JP2010145121A - Piezoelectric vibrator and vibrating gyroscope device - Google Patents

Piezoelectric vibrator and vibrating gyroscope device Download PDF

Info

Publication number
JP2010145121A
JP2010145121A JP2008319853A JP2008319853A JP2010145121A JP 2010145121 A JP2010145121 A JP 2010145121A JP 2008319853 A JP2008319853 A JP 2008319853A JP 2008319853 A JP2008319853 A JP 2008319853A JP 2010145121 A JP2010145121 A JP 2010145121A
Authority
JP
Japan
Prior art keywords
electrode
coupling coefficient
electromechanical coupling
piezoelectric vibrator
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008319853A
Other languages
Japanese (ja)
Inventor
Toshimaro Yoneda
年麿 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008319853A priority Critical patent/JP2010145121A/en
Publication of JP2010145121A publication Critical patent/JP2010145121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric vibrator whose electromechanical coupling coefficient has been improved, and which uses flexural vibration, and to provide a vibrating gyroscope device for acquiring stable sensitivity. <P>SOLUTION: The vibrating gyroscope device 1 includes a piezoelectric substrate 3, and an upper surface electrode 2 and an underside electrode 4, and vibrates according to the potential difference between the upper surface electrode 2 and the undersurface electrode 4 in the normal line direction of a major face. The undersurface electrode 4 includes an electrode thickness different from a thickness value at which the electromechanical coupling coefficient becomes a lower limit extreme value. Here, a frequency signal is applied to the upper surface electrode 2, and the undersurface electrode 4 is connected to a reference potential. The electromechanical coupling coefficient of this vibrating gyroscope device changes by changing the thickness of the undersurface electrode 4 and displays the lower limit extreme value of the electromechanical coupling coefficient. The vibrating gyroscope device includes a characteristic wherein if the thickness of the undersurface driving electrode deviates from the value at which the electromechanical coupling coefficient becomes the lower limit extreme value, the electromechanical coupling coefficient steeply rises up to a value to be clipped. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、板状の圧電基板の両主面に設けた電極に周波数信号を印加することで主面法線方向の振動が励起する圧電振動子と、その圧電振動子にコリオリの力を作用させることで電気機械振動により励起する検出信号から、圧電振動子の回転角速度を検出する振動ジャイロ装置とに関する。   The present invention provides a piezoelectric vibrator that excites vibration in the normal direction of the principal surface by applying a frequency signal to the electrodes provided on both principal surfaces of the plate-like piezoelectric substrate, and applies Coriolis force to the piezoelectric vibrator. It is related with the vibration gyro apparatus which detects the rotational angular velocity of a piezoelectric vibrator from the detection signal excited by electromechanical vibration by doing.

フィルタやジャイロでは、電気機械振動する圧電体が利用されることがある。圧電体の主面に垂直な方向の変位を有する屈曲振動を利用する圧電振動子では、板状の圧電基板の両主面に設けた電極に周波数信号を印加することで主面法線方向の屈曲振動が励起する。特にジャイロに用いられる圧電振動子の場合には、その振動方向に垂直な方向に作用するコリオリの力によって圧電振動子に励起する検出信号から、圧電振動子の回転を検出することになる。   In a filter or gyro, a piezoelectric body that vibrates electromechanically may be used. In a piezoelectric vibrator using flexural vibration having a displacement in a direction perpendicular to the main surface of the piezoelectric body, a frequency signal is applied to the electrodes provided on both main surfaces of the plate-like piezoelectric substrate so that the main surface normal direction is obtained. Bending vibration is excited. In particular, in the case of a piezoelectric vibrator used in a gyroscope, the rotation of the piezoelectric vibrator is detected from a detection signal excited by the Coriolis force acting in a direction perpendicular to the vibration direction.

ジャイロの場合、回転の検出精度は圧電振動子の機械振幅と電圧の変換効率に依拠する。このため、圧電振動子の主要な特性である電気機械結合係数を高めて、機械振幅と電圧変換効率とを増大させる要望がある。従来、屈曲振動を利用せずに、電極と空気との界面で全反射するバルク波の振動を利用するタイプの圧電体においては、圧電基板の下面駆動電極を上面駆動電極よりも厚くすることで圧電体の電気機械結合係数を大きくすることがあった(例えば、特許文献1参照。)。
特開2006−319479号公報
In the case of a gyro, the detection accuracy of rotation depends on the mechanical amplitude and voltage conversion efficiency of the piezoelectric vibrator. For this reason, there is a demand to increase the electromechanical coupling coefficient, which is the main characteristic of the piezoelectric vibrator, to increase the mechanical amplitude and the voltage conversion efficiency. Conventionally, in a piezoelectric body that uses the vibration of a bulk wave that is totally reflected at the interface between the electrode and air without using bending vibration, the lower surface driving electrode of the piezoelectric substrate is made thicker than the upper surface driving electrode. In some cases, the electromechanical coupling coefficient of the piezoelectric body is increased (for example, see Patent Document 1).
JP 2006-319479 A

一方、屈曲振動を利用する圧電振動子においては、上記特許文献のバルク波の場合と異なる振動形態であるので、圧電振動子の電気機械結合係数を改善するための方策は、上記特許文献のバルク波の場合と必ずとも一致しない。   On the other hand, a piezoelectric vibrator using flexural vibration has a vibration form different from that of the bulk wave of the above-mentioned patent document. Therefore, a measure for improving the electromechanical coupling coefficient of the piezoelectric vibrator is described in the bulk of the above-mentioned patent document. It does not always coincide with the case of waves.

そこで、発明者は鋭意研究を進めることで、屈曲振動を利用する圧電振動子では、下面駆動電極の電極厚の変更に対する電気機械結合係数の変化が、特定の極値を有することを見出し、この発明の技術的思想の創作に至った。   Therefore, the inventors have conducted intensive research and found that in a piezoelectric vibrator using flexural vibration, the change in electromechanical coupling coefficient with respect to the change in the electrode thickness of the lower surface drive electrode has a specific extreme value. Invented the technical idea of the invention.

本発明は電気機械結合係数を改善した、屈曲振動を利用する圧電振動子、および、安定した感度が得られる振動ジャイロ装置の提供を目的とする。   An object of the present invention is to provide a piezoelectric vibrator using flexural vibration with improved electromechanical coupling coefficient, and a vibration gyro apparatus capable of obtaining stable sensitivity.

この発明は、圧電基板と上面駆動電極と下面駆動電極とを備え、上面駆動電極と下面駆動電極との電位差に応じて主面法線方向に振動する圧電振動子であって、下面駆動電極は、電気機械結合係数が下限極値となる値から外した電極厚である。ここで、上面駆動電極には周波数信号が印加されるものであり、下面駆動電極は基準電位に接続されるものである。電気機械結合係数は下面駆動電極の電極厚を変更することで変化し、電気機械結合係数が下限極値となる値から下面駆動電極の電極厚が外れると、電気機械結合係数がクリップする値まで急峻に立ち上がる特性を有するものである。   The present invention is a piezoelectric vibrator that includes a piezoelectric substrate, an upper surface driving electrode, and a lower surface driving electrode, and vibrates in the normal direction of the main surface in accordance with a potential difference between the upper surface driving electrode and the lower surface driving electrode. The electrode thickness excluding the value at which the electromechanical coupling coefficient becomes the lower limit extreme value. Here, a frequency signal is applied to the upper surface driving electrode, and the lower surface driving electrode is connected to a reference potential. The electromechanical coupling coefficient changes by changing the electrode thickness of the lower surface driving electrode. When the electrode thickness of the lower surface driving electrode deviates from the value at which the electromechanical coupling coefficient becomes the lower limit extreme value, the electromechanical coupling coefficient reaches the value at which clipping occurs. It has the characteristic of rising sharply.

この圧電振動子は、上記特性を有するため、下面駆動電極の電極厚に応じて変化する共振周波数の下限極値付近でのみ、電気機械結合係数が低下する。したがって、下面駆動電極を、電気機械結合係数が下限極値となる値から外した電極厚とすることにより、電気機械結合係数を改善できる。   Since this piezoelectric vibrator has the above characteristics, the electromechanical coupling coefficient decreases only in the vicinity of the lower limit extreme value of the resonance frequency that changes according to the electrode thickness of the lower surface driving electrode. Therefore, the electromechanical coupling coefficient can be improved by setting the lower surface driving electrode to an electrode thickness that excludes the electromechanical coupling coefficient from the lower limit value.

電気機械結合係数は下面駆動電極の電極厚を変更することで変化し、電気機械結合係数の上限極値を有するものであり、下面駆動電極は、電気機械結合係数が上限極値となる電極厚であると好適である。このように電気機械結合係数が上限極値となる電極厚に下面駆動電極を設定することで、電気機械結合係数を最大化できる。   The electromechanical coupling coefficient is changed by changing the electrode thickness of the lower surface driving electrode, and has an upper limit extreme value of the electromechanical coupling coefficient. The lower surface driving electrode has an electrode thickness at which the electromechanical coupling coefficient becomes the upper limit extreme value. Is preferable. Thus, the electromechanical coupling coefficient can be maximized by setting the lower surface driving electrode to an electrode thickness at which the electromechanical coupling coefficient becomes the upper limit extreme value.

圧電基板をニオブ酸リチウムの単結晶とし、下面駆動電極をタングステン電極とすると好適である。ニオブ酸リチウムの単結晶は、電気機械結合係数が大きい。タングステン電極は融点が高いため熱負荷による電極の拡散を抑えられ、比重が大きく固有音響インピーダンスが大きいため圧電振動子に励起する弾性波機械振動のダンピングを抑えられる。アルミニウム電極は比抵抗が小さいので、圧電振動子の直列等価抵抗を抑えられる。   It is preferable that the piezoelectric substrate is a single crystal of lithium niobate and the lower surface driving electrode is a tungsten electrode. A single crystal of lithium niobate has a large electromechanical coupling coefficient. Since the tungsten electrode has a high melting point, it is possible to suppress diffusion of the electrode due to heat load, and since the specific gravity is large and the specific acoustic impedance is large, damping of the elastic wave mechanical vibration excited by the piezoelectric vibrator can be suppressed. Since the aluminum electrode has a small specific resistance, the series equivalent resistance of the piezoelectric vibrator can be suppressed.

この発明の振動ジャイロ装置は、上述の圧電振動子と、圧電振動子に周波数信号を印加する駆動部と、圧電振動子に作用するコリオリの力を検出する検出部と、を備えると好適である。上述の電気機械結合係数の大きい圧電振動子を利用することで、ジャイロの感度を安定させられる。   The vibration gyro apparatus according to the present invention preferably includes the above-described piezoelectric vibrator, a drive unit that applies a frequency signal to the piezoelectric vibrator, and a detection unit that detects Coriolis force acting on the piezoelectric vibrator. . The sensitivity of the gyro can be stabilized by using the above-described piezoelectric vibrator having a large electromechanical coupling coefficient.

この発明によれば、屈曲振動を利用する圧電振動子の下面駆動電極を、電気機械結合係数が下限極値となる値から外した電極厚とすることで、電気機械結合係数を改善できる。   According to this invention, the electromechanical coupling coefficient can be improved by setting the lower surface driving electrode of the piezoelectric vibrator using the bending vibration to an electrode thickness that is excluded from the value at which the electromechanical coupling coefficient becomes the lower limit extreme value.

本発明の第1の実施形態に係る振動ジャイロ装置について説明する。図1は振動ジャイロ装置の構成例を示す図である。図1(A)は上面図、図1(B)は中央断面図、図1(C)はA−A’断面図、図1(D)はB−B’断面図である。   A vibration gyro apparatus according to a first embodiment of the present invention will be described. FIG. 1 is a diagram illustrating a configuration example of a vibration gyro device. 1A is a top view, FIG. 1B is a central sectional view, FIG. 1C is an A-A ′ sectional view, and FIG. 1D is a B-B ′ sectional view.

振動ジャイロ装置1は、直交2軸(X軸およびY軸)を回転軸とする回転を検出可能なように、X軸を対称軸として線対称形、且つ、Y軸を対称軸として線対称形に構成している。また、X−Y面に垂直なZ軸に沿って下から順に、支持基板5、下面電極4、圧電基板3、および上面電極2を積層して構成している。   The vibrating gyroscope device 1 is line-symmetric with respect to the X-axis as a symmetric axis and line-symmetrical with respect to the Y-axis as a symmetric axis so that rotation about two orthogonal axes (X-axis and Y-axis) can be detected. It is configured. Further, the support substrate 5, the lower surface electrode 4, the piezoelectric substrate 3, and the upper surface electrode 2 are laminated in order from the bottom along the Z axis perpendicular to the XY plane.

支持基板5および圧電基板3は右手系のオイラー角で(0°,50°,0°)のニオブ酸リチウム(LiNbO3)基板であり、支持基板5は0.34mm厚、圧電基板3は1μm厚である。ニオブ酸リチウムを採用することで振動子の電気機械結合係数とQ値とを大きくでき良好な感度特性が得られる。なお、ニオブ酸リチウムに替えて、タンタル酸リチウムを採用すれば感度と温度特性のバランスを改善でき、水晶を採用すれば温度安定性を改善できる。下面電極4はタングステン(W)電極であり、上面電極2はアルミニウム(Al)電極である。タングステン電極は融点が高いため熱負荷による電極の拡散を抑えられ、比重が大きく固有音響インピーダンスが大きいため圧電振動子に励起する弾性波機械振動のダンピングを抑えられる。アルミニウム電極は比抵抗が小さいので、圧電振動子の直列等価抵抗を抑えられる。 The support substrate 5 and the piezoelectric substrate 3 are right-handed Euler angles (0 °, 50 °, 0 °) lithium niobate (LiNbO 3 ) substrates, the support substrate 5 is 0.34 mm thick, and the piezoelectric substrate 3 is 1 μm. It is thick. By employing lithium niobate, the electromechanical coupling coefficient and the Q value of the vibrator can be increased, and good sensitivity characteristics can be obtained. If lithium tantalate is used instead of lithium niobate, the balance between sensitivity and temperature characteristics can be improved, and temperature stability can be improved if quartz is used. The lower surface electrode 4 is a tungsten (W) electrode, and the upper surface electrode 2 is an aluminum (Al) electrode. Since the tungsten electrode has a high melting point, it is possible to suppress diffusion of the electrode due to heat load, and since the specific gravity is large and the specific acoustic impedance is large, damping of the elastic wave mechanical vibration excited by the piezoelectric vibrator can be suppressed. Since the aluminum electrode has a small specific resistance, the series equivalent resistance of the piezoelectric vibrator can be suppressed.

圧電基板3は圧電体主面(X−Y面)から見て、内側領域3Aと枠状領域3Bと外側領域3Cとに区分される。枠状領域3Bは内径400μm、外径500μmの円形内形・円形外形の枠状である。内側領域3Aは直径300μmの円形であり、下面電極4を介して支持基板5に接合している。外側領域3Cは内径600μmの円形内形・矩形外形であり、下面電極4を介して支持基板5に接合している。内側領域3Aと枠状領域3Bとの間には4つの内側開放孔31と4つの内側梁部32とを設けていて、外側領域3Cと枠状領域3Bとの間には4つの外側開放孔33と4つの内側梁部32とを設けている。内側梁部32と外側梁部34とは、X−Y面におけるX軸正方向を0°として、45°、135°、225°、315°の方向に沿う幅20μmの梁状の領域としている。これら内側梁部32と外側梁部34とは、枠状領域3Bを支持基板5から浮かせた状態に支持する。内側開放孔31と外側開放孔33とは、それぞれ枠状領域3Bの内側面・外側面を露出させる。 支持基板5は、X−Y面に内側領域5Aと振動領域5Bと外側領域5Cとを備える。振動領域5Bは内形300μm、外形600μmの円形内形・円形外形の枠状に支持基板5を上主面から深さ3μmで掘り下げて振動空間を設けた領域であり、圧電基板3の枠状領域3Bと内側開放孔31と内側梁部32と外側開放孔33と内側梁部32とに対面する位置に設けている。振動空間は、内側開放孔31および外側開放孔33に連通していて、枠状領域3Bと支持基板5との干渉を防ぐ。内側領域5Aは直径300μmの領域であり、その上主面に圧電基板3の内側領域3Aが接合される領域である。外側領域5Cは内径600μmの領域であり、その上主面に圧電基板3の外側領域3Cが接合される領域である。支持基板5には、圧電基板3と同じ圧電性材料を用いる他にも、圧電基板3と熱膨張係数が異なるが耐熱性に優れ入手が容易で安価なSiやガラスを用いてもよい。   The piezoelectric substrate 3 is divided into an inner region 3A, a frame-like region 3B, and an outer region 3C when viewed from the piezoelectric main surface (XY plane). The frame-shaped region 3B has a circular inner shape / circular outer shape with an inner diameter of 400 μm and an outer diameter of 500 μm. The inner region 3 </ b> A is a circle having a diameter of 300 μm and is bonded to the support substrate 5 via the lower surface electrode 4. The outer region 3 </ b> C has a circular inner shape and a rectangular outer shape with an inner diameter of 600 μm, and is bonded to the support substrate 5 via the lower surface electrode 4. Four inner open holes 31 and four inner beam portions 32 are provided between the inner region 3A and the frame-like region 3B, and four outer open holes are provided between the outer region 3C and the frame-like region 3B. 33 and four inner beam portions 32 are provided. The inner beam portion 32 and the outer beam portion 34 are beam-like regions having a width of 20 μm along the 45 °, 135 °, 225 °, and 315 ° directions, where the X-axis positive direction in the XY plane is 0 °. . The inner beam portion 32 and the outer beam portion 34 support the frame-shaped region 3 </ b> B in a state where it floats from the support substrate 5. The inner opening hole 31 and the outer opening hole 33 expose the inner surface and the outer surface of the frame-shaped region 3B, respectively. The support substrate 5 includes an inner region 5A, a vibration region 5B, and an outer region 5C on the XY plane. The vibration region 5B is a region in which a vibration space is provided by digging the support substrate 5 at a depth of 3 μm from the upper main surface into a circular inner shape / circular outer shape frame having an inner shape of 300 μm and an outer shape of 600 μm. The region 3B, the inner opening hole 31, the inner beam portion 32, the outer opening hole 33, and the inner beam portion 32 are provided at positions facing each other. The vibration space communicates with the inner opening hole 31 and the outer opening hole 33, and prevents interference between the frame-shaped region 3B and the support substrate 5. The inner region 5A is a region having a diameter of 300 μm, and the inner region 3A of the piezoelectric substrate 3 is bonded to the upper main surface thereof. The outer region 5C is a region having an inner diameter of 600 μm, and the outer region 3C of the piezoelectric substrate 3 is bonded to the upper main surface thereof. In addition to using the same piezoelectric material as that of the piezoelectric substrate 3, the support substrate 5 may be made of Si or glass, which has a different thermal expansion coefficient from the piezoelectric substrate 3 but has excellent heat resistance and is easily available and inexpensive.

上面電極2は、8つの駆動検出電極2Aと、8つの回路接続電極2Bと、4つの基準電位接続電極2Cと、8つの配線2Dとを備えている。駆動検出電極2Aは本発明の上面駆動電極であり、枠状領域3Bの上面にパターニングしている。回路接続電極2Bおよび基準電位接続電極2Cは外側領域3Cの上面にパターンニングしている。配線2Dは、枠状領域3Bから外側領域3Cに架けて外側梁部を経由して設けている。駆動検出電極2Aは、2つずつ、正方向のX軸両側、負方向のX軸両側、正方向のY軸両側、負方向のY軸両側に配置している。具体的には、各駆動検出電極2AはX−Y面におけるY軸正方向を0°として、約0°〜30°、60°〜90°、90°〜120°、150°〜180°、180°〜210°、240°〜270°、270°〜300°、330°〜360°の範囲を占めている。なお、隣接する駆動検出電極2A間は約5μmの間隔を隔てている。回路接続電極2Bは詳細を後述する駆動検出回路に接続される。基準電位接続電極2Cはスルーホールを介して下面電極4に接続される。配線2Dは駆動検出電極2Aと回路接続電極2Bとの間を接続し、絶縁層2Eを介して圧電基板3に接合されている。絶縁層2Eを設けているため、配線2Dには、梁部の変位によって電圧が励起することが無くなる。下面電極4は駆動検出電極2Aに対向する領域が本発明の下面駆動電極であり、圧電基板3の下主面の全面に設けていて、基準電位接続電極2Cを介して基準電位に接続される。各駆動検出電極2Aは下面電極4に対向して、枠状領域3BのY軸方向の変位とX軸方向およびY軸方向の変位とに電気機械的に結合する。   The upper surface electrode 2 includes eight drive detection electrodes 2A, eight circuit connection electrodes 2B, four reference potential connection electrodes 2C, and eight wirings 2D. The drive detection electrode 2A is the upper surface drive electrode of the present invention, and is patterned on the upper surface of the frame-like region 3B. The circuit connection electrode 2B and the reference potential connection electrode 2C are patterned on the upper surface of the outer region 3C. The wiring 2D is provided from the frame-like region 3B to the outer region 3C via the outer beam portion. Two drive detection electrodes 2A are disposed on both sides of the positive X axis, both sides of the negative X axis, both sides of the positive Y axis, and both sides of the negative Y axis. Specifically, each drive detection electrode 2A is about 0 ° to 30 °, 60 ° to 90 °, 90 ° to 120 °, 150 ° to 180 °, with the Y-axis positive direction on the XY plane being 0 °. It occupies ranges of 180 ° to 210 °, 240 ° to 270 °, 270 ° to 300 °, 330 ° to 360 °. The adjacent drive detection electrodes 2A are spaced at an interval of about 5 μm. The circuit connection electrode 2B is connected to a drive detection circuit that will be described in detail later. The reference potential connection electrode 2C is connected to the lower surface electrode 4 through a through hole. The wiring 2D connects between the drive detection electrode 2A and the circuit connection electrode 2B, and is joined to the piezoelectric substrate 3 via the insulating layer 2E. Since the insulating layer 2E is provided, no voltage is excited in the wiring 2D due to the displacement of the beam portion. The lower electrode 4 has a region facing the drive detection electrode 2A which is the lower drive electrode of the present invention and is provided on the entire lower main surface of the piezoelectric substrate 3 and is connected to the reference potential via the reference potential connection electrode 2C. . Each drive detection electrode 2A faces the lower surface electrode 4 and is electromechanically coupled to the displacement in the Y-axis direction and the displacement in the X-axis direction and the Y-axis direction of the frame-like region 3B.

以上の振動ジャイロ装置1は、圧電基板3の枠状領域3Bが駆動検出電極2Aと下面電極4とを設けてなる8つの圧電振動体を構成する。   In the vibration gyro apparatus 1 described above, the frame-like region 3B of the piezoelectric substrate 3 constitutes eight piezoelectric vibrating bodies in which the drive detection electrode 2A and the lower surface electrode 4 are provided.

図2は、振動ジャイロ装置1に接続する駆動検出回路を説明する回路図である。振動ジャイロ装置1の駆動検出回路は、周波数信号発生回路6と差動回路7A,7Bと平滑回路8A,8Bとを備える。なお、基準電位接続電極2Cにはグランドを接続している。   FIG. 2 is a circuit diagram illustrating a drive detection circuit connected to the vibration gyro device 1. The drive detection circuit of the vibration gyro apparatus 1 includes a frequency signal generation circuit 6, differential circuits 7A and 7B, and smoothing circuits 8A and 8B. A ground is connected to the reference potential connection electrode 2C.

周波数信号発生回路6は駆動抵抗Rを介して8つの回路接続電極2Bに接続され、8つの駆動検出電極2Aそれぞれに周波数信号を与える。各駆動検出電極2Aに与える周波数信号は、それぞれ同相・同振幅である。また周波数は、枠状領域3BのZ軸方向の振動が、X−Y面におけるX軸上およびY軸上の位置(0°、90°、180°、270°)に振動の腹を形成し、梁部により支持される位置(45°、135°、225°、315°)の位置に振動の節を形成する共振周波数とする。   The frequency signal generation circuit 6 is connected to the eight circuit connection electrodes 2B via the drive resistor R, and gives a frequency signal to each of the eight drive detection electrodes 2A. The frequency signals given to each drive detection electrode 2A have the same phase and the same amplitude. The frequency is such that the vibration in the Z-axis direction of the frame-like region 3B forms a vibration antinode at positions on the X-axis and Y-axis (0 °, 90 °, 180 °, 270 °) on the XY plane. The resonance frequency forms a vibration node at a position (45 °, 135 °, 225 °, 315 °) supported by the beam portion.

Y軸の両側に配置された4つの駆動検出電極2AのうちX軸負方向(図中左側)に配置された2つの駆動検出電極2Aは、差動回路7Aの第一の入力端に接続される。また、X軸正方向(図中右側)に配置された2つの駆動検出電極2Aは、差動回路7Aの第二の入力端に接続される。また、X軸の両側に配置された4つの駆動検出電極2AのうちY軸負方向(下側)に配置された2つの駆動検出電極2Aは、差動回路7Bの第一の入力端に接続され、Y軸正方向(上側)に配置された2つの駆動検出電極2Aは、差動回路7Bの第二の入力端に接続される。   Of the four drive detection electrodes 2A arranged on both sides of the Y axis, the two drive detection electrodes 2A arranged in the negative direction of the X axis (left side in the figure) are connected to the first input terminal of the differential circuit 7A. The In addition, the two drive detection electrodes 2A arranged in the positive X-axis direction (right side in the figure) are connected to the second input terminal of the differential circuit 7A. Of the four drive detection electrodes 2A arranged on both sides of the X axis, the two drive detection electrodes 2A arranged in the negative Y-axis direction (lower side) are connected to the first input terminal of the differential circuit 7B. The two drive detection electrodes 2A arranged in the positive Y-axis direction (upper side) are connected to the second input terminal of the differential circuit 7B.

差動回路7A,7Bの出力端は平滑回路8A、8Bに接続され、差動回路7A,7Bはそれぞれの第一の入力端と第二の入力端との電圧差を出力する。平滑回路8A、8Bは差動回路7A,7Bの出力電圧を平滑する。   The output terminals of the differential circuits 7A and 7B are connected to the smoothing circuits 8A and 8B, and the differential circuits 7A and 7B output the voltage difference between the first input terminal and the second input terminal. Smoothing circuits 8A and 8B smooth the output voltages of the differential circuits 7A and 7B.

図3は、振動ジャイロ装置1の動作を説明する図である。図3(A)はX軸回りに回転する例を、図3(B)はY軸回りに回転する例を示す。   FIG. 3 is a diagram for explaining the operation of the vibrating gyroscope device 1. 3A shows an example of rotating around the X axis, and FIG. 3B shows an example of rotating around the Y axis.

上記共振周波数で屈曲振動する際には、振動ジャイロ装置にY軸回りの角速度が加わると、X軸方向にコリオリの力が加わる。すると、Y軸の両側に配置された4つの駆動検出電極2Aに印加されている周波数信号の位相が、X軸正方向に配置された駆動検出電極2Aと、X軸負方向に配置された駆動検出電極2Aとで逆方向に変化する。このため、差動回路7Aによる差分出力は、コリオリの力の大きさに応じた電圧となる。   When bending vibration is performed at the resonance frequency, a Coriolis force is applied in the X-axis direction when an angular velocity around the Y-axis is applied to the vibration gyro device. Then, the phases of the frequency signals applied to the four drive detection electrodes 2A arranged on both sides of the Y axis are the same as the drive detection electrode 2A arranged in the X axis positive direction and the drive arranged in the X axis negative direction. The detection electrode 2A changes in the opposite direction. For this reason, the differential output by the differential circuit 7A becomes a voltage corresponding to the magnitude of the Coriolis force.

また、振動ジャイロ装置にX軸回りの角速度が加わると、Y軸方向にコリオリの力が加わる。すると、X軸の両側に配置された4つの駆動検出電極2Aに印加されている周波数信号の位相が、Y軸正方向に配置された駆動検出電極2Aと、Y軸負方向に配置された駆動検出電極2Aとで逆方向に変化する。このため、差動回路7Bによるそれらの差分出力は、コリオリの力の大きさに応じた電圧となる。   Further, when an angular velocity around the X axis is applied to the vibration gyro device, a Coriolis force is applied in the Y axis direction. Then, the phases of the frequency signals applied to the four drive detection electrodes 2A arranged on both sides of the X axis are the drive detection electrode 2A arranged in the Y axis positive direction and the drive arranged in the Y axis negative direction. The detection electrode 2A changes in the opposite direction. For this reason, those differential outputs by the differential circuit 7B become voltages according to the magnitude of the Coriolis force.

なお、振動ジャイロ装置1が回転していない状態では、周波数信号は同相・同振幅なので差動回路7A,7Bによって取り除かれることになる。また、振動ジャイロ装置に衝撃などが作用する際に各駆動検出電極に励起する信号や、X軸回りの回転の際にY軸に沿って配置された駆動検出電極に励起する信号、Y軸回りの回転の際にX軸に沿って配置された駆動検出電極に励起する信号は、やはり同相・同振幅となるので差動回路7A,7Bによって取り除かれることになる。   In the state where the vibration gyro apparatus 1 is not rotating, the frequency signals are removed by the differential circuits 7A and 7B because they have the same phase and the same amplitude. In addition, a signal that excites each drive detection electrode when an impact is applied to the vibration gyro device, a signal that excites the drive detection electrode arranged along the Y axis when rotating around the X axis, Since the signals excited in the drive detection electrodes arranged along the X axis during the rotation of the rotation are still in phase and amplitude, they are removed by the differential circuits 7A and 7B.

図4は、下面電極4の電極厚と電気機械結合係数との関係を説明する図である。ここでは、上面電極2の電極厚を(0.5μm,1.0μm,1.5μm)とした3パターンについて、有限要素法を用いた共振解析の結果に基づいて上記関係を検討する。   FIG. 4 is a diagram for explaining the relationship between the electrode thickness of the bottom electrode 4 and the electromechanical coupling coefficient. Here, for the three patterns in which the electrode thickness of the upper surface electrode 2 is (0.5 μm, 1.0 μm, 1.5 μm), the above relationship is examined based on the result of resonance analysis using the finite element method.

3パターンのいずれの場合も、下面電極4の電極厚が0.1×10-3〜3.0×10-3mmの範囲内で変化するのに応じて電気機械結合係数は変化する。そして、上面電極2の電極厚0.5μmの場合は下面電極の電極厚0.1×10-3mmで、上面電極2の電極厚1.0μmの場合は下面電極の電極厚0.3×10-3mmで、上面電極2の電極厚1.5μmの場合は下面電極の電極厚0.5×10-3mmで、電気機械結合係数が下限極値を示す。また、電極厚がそこから外れると、電気機械結合係数は特定値まで急峻に立ち上がってクリップされる変化を示す。したがって、電気機械結合係数が下限極値を示す値から外した下面電極の電極厚であれば、十分な電気機械結合係数が得られる。共振周波数の極値は、この振動ジャイロ装置1で圧電基板3の板厚や上面電極2の電極厚を異ならせても同様に生じるので、どのような電気機械結合係数の変化であっても、下面電極の電極厚を適切に設定して十分な電気機械結合係数を得ることができる。 In any of the three patterns, the electromechanical coupling coefficient changes as the electrode thickness of the lower surface electrode 4 changes within the range of 0.1 × 10 −3 to 3.0 × 10 −3 mm. When the upper electrode 2 has an electrode thickness of 0.5 μm, the lower electrode has an electrode thickness of 0.1 × 10 −3 mm. When the upper electrode 2 has an electrode thickness of 1.0 μm, the lower electrode has an electrode thickness of 0.3 × 10 −3 mm. When the electrode thickness of the upper electrode 2 is 1.5 μm, the electrode thickness of the lower electrode is 0.5 × 10 −3 mm, and the electromechanical coupling coefficient shows the lower limit extreme value. Further, when the electrode thickness deviates therefrom, the electromechanical coupling coefficient rises steeply to a specific value and shows a clipped state. Therefore, a sufficient electromechanical coupling coefficient can be obtained if the electromechanical coupling coefficient is an electrode thickness of the bottom electrode that is excluded from the value indicating the lower limit extreme value. The extreme value of the resonance frequency is similarly generated even if the plate thickness of the piezoelectric substrate 3 and the electrode thickness of the upper surface electrode 2 are changed in the vibration gyro device 1. A sufficient electromechanical coupling coefficient can be obtained by appropriately setting the electrode thickness of the lower surface electrode.

また、上面電極2の電極厚0.5μmの場合は下面電極の電極厚2.0×10-3mmで、上面電極2の電極厚1.0μmの場合は下面電極の電極厚2.5×10-3mmで電気機械結合係数が上限極値を示した。したがって、電気機械結合係数が上限極値を示す値の下面電極の電極厚であれば、最大の電気機械結合係数が得られる。 When the upper electrode 2 has an electrode thickness of 0.5 μm, the lower electrode has an electrode thickness of 2.0 × 10 −3 mm. When the upper electrode 2 has an electrode thickness of 1.0 μm, the lower electrode has an electrode thickness of 2.5 × 10 −3 mm. The mechanical coupling coefficient showed the upper limit extreme value. Therefore, the maximum electromechanical coupling coefficient can be obtained if the electromechanical coupling coefficient has the electrode thickness of the lower surface electrode that indicates the upper limit extreme value.

次に、この振動ジャイロ装置1の製造方法を説明する。図5は振動ジャイロ装置1の製造フローを説明する図である。ここでは、圧電基板の薄膜をイオン注入により形成する場合を示す。   Next, a method for manufacturing the vibration gyro device 1 will be described. FIG. 5 is a diagram for explaining a manufacturing flow of the vibrating gyroscope device 1. Here, a case where a thin film of a piezoelectric substrate is formed by ion implantation is shown.

まず、支持基板5に、リアクティブイオンエッチング等で窪みを設け、この窪みに犠牲層として銅膜を成膜し、表面をCMP等により平坦化する(S101)。   First, a recess is provided in the support substrate 5 by reactive ion etching or the like, a copper film is formed as a sacrificial layer in this recess, and the surface is planarized by CMP or the like (S101).

次に、所定厚みからなる圧電単結晶体を用意し、その主面から水素イオンを注入する(S102)。圧電単結晶体はニオブ酸リチウム基板であり、加速エネルギー150KeVで1.0×1017atom/cm2のドーズ量により水素イオン注入を行うことにより、イオン注入面から深さ約1μmの位置に水素イオンの注入層を形成する。   Next, a piezoelectric single crystal having a predetermined thickness is prepared, and hydrogen ions are implanted from the main surface (S102). The piezoelectric single crystal is a lithium niobate substrate, and hydrogen ions are implanted at a depth of about 1 μm from the ion implantation surface by implanting hydrogen ions with an acceleration energy of 150 KeV and a dose of 1.0 × 10 17 atoms / cm 2. Form a layer.

次に、支持基板5の犠牲層形成面に下面電極4となる電極膜を形成し、その表面をCMP処理等により研磨して平坦化し、圧電単結晶体のイオン注入面と接合する(S103)。   Next, an electrode film to be the lower surface electrode 4 is formed on the sacrificial layer forming surface of the support substrate 5, and the surface is polished and flattened by CMP treatment or the like, and bonded to the ion implantation surface of the piezoelectric single crystal (S103). .

次に、支持基板5が接合された圧電単結晶体を、減圧雰囲気下に配置して500℃に加熱し、水素イオンの注入層で剥離する(S104)。これにより、支持基板5に支持された圧電単結晶体の薄膜が、圧電基板3として形成される。これにより圧電基板3を極薄膜化できるため圧電単結晶体の使用量を抑制できる。   Next, the piezoelectric single crystal to which the support substrate 5 is bonded is placed in a reduced-pressure atmosphere, heated to 500 ° C., and peeled off by a hydrogen ion implantation layer (S104). As a result, a piezoelectric single crystal thin film supported by the support substrate 5 is formed as the piezoelectric substrate 3. Thereby, since the piezoelectric substrate 3 can be made into an extremely thin film, the amount of piezoelectric single crystal used can be suppressed.

次に、剥離面である圧電基板3の上主面のCMP等により鏡面仕上げにする(S105)。   Next, mirror finishing is performed by CMP or the like on the upper main surface of the piezoelectric substrate 3 which is a peeling surface (S105).

次に、圧電基板3の上主面上に、電子ビーム蒸着法とフォトリソグラフィ法によって上面電極2をアルミニウムでパターニングして形成する(S106)。   Next, the upper surface electrode 2 is formed by patterning with aluminum on the upper main surface of the piezoelectric substrate 3 by electron beam vapor deposition and photolithography (S106).

次に、圧電基板3の上主面にレジスト膜を形成する(S107)。そして、フォトリソグラフィ技術を用いて、エッチング窓をレジスト膜に形成する(S108)。   Next, a resist film is formed on the upper main surface of the piezoelectric substrate 3 (S107). Then, an etching window is formed in the resist film using a photolithography technique (S108).

次に、エッチング窓にエッチング液もしくはエッチングガスを導入することで、内側開放孔31および外側開放孔33を形成する。そして、内側開放孔31および外側開放孔33から犠牲層に銅エッチング液を導入することで銅膜である犠牲層を除去する。これにより、枠状領域3Bの下側に振動空間が形成される(S109)。   Next, the inner opening hole 31 and the outer opening hole 33 are formed by introducing an etching solution or etching gas into the etching window. Then, the sacrificial layer, which is a copper film, is removed by introducing a copper etchant into the sacrificial layer from the inner open hole 31 and the outer open hole 33. Thereby, a vibration space is formed below the frame-shaped region 3B (S109).

犠牲層の除去を行った後、レジスト膜の除去を行い、基準電位接続電極2Cと下面電極4とを接続するスルーホールを形成し、パッケージングする(S110)。その後、圧電基板3の上主面の駆動検出電極2Aを除く他の電極にアルミニウムを厚付けし、それらの電極での配線電気抵抗を下げる(S111)。   After the sacrificial layer is removed, the resist film is removed to form a through hole that connects the reference potential connection electrode 2C and the lower electrode 4 and packaging (S110). Thereafter, aluminum is thickened on the other electrodes excluding the drive detection electrode 2A on the upper main surface of the piezoelectric substrate 3, and the wiring electrical resistance at these electrodes is lowered (S111).

以上の工程を採用して、振動ジャイロ装置を製造する。   The vibration gyro apparatus is manufactured by adopting the above process.

第1の実施形態に係る振動ジャイロ装置の構成を説明する図である。It is a figure explaining the structure of the vibration gyro apparatus which concerns on 1st Embodiment. 図1に示す振動ジャイロ装置の駆動検出回路の回路構成を説明する図である。It is a figure explaining the circuit structure of the drive detection circuit of the vibration gyro apparatus shown in FIG. 図1に示す振動ジャイロ装置の動作を説明する図である。It is a figure explaining operation | movement of the vibration gyro apparatus shown in FIG. 振動解析による電気機械結合係数と下面電極との関係を説明する図である。It is a figure explaining the relationship between the electromechanical coupling coefficient by vibration analysis, and a lower surface electrode. 図1に示す振動ジャイロ装置の製造フローを説明する図である。It is a figure explaining the manufacturing flow of the vibration gyro apparatus shown in FIG.

符号の説明Explanation of symbols

1…振動ジャイロ装置
2…上面電極
2A…駆動検出電極
2B…回路接続電極
2C…基準電位接続電極
2D…配線
2E…絶縁層
3…圧電基板
31…内側開放孔
32…内側梁部
33…外側開放孔
34…外側梁部
3A…内側領域
3B…枠状領域
3C…外側領域
4…下面電極
5…支持基板
5A…内側領域
5B…振動領域
5C…外側領域
6…周波数信号発生回路
7A,7B…差動回路
8A,8B…平滑回路
DESCRIPTION OF SYMBOLS 1 ... Vibration gyro apparatus 2 ... Upper surface electrode 2A ... Drive detection electrode 2B ... Circuit connection electrode 2C ... Reference electric potential connection electrode 2D ... Wiring 2E ... Insulating layer 3 ... Piezoelectric substrate 31 ... Inner opening hole 32 ... Inner beam part 33 ... Outer opening Hole 34 ... Outer beam portion 3A ... Inner region 3B ... Frame-like region 3C ... Outer region 4 ... Bottom electrode 5 ... Support substrate 5A ... Inner region 5B ... Vibration region 5C ... Outer region 6 ... Frequency signal generating circuit 7A, 7B ... Difference Dynamic circuit 8A, 8B ... Smoothing circuit

Claims (4)

板状の圧電基板と、前記圧電基板の上主面に設けられ周波数信号が印加される上面駆動電極と、前記圧電基板の下主面に設けられ基準電位に接続される下面駆動電極と、を備え、前記上面駆動電極と前記下面駆動電極との電位差に基づいて主面法線方向に振動する圧電振動子であって、
当該圧電振動子の電気機械結合係数は前記下面駆動電極の電極厚を変更することで変化して前記電気機械結合係数の下限極値を示し、前記電気機械結合係数が前記下限極値となる値から前記下面駆動電極の電極厚が外れると、前記電気機械結合係数がクリップする値まで急峻に立ち上がる特性を有し、
前記下面駆動電極は、前記電気機械結合係数が前記下限極値となる値から外した電極厚であることを特徴とする圧電振動子。
A plate-like piezoelectric substrate; an upper surface driving electrode provided on the upper main surface of the piezoelectric substrate to which a frequency signal is applied; and a lower surface driving electrode provided on the lower main surface of the piezoelectric substrate and connected to a reference potential. A piezoelectric vibrator that vibrates in a principal surface normal direction based on a potential difference between the upper surface driving electrode and the lower surface driving electrode,
The electromechanical coupling coefficient of the piezoelectric vibrator is changed by changing the electrode thickness of the lower surface driving electrode to indicate the lower limit extreme value of the electromechanical coupling coefficient, and the electromechanical coupling coefficient becomes the lower limit extreme value When the electrode thickness of the lower surface driving electrode is deviated from, the electromechanical coupling coefficient has a characteristic of rising steeply to the value to clip,
The piezoelectric vibrator according to claim 1, wherein the lower surface drive electrode has an electrode thickness excluding the value at which the electromechanical coupling coefficient becomes the lower limit extreme value.
当該圧電振動子の電気機械結合係数は前記下面駆動電極の電極厚を変更することで変化し、前記電気機械結合係数の上限極値を有し、
前記下面駆動電極は、前記電気機械結合係数が前記上限極値となる電極厚であることを特徴とする請求項1に記載の圧電振動子。
The electromechanical coupling coefficient of the piezoelectric vibrator is changed by changing the electrode thickness of the lower surface driving electrode, and has an upper limit extreme value of the electromechanical coupling coefficient,
2. The piezoelectric vibrator according to claim 1, wherein the lower surface driving electrode has an electrode thickness at which the electromechanical coupling coefficient becomes the upper limit extreme value.
前記圧電基板をニオブ酸リチウムの単結晶とし、
前記下面駆動電極をタングステン電極とし、
前記上面駆動電極をアルミニウム電極とした、請求項1または2に記載の圧電振動子。
The piezoelectric substrate is a single crystal of lithium niobate,
The lower surface drive electrode is a tungsten electrode,
The piezoelectric vibrator according to claim 1, wherein the upper surface drive electrode is an aluminum electrode.
請求項1〜3のいずれかに記載の圧電振動子と、
前記圧電振動子に前記周波数信号を印加する駆動部と、
前記圧電振動子に作用するコリオリの力を検出する検出部と、を備える振動ジャイロ装置。
The piezoelectric vibrator according to any one of claims 1 to 3,
A drive unit for applying the frequency signal to the piezoelectric vibrator;
A vibration gyro apparatus comprising: a detection unit that detects Coriolis force acting on the piezoelectric vibrator.
JP2008319853A 2008-12-16 2008-12-16 Piezoelectric vibrator and vibrating gyroscope device Pending JP2010145121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319853A JP2010145121A (en) 2008-12-16 2008-12-16 Piezoelectric vibrator and vibrating gyroscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319853A JP2010145121A (en) 2008-12-16 2008-12-16 Piezoelectric vibrator and vibrating gyroscope device

Publications (1)

Publication Number Publication Date
JP2010145121A true JP2010145121A (en) 2010-07-01

Family

ID=42565726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319853A Pending JP2010145121A (en) 2008-12-16 2008-12-16 Piezoelectric vibrator and vibrating gyroscope device

Country Status (1)

Country Link
JP (1) JP2010145121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199638A (en) * 2011-03-18 2012-10-18 Murata Mfg Co Ltd Manufacturing method for quartz crystal device, and quartz crystal device
CN103063230A (en) * 2012-12-26 2013-04-24 北京兴华机械厂 Micromechanical gyroscope assembly test tool and method for fast adjusting cross coupling of micromechanical gyroscope assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199638A (en) * 2011-03-18 2012-10-18 Murata Mfg Co Ltd Manufacturing method for quartz crystal device, and quartz crystal device
CN103063230A (en) * 2012-12-26 2013-04-24 北京兴华机械厂 Micromechanical gyroscope assembly test tool and method for fast adjusting cross coupling of micromechanical gyroscope assembly

Similar Documents

Publication Publication Date Title
JP5630267B2 (en) Vibrating gyro element and manufacturing method thereof
EP0825416B1 (en) Angular velocity detecting apparatus
US7818871B2 (en) Disc resonator gyroscope fabrication process requiring no bonding alignment
US7188525B2 (en) Angular velocity sensor
US8443665B2 (en) Frequency modulated micro gyro
JP2007258918A (en) Piezoelectric device
JP2000009472A (en) Angular velocity sensor
US9917571B2 (en) Resonant gyroscopes and methods of making and using the same
JP2007258917A (en) Piezoelectric device
JP4590853B2 (en) Rotation rate sensor and multi-axis detection type rotation rate sensor
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP5093405B2 (en) Vibrating gyro element
JP4784168B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP6848589B2 (en) Frequency adjustment method of vibrating element, manufacturing method of vibrating element and vibrating element
JP2009002964A (en) Rotation rate sensor
JP2010145121A (en) Piezoelectric vibrator and vibrating gyroscope device
JP2009074996A (en) Piezoelectric vibration gyro
JP2009162778A (en) Rotation rate sensor
JP2010145122A (en) Piezoelectric vibrator and vibrating gyroscope device
JP2011018959A (en) Piezoelectric vibrator
JP2007163248A (en) Piezoelectric vibration gyro
WO2018135211A1 (en) Sensor
JP2017207283A (en) Manufacturing method for vibration element
KR100233848B1 (en) Manufacturing method of micro-gyroscope
JP5162206B2 (en) Oscillator, oscillator manufacturing method, and oscillator