dB改善され、温度
ドリフト(S/Nに起因するから)が格段に小さいセラ
ミック圧電複合形角速度センサを安価に提供できること
が確認できた。
The S / N of the output sensitivity due to the Coriolis force of the ceramic piezoelectric composite angular velocity sensor implemented by the above method
It has been confirmed that the ceramic piezoelectric composite type angular velocity sensor, which is improved by about 15 to 18 dB as compared with the conventional one shown in FIG. 15, and has a temperature drift (because of S / N) is remarkably small, can be provided at low cost.

【0077】[0077]

【発明の効果】以上説明した通り、本発明のセラミック
圧電複合形角速度センサは、櫛形状の音叉で、支持部を
共通として複数本の平行な音叉振動腕を有し、音叉長手
方向の振動の節線α上で、且つ支持部端面に近くを保持
して振動伝達効率を良くし、検出感度を向上させること
ができ、櫛形状の4本の振動腕の2本を駆動用に残り2
本を検出用にその機能を分離して使用して、検出側への
駆動信号の回り込みを防止し、セラミック圧電材料の特
徴を活かし、部分分極、部分電極方式で、浮遊容量の除
去、及び支持部の不要振動の除去により電気的、機械的
S/Nの飛躍的改善が図れ、セラミック一体形成の櫛形
状の音叉であるから、従来例と比べて、音叉の数が2倍
で、また屈曲振動で、且つ、fDX=fSX、fDX=fSZ
なるように音叉の形状寸法を設定しているから、感度向
上による温度ドリフトが非常に小さく、また駆動信号の
検出側への漏れ電流の抑圧等、高性能で、安定なセラミ
ック圧電複合形角速度センサを提供できる。
As described above, the ceramic piezoelectric composite angular velocity sensor of the present invention is a comb-shaped tuning fork, has a plurality of parallel tuning fork vibrating arms with a common support portion, and vibrates in the longitudinal direction of the tuning fork. It is possible to improve the vibration transmission efficiency and improve the detection sensitivity by maintaining the vicinity of the end surface of the support portion on the nodal line α, and leave two of the four comb-shaped vibrating arms for driving.
The function of the book is separated for detection, the drive signal is prevented from sneaking into the detection side, the characteristics of the ceramic piezoelectric material are utilized, and the stray capacitance is removed and supported by partial polarization and partial electrode method. By eliminating unnecessary vibration of the part, the electrical and mechanical S / N can be dramatically improved, and since it is a comb-shaped tuning fork integrally formed with ceramic, the number of tuning forks is twice that of the conventional example, and bending is also possible. Since the shape of the tuning fork is set to vibrate and f DX = f SX and f DX = f SZ , the temperature drift due to the improved sensitivity is extremely small, and the drive signal leaks to the detection side. It is possible to provide a ceramic piezoelectric composite type angular velocity sensor which has high performance such as suppression of current and is stable.

【0078】また、複合形音叉に適したモニタ駆動方式
による安定な自励発振とZMSに起因するモニタ電流の分
離によるS/Nの向上など実用的効果が期待でき、検出
側音叉のZSモードの振動の節線α上で、支持部の下部
あるいは両端を保持しているから、衝撃テストでは50
00Gに耐え、又3mの落下テストにも耐えたので、自
動車用として使用でき、数量も期待でき、安価に製造で
き、工業的価値大なるものである。
Further, practical effects such as stable self-excited oscillation by the monitor driving method suitable for the composite tuning fork and improvement of S / N by separating the monitor current due to Z MS can be expected, and Z S of the detection side tuning fork can be expected. Since the lower part or both ends of the supporting part are held on the nodal line α of the mode vibration, it is 50 in the impact test.
Since it withstood 00G and also withstood a drop test of 3 m, it can be used for automobiles, can be expected in quantity, can be manufactured at low cost, and is of great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるセラミック圧電複合
形角速度センサに用いる櫛形状の音叉のX方向の部分分
極を示す斜視図
FIG. 1 is a perspective view showing partial polarization in a X direction of a comb-shaped tuning fork used in a ceramic piezoelectric composite angular velocity sensor according to an embodiment of the present invention.

【図2】同櫛形状の音叉に電極を施した状態の斜視図FIG. 2 is a perspective view of the same comb-shaped tuning fork provided with electrodes.

【図3】同櫛形状の音叉のZ方向の部分分極を示す斜視
FIG. 3 is a perspective view showing partial polarization in the Z direction of the comb-shaped tuning fork.

【図4】同櫛形状の音叉に電極を施した状態の斜視図FIG. 4 is a perspective view of the same comb-shaped tuning fork provided with electrodes.

【図5】同X方向分極の電極構成と駆動、検出回路の結
線図
FIG. 5 is a wiring diagram of an electrode configuration of the same X-direction polarization and a driving / detecting circuit.

【図6】同Z方向分極の電極構成と駆動、検出回路の結
線図
FIG. 6 is a wiring diagram of an electrode configuration and a drive / detection circuit of the same Z-direction polarization.

【図7】同音叉の振動モードと保持位置を説明する図FIG. 7 is a diagram illustrating a vibration mode and a holding position of the tuning fork.

【図8】同X方向分極の場合の音叉のモニタ駆動、検出
方式の結線図
FIG. 8 is a connection diagram of a monitor drive and detection method of a tuning fork in the case of the same X-direction polarization.

【図9】同Z方向分極の場合の音叉のモニタ駆動、検出
方式の結線図
FIG. 9 is a connection diagram of a monitor drive and detection method of a tuning fork in the case of the same Z-direction polarization.

【図10】同櫛形状の音叉の駆動、検出回路のブロック
FIG. 10 is a block diagram of a drive and detection circuit of the same comb-shaped tuning fork.

【図11】回路ブロックの各部の動作波形図FIG. 11 is an operation waveform diagram of each part of the circuit block.

【図12】本発明の他の実施例における内側音叉を駆動
用とし、厚み方向に分極した場合の斜視図
FIG. 12 is a perspective view of an inner tuning fork according to another embodiment of the present invention, which is used for driving and is polarized in the thickness direction.

【図13】部分分極、部分電極の理論を説明する図FIG. 13 is a diagram illustrating the theory of partial polarization and partial electrodes.

【図14】同特性を示す説明図FIG. 14 is an explanatory diagram showing the same characteristics.

【図15】従来の支持部の捩れ振動を検出側とした音叉
の斜視図
FIG. 15 is a perspective view of a conventional tuning fork in which a torsional vibration of a support portion is detected.

【符号の説明】[Explanation of symbols]

11,12 駆動側振動腕 13,14 検出側振動腕 15 駆動側音叉の支持部 16 検出側音叉の支持部 17,17′ 駆動振動腕の付け根部 18 検出振動腕の付け根部 19 支持部の下部の保持あるいは取り付け用の切欠き
部、小孔 20,21 駆動電極 22,23 検出電極 24,25 駆動電極の入力端子 26,27 検出電極の出力端子 28 GND電極 29 駆動電極(D) 30 検出電極(S) 31 モニタ電極 32,33 モニタ回路の電流増幅器 34,35 交流電圧増幅器 36 駆動電圧コントローラ 37 交直変換器 38 零クロスコンパレータ 39 直交検波器 40 積分直流増幅器
11,12 Drive side vibrating arm 13,14 Detection side vibrating arm 15 Drive side tuning fork support 16 Detection side tuning fork support 17,17 'Drive vibrating arm base 18 18 Detection vibrating arm base 19 Lower part of support Notch, small hole for holding or attaching of electrodes 20,21 Drive electrode 22,23 Detection electrode 24,25 Drive electrode input terminal 26,27 Detection electrode output terminal 28 GND electrode 29 Drive electrode (D) 30 Detection electrode (S) 31 Monitor electrodes 32, 33 Current amplifier of monitor circuit 34, 35 AC voltage amplifier 36 Drive voltage controller 37 AC / DC converter 38 Zero cross comparator 39 Quadrature detector 40 Integral DC amplifier

フロントページの続き (72)発明者 寺田 二郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田村 雅巳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Jiro Terada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Masami Tamura, 1006 Kadoma, Kadoma City Osaka Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 平板状のセラミック圧電材料から成る4
本の平行な振動腕と音叉支持部を共通とした櫛形状の音
叉を一体形成し、三次元座標系のX軸を振動腕及び支持
部の幅方向に、Y軸を振動腕の長手方向に、Z軸を音叉
全体の厚み方向として、振動腕及び支持部のY軸に沿っ
た一部分を外部印加電圧によりX方向に予め部分分極を
行い、外側の2本組を駆動側音叉、内側の2本組を検出
側音叉とし、あるいは内側の2本組を駆動側音叉、外側
の2本組を検出側音叉とし、櫛形状の音叉の駆動側振動
腕及び支持部の一部分の表裏面、側面にはY軸に沿った
駆動電極を、検出側振動腕及び支持部の一部分の表裏面
にはY軸に沿った2分割の検出電極を部分分極部に対応
して配設し、前記駆動側音叉の駆動電極に交流信号を印
加して、X方向に互いに逆相の屈曲振動(以下XDモー
ドという)を発生させ、前記検出側音叉に支持部の機械
的結合を介して互いに逆相の屈曲振動(以下XSモード
という)を誘起させ、外部から印加されるY軸回りの回
転角速度に基づくコリオリの力によって発生するZ軸方
向の互いに逆相の屈曲振動(以下ZSモードという)に
よって発生した電荷量を検出側音叉の検出電極により検
出するセラミック圧電複合形角速度センサ。
1. A flat piezoelectric ceramic material 4
A comb-shaped tuning fork with a common parallel vibrating arm and tuning fork support is integrally formed, and the X axis of the three-dimensional coordinate system is the width direction of the vibrating arm and the supporting section, and the Y axis is the longitudinal direction of the vibrating arm. , Z-axis is the thickness direction of the entire tuning fork, and a part of the vibrating arm and the supporting portion along the Y-axis is pre-polarized in the X direction by an externally applied voltage, and the outer two sets are set to the drive side tuning fork and the inner two. This set is used as the detection side tuning fork, or the inner two sets are used as the drive side tuning fork, and the outer two sets are used as the detection side tuning fork. Is a drive electrode along the Y-axis, and two-divided detection electrodes along the Y-axis are disposed on the front and back surfaces of a part of the detection-side vibrating arm and the support portion so as to correspond to the partially polarized portion. by applying an AC signal to the drive electrodes of opposite phases of the bending vibration in the X-direction (hereinafter referred to as X D mode) generated Allowed the to induce opposite phases of the bending vibration through the mechanical coupling of the support portion to the detection side tuning fork (hereinafter called X S mode), the Coriolis force based on Y-axis of the rotational angular velocity applied from the outside A ceramic-piezoelectric composite angular velocity sensor that detects the amount of electric charge generated by bending vibrations of opposite phases in the Z-axis direction (hereinafter referred to as Z S mode) that are generated by the detection electrodes of the detection side tuning fork.
【請求項2】 平板状のセラミック圧電材料から成る4
本の平行な振動腕と音叉支持部を共通とした櫛形状の音
叉を一体形成し、三次元座標系のX軸を振動腕及び支持
部の幅方向に、Y軸を振動腕の長手方向に、Z軸を音叉
全体の厚み方向として、振動腕及び支持部のY軸に沿っ
た一部分を外部印加電圧によりZ方向に予め部分分極を
行い、外側の2本組を駆動側音叉、内側の2本組を検出
側音叉とし、あるいは内側の2本組を駆動側音叉、外側
の2本組を検出側音叉とし、櫛形状の音叉の駆動側振動
腕及び支持部の一部分の表裏面にはY軸に沿って2分割
の駆動電極を、検出側振動腕の表裏面、側面と支持部の
一部の表裏面にはY軸に沿った検出電極を部分分極部に
対応して配設し、前記駆動側音叉の駆動電極に交流信号
を印加して、X方向に互いに逆相の屈曲振動(以下XD
モードという)を発生させ、前記検出側音叉に支持部の
機械的結合を介して互いに逆相の屈曲振動(以下XS
ードという)を誘起させ、外部から印加されるY軸回り
の回転角速度に基づくコリオリの力によって発生するZ
軸方向の互いに逆相の屈曲振動(以下ZSモードとい
う)によって発生した電荷量を検出側音叉の検出電極に
より検出するセラミック圧電複合形角速度センサ。
2. A flat piezoelectric ceramic material 4
A comb-shaped tuning fork with a common parallel vibrating arm and tuning fork support is integrally formed, and the X axis of the three-dimensional coordinate system is the width direction of the vibrating arm and the supporting section, and the Y axis is the longitudinal direction of the vibrating arm. , Z-axis is the thickness direction of the entire tuning fork, a part of the vibrating arm and the supporting portion along the Y-axis is pre-polarized in the Z direction by an externally applied voltage, and the outer two sets are set to the driving side tuning fork and the inner two. This set is used as the detection side tuning fork, or the inner two sets are used as the driving side tuning fork, and the outer two sets are used as the detection side tuning fork. Drive electrodes divided into two along the axis are arranged on the front and back surfaces of the detection side vibrating arm, and the detection electrodes along the Y axis are arranged on the front and back surfaces of the side surface and part of the support portion in correspondence with the partially polarized portion, An AC signal is applied to the drive electrode of the drive side tuning fork to cause bending vibrations of opposite phases in the X direction (hereinafter referred to as X D
Mode), and bending vibrations of opposite phases (hereinafter referred to as X S modes) are induced in the detection side tuning fork through mechanical coupling of the supporting portion, and the rotational angular velocity around the Y axis is applied from the outside. Generated by the Coriolis force based on Z
A ceramic-piezoelectric composite angular velocity sensor that detects the amount of electric charge generated by bending vibrations of opposite phases in the axial direction (hereinafter referred to as Z S mode) by a detection electrode of a detection side tuning fork.
【請求項3】 駆動側振動腕については、Y軸方向に駆
動側振動腕の支持部の付け根からその長さの約半分〜8
0%位と付け根からY軸に沿って支持部方向に駆動側振
動腕の幅に相当したおおよその長さを、検出側振動腕に
ついては同じくY軸方向に検出側振動腕の支持部付け根
から、その長さの約半分〜80%位と検出側音叉付け根
からY軸に沿って支持部全長に駆動側振動腕の幅に相当
したおおよその長さを加算した寸法からできた体積部分
をX方向あるいはZ方向に貫通した部分分極した請求項
1または請求項2記載のセラミック圧電複合形角速度セ
ンサ。
3. The drive-side vibrating arm extends from the root of the support portion of the drive-side vibrating arm in the Y-axis direction to about half the length of the supporting arm.
About 0% and the approximate length corresponding to the width of the driving side vibrating arm from the base along the Y axis in the direction of the supporting portion, and for the detecting side vibrating arm, the same from the supporting portion root of the detecting side vibrating arm in the Y axis direction. , About half to 80% of the length, and a volume part made up of a dimension obtained by adding the approximate length corresponding to the width of the driving side vibrating arm to the entire length of the support portion along the Y axis from the root of the detection side tuning fork X 3. The ceramic-piezoelectric composite type angular velocity sensor according to claim 1 or 2, which is partially polarized so as to penetrate in the Z direction or the Z direction.
【請求項4】 駆動側音叉のXDモードの共振周波数と
検出側音叉のXSモードの共振周波数を同じくし、且
つ、コリオリの力によって発生したZSモードの共振周
波数を近い値になるように、櫛形状の音叉の4本の振動
腕及び支持部の形状寸法を設定した請求項1、2または
3記載のセラミック圧電複合形角速度センサ。
4. The resonance frequency of the drive-side tuning fork in the X D mode and the resonance frequency of the detection-side tuning fork in the X S mode are the same, and the resonance frequency of the Z S mode generated by the Coriolis force is close to a value. 4. The ceramic-piezoelectric composite angular velocity sensor according to claim 1, 2 or 3, wherein the four vibrating arms and the supporting portion of the comb-shaped tuning fork are set to the shape.
【請求項5】 駆動側音叉のXDモードの共振周波数と
検出側音叉のXSモードの共振周波数を同じくし、且
つ、コリオリの力によって発生したZSモードの共振周
波数を異ならせるように、櫛形状の音叉の4本の振動腕
及び支持部の形状寸法を設定した請求項1、2または3
記載のセラミック圧電複合形角速度センサ。
5. The resonance frequency of the X D mode of the drive side tuning fork and the resonance frequency of the X S mode of the detection side tuning fork are made the same, and the resonance frequency of the Z S mode generated by the Coriolis force is made different. 4. The shape dimensions of the four vibrating arms and the supporting portion of the comb-shaped tuning fork are set.
A ceramic piezoelectric composite angular velocity sensor as described.
【請求項6】 駆動側音叉のXDモードの共振周波数を
検出側音叉のXSモードの共振周波数と異ならせ、且
つ、コリオリの力によって発生したZSモードの共振周
波数に近い値となるように、櫛形状の音叉の4本の振動
腕及び支持部の形状寸法を設定した請求項1、2または
3記載のセラミック圧電複合形角速度センサ。
6. The resonance frequency of the drive-side tuning fork in the X D mode is made different from the resonance frequency of the detection-side tuning fork in the X S mode, and is close to the Z S mode resonant frequency generated by the Coriolis force. 4. The ceramic-piezoelectric composite angular velocity sensor according to claim 1, 2 or 3, wherein the four vibrating arms and the supporting portion of the comb-shaped tuning fork are set to the shape.
【請求項7】 検出側音叉のY軸方向の振動の節線上に
あって、駆動側音叉の支持部の下部に切欠き部あるいは
小さい孔を設け、その切欠き部あるいは小さい孔を保持
あるいは取り付け用に供する請求項1、2、3、4、5
または6記載のセラミック圧電複合形角速度センサ。
7. A cutout portion or a small hole is provided in a lower portion of a support portion of the drive side tuning fork on a nodal line of vibration of the detection side tuning fork in the Y-axis direction, and the cutout portion or the small hole is held or attached. Claims 1, 2, 3, 4, 5 provided for
Alternatively, the ceramic piezoelectric composite type angular velocity sensor described in 6 above.
【請求項8】 駆動側音叉の片方の振動腕の片方の駆動
電極に交流信号を印加し、駆動側音叉のもう一方の振動
腕の他方のモニタ電極に誘起するXDモードの電流の交
流振幅を一定に保持する定交流電流制御回路を持った請
求項1、2、3、4、5、6または7記載のセラミック
圧電複合形角速度センサ。
8. applying an AC signal to one driving electrode of one oscillating arm of the driving side tuning fork, AC amplitude X D mode of the current induced in the other monitor electrode of other oscillating arm of the driving side tuning fork 8. The ceramic piezoelectric composite angular velocity sensor according to claim 1, further comprising a constant AC current control circuit for holding the temperature constant.
【請求項9】 外部から印加されるY軸回りの回転角速
度による誘起電流を検波抽出するためのタイミング信号
をモニタ電極に誘起した電流の零クロス信号より発生す
る請求項1、2、3、4、5、6、7または8記載のセ
ラミック圧電複合形角速度センサ。
9. A timing signal for detecting and extracting an induced current due to an angular velocity about the Y-axis applied from the outside is generated from a zero-cross signal of the current induced in the monitor electrode. 5. A ceramic piezoelectric composite angular velocity sensor according to 5, 6, 7 or 8.
JP07871395A 1995-04-04 1995-04-04 Ceramic piezoelectric composite angular velocity sensor Expired - Fee Related JP3360478B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP07871395A JP3360478B2 (en) 1995-04-04 1995-04-04 Ceramic piezoelectric composite angular velocity sensor
EP96908344A EP0764828B1 (en) 1995-04-04 1996-04-04 Angular velocity sensor
DE69628981T DE69628981T2 (en) 1995-04-04 1996-04-04 ROTARY SPEED SENSOR
PCT/JP1996/000926 WO1996031754A1 (en) 1995-04-04 1996-04-04 Angular velocity sensor
US08/750,072 US5824900A (en) 1995-04-04 1996-04-04 Angular velocity sensor
US09/126,277 US6119519A (en) 1995-04-04 1998-07-30 Angular velocity sensor
US09/503,737 US6237415B1 (en) 1995-04-04 2000-02-15 Angular velocity sensor
US09/503,727 US6298723B1 (en) 1995-04-04 2000-02-15 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07871395A JP3360478B2 (en) 1995-04-04 1995-04-04 Ceramic piezoelectric composite angular velocity sensor

Publications (2)

Publication Number Publication Date
JPH08278141A true JPH08278141A (en) 1996-10-22
JP3360478B2 JP3360478B2 (en) 2002-12-24

Family

ID=13669519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07871395A Expired - Fee Related JP3360478B2 (en) 1995-04-04 1995-04-04 Ceramic piezoelectric composite angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3360478B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151965A (en) * 1998-01-21 2000-11-28 Denso Corporation Structure of angular rate sensor for minimizing output noise
JP2001343241A (en) * 2000-03-27 2001-12-14 Citizen Watch Co Ltd Vibration gyro
JP2009236674A (en) * 2008-03-27 2009-10-15 Tdk Corp Vibration gyro sensor
JP2015141182A (en) * 2014-01-30 2015-08-03 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element
CN114624468A (en) * 2022-05-17 2022-06-14 山东利恩斯智能科技有限公司 Waterproof six-dimensional vibration sensor and measuring method thereof
CN115585879A (en) * 2022-10-10 2023-01-10 国网山东省电力公司高密市供电公司 Sound wave detection device for monitoring vibration amplitude of power equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094672B2 (en) 2013-05-13 2017-03-15 株式会社村田製作所 Vibration device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151965A (en) * 1998-01-21 2000-11-28 Denso Corporation Structure of angular rate sensor for minimizing output noise
JP2001343241A (en) * 2000-03-27 2001-12-14 Citizen Watch Co Ltd Vibration gyro
JP4641107B2 (en) * 2000-03-27 2011-03-02 シチズンホールディングス株式会社 Vibrating gyro
JP2009236674A (en) * 2008-03-27 2009-10-15 Tdk Corp Vibration gyro sensor
JP2015141182A (en) * 2014-01-30 2015-08-03 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element
CN114624468A (en) * 2022-05-17 2022-06-14 山东利恩斯智能科技有限公司 Waterproof six-dimensional vibration sensor and measuring method thereof
CN115585879A (en) * 2022-10-10 2023-01-10 国网山东省电力公司高密市供电公司 Sound wave detection device for monitoring vibration amplitude of power equipment
CN115585879B (en) * 2022-10-10 2023-08-18 国网山东省电力公司高密市供电公司 Acoustic wave detection device for monitoring vibration amplitude of power equipment

Also Published As

Publication number Publication date
JP3360478B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
EP0764828B1 (en) Angular velocity sensor
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
JPH0640008B2 (en) Gyroscope
WO2005078389A1 (en) Angular velocity sensor
JP3421720B2 (en) Angular velocity detection circuit
JP4668739B2 (en) Vibrating gyro
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2005249646A (en) Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor
JP4911690B2 (en) Vibrating gyro vibrator
JP2002228453A (en) Oscillatory gyro and temperature drift adjusting method therefor
JPH08152328A (en) Angular speed sensor and its using method
JP3360478B2 (en) Ceramic piezoelectric composite angular velocity sensor
JP2000205861A (en) Vibration gyro
JPH08278142A (en) Angular velocity sensor
JP3720563B2 (en) Vibrator, vibratory gyroscope and measuring method of rotational angular velocity
JP4552253B2 (en) Angular velocity sensor
JP2004301510A (en) Tuning fork type angular velocity sensor
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP4044519B2 (en) Tuning fork type piezoelectric vibration gyro
JP2009192403A (en) Angular velocity and acceleration detector
JP4309814B2 (en) Method for adjusting vibrator for piezoelectric vibration gyro
JP4345130B2 (en) Vibrating gyro
JP3958741B2 (en) Piezoelectric vibrator gyro vibrator
JP4044547B2 (en) Piezoelectric vibration gyro
JP3371609B2 (en) Vibrating gyro

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees