JP3958741B2 - Piezoelectric vibrator gyro vibrator - Google Patents

Piezoelectric vibrator gyro vibrator Download PDF

Info

Publication number
JP3958741B2
JP3958741B2 JP2003426581A JP2003426581A JP3958741B2 JP 3958741 B2 JP3958741 B2 JP 3958741B2 JP 2003426581 A JP2003426581 A JP 2003426581A JP 2003426581 A JP2003426581 A JP 2003426581A JP 3958741 B2 JP3958741 B2 JP 3958741B2
Authority
JP
Japan
Prior art keywords
vibrator
piezoelectric
single crystal
vibration
gyro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426581A
Other languages
Japanese (ja)
Other versions
JP2005181271A (en
Inventor
浩一 習田
亜希子 大島
光晴 千葉
豪 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003426581A priority Critical patent/JP3958741B2/en
Publication of JP2005181271A publication Critical patent/JP2005181271A/en
Application granted granted Critical
Publication of JP3958741B2 publication Critical patent/JP3958741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、主として自動車のナビゲーションシステムや姿勢制御装置、カメラー体型VTRの手振れ防止装置等に用いられるジャイロスコープで、特に圧電振動ジャイロに好適な振動子に関するものである。   The present invention relates to a vibrator suitable for a piezoelectric vibration gyro, particularly a gyroscope used in an automobile navigation system, an attitude control device, a camera body-type VTR camera shake prevention device, and the like.

振動ジャイロは、速度を持つ物体に角速度が与えられると、その物体自身に速度方向と直角な方向にコリオリ力が発生するという力学現象を利用した角速度センサである。   A vibrating gyroscope is an angular velocity sensor that utilizes a dynamic phenomenon in which when an angular velocity is applied to an object having velocity, the object itself generates a Coriolis force in a direction perpendicular to the velocity direction.

振動子に電気的な信号を印加することで機械的な振動(駆動振動)を励起させることができ、且つ、駆動振動と直交する方向の機械的な振動(検出振動)の大きさを電気的に検出可能とした系において、予め、駆動振動を励起させた状態で、駆動振動面と検出振動面との交線と平行な軸を中心とした角速度を与えると、前述のコリオリ力の作用により、検出振動が発生し、出力電圧が検出できる。この出力電圧は駆動振動の大きさ及び角速度に比例するため、駆動振動の大きさを一定にした状態では、出力電圧の大きさから角速度の大きさを求めることができる。振動ジャイロの中でも、電気的信号と機械的振動の変換を圧電効果で行うものが圧電振動ジャイロである。   Mechanical vibration (drive vibration) can be excited by applying an electrical signal to the vibrator, and the magnitude of mechanical vibration (detection vibration) in the direction orthogonal to the drive vibration is electrically If the angular velocity about the axis parallel to the intersecting line between the drive vibration surface and the detection vibration surface is given in a state where the drive vibration is excited in advance, the above-mentioned Coriolis force acts. Detection vibration occurs and the output voltage can be detected. Since this output voltage is proportional to the magnitude and angular velocity of the driving vibration, the magnitude of the angular velocity can be obtained from the magnitude of the output voltage in a state where the magnitude of the driving vibration is constant. Among vibration gyros, a piezoelectric vibration gyro performs a conversion between an electric signal and mechanical vibration by a piezoelectric effect.

現在、圧電振動ジャイロに用いられる振動子としては、振動子本体が圧電体からなる構造のものが、生産性及び精度に優れるため良く利用されており、これまで更なる生産性向上や高精度化を目的とし、様々な振動子の構造が提案されている。特に、小形・安価を目的とする場合、振動子の構造はよりシンプルであった方が生産性上好ましい場合が多く、こうした観点から提案された構造も少なくない。   At present, as vibrators used in piezoelectric vibratory gyros, vibrators with a piezoelectric body structure are often used because of their excellent productivity and precision. To date, further improvements in productivity and higher precision have been achieved. For this purpose, various vibrator structures have been proposed. In particular, for the purpose of small size and low cost, it is often preferable in terms of productivity that the structure of the vibrator is simpler, and there are not a few structures proposed from this viewpoint.

また、近年、圧電振動ジャイロの小型化が進むにつれ、圧電振動ジャイロのシステムヘの実装方法において、手半田付けの実装から生産性に優れるリフロー半田実装に変更されるようになり、リフロー半田実装時に260℃程度の温度に圧電振動ジャイロの全体が加熱されても、圧電振動ジャイロの性能や信頼性が損なわれることが無いよう、圧電振動ジャイロには耐熱性が要求され、圧電振動ジャイロに用いる振動子としては、小型・安価で、構造がより簡素で、且つ耐熱性に優れたものが必要とされる。   In recent years, with the progress of miniaturization of piezoelectric vibration gyros, the method of mounting piezoelectric vibration gyros on the system has been changed from mounting by hand soldering to reflow solder mounting with excellent productivity. The piezoelectric vibration gyro is required to have heat resistance so that the performance and reliability of the piezoelectric vibration gyro are not impaired even if the entire piezoelectric vibration gyro is heated to a temperature of about 260 ° C. The vibration used in the piezoelectric vibration gyro The child is required to be small, inexpensive, simple in structure, and excellent in heat resistance.

小型・安価で、構造が簡素な圧電振動ジャイロに用いる振動子としては、柱状圧電素子の一つの平面に駆動振動用と検出振動用の3本の電極を構成した先行文献がある。(例えば、特許文献1参照)図4には、この先行文献1に提案されている簡素な振動子構造を特徴とする圧電振動ジャイロ用振動子を示す。図4(a)は斜視図、図4(b)は断面図である。   As a vibrator used for a piezoelectric vibration gyro which is small and inexpensive and has a simple structure, there is a prior document in which three electrodes for driving vibration and detection vibration are formed on one plane of a columnar piezoelectric element. FIG. 4 shows a vibrator for a piezoelectric vibration gyro characterized by a simple vibrator structure proposed in the prior art document 1. 4A is a perspective view, and FIG. 4B is a cross-sectional view.

図4で、振動子21は、圧電セラミクスからなる柱状体25の一側面に、駆動電極23と検出電極22及び24を備え、図4(b)の断面図に示す矢印方向に予め分極処理することで、電極形成面に垂直な面内方向の屈曲の駆動振動の励振と、柱状圧電素子の長軸中心の角速度の検出を可能とし、圧電振動ジャイロ用振動子としての機能を満たすものである。一側面に全ての電極が備えられていることから、複数の側面に電極が備えられているものと比較し、格段に生産性が優れる。   In FIG. 4, the vibrator 21 includes a drive electrode 23 and detection electrodes 22 and 24 on one side surface of a columnar body 25 made of piezoelectric ceramic, and is previously polarized in the arrow direction shown in the cross-sectional view of FIG. Therefore, it is possible to excite driving vibration in the in-plane direction perpendicular to the electrode forming surface and to detect the angular velocity at the center of the long axis of the columnar piezoelectric element, and to satisfy the function as a vibrator for a piezoelectric vibration gyro. . Since all the electrodes are provided on one side, productivity is remarkably superior to that provided with electrodes on a plurality of side surfaces.

しかしながら、圧電振動ジャイロの振動子として用いる圧電セラミックスのキュリー温度は300℃程度で、リフロー半田実装工程で260℃の温度にさらされると振動子の分極が劣化し、その結果、圧電振動ジャイロの性能や信頼性が低下するという問題点がある。   However, the Curie temperature of the piezoelectric ceramic used as the vibrator of the piezoelectric vibration gyro is about 300 ° C., and the polarization of the vibrator deteriorates when exposed to a temperature of 260 ° C. in the reflow solder mounting process. As a result, the performance of the piezoelectric vibration gyro There is a problem that reliability is lowered.

また、耐熱性に優れる振動ジャイロ用振動子としては、キュリー温度が約1400℃のLiNbO3単結晶板またはキュリー温度が約870℃のLiTaO3単結晶板を振動ジャイロ用振動子として用いる先行文献がある。(例えば、特許文献2参照)図5には、この先行文献2に提案されている耐熱性に優れる振動ジャイロ用振動子を示す。図5(a)はその斜視図、図5(b)は断面図である。この振動子31は厚み方向に対向して分極された単結晶板35からなり、一方主面に分割電極32及び34を備え、他方主面に電極33を備えることで、図5(b)の断面図に示す矢印方向に予め分極処理することで、電極形成面に垂直な面内方向の屈曲の駆動振動の励振と、単結晶板の長軸中心の角速度の検出を可能とし、圧電振動ジャイロ用振動子としての機能を満たすものである。 Further, as vibrators for vibrating gyroscopes having excellent heat resistance, there are prior literatures using LiNbO 3 single crystal plates with a Curie temperature of about 1400 ° C. or LiTaO 3 single crystal plates with a Curie temperature of about 870 ° C. as vibrators for vibratory gyros. is there. FIG. 5 shows a vibrator for a vibrating gyroscope excellent in heat resistance proposed in the prior document 2. FIG. 5A is a perspective view and FIG. 5B is a cross-sectional view. This vibrator 31 is composed of a single crystal plate 35 that is polarized in the thickness direction, and is provided with divided electrodes 32 and 34 on one main surface and an electrode 33 on the other main surface, so that FIG. By performing polarization in advance in the direction of the arrow shown in the cross-sectional view, it is possible to excite driving vibration in the in-plane direction perpendicular to the electrode formation surface and to detect the angular velocity at the center of the long axis of the single crystal plate. It fulfills the function as a vibrator.

LiNbO3単結晶板またはLiTaO3単結晶板を用いれば、300℃程度の高温にさらされても分極劣化がないので、圧電振動ジャイロとして耐熱性に優れ、更に、これらの単結晶板は焦電効果を利用して分極反転ができるので、生産性にも優れるが、図5に示す振動子の構造は、電極を二側面に設ける必要があるため、図4に示す振動子構造と比較し生産性に劣るという問題点がある。 If a LiNbO 3 single crystal plate or a LiTaO 3 single crystal plate is used, there is no polarization deterioration even when exposed to a high temperature of about 300 ° C., so that the piezoelectric vibration gyro is excellent in heat resistance. Since polarization can be reversed by using the effect, the productivity is excellent. However, the structure of the vibrator shown in FIG. 5 needs to be provided on two side surfaces, so that it is produced in comparison with the vibrator structure shown in FIG. There is a problem that it is inferior.

そこで、耐熱性に優れるLiNbO3単結晶等を用いて、図4に示す振動子の構造の実現性を以下に検討した。 Therefore, the feasibility of the structure of the vibrator shown in FIG. 4 was examined below using LiNbO 3 single crystal having excellent heat resistance.

図6は、LiNbO3単結晶Zカット板を利用し、結晶のX軸を柱状振動子の長手方向にとった場合の柱状振動子構造の断面図である。LiNbO3単結晶は三方晶3m点群の結晶構造をとり、方位によって弾性定数に異方性を有することと、電気機械結合係数k21(Y方向の電界によるX方向の歪の効率)の存在により、図6に示すような構造では、駆動電極3’と検出電極2’、検出電極4’の間に交流電圧を印加することでLiNbO3単結晶体5’を屈曲振動させることはできるが、振動子を真っ直ぐ理想的に屈曲振動させることができず、検出信号の回路的処理が煩雑となるので、圧電振動ジャイロ用振動子の実現性が困難である。 FIG. 6 is a cross-sectional view of a columnar vibrator structure when a LiNbO 3 single crystal Z-cut plate is used and the X-axis of the crystal is taken in the longitudinal direction of the columnar vibrator. The LiNbO 3 single crystal has a trigonal 3m point group crystal structure and has anisotropy in the elastic constant depending on the orientation, and the existence of an electromechanical coupling coefficient k 21 (efficiency of strain in the X direction due to the electric field in the Y direction). Thus, in the structure as shown in FIG. 6, the LiNbO 3 single crystal 5 ′ can be flexibly vibrated by applying an AC voltage between the drive electrode 3 ′, the detection electrode 2 ′, and the detection electrode 4 ′. The vibrator cannot be flexibly vibrated straight and ideally, and the circuit processing of the detection signal becomes complicated. Therefore, it is difficult to realize a vibrator for a piezoelectric vibration gyro.

また、図7は、LiNbO3単結晶Zカット板を利用し、結晶のX軸を柱状振動子の長手方向と垂直にとった場合の柱状振動子構造の断面図である。この場合、弾性定数の異方性が振動子断面で左右対称となり、駆動電極3”と検出電極2”、検出電極4”の間に交流電圧を印加することでLiNbO3単結晶体5”を真っ直ぐ屈曲振動させることができるが、LiNbO3単結晶は、結晶のX軸方向の電界による歪は発生しないので、X軸を中心に回転させた電気機械結合係数k’23(回転後のY軸方向の電界によるZ軸方向の歪の効率)の大きい結晶を用いても、柱状振動子の長さ方向に屈曲振動させることができないので、圧電振動ジャイロ用振動子の実現性が無い。 FIG. 7 is a cross-sectional view of a columnar vibrator structure when a LiNbO 3 single crystal Z-cut plate is used and the X-axis of the crystal is perpendicular to the longitudinal direction of the columnar vibrator. In this case, the anisotropy of the elastic constant is left-right symmetrical in the cross section of the vibrator, and an LiNbO 3 single crystal 5 ″ is obtained by applying an AC voltage between the drive electrode 3 ″, the detection electrode 2 ″, and the detection electrode 4 ″. Although it can be bent and vibrated straight, the LiNbO 3 single crystal does not generate distortion due to the electric field in the X-axis direction of the crystal. Therefore, the electromechanical coupling coefficient k ′ 23 rotated around the X-axis (the Y-axis after rotation) Even if a crystal having a large distortion efficiency in the Z-axis direction due to the electric field in the direction is used, bending vibration in the length direction of the columnar vibrator cannot be performed, so that there is no feasibility of a vibrator for a piezoelectric vibration gyro.

図6と図7で、LiNbO3単結晶を用いた場合で説明したが、結晶構造が同一のLiTaO3単結晶についても同様で、前述のように、LiNbO3単結晶やLiTaO3単結晶柱状体の一側面のみに電極を構成し、圧電振動ジャイロ用振動子を実現することは困難である。 6 and FIG. 7, the case where the LiNbO 3 single crystal is used has been described. However, the same applies to the LiTaO 3 single crystal having the same crystal structure. As described above, the LiNbO 3 single crystal or the LiTaO 3 single crystal columnar body is used. It is difficult to realize a piezoelectric vibration gyro vibrator by forming electrodes only on one side.

特許第3122925号 公報Japanese Patent No. 3122925 特許第3000891号 公報Japanese Patent No. 3000891

本発明の課題は、前述した課題を解決し、LiNbO3単結晶またはLiTaO3単結晶の柱状体を用い、一側面のみの電極形成で済む振動子構造を考案し、小型・安価で、耐熱性・生産性に優れた圧電振動ジャイロ用振動子を提供することにある。 The object of the present invention is to solve the problems described above, devise a vibrator structure that uses a columnar body of LiNbO 3 single crystal or LiTaO 3 single crystal, and only requires electrode formation on one side, and is small, inexpensive, and heat resistant -To provide a vibrator for a piezoelectric vibration gyro excellent in productivity.

本発明によれば、圧電体からなる複数の側面を有する柱状体の一側面に、柱状体の長手方向と平行に3本の帯状電極を形成した一次屈曲振動モードの圧電振動ジャイロ用振動子であって、前記柱状体は、帯状電極を形成した面に垂直で且つ長手方向に平行な面を境界として分極方向が対向するように分極した圧電単結晶からなることを特徴とする圧電振動ジャイロ用振動子が得られる。また、本発明によれば圧電振動ジャイロ用振動子において、圧電単結晶は、LiNbO3単結晶またはLiTaO3単結晶からなることを特徴とする圧電振動ジャイロ用振動子が得られる。
According to the present invention, on one side of the columnar body having a plurality of side surfaces of a piezoelectric body in the longitudinal direction and the piezoelectric vibrating gyro vibrator parallel to three primary bending vibration mode of forming the strip-shaped electrodes of the columnar body The columnar body is made of a piezoelectric single crystal polarized so that the polarization direction is opposed to a plane perpendicular to the plane on which the strip electrode is formed and parallel to the longitudinal direction. A vibrator is obtained. Further, according to the present invention, in the piezoelectric vibration gyro vibrator, the piezoelectric vibration gyro vibrator is characterized in that the piezoelectric single crystal is made of a LiNbO 3 single crystal or a LiTaO 3 single crystal.

本発明における圧電振動ジャイロ用柱状振動子によれば、LiNbO3単結晶またはLiTaO3単結晶を用い、半田リフロー実装の際にジャイロ本体が高温にさらされても、性能劣化が無く、また、一側面のみに電極を形成することで振動子を構成できるため、電極形成や組み立て時の入出力配線等が容易で生産性が改善され、小型・安価で、耐熱性に優れた圧電振動ジャイロ用振動子を得ることができる効果がある。 According to the columnar vibrator for a piezoelectric vibration gyro according to the present invention, there is no performance deterioration even when the gyro body is exposed to high temperature during solder reflow mounting using a LiNbO 3 single crystal or a LiTaO 3 single crystal. Since the vibrator can be configured by forming electrodes only on the side surfaces, the input / output wiring during electrode formation and assembly is easy, productivity is improved, and the vibration for piezoelectric vibration gyro that is compact, inexpensive, and has excellent heat resistance There is an effect that can get a child.

以下に、本発明による圧電振動ジャイロ用振動子の実施の形態を、以下に実施例で詳細に説明する。   Hereinafter, embodiments of the vibrator for a piezoelectric vibration gyro according to the present invention will be described in detail with reference to the following examples.

市販の厚さが1mmで、分極が厚さ方向のLiNbO3単結晶板を、キュリー温度付近で熱処理し、焦電効果によるものと考えられるメカニズムによって分極軸が板厚方向の+C面側から反転し、板厚のほぼ中央で反転が止まる現象を利用し、分極方向が対向するように分極した。尚、分極軸は単結晶板の厚みに対し垂直でなくとも、この分極反転現象が生じるため、屈曲振動モードを用いる場合は、電気機械結合係数k’23が最も大きいカット角140°回転Y板を使用するのが好ましい。 A commercially available LiNbO 3 single crystal plate with a thickness of 1 mm and polarization in the thickness direction is heat-treated near the Curie temperature, and the polarization axis is reversed from the + C plane side in the plate thickness direction by a mechanism considered to be due to the pyroelectric effect. Then, using the phenomenon that the reversal stops at approximately the center of the plate thickness, polarization was performed so that the polarization directions were opposite. Incidentally, even the polarization axis is not perpendicular to the thickness of the single crystal plate, since the polarization reversal phenomenon occurs, in the case of using a bending vibration mode electromechanical coupling factor k '23 has the largest cut angle 140 ° rotation Y plate Is preferably used.

図1は、本発明の実施例における圧電振動ジャイロ用振動子を示す図であり、図1(a)は斜視図、図1(b)は長さ方向に直交する断面図である。図1の圧電振動ジャイロ用振動子1は、前記分極反転したLiNbO3単結晶板から切り出したLiNbO3単結晶体5の断面四角形の寸法1mm×1mm×15mmの柱状体であり、柱状体の1つの切り出し面に、駆動振動を励起するための駆動電極3、検出振動を検出するための検出電極2及び4を形成した。また、柱状体は、予め、図1中に点線で示した、電極形成面に垂直な長手方向面に対向して分極方向が対向するように分極されている。図1中の矢印は、140°回転Y板を使用した場合の分極の方向を示した。 1A and 1B are diagrams showing a piezoelectric vibration gyro vibrator according to an embodiment of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a cross-sectional view orthogonal to the length direction. A piezoelectric vibration gyro vibrator 1 shown in FIG. 1 is a columnar body having a square cross section of 1 mm × 1 mm × 15 mm of a LiNbO 3 single crystal body 5 cut out from the polarization-reversed LiNbO 3 single crystal plate. A drive electrode 3 for exciting drive vibration and detection electrodes 2 and 4 for detecting detection vibration were formed on two cut-out surfaces. In addition, the columnar body is polarized in advance so that the polarization direction is opposed to the longitudinal direction surface perpendicular to the electrode formation surface, which is indicated by a dotted line in FIG. The arrows in FIG. 1 indicate the direction of polarization when using a 140 ° rotated Y-plate.

ここで、柱状体の一次屈曲振動モードの共振周波数の27kHzで電圧2Vの交流駆動電圧を駆動電極3と検出電極2及び4に印加すると、駆動電極3と検出電極2の近傍と駆動電極3と検出電極4の近傍では同位相の伸縮が生じ、電極直下近傍の柱状体が伸縮するので、柱状体全体では長さ方向で一次の屈曲振動を励振することができる。柱状体の一次屈曲振動モードのモデルを図2に示した。   Here, when an AC drive voltage of 2 V at a resonance frequency of 27 kHz of the primary bending vibration mode of the columnar body is applied to the drive electrode 3 and the detection electrodes 2 and 4, the drive electrode 3, the vicinity of the detection electrode 2, and the drive electrode 3 In the vicinity of the detection electrode 4, expansion and contraction in the same phase occurs, and the columnar body in the vicinity immediately below the electrode expands and contracts. Therefore, the entire columnar body can excite primary bending vibration in the length direction. A model of the primary bending vibration mode of the columnar body is shown in FIG.

また、検出電極2と駆動電極3に同様に交流電圧を印加すると、駆動電極3と検出電極2の近傍と駆動電極3と検出電極4の近傍では逆位相の伸縮が生じ、前述の電圧を駆動電極3と検出電極2及び4に印加した時の振動とは直行する方向に屈曲振動する。本実施例の振動子構成が2つの直交する方向の振動の励振と検出が可能であり、圧電振動ジャイロ用振動子を実現できる。   Similarly, when an AC voltage is applied to the detection electrode 2 and the drive electrode 3, expansion and contraction of opposite phases occurs in the vicinity of the drive electrode 3 and the detection electrode 2 and in the vicinity of the drive electrode 3 and the detection electrode 4. The vibration when applied to the electrode 3 and the detection electrodes 2 and 4 bends in a direction perpendicular to the vibration. The vibrator configuration of this embodiment can excite and detect vibrations in two orthogonal directions, thereby realizing a vibrator for a piezoelectric vibration gyro.

図3は、本実施例による圧電振動ジャイロの回路構成を示したブロック図である。ジャイロとしての機能を以下に説明する。検出電極2及び4は、各々オペアンプ6及び7の反転端子に接続し、オペアンプ6及び7は、抵抗8及び9にて負帰還をかけ、非反転端子は基準電位に接地し、電流検出回路を構成する。尚、検出電極2及び4の電位は、オペアンプ6及び7の仮想接地機能により、基準電位に固定されることになる。駆動電極3と検出電極2及び4間に屈曲振動モードの共振周波数近傍の交流電圧を印加すると、電極下近傍において駆動電極3−検出電極2と駆動電極3−検出電極4近傍では同位相の伸縮がk’23の効果により生じ、屈曲振動(駆動振動)が可能となると同時に、検出電極2及び4から、それぞれ同位相の電流が検出される。この状態で圧電振動ジャイロ用振動子を長軸方向を中心に回転すると、コリオリ力で屈曲駆動振動と直行方向の屈曲振動(検出振動)が励起される。 FIG. 3 is a block diagram showing a circuit configuration of the piezoelectric vibration gyro according to the present embodiment. The function as a gyro will be described below. The detection electrodes 2 and 4 are connected to the inverting terminals of the operational amplifiers 6 and 7, respectively. The operational amplifiers 6 and 7 apply negative feedback by the resistors 8 and 9, and the non-inverting terminal is grounded to the reference potential. Constitute. The potentials of the detection electrodes 2 and 4 are fixed to the reference potential by the virtual ground function of the operational amplifiers 6 and 7. When an alternating voltage in the vicinity of the resonance frequency of the bending vibration mode is applied between the drive electrode 3 and the detection electrodes 2 and 4, the expansion and contraction of the same phase occurs in the vicinity of the drive electrode 3 -detection electrode 2 and the drive electrode 3 -detection electrode 4 in the vicinity under the electrode Is caused by the effect of k ′ 23 and bending vibration (driving vibration) becomes possible. At the same time, currents of the same phase are detected from the detection electrodes 2 and 4. When the piezoelectric vibration gyro vibrator is rotated around the major axis in this state, the bending driving vibration and the bending vibration (detection vibration) in the orthogonal direction are excited by the Coriolis force.

検出電極2及び4から得られる出力電流は、オペアンプ6及び7により電圧に変換され、駆動振動で得られる出力電圧成分は、加算回路で分離でき、検出振動で得られる出力電圧成分は、差動回路で分離取り出すことができるため、オペアンプ6及び7の出力端子はそれぞれ加算回路10と差動回路12に接続し、加算回路10の出力端子は、発振回路11を経由後、駆動電極3にフィードバックすることで、安定に振動子1を自励発振させることがでる。また、差動回路12の出力は、加算回路10の出力信号のタイミングで検波される同期の検波回路13経由後、ローパスフィルタ14で整流することで、角速度に比例した直流電圧を得ることができる。すなわち、本発明による圧電振動ジャイロ用振動子は、前述の通り簡素な回路に接続することでジャイロとして機能することが可能である。   The output current obtained from the detection electrodes 2 and 4 is converted into a voltage by the operational amplifiers 6 and 7, and the output voltage component obtained by the drive vibration can be separated by the adding circuit, and the output voltage component obtained by the detection vibration is differential. Since the circuit can be separated and extracted, the output terminals of the operational amplifiers 6 and 7 are connected to the adder circuit 10 and the differential circuit 12, respectively. The output terminal of the adder circuit 10 is fed back to the drive electrode 3 after passing through the oscillation circuit 11. As a result, the vibrator 1 can stably oscillate by itself. Further, the output of the differential circuit 12 is rectified by the low-pass filter 14 after passing through the synchronous detection circuit 13 detected at the timing of the output signal of the adder circuit 10, thereby obtaining a DC voltage proportional to the angular velocity. . That is, the piezoelectric vibration gyro vibrator according to the present invention can function as a gyro by being connected to a simple circuit as described above.

本発明の実施例における圧電振動ジャイロ用振動子を示す図。図1(a)は斜視図、図1(b)は長さ方向に直交する断面図。The figure which shows the vibrator | oscillator for piezoelectric vibration gyroscopes in the Example of this invention. 1A is a perspective view, and FIG. 1B is a cross-sectional view orthogonal to the length direction. 柱状体の一次屈曲振動モードのモデルを示す図。The figure which shows the model of the primary bending vibration mode of a columnar body. 実施例における圧電振動ジャイロの回路接続例を示すブロック図。The block diagram which shows the circuit connection example of the piezoelectric vibration gyro in an Example. 先行文献1に提案されている圧電振動ジャイロ用振動子を示す図。図4(a)は斜視図、図4(b)は断面図。The figure which shows the vibrator | oscillator for piezoelectric vibration gyro proposed in the prior art reference 1. 4A is a perspective view, and FIG. 4B is a cross-sectional view. 先行文献2に提案されている圧電振動ジャイロ用振動子を示す図。図5(a)は斜視図、図5(b)は断面図。The figure which shows the vibrator | oscillator for piezoelectric vibration gyro proposed by the prior art reference 2. FIG. 5A is a perspective view, and FIG. 5B is a cross-sectional view. 従来の問題点を説明するための振動子の断面図。Sectional drawing of the vibrator | oscillator for demonstrating the conventional problem. 従来の問題点を説明するための振動子の断面図。Sectional drawing of the vibrator | oscillator for demonstrating the conventional problem.

符号の説明Explanation of symbols

1 振動子
2,2’,2”,4,4’,4” 検出電極
3,3’,3” 駆動電極
5,5’,5” LiNbO3単結晶体またはLiTaO3単結晶体
6,7 オペアンプ
8,9 抵抗
10 加算回路
11 発振回路
12 差動回路
13 検波回路
14 ローパスフィルタ
21 振動子
22,24 検出電極
23 駆動電極
25 圧電セラミクスからなる柱状体
31 振動子
32,34 分割電極
33 電極
35 単結晶板
1 vibrator 2, 2 ', 2 ", 4, 4', 4" detection electrode 3, 3 ', 3 "drive electrode 5, 5', 5" LiNbO 3 single crystal or LiTaO 3 single crystal 6, 7 Operational amplifiers 8 and 9 Resistance 10 Addition circuit 11 Oscillation circuit 12 Differential circuit 13 Detection circuit 14 Low-pass filter 21 Vibrator 22 and 24 Detection electrode
23 Drive electrode 25 Columnar body 31 made of piezoelectric ceramics Vibrator 32, 34 Divided electrode 33 Electrode 35 Single crystal plate

Claims (2)

圧電体からなる複数の側面を有する柱状体の一側面に、柱状体の長手方向と平行に3本の帯状電極を形成した一次屈曲振動モードの圧電振動ジャイロ用振動子であって、前記柱状体は、帯状電極を形成した面に垂直で且つ長手方向に平行な面を境界として分極方向が対向するように分極した圧電単結晶からなることを特徴とする圧電振動ジャイロ用振動子。 On one side of the columnar body having a plurality of side surfaces of piezoelectric bodies, a longitudinal direction and the piezoelectric vibrating gyro vibrator parallel to three primary bending vibration mode of forming the strip-shaped electrodes of the columnar body, the columnar body Is made of a piezoelectric single crystal polarized so that the polarization direction is opposed to a plane perpendicular to the plane on which the strip electrode is formed and parallel to the longitudinal direction. 請求項1記載の圧電振動ジャイロ用振動子において、前記圧電単結晶は、LiNbO3単結晶またはLiTaO3単結晶からなることを特徴とする圧電振動ジャイロ用振動子。 2. The vibrator for piezoelectric vibration gyro according to claim 1, wherein the piezoelectric single crystal is made of a LiNbO 3 single crystal or a LiTaO 3 single crystal.
JP2003426581A 2003-12-24 2003-12-24 Piezoelectric vibrator gyro vibrator Expired - Fee Related JP3958741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426581A JP3958741B2 (en) 2003-12-24 2003-12-24 Piezoelectric vibrator gyro vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426581A JP3958741B2 (en) 2003-12-24 2003-12-24 Piezoelectric vibrator gyro vibrator

Publications (2)

Publication Number Publication Date
JP2005181271A JP2005181271A (en) 2005-07-07
JP3958741B2 true JP3958741B2 (en) 2007-08-15

Family

ID=34786076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426581A Expired - Fee Related JP3958741B2 (en) 2003-12-24 2003-12-24 Piezoelectric vibrator gyro vibrator

Country Status (1)

Country Link
JP (1) JP3958741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058343A1 (en) * 2005-11-21 2007-05-24 Murata Manufacturing Co., Ltd. Oscillator and method for manufacturing the same
JP4967663B2 (en) * 2007-01-09 2012-07-04 ソニー株式会社 Vibration type gyro sensor, control circuit and electronic device

Also Published As

Publication number Publication date
JP2005181271A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
US5837895A (en) Vibrating gyroscope including a piezoelectric substrate polarized by a polarization inversion phenomenon
JP4911690B2 (en) Vibrating gyro vibrator
JPH09126783A (en) Piezoelectric vibration gyroscope
JP3724403B2 (en) Vibrator, vibratory gyro using the vibrator, and electronic device using the vibrator
JP3958741B2 (en) Piezoelectric vibrator gyro vibrator
JP2000205861A (en) Vibration gyro
JP3767212B2 (en) Vibration gyro support structure and support method
JP3355998B2 (en) Vibrating gyro
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP4044519B2 (en) Tuning fork type piezoelectric vibration gyro
JP4044547B2 (en) Piezoelectric vibration gyro
JP2009192403A (en) Angular velocity and acceleration detector
JP2006284437A (en) Tuning fork form piezo-electric vibrating gyroscope
JP2008145325A (en) Vibration gyro
JP2001324332A (en) Piezoelectric gyro
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP2590553Y2 (en) Piezoelectric vibration gyro
JP2005337850A (en) Tuning fork type piezoelectric oscillation gyroscope
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JP3356013B2 (en) Vibrating gyro
JP3371609B2 (en) Vibrating gyro

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees