JPH1123286A - Piezoelectric vibrating gyro - Google Patents

Piezoelectric vibrating gyro

Info

Publication number
JPH1123286A
JPH1123286A JP9193181A JP19318197A JPH1123286A JP H1123286 A JPH1123286 A JP H1123286A JP 9193181 A JP9193181 A JP 9193181A JP 19318197 A JP19318197 A JP 19318197A JP H1123286 A JPH1123286 A JP H1123286A
Authority
JP
Japan
Prior art keywords
axis
piezoelectric
displacement
thickness
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9193181A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Nakamura
僖良 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9193181A priority Critical patent/JPH1123286A/en
Publication of JPH1123286A publication Critical patent/JPH1123286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric vibrating gyro which is supported easily, which is manufactured simply, which is thin and which can be driven and detected with high efficiency by a method wherein lithium niobate (LiNbO3 ) is used as a piezoelectric single-crystal vibrator and an angle of rotation around the X-axis is set within a specific range. SOLUTION: In a piezoelectric substrate 1, one pair of opposite electrodes 13, 14 are arranged on the main face of a rotating Y-plate composed of LiNbO3 . The direction 15 of an electric field is parallel to the X-axis, and a so-called parallel electric- field exciting operating is performed. When the effective electromechanical coupling coefficient of the parallel electric-field exciting operation with reference to an angle of rotation θ is computed in the case of the parallel electric-field exciting operation, the electromechanical coupling coefficient of a thickness longitudinal vibration and that of a thickness slide vibration having a displacement in the Z-axis direction becomes 0 at all cutting angles, and only a thickness slide vibration 16 having a displacement in the X-axis direction can be excited strongly. Then, on the basis of the dependence on the rotation of the effective electromechanical coupling coefficient of the thickness slide vibration 16 having the displacement in the X-axis direction, the angle of rotation θaround the X-axis of LiNbO3 is set at 150 to 175 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電形振動ジャイロ
スコープ(以下、圧電振動ジャイロと称す)に関し、特
にLiNbO3、LiTaO3等の三方晶系の圧電結晶板
に、垂直電界及び平行電界を印加し二つの直交する厚み
すべり振動を励起し、それを用いて構成した圧電ジャイ
ロに関する。
The present invention relates to a piezoelectric vibratory gyroscope (hereinafter, referred to as the piezoelectric vibrating gyro) applying relates, in particular LiNbO 3, LiTaO piezoelectric crystal plate trigonal such 3, the vertical electric field and an electric field parallel The present invention relates to a piezoelectric gyro configured to excite two orthogonal thickness shear vibrations and to use the same.

【0002】[0002]

【従来の技術】圧電振動ジャイロは角速度センサとし
て、VTR画像の手ぶれ補正、姿勢制御システム、カー
ナビゲーションシステム等様々な分野に利用され、性能
の向上、価格の低下、小型化等によりその用途はますま
す広がっている。圧電振動ジャイロは、直交する2つの
振動モードのうち一方の振動モードを駆動し、回転角速
度が作用した時にコリオリ力によって他方の振動モード
が励振されることを利用した角度センサである。このよ
うな圧電振動ジャイロを構成するとき、振動子は2つの
直交する振動モードを電気的に独立に駆動、検出するこ
とができ、且つそれらの共振周波数が互いに近接してい
ることがのぞましい。
2. Description of the Related Art Piezoelectric vibrating gyroscopes are used as angular velocity sensors in various fields such as image stabilization of VTR images, attitude control systems, car navigation systems, etc., and their applications are increasing due to improved performance, lower prices, miniaturization, etc. Is spreading more and more. The piezoelectric vibrating gyroscope is an angle sensor that drives one vibration mode of two orthogonal vibration modes and utilizes that the other vibration mode is excited by Coriolis force when a rotational angular velocity is applied. When configuring such a piezoelectric vibrating gyroscope, it is preferable that the vibrator can electrically drive and detect two orthogonal vibration modes independently, and that their resonance frequencies are close to each other.

【0003】図10(a)は従来の圧電振動ジャイロ2
0の一例を示す斜視図であり、座標軸(x、y、z)を
同図に示すように選ぶ。細角柱21は恒弾性材料(合
金)より加工された振動体であり、x軸、y軸方向の寸
法はほぼ等しくし、z軸方向の寸法はx軸、y軸方向の
寸法に比べ充分に長く設定する。細角柱21のx面及び
y面のほぼ中央に圧電セラミック等で形成した圧電素子
22、23を接着剤等で接着固定する。図10(b)は
z軸方向から見た圧電振動ジャイロ20の平面図で、同
(c)はx軸方向の屈曲振動fxモードとy軸方向の屈
曲振動fyモードの模式的振動姿態を示している。細角
柱21の振動の節点で支持すると共に接地し、圧電素子
22に交流電圧を印加すると、X軸方向に変位速度dx
/dtで共振する屈曲振動fxモードが励起される。こ
の状態の下で圧電ジャイロ20を支持する支持体が、z
軸の周りに角速度Ω0で回転されるとコリオリ力が発生
し、y軸方向にほぼ同一周波数の屈曲振動fyモードが
励起され変位速度dy/dtで振動する。ここで、y軸
方向の変位速度dy/dtは角速度Ω0に比例するか
ら、変位速度dy/dtを測定することにより角速度Ω
0を求めることができる。また、該角速度Ω0を電気的に
積分することにより角度の計測が可能となる。
FIG. 10A shows a conventional piezoelectric vibrating gyroscope 2.
It is a perspective view showing an example of 0, and a coordinate axis (x, y, z) is selected as shown in the figure. The narrow prism 21 is a vibrating body processed from a constant elastic material (alloy). The dimensions in the x-axis and y-axis directions are substantially equal, and the dimension in the z-axis direction is sufficiently larger than the dimensions in the x-axis and y-axis directions. Set longer. Piezoelectric elements 22 and 23 made of piezoelectric ceramics or the like are bonded and fixed to an approximate center of the x- and y-planes of the narrow prism 21 with an adhesive or the like. FIG. 10B is a plan view of the piezoelectric vibrating gyroscope 20 viewed from the z-axis direction, and FIG. 10C shows a schematic vibration mode of the bending vibration fx mode in the x-axis direction and the bending vibration fy mode in the y-axis direction. ing. When an AC voltage is applied to the piezoelectric element 22 while being supported and grounded at the vibration nodes of the narrow prism 21, the displacement speed dx in the X-axis direction is increased.
The bending vibration fx mode that resonates at / dt is excited. Under this condition, the support for supporting the piezoelectric gyro 20 is z
When rotated around the axis at an angular velocity Ω 0 , a Coriolis force is generated, and a bending vibration fy mode having substantially the same frequency is excited in the y-axis direction to vibrate at a displacement velocity dy / dt. Here, since the displacement speed dy / dt in the y-axis direction is proportional to the angular speed Ω 0 , the angular speed Ω is determined by measuring the displacement speed dy / dt.
0 can be obtained. Further, the angle can be measured by electrically integrating the angular velocity Ω 0 .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
圧電振動ジャイロにおいては屈曲振動子が用いられてい
るが、屈曲振動子は圧電素子の接着、支持、リード線の
取り出しといったアセンブリの状態によって圧電振動ジ
ャイロ特性のばらつきや劣化が生じやすく、感度向上の
ためのトリミングが不可欠であるといった問題があっ
た。また、素子は測定すべき回転角速度の軸方向に所定
の長さを必要とするため低背化を図る場合に限界がある
という問題もあった。また最近、厚み方向に分極された
圧電セラミック板の片面にのみ3個乃至は4個の電極を
配置し、二つの直交する厚みすべり振動をいずれも面に
平行な(互いに直交した)電界で駆動、検出する平行電
界励振方式のエネルギー閉じ込め型振動ジャイロが報告
されている。この振動ジャイロでは駆動側と検出側が互
いに直交する電界で励振、検出する方式になっているた
め、電極の静電容量を大きくするのが難しく、電極間の
洩れ容量のため効率の良い駆動、検出がしにくいという
問題がある。また、セラミックを用いるので共振のQが
あまり高くならないと問題もある。本発明は上記問題を
解決するためになされたものであって、圧電素子の接着
の必要もなく、支持が容易で製造が簡単な薄形の圧電振
動ジャイロを提供すると共に、共振のQが高く、電極の
配置に無理がなく、電極容量も大きくでき且つ、高効率
で駆動、検出できる垂直電界励振と平行電界励振を用い
た圧電振動ジャイロを提供することを目的とする。
However, in the above-mentioned piezoelectric vibrating gyroscope, a bending vibrator is used. However, the bending vibrator depends on the state of the assembly such as bonding of the piezoelectric element, support, and taking out of a lead wire. There has been a problem that gyro characteristics tend to vary and deteriorate, and trimming for improving sensitivity is indispensable. Further, since the element requires a predetermined length in the axial direction of the rotational angular velocity to be measured, there is a problem that there is a limit in reducing the height. Recently, three or four electrodes are arranged only on one surface of a piezoelectric ceramic plate polarized in the thickness direction, and two orthogonal thickness shear vibrations are driven by electric fields parallel to each other (perpendicular to each other). There has been reported an energy confinement type vibrating gyroscope using a parallel electric field excitation method for detection. In this vibrating gyroscope, the drive side and the detection side are excited and detected by an electric field orthogonal to each other, so it is difficult to increase the capacitance of the electrodes. There is a problem that it is difficult to do. In addition, since ceramic is used, there is a problem if the Q of resonance does not become too high. The present invention has been made in order to solve the above problems, and provides a thin piezoelectric vibrating gyroscope that does not require bonding of a piezoelectric element, is easy to support, and easy to manufacture, and has a high resonance Q. It is another object of the present invention to provide a piezoelectric vibrating gyroscope using vertical electric field excitation and parallel electric field excitation that can be driven and detected with high efficiency without causing any difficulty in the arrangement of the electrodes.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る圧電単結晶の厚みすべり振動を用いた圧
電振動ジャイロの請求項1記載の発明は、結晶座標系
(X、Y、Z)のZ軸方向に自発分極を有する三方晶系
の圧電単結晶から、前記座標系をそのX軸の周りに0度
乃至180度の範囲で回転させた座標系(X、Y’、
Z’)のX軸及びZ’軸に対して主表面がほぼ平行にな
るように切り出された平板状圧電単結晶振動子におい
て、前記Z’軸方向変位及び前記X軸方向変位の二つの
直交する厚みすべり振動を利用することを特徴とする回
転角速度検出用圧電振動ジャイロである。請求項2記載
の発明は、前記平板上圧電振動子の両主面に電極を付
け、その一方の電極を前記Z’軸に平行に2つまたは3
つに分割した振動子であって、両面の電極間に印加する
電圧によりZ’方向変位の厚みすべり振動を駆動、検出
し、前記分割電極間に印加する電圧によりX軸方向の電
界を生じさせてX軸方向変位の厚みすべり振動を駆動、
検出することを特徴とする請求項1記載の圧電振動ジャ
イロである。請求項3記載の発明は、前記圧電単結晶振
動子の切断方位の微調整ならびに両主面上の電極の厚
さ、形状の調整により、前記Z’軸変位及びX軸変位の
厚みすべり振動の共振周波数をそれぞれ調整し互いに接
近させたことを特徴とする請求項1乃至2記載の圧電振
動ジャイロである。請求項4記載の発明は、前記の互い
に直交する変位の2つの厚みすべり振動のエネルギーを
電極の付加質量効果と圧電反作用効果を利用して電極付
近に閉じ込めたことを特徴とする請求項1乃至3記載の
圧電振動ジャイロである。請求項5記載の発明は、前記
圧電単結晶振動子において、結晶がニオブ酸リチウム
(LiNbO3)であり、前記X軸の周りの回転角θが
150度乃至175度であることを特徴とする請求項1
乃至請求項4記載の圧電振動ジャイロである。請求項6
記載の発明は、前記圧電単結晶振動子において、結晶が
タンタル酸リチウム(LiTaO3)であり、前記X軸
の周りの回転角θが150度乃至175度であることを
特徴とする請求項1乃至請求項4記載の圧電振動ジャイ
ロである。
In order to achieve the above object, a piezoelectric vibrating gyroscope using a thickness shear vibration of a piezoelectric single crystal according to the present invention is characterized in that the crystal coordinate system (X, Y, Z) a coordinate system (X, Y ′, X ′, Y ′) obtained by rotating the coordinate system around its X axis in a range of 0 to 180 degrees from a trigonal piezoelectric single crystal having spontaneous polarization in the Z-axis direction.
Z ′) In a plate-shaped piezoelectric single crystal vibrator cut out so that the main surface is substantially parallel to the X axis and the Z ′ axis, two orthogonal directions of the Z ′ axis direction displacement and the X axis direction displacement A piezoelectric vibrating gyroscope for detecting angular velocity of rotation characterized by utilizing thickness shear vibration. The invention according to claim 2 is characterized in that electrodes are attached to both main surfaces of the piezoelectric vibrator on the flat plate, and one of the electrodes is two or three parallel to the Z ′ axis.
A transducer which is divided into two, and drives and detects the thickness-shear vibration of Z ′ direction displacement by a voltage applied between the electrodes on both surfaces, and generates an electric field in the X-axis direction by the voltage applied between the divided electrodes. Drives the thickness-shear vibration of displacement in the X-axis direction,
The piezoelectric vibrating gyroscope according to claim 1, wherein the gyroscope detects the vibration. According to a third aspect of the present invention, the thickness shear vibration of the Z′-axis displacement and the X-axis displacement is adjusted by finely adjusting the cutting direction of the piezoelectric single crystal vibrator and adjusting the thickness and shape of the electrodes on both main surfaces. 3. The piezoelectric vibrating gyroscope according to claim 1, wherein the resonance frequencies are adjusted to be close to each other. The invention according to claim 4 is characterized in that the energy of the two thickness shear vibrations of the displacement orthogonal to each other is confined in the vicinity of the electrode by using the additional mass effect and the piezoelectric reaction effect of the electrode. 3. The piezoelectric vibrating gyroscope according to 3. According to a fifth aspect of the present invention, in the piezoelectric single crystal vibrator, the crystal is lithium niobate (LiNbO 3 ), and the rotation angle θ about the X axis is 150 to 175 degrees. Claim 1
A piezoelectric vibrating gyroscope according to any one of claims 4 to 5. Claim 6
The invention described in claim 1, wherein in the piezoelectric single crystal resonator, the crystal is lithium tantalate (LiTaO 3 ), and the rotation angle θ about the X axis is 150 to 175 degrees. A piezoelectric vibrating gyroscope according to any one of claims 4 to 5.

【0006】[0006]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。本発明は2つの振動モ
ードとして圧電基板の互いに直交する厚みすべり振動を
用いた圧電振動ジャイロに関する。図1(a)は本発明
に係る圧電単結晶の厚みすべり振動を用いた圧電ジャイ
ロの一実施例の構成を示す斜視図であって、圧電基板
1、例えばLiNbO3の回転Y板上面のほぼ中央に、
同図に示す座標軸のX軸方向に沿って電極2、3、4を
近接配置すると共に基板1の下面に電極2、3、4に対
向して電極5を付着する。電極2、3、4から圧電基板
1の端部に向かってそれぞれリード電極を延在し、その
端部電極パッドをPick−up1、GND、Pick
−up2とする。さらに、電極5から圧電基板1の端部
に向かってリード電極を延ばし、その端部電極パッドを
Driveとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. The present invention relates to a piezoelectric vibratory gyroscope using two orthogonal vibration modes of thickness shear vibration of a piezoelectric substrate. FIG. 1A is a perspective view showing a configuration of an embodiment of a piezoelectric gyro using the thickness shear vibration of a piezoelectric single crystal according to the present invention, and is substantially the upper surface of a rotating Y plate of a piezoelectric substrate 1, for example, LiNbO 3. in the center,
The electrodes 2, 3, and 4 are arranged close to each other along the X-axis direction of the coordinate axes shown in FIG. 1, and the electrode 5 is attached to the lower surface of the substrate 1 so as to face the electrodes 2, 3 and 4. Lead electrodes extend from the electrodes 2, 3, and 4 toward the ends of the piezoelectric substrate 1, respectively, and the end electrode pads are Pick-up1, GND, and Pick.
-Up2. Further, the lead electrode extends from the electrode 5 toward the end of the piezoelectric substrate 1, and the end electrode pad is set to Drive.

【0007】ここで、本発明にかかる圧電振動ジャイロ
の動作の理解を助けるため垂直電界励振と平行電界励振
によって励振される振動モードについて少しく説明す
る。図2(a)は圧電基板1、例えばLiNbO3の回
転Y板の主面上下に互いに対向する一対の電極9、10
を配置した場合の斜視図であり、座標軸を同図のように
選ぶと電界の向き11は圧電基板1の主面に垂直で、所
謂垂直電界励振となる。この垂直電界励振により、厚み
縦振動、X軸方向に変位を有する厚みすべり振動及び
Z’軸方向に変位を有する厚みすべり振動12が励振さ
れる。LiNbO3の回転Y板については回転角(DEGRE
ES θ)に対する垂直電界励振の実効的電気機械結合係
数(COUPLING FACTOR keff)の依存性についてはWarne
rらが計算しており、図3(a)に示すような特性を呈
することが知られている。実線は厚み縦振動(EXTENSIO
NAL)、点線はZ’軸方向に変位を有する厚みすべり振
動12(SHEAR)をそれぞれ示している。163度回転Y
板は垂直電界励振によるZ’軸方向に変位を有する厚み
すべり振動12の実効的電気機械結合係数が0.62と
大きく、また、厚み縦振動とX軸方向変位の厚みすべり
振動の実効的電気機械結合係数が0となるため、Z’軸
方向に変位を有する厚みすべり振動12のみが強勢に励
振できる。
Here, in order to help understand the operation of the piezoelectric vibrating gyroscope according to the present invention, the vibration modes excited by the vertical electric field excitation and the parallel electric field excitation will be described a little. FIG. 2A shows a pair of electrodes 9 and 10 opposing each other above and below the main surface of a piezoelectric substrate 1, for example, a rotating Y plate of LiNbO 3.
Is a perspective view in which is arranged. When the coordinate axes are selected as shown in the figure, the direction 11 of the electric field is perpendicular to the main surface of the piezoelectric substrate 1, which is a so-called vertical electric field excitation. By this vertical electric field excitation, a thickness longitudinal vibration, a thickness shear vibration having a displacement in the X-axis direction, and a thickness shear vibration 12 having a displacement in the Z′-axis direction are excited. For the rotating Y plate of LiNbO 3, the rotation angle (DEGRE
For the dependence of the effective electromechanical coupling coefficient (COUPLING FACTOR k eff ) of the vertical electric field excitation on ES θ), see Warne
It has been known that the values are calculated by r et al. and exhibit the characteristics as shown in FIG. The solid line is the thickness longitudinal vibration (EXTENSIO
NAL) and the dotted line indicate the thickness shear vibration 12 (SHEAR) having displacement in the Z ′ axis direction. 163 degree rotation Y
The plate has a large effective electromechanical coupling coefficient of the thickness shear vibration 12 having a displacement in the Z′-axis direction due to the vertical electric field excitation of 0.62, and an effective electric force of the thickness longitudinal vibration and the thickness shear vibration of the X-axis direction displacement. Since the mechanical coupling coefficient becomes 0, only the thickness shear vibration 12 having a displacement in the Z′-axis direction can be strongly excited.

【0008】次に、図2(b)に示すように、圧電基板
1、例えばLiNbO3の回転Y板の主面上に一対の対
向する電極13、14を配置した場合の斜視図である。
座標軸を同図に示したように選ぶと、電界の向き15は
X軸に平行で、所謂平行電界励振となる。平行電界励振
の場合の回転角(DEGREES θ)に対する平行電界励振の
実効的電気機械結合係数(COUPLING FACTORkeff)を計
算してみると、厚み縦振動およびZ’軸方向に変位を有
する厚みすべり振動の電気機械結合係数はすべての切断
角度で0となり、X軸方向変位の厚みすべり振動16
(SHEAR)のみが強勢に励振できることが分かる。図3
(b)はX軸方向に変位を有する厚みすべり振動16の
実効的電気機械結合係数keffの回転角依存性を示した
ものである。LiNbO3の163度回転Y板では、X軸
方向に変位を有する厚みすべり振動16の実効的電気機
械結合係数は0.56と大きいことが分かる。
Next, as shown in FIG. 2B, it is a perspective view showing a case where a pair of opposed electrodes 13 and 14 are arranged on the main surface of a piezoelectric substrate 1, for example, a rotating Y plate of LiNbO 3 .
When the coordinate axes are selected as shown in the figure, the direction 15 of the electric field is parallel to the X-axis, which is a so-called parallel electric field excitation. Calculating the effective electromechanical coupling coefficient (COUPLING FACTORk eff ) of the parallel electric field excitation with respect to the rotation angle (DEGREES θ) in the case of the parallel electric field excitation, the thickness longitudinal vibration and the thickness shear vibration with displacement in the Z 'axis direction Is zero at all cutting angles, and the thickness shear vibration 16
It can be seen that only (SHEAR) can be vigorously excited. FIG.
(B) shows the rotation angle dependence of the effective electromechanical coupling coefficient k eff of the thickness shear vibration 16 having a displacement in the X-axis direction. It can be seen that the effective electromechanical coupling coefficient of the thickness shear vibration 16 having a displacement in the X-axis direction is as large as 0.56 in the 163-degree rotated Y plate of LiNbO 3 .

【0009】一方、垂直電界励振(PERPENDICULAR)に
おける共振(Resonance)および反共振周波数(Anti-re
sonance )と平行電界励振(LATERAL)における共振周
波数(Resonance)の回転角依存性は、図4に示すよう
になる。実際の垂直電界励振エネルギー閉じ込め振動の
共振周波数は図4の共振周波数(実線)と反共振周波数
(一点鎖線)の間に存在するものと考えられる。163度
回転Y板では平行電界励振の共振周波数(点線)はその
中間に位置しており、二つの直交するエネルギー閉じ込
め厚みすべり振動の共振周波数はほぼ一致させることが
できる。
On the other hand, resonance (Resonance) and anti-resonance frequency (Anti-resonance) in vertical electric field excitation (PERPENDICULAR) are described.
FIG. 4 shows the rotation angle dependence of the resonance frequency (Resonance) for the parallel electric field excitation (LATERAL) and the parallel electric field excitation (LATERAL). The resonance frequency of the actual vertical electric field excitation energy confinement oscillation is the resonance frequency (solid line) in FIG.
(Dash-dotted line). In the Y-plate rotated at 163 degrees, the resonance frequency (dotted line) of the parallel electric field excitation is located in the middle, and the resonance frequencies of the two orthogonal energy confinement thickness shear vibrations can be almost matched.

【0010】以上のことを考慮すると、エネルギー閉じ
込め形圧電振動ジャイロには、例えばLiNbO3の1
63度回転Y板が適していると云えよう。以上の考察を
ふまえて図1(a)の動作態様について詳細に説明す
る。図5(a)は図1(a)の詳細な平面図を示したも
のであり、電極2、3、4のX軸方向の幅をそれぞれa
2、a1、a2とし、Z’軸方向の奥行きをwとする。
また、電極2、3、4のそれぞれの間隙をgとする。図
5(a)に示すように電極2のPick−up1と電極
4のPick−up2の間に電極3のGNDを設けてい
る。図5(b)は図1(a)下面の詳細平面図であり、
電極5の幅(X軸方向)をbとし、奥行き(Z’軸方
向)wとし、端子Driveを設けている。エネルギー
閉じ込め形圧電振動ジャイロの駆動はDrive−GN
D間に電圧を印加して行い、検出はPick−up1と
Pick−up2との間で出力を取り出す構成になって
いる。
In consideration of the above, the energy trap type piezoelectric vibrating gyroscope is made of, for example, LiNbO 3 .
It can be said that a 63-degree rotated Y plate is suitable. The operation mode of FIG. 1A will be described in detail based on the above consideration. FIG. 5A is a detailed plan view of FIG. 1A, in which the widths of the electrodes 2, 3, and 4 in the X-axis direction are respectively set to a.
2, a1 and a2, and the depth in the Z′-axis direction is w.
The gap between the electrodes 2, 3, and 4 is represented by g. As shown in FIG. 5A, the GND of the electrode 3 is provided between the Pick-up 1 of the electrode 2 and the Pick-up 2 of the electrode 4. FIG. 5B is a detailed plan view of the lower surface of FIG.
The width of the electrode 5 (X-axis direction) is set to b, the depth (Z'-axis direction) is set to w, and a terminal Drive is provided. Drive of the energy trap type piezoelectric vibrating gyroscope is Drive-GN
Detection is performed by applying a voltage between D and taking out the output between Pick-up1 and Pick-up2.

【0011】直交する2つの共振周波数、即ち垂直電界
による共振周波数と平行電界による共振周波数とを近接
させるため種々の実験を行った。試作した圧電振動ジャ
イロは圧電基板として厚さ2mmのLiNbO3163
度回転Y板を用い、電極には、クロム−金(Cr−A
u)の蒸着膜を用いた。圧電振動ジャイロの電極形状を
変化させたときの二つの直交する厚みすべり振動の共振
周波数をアドミタンスの測定より求めた。垂直電界励振
のアドミタンスはPick−up1およびPick−u
p2をGNDと短絡し、Drive−GND間で測定し
た。また、平行電界励振のアドミタンス特性は、Dri
ve−GND間を短絡し、 Pick−up1とPic
k−up2との間で測定した。圧電基板上面中央のGN
D電極の幅a1、下面のDrive電極の幅b、上面の
電極の奥行きwを変化させた時の共振周波数を、それぞ
れ図6(a)、(b)、(c)に示す。図6(a)から
GND電極の幅a1が小さいほど、また同(b)からD
rive電極の幅bが大きいほど二つの共振周波数、即
ち垂直電界励振の共振周波数と平行電界励振の共振周波
数が接近することが分かる。図6(c)は、二つの共振
周波数の差が奥行きwでほとんど変化しないことを示し
ている。これらの結果から垂直電界励振と平行電界励振
の共振周波数を互いに近接させ得ることが分かる。
Various experiments were conducted to make two orthogonal resonance frequencies close to each other, that is, the resonance frequency due to the vertical electric field and the resonance frequency due to the parallel electric field. The prototype piezoelectric vibrating gyroscope is LiNbO 3 163 having a thickness of 2 mm as a piezoelectric substrate.
Chrome-gold (Cr-A)
u) was used. The resonance frequency of two orthogonal thickness shear vibrations when the electrode shape of the piezoelectric vibrating gyroscope was changed was obtained from admittance measurement. The admittance of the vertical electric field excitation is Pick-up1 and Pick-u
p2 was short-circuited to GND, and measured between Drive and GND. The admittance characteristic of the parallel electric field excitation is Dri
short between ve and GND, Pick-up1 and Pic
It measured between k-up2. GN in the center of the upper surface of the piezoelectric substrate
FIGS. 6A, 6B, and 6C show resonance frequencies when the width a1 of the D electrode, the width b of the lower drive electrode, and the depth w of the upper electrode are changed, respectively. FIG. 6A shows that the smaller the width a1 of the GND electrode is, and FIG.
It can be seen that the larger the width b of the live electrode, the closer the two resonance frequencies, that is, the resonance frequency of the vertical electric field excitation and the resonance frequency of the parallel electric field excitation. FIG. 6C shows that the difference between the two resonance frequencies hardly changes with the depth w. These results show that the resonance frequencies of the vertical electric field excitation and the parallel electric field excitation can be brought close to each other.

【0012】以上の結果を基にして、a=12mm、a
1=3mm、a2=4.3mm、b=12mm、w=1
0mmの圧電振動ジャイロを試作した。図7は、この圧
電振動ジャイロ振動子の垂直電界励振時(Perpendicula
r)の共振周波数と平行電界励振時(Lateral)の周波数
(Frequency)−アドミタンス(Admittance (S))特性
を示したものである。図7(a)は圧電振動ジャイロ振
動子の周辺部に吸音材を付けない時、同(b)は吸音材
を付けた時の特性である。吸音材を付けた場合、厚みす
べり振動の主共振のQはあまり変化していないがスプリ
アスレスポンスは小さくなっている。従って、主共振の
振動エネルギーは中央の電極付近に閉じ込められている
と考えられる。また、垂直電界励振と平行電界励振の共
振周波数はほぼ一致していることが分かる。なお、図7
(b)において、垂直電界励振の特性には厚みすべり振
動の主振動の他に高周波側にも比較的大きな共振が現れ
ている。これは1次の非調和高次モードと思われる。こ
のモードは、比較的周波数が離れているので圧電振動ジ
ャイロ特性にあまり影響を与えない。
Based on the above results, a = 12 mm, a
1 = 3 mm, a2 = 4.3 mm, b = 12 mm, w = 1
A prototype of a 0 mm piezoelectric vibrating gyroscope was manufactured. FIG. 7 shows a state in which the piezoelectric vibrating gyroscope is excited by a vertical electric field (Perpendicula).
r) shows a resonance frequency and a frequency (Frequency) -admittance (S) characteristic during parallel electric field excitation (Lateral). FIG. 7A shows the characteristics when no sound absorbing material is attached to the periphery of the piezoelectric vibrating gyroscope, and FIG. 7B shows the characteristics when the sound absorbing material is added. When the sound absorbing material is added, the Q of the main resonance of the thickness shear vibration does not change much, but the spurious response is small. Therefore, it is considered that the vibration energy of the main resonance is confined near the center electrode. Also, it can be seen that the resonance frequencies of the vertical electric field excitation and the parallel electric field excitation are almost the same. FIG.
In (b), in the characteristics of the vertical electric field excitation, a relatively large resonance appears on the high frequency side in addition to the main vibration of the thickness shear vibration. This seems to be the first nonharmonic higher order mode. This mode does not significantly affect the piezoelectric vibrating gyro characteristic because the frequency is relatively far away.

【0013】図8は、本発明に係る圧電振動ジャイロを
用いた回路ブロック図の一例である。この測定回路は、
駆動するための発振回路(Oscillation Circuit)と検
出のための電流−電圧変換回路(Current detection Ci
rcuit)、差動検出回路(Differential Amplifier)、
AC−DCコンバータ(AC-DC Convertor)から構成さ
れている。AC−DCコンバータの出力には、圧電振動
ジャイロが回転された時の角速度に比例した直流電圧が
現れる。この測定回路を圧電振動ジャイロ振動子と共に
接地したアルミケース内に入れ、電磁モータで回転させ
た。図9に振動ジャイロの角速度(Angular Velocity)
に対する出力電圧(Output Voltage)の特性を示す。測
定値にばらつきはあるものの角速度に対して出力電圧が
ほぼ比例した圧電振動ジャイロ装置が得られた。
FIG. 8 is an example of a circuit block diagram using a piezoelectric vibrating gyroscope according to the present invention. This measurement circuit
Oscillation circuit for driving and current-voltage conversion circuit for detection (Current detection Ci
rcuit), differential amplifier (Differential Amplifier),
It is composed of an AC-DC converter (AC-DC Converter). A DC voltage proportional to the angular velocity when the piezoelectric vibrating gyroscope is rotated appears at the output of the AC-DC converter. This measurement circuit was placed in a grounded aluminum case together with a piezoelectric vibrating gyroscope and rotated by an electromagnetic motor. Figure 9 shows the angular velocity of the vibrating gyroscope (Angular Velocity)
5 shows the characteristics of the output voltage (Output Voltage) with respect to. A piezoelectric vibrating gyro device was obtained in which the output voltage was substantially proportional to the angular velocity although the measured values varied.

【0014】また、図1(b)は本発明に係る他の実施
例であり、圧電基板1の主面ほぼ中央に、X軸方向に沿
って電極6、7を配置すると共に基板1の下面に電極
6、7に対向して電極8を付着する。電極6、7から圧
電基板1の端部に向かってそれぞれリード電極を延在
し、その端部電極パッドをPick−up1、 Pic
k−up2とする。さらに、電極8から圧電基板1の端
部に向かってリード電極を延ばし、その端部電極パッド
をDriveとする。図1(b)の構成では、駆動はD
riveとPick−up1及びPick−up2との
間に電圧を印加して行い(正確にはDriveとアース
電位点の間に電圧を印加する)、検出はPick−up
1とPick−up2との間で差動的に出力を取り出す
構成になっている。この変形例の構成においても圧電振
動ジャイロとしての機能が確認された。
FIG. 1B shows another embodiment according to the present invention, in which electrodes 6 and 7 are arranged substantially in the center of the main surface of the piezoelectric substrate 1 along the X-axis direction and the lower surface of the substrate 1 is provided. The electrode 8 is adhered to the electrodes 6 and 7. Lead electrodes extend from the electrodes 6 and 7 toward the ends of the piezoelectric substrate 1, and the end electrode pads are connected to Pick-up 1 and Pic-up.
Let k-up2. Further, a lead electrode is extended from the electrode 8 toward the end of the piezoelectric substrate 1, and the end electrode pad is set to Drive. In the configuration shown in FIG.
Drive is performed by applying a voltage between Pick-up1 and Pick-up2 (more precisely, a voltage is applied between Drive and the ground potential point), and detection is performed by Pick-up.
1 and Pick-up2, the output is taken out differentially. The function of the piezoelectric vibrating gyroscope was confirmed also in the configuration of this modified example.

【0015】以上の説明では圧電基板にLiNbO3
用いて説明したが、これに限ることなく、LiTa
3、セラミック、水晶等の圧電材料に適用できること
は云うまでもない。また、上記説明ではX軸の周りの回
転(回転Y板)、即ち1軸回転について説明したが、回
転は1軸回転に限ることなく2軸回転等で二つの直交す
るすべり振動が利用できるものであればよい。また、電
極材料にクロム−金(Cr−Au)の例をあげたが、他
の金属でよいことは説明するまでもない。
In the above description, LiNbO 3 was used for the piezoelectric substrate. However, the present invention is not limited to this.
It goes without saying that the present invention can be applied to piezoelectric materials such as O 3 , ceramic, and quartz. In the above description, rotation about the X axis (rotating Y plate), that is, one-axis rotation has been described, but rotation is not limited to one-axis rotation, and two orthogonal sliding vibrations can be used by two-axis rotation or the like. Should be fine. Further, although an example of chromium-gold (Cr-Au) has been described as an electrode material, it is needless to say that other metals may be used.

【0016】[0016]

【発明の効果】本発明は、以上説明したようにLiNb
3回転Y板を圧電基板に用いてエネルギー閉じ込め型振
動ジャイロを構成したので、従来の屈曲振動を用いた振
動ジャイロと比べて、支持が容易、トリミングが不要、
薄形、製造が簡単などの優れた効果を発揮する。更に、
基板に圧電単結晶を用いているので共振のQが高いと共
に駆動、検出の一方に垂直電界励振を他方に平行電界励
振を用いているので、電極の配置に無理がなく、電極容
量を大きくでき、且つ高効率に駆動、検出できるという
優れた効果を発揮する。
According to the present invention, as described above, LiNb
Since the energy confinement type vibration gyro is configured by using the O 3 rotation Y plate as the piezoelectric substrate, it is easier to support and does not require trimming compared to the conventional vibration gyro using bending vibration.
Excellent effects such as thin shape and easy manufacturing. Furthermore,
Since the piezoelectric single crystal is used for the substrate, the Q of resonance is high, and vertical electric field excitation is used for driving and detection, and parallel electric field excitation is used for the other. In addition, an excellent effect of being able to be driven and detected with high efficiency is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る圧電単結晶の厚みすべり
振動を用いた圧電振動ジャイロの実施の一形態例を示す
斜視図、(b)は他の実施例である。
FIG. 1A is a perspective view showing an embodiment of a piezoelectric vibrating gyroscope using thickness-shear vibration of a piezoelectric single crystal according to the present invention, and FIG. 1B is another embodiment.

【図2】本発明を説明する図で、(a)は垂直電界励振
の電界方向と振動方向、(b)は平行電界励振の電界方
向と振動方向である。
2A and 2B are diagrams illustrating the present invention, wherein FIG. 2A shows the electric field direction and the vibration direction of a vertical electric field excitation, and FIG. 2B shows the electric field direction and the vibration direction of a parallel electric field excitation.

【図3】LiNbO3回転Y板の、(a)は垂直電界励
振時の回転角と電気機械結合係数の関係を示す図、
(b)は平行電界励振時の回転角と電気機械結合係数の
関係を示す図である。
FIG. 3A is a diagram showing a relationship between a rotation angle and a electromechanical coupling coefficient of a LiNbO 3 rotating Y plate during vertical electric field excitation,
(B) is a diagram showing the relationship between the rotation angle and the electromechanical coupling coefficient during parallel electric field excitation.

【図4】本発明に係る振動ジャイロを垂直電界で励振し
た時の共振、反共振周波数と平行電界で励振した場合の
共振周波数を示す図である。
FIG. 4 is a diagram showing resonance and anti-resonance frequencies when the vibration gyro according to the present invention is excited by a vertical electric field and resonance frequencies when excited by a parallel electric field;

【図5】(a)、(b)は本発明係る圧電振動ジャイロ
の電極寸法を示す図である。
FIGS. 5A and 5B are diagrams showing electrode dimensions of the piezoelectric vibrating gyroscope according to the present invention.

【図6】本発明係る圧電振動ジャイロの電極寸法を変化
させた場合の垂直電界および平行電界励振の共振周波数
の変動を示す図で、(a)は電極3の幅、(b)は下面
の電極の幅、(c)は奥行きをを変化させた場合の周波
数変動である。
FIGS. 6A and 6B are diagrams showing a change in resonance frequency of the vertical electric field and the parallel electric field excitation when the electrode dimensions of the piezoelectric vibrating gyroscope according to the present invention are changed, wherein FIG. 6A shows the width of the electrode 3, and FIG. The width of the electrode, (c), is a frequency variation when the depth is changed.

【図7】本発明係る圧電振動ジャイロ振動子の垂直電
界、平行電界励振の時のアドミッタンス特性で、周辺部
に(a)吸音材を付けない場合、(b)付けた場合であ
る。
FIG. 7 shows admittance characteristics of the piezoelectric vibrating gyro vibrator according to the present invention when a vertical electric field and a parallel electric field are excited, in which (a) a sound absorbing material is not attached to a peripheral portion and (b) is attached.

【図8】本発明に係る圧電振動ジャイロを用いた回路ブ
ロック図の一例である。
FIG. 8 is an example of a circuit block diagram using the piezoelectric vibrating gyroscope according to the present invention.

【図9】本発明に係る圧電振動ジャイロの角速度と出力
電圧の関係図である。
FIG. 9 is a relationship diagram between an angular velocity and an output voltage of the piezoelectric vibrating gyroscope according to the present invention.

【図10】従来の圧電ジャイロの一例で(a)は斜視
図、(b)z軸方向からみた平面図、(c)は振動モー
ドを示す。
10A and 10B show an example of a conventional piezoelectric gyro, in which FIG. 10A is a perspective view, FIG. 10B is a plan view seen from the z-axis direction, and FIG. 10C shows a vibration mode.

【符号の説明】[Explanation of symbols]

1・・・圧電基板 2、3、4、5、6、7、8・・・電極 9、10、13、14・・・電極 11、15・・・電界方向 12、16・・・振動方向 pick-up1、pick-up2・・・出力端子 a、a1、a2、b・・・電極幅寸法 W・・・電極奥行き寸法 g・・・電極間隙 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate 2, 3, 4, 5, 6, 7, 8 ... Electrode 9, 10, 13, 14 ... Electrode 11, 15 ... Electric field direction 12, 16 ... Vibration direction pick-up1, pick-up2: output terminals a, a1, a2, b: electrode width W: electrode depth g: electrode gap

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶座標系(X、Y、Z)のZ軸方向に
自発分極を有する三方晶系の圧電単結晶から、前記座標
系をそのX軸の周りに0度乃至180度の範囲で回転さ
せた座標系(X、Y’、Z’)のX軸及びZ’軸に対し
て主表面がほぼ平行になるように切り出された平板状圧
電単結晶振動子において、前記Z’軸方向変位及び前記
X軸方向変位の二つの直交する厚みすべり振動を利用す
ることを特徴とする回転角速度検出用圧電振動ジャイ
ロ。
1. A trigonal piezoelectric single crystal having a spontaneous polarization in a Z-axis direction of a crystal coordinate system (X, Y, Z), wherein said coordinate system is moved from 0 to 180 degrees around its X axis. In the flat plate-shaped piezoelectric single crystal vibrator cut out so that the main surface is substantially parallel to the X axis and the Z ′ axis of the coordinate system (X, Y ′, Z ′) rotated by the Z ′ axis, A piezoelectric vibrating gyroscope for detecting a rotational angular velocity, wherein two thickness shear vibrations orthogonal to each other, i.e., a direction displacement and an X-axis direction displacement, are used.
【請求項2】 前記平板上圧電振動子の両主面に電極を
付け、その一方の電極を前記Z’軸に平行に2つまたは
3つに分割した振動子であって、両面の電極間に印加す
る電圧によりZ’方向変位の厚みすべり振動を駆動、検
出し、前記分割電極間に印加する電圧によりX軸方向の
電界を生じさせてX軸方向変位の厚みすべり振動を駆
動、検出することを特徴とする請求項1記載の圧電振動
ジャイロ。
2. A vibrator in which electrodes are attached to both main surfaces of the piezoelectric vibrator on the flat plate, and one of the electrodes is divided into two or three parallel to the Z ′ axis. Drives and detects the thickness-shear vibration of the displacement in the Z ′ direction by the voltage applied to, and drives and detects the thickness-shear vibration of the displacement in the X-axis direction by generating an electric field in the X-axis direction by the voltage applied between the divided electrodes. The piezoelectric vibrating gyroscope according to claim 1, wherein:
【請求項3】 前記圧電単結晶振動子の切断方位の微調
整ならびに両主面上の電極の厚さ、形状の調整により、
前記Z’軸変位及びX軸変位の厚みすべり振動の共振周
波数をそれぞれ調整し互いに接近させたことを特徴とす
る請求項1乃至2記載の圧電振動ジャイロ。
3. A fine adjustment of a cutting direction of the piezoelectric single crystal oscillator and an adjustment of a thickness and a shape of an electrode on both main surfaces,
3. The piezoelectric vibratory gyroscope according to claim 1, wherein the resonance frequencies of the thickness shear vibrations of the Z 'axis displacement and the X axis displacement are adjusted to be close to each other.
【請求項4】 前記の互いに直交する変位の2つの厚み
すべり振動のエネルギーを電極の付加質量効果と圧電反
作用効果を利用して電極付近に閉じ込めたことを特徴と
する請求項1乃至3記載の圧電振動ジャイロ。
4. The method according to claim 1, wherein the energy of the two thickness shear vibrations having the displacements orthogonal to each other is confined in the vicinity of the electrode by utilizing an additional mass effect and a piezoelectric reaction effect of the electrode. Piezoelectric vibration gyro.
【請求項5】 前記圧電単結晶振動子において、結晶が
ニオブ酸リチウム(LiNbO3)であり、前記X軸の
周りの回転角θが150度乃至175度であることを特
徴とする請求項1乃至請求項4記載の圧電振動ジャイ
ロ。
5. The piezoelectric single crystal resonator according to claim 1, wherein the crystal is lithium niobate (LiNbO 3 ), and the rotation angle θ about the X axis is 150 to 175 degrees. The piezoelectric vibrating gyroscope according to claim 4.
【請求項6】 前記圧電単結晶振動子において、結晶が
タンタル酸リチウム(LiTaO3)であり、前記X軸
の周りの回転角θが150度乃至175度であることを
特徴とする請求項1乃至請求項4記載の圧電振動ジャイ
ロ。
6. The piezoelectric single crystal resonator according to claim 1, wherein the crystal is lithium tantalate (LiTaO 3 ), and the rotation angle θ about the X axis is 150 to 175 degrees. The piezoelectric vibrating gyroscope according to claim 4.
JP9193181A 1997-07-03 1997-07-03 Piezoelectric vibrating gyro Pending JPH1123286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193181A JPH1123286A (en) 1997-07-03 1997-07-03 Piezoelectric vibrating gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193181A JPH1123286A (en) 1997-07-03 1997-07-03 Piezoelectric vibrating gyro

Publications (1)

Publication Number Publication Date
JPH1123286A true JPH1123286A (en) 1999-01-29

Family

ID=16303660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193181A Pending JPH1123286A (en) 1997-07-03 1997-07-03 Piezoelectric vibrating gyro

Country Status (1)

Country Link
JP (1) JPH1123286A (en)

Similar Documents

Publication Publication Date Title
JP3999377B2 (en) Vibrator, vibratory gyroscope, linear accelerometer and measuring method of rotational angular velocity
JP2780643B2 (en) Vibrating gyro
JP3973742B2 (en) Vibrating gyroscope
JP2007232710A (en) Oscillator for oscillating gyroscope
JP3720563B2 (en) Vibrator, vibratory gyroscope and measuring method of rotational angular velocity
JPH1123286A (en) Piezoelectric vibrating gyro
JPH10221087A (en) Vibrator, vibration-type gyroscope, its manufacture, method for excitation of vibrator and method for detection of vibration of vibrator
JP3665978B2 (en) Energy-confined piezoelectric vibration gyroscope
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3172943B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JPH09113279A (en) Vibrational gyro
JPH05264281A (en) Piezoelectric vibrating gyro
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2536151B2 (en) Vibrating gyro
JP2001324332A (en) Piezoelectric gyro
JP3690448B2 (en) Piezoelectric vibrator for piezoelectric vibration gyro
JP2590553Y2 (en) Piezoelectric vibration gyro
JP3531295B2 (en) Vibrator and piezoelectric vibration angular velocity meter using the same
JP2557287B2 (en) Piezoelectric vibration gyro
JPH06281465A (en) Surface acoustic wave gyroscope
JP3211183B2 (en) Piezoelectric vibratory gyroscope using energy trapped vibration mode
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP3685224B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3172944B2 (en) Piezoelectric vibratory gyro using energy trapped vibration mode
JP3042501B2 (en) Tuning fork type piezoelectric gyro sensor