JPH0150132B2 - - Google Patents

Info

Publication number
JPH0150132B2
JPH0150132B2 JP5794681A JP5794681A JPH0150132B2 JP H0150132 B2 JPH0150132 B2 JP H0150132B2 JP 5794681 A JP5794681 A JP 5794681A JP 5794681 A JP5794681 A JP 5794681A JP H0150132 B2 JPH0150132 B2 JP H0150132B2
Authority
JP
Japan
Prior art keywords
vibration
vibration mode
present
order
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5794681A
Other languages
Japanese (ja)
Other versions
JPS57173218A (en
Inventor
Hiromi Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP5794681A priority Critical patent/JPS57173218A/en
Publication of JPS57173218A publication Critical patent/JPS57173218A/en
Publication of JPH0150132B2 publication Critical patent/JPH0150132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3本の振動枝を有し、長さたて1次振
動モードで動作する圧電振動子(以下簡単のため
E型振動子と称する)の共振周波数温度特性の改
良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a piezoelectric vibrator (hereinafter referred to as an E-type vibrator for simplicity) that has three vibrating branches and operates in a longitudinal primary vibration mode. This invention relates to improvements in the resonant frequency temperature characteristics of

〔従来の技術〕[Conventional technology]

第1図は従来及び本発明に係るE型振動子の外
形を示す斜視図である。第1図において3本の振
動枝1,2,3の長さ寸法は、ほぼ等しく、幅寸
法については振動枝1,3が互にほぼ等しく、振
動枝2の幅寸法は任意に選べる。従来のE型振動
子は、利用しようとしている長さたて1次振動モ
ードの他の各種の振動モードが高次振動を含めて
無数に存在しており、これらの振動モードは利用
しようとしている振動モードに対しては不要なも
のと考え、長さたて1次振動モードが他の振動モ
ードと出来るだけ結合しないようにすることが行
われてきた。
FIG. 1 is a perspective view showing the external shape of an E-type vibrator according to the conventional technology and the present invention. In FIG. 1, the length dimensions of the three vibrating branches 1, 2, and 3 are approximately equal, and the width dimensions of the vibrating branches 1 and 3 are approximately equal, and the width dimension of the vibrating branch 2 can be arbitrarily selected. In the conventional E-type vibrator, in addition to the longitudinal primary vibration mode that is intended to be used, there are countless other vibration modes including higher-order vibrations, and these vibration modes are intended to be used. It has been considered that vibration modes are unnecessary, and efforts have been made to prevent the longitudinal primary vibration mode from coupling with other vibration modes as much as possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そのため従来のE型振動子は共振周波数の温度
特性を良くするのには限界があつた。
Therefore, the conventional E-type vibrator has a limit in improving the temperature characteristics of the resonance frequency.

本発明の目的は、共振周波数の温度特性が常温
付近で比較的フラツトになるE型振動子を提案す
ることにある。
An object of the present invention is to propose an E-type vibrator whose temperature characteristic of resonance frequency is relatively flat near room temperature.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、本発明では、水晶
からなる圧電振動子のカツト方位はZカツトの状
態からX軸のまわりで角度θだけ回転されており
3本の振動枝の各側面は励振用の金属薄膜電極が
固着され、中央の振動枝と両側の振動枝は互に逆
位相で振動を行う圧電振動子において、長さたて
1次振動モードと該圧電振動子に存在する面内屈
曲高次振動モードのうちの1つとが結合するよう
に構成することを特徴としている。
In order to achieve this purpose, in the present invention, the cut direction of the piezoelectric vibrator made of crystal is rotated by an angle θ around the X axis from the Z cut state, and each side of the three vibrating branches is used for excitation. In a piezoelectric vibrator in which a metal thin film electrode is fixed, and the vibrating branch in the center and the vibrating branches on both sides vibrate in opposite phases, the longitudinal primary vibration mode and the in-plane bending that exists in the piezoelectric vibrator are It is characterized by being configured so that it is coupled with one of the higher-order vibration modes.

〔作用〕[Effect]

以下本発明を詳細に説明する。第2図A,Bは
それぞれE型振動子の長さたて1次振動モード及
び面内屈曲1次振動モードの説明図である。矢印
4は振動変位のおおよその方向と大きさを示し、
点線5は振動変位零の時刻から(1/4)周期後の
時刻における振動変位を示す。面内屈曲振動モー
ドは簡単のため1次振動モードだけを示し、高次
振動モードは省略した。
The present invention will be explained in detail below. FIGS. 2A and 2B are explanatory views of the longitudinal primary vibration mode and the in-plane bending primary vibration mode of the E-type vibrator, respectively. Arrow 4 indicates the approximate direction and magnitude of the vibration displacement;
A dotted line 5 indicates the vibration displacement at a time (1/4) period after the time of zero vibration displacement. For the sake of simplicity, only the first-order vibration mode is shown for the in-plane bending vibration mode, and the higher-order vibration mode is omitted.

上記2種類の振動モードの共振周波数は、振動
枝1の長さ寸法をl、幅寸法をh、厚さ寸法をt
として、第3図のような片持はりで近似すると次
のように表わせる。
The resonance frequencies of the above two types of vibration modes are as follows: the length of the vibrating branch 1 is l, the width is h, and the thickness is t.
When approximated by a cantilever beam as shown in Figure 3, it can be expressed as follows.

長さたて振動の場合 ここでfL:長さたて振動の共振周波数 E:振動子材料のヤング率 p:振動子材料の密度 n:振動の次数(n=1、2、3……) 面内屈曲振動の場合 ここでfF:面内屈曲振動の共振周波数 i:振動の次数(i=1、2、3……) m1:1.875 m2:4.694 m3:7.855 m4:11.00 ……………… 上記(1)、(2)式で示される共振周波数の公式は、
それぞれの振動モードが単独に存在している場
合、即ち振動モードの結合がない場合のものであ
る。しかし2つの振動モードの結合がある場合に
は、fLとfFが非常に接近しているため、(1)、(2)式
から fL=fF ……(3) として、たて振動モードと面内屈曲振動モードが
結合を起すための振動枝寸法比のおおよその関係
式が得られる。(1)、(2)、(3)式からこの関係式は次
のようになる。
For longitudinal vibration Here, f L : Resonance frequency of longitudinal vibration E: Young's modulus of the vibrator material p: Density of the vibrator material n: Order of vibration (n=1, 2, 3...) In the case of in-plane bending vibration Here, f F : Resonance frequency of in-plane bending vibration i: Order of vibration (i=1, 2, 3...) m 1 : 1.875 m 2 : 4.694 m 3 : 7.855 m 4 : 11.00...... The formula for the resonant frequency shown in equations (1) and (2) above is:
This is a case where each vibration mode exists independently, that is, when there is no combination of vibration modes. However, when there is a coupling of two vibrational modes, f L and f F are very close to each other, so from equations (1) and (2), f L = f F ...(3), An approximate relational expression of the vibration branch size ratio for coupling between the vibration mode and the in-plane bending vibration mode is obtained. From equations (1), (2), and (3), this relational expression is as follows.

(4)式から(h/l)の具体的数値を求めてみ
る。長さたて振動モードは1次振動(n=1)と
しておき面内屈曲振動モードは1次振動から4次
振動まで(i=1〜4)変えたときの(h/l)
の値は(4)式から次のように求められる。
Let's try to find the specific value of (h/l) from equation (4). The longitudinal vibration mode is set to 1st order vibration (n = 1), and the in-plane bending vibration mode is changed from 1st order vibration to 4th order vibration (i = 1 to 4) (h/l)
The value of is obtained from equation (4) as follows.

n=1、i=1のとき (h/l)=1.55 n=1、i=2のとき (h/l)=0.247 n=1、i=3のとき (h/l)=0.088 n=1、i=4のとき (h/l)=0.045 上記の結果から長さたて1次振動モードに結合
させる面内屈曲振動モードの次数が1次(i=
1)の場合は、振動枝の幅寸法が長さ寸法にくら
べて大きな値になり、この場合は実現は無理であ
る。面内屈曲振動モードの次数は2次(i=2)
以上であれば、振動枝の形状に無理がなくなる。
上記(h/l)の値は、あくまでも目安にすぎ
ず、実際には上記で見積もられた(h/l)の値
とは若干ずれた値を中心にして、ある幅をもつて
2つの振動モードは結合し、2つの振動モードの
共振周波数は接近して存在している。このとき長
さたて1次振動モードの共振周波数温度特性は改
善される。
When n=1, i=1 (h/l)=1.55 When n=1, i=2 (h/l)=0.247 When n=1, i=3 (h/l)=0.088 n= 1, when i=4 (h/l)=0.045 From the above results, the order of the in-plane bending vibration mode to be coupled to the longitudinal first-order vibration mode is first-order (i=
In case 1), the width dimension of the vibrating branch becomes a larger value than the length dimension, and in this case, it is impossible to realize. The order of the in-plane bending vibration mode is 2nd order (i=2)
If the above is the case, the shape of the vibrating branch will be reasonable.
The above (h/l) value is just a guideline, and in reality, two values with a certain width are used, centered on a value that is slightly different from the (h/l) value estimated above. The vibration modes are coupled and the resonance frequencies of the two vibration modes are close to each other. At this time, the resonance frequency temperature characteristics of the longitudinal primary vibration mode are improved.

〔実施例〕〔Example〕

第4図は水晶からなる本発明実施例のカツト方
位を説明する図である。X軸、Y軸及びZ軸はそ
れぞれ水晶の電気軸、機械軸及び光軸を示す。振
動子11はZカツトの状態からX軸のまわりで、
角度θ(θの正の方向は反時計方向とする)だけ
回転されている。第5図は本発明実施例及び従来
例における共振周波数温度特性を示すグラフであ
る。曲線Aは長さたて1次振動モード(n=1)
と面内屈曲3次振動モード(i=3)が結合して
おり、共振周波数は約500KHz、(h/l)=0.10、
θ=−5゜である。曲線Bは従来のE型振動子の場
合で、長さたて1次振動モードは面内屈曲振動モ
ードとほとんど結合していない。この場合の共振
周波数は約510KHzで(h/l)=0.075、θ=1゜で
ある。第5図からわかるように、温度0℃〜40℃
間における周波数偏差(Δf/f)は本発明実施
例の方が従来のE型振動子よりも半分位に小さく
なつている。第6図Aは本発明実施例の電極配置
を示す斜視図である。水晶からなる振動枝1,
2,3の表面には、金属薄膜電極6,7が蒸着等
によつて固着されている。振動枝1,2,3の先
端には、周波数調整用の付加質量として、金属膜
8が固着されている。第6図Bは振動枝1,2,
3の長さ方向から見た電極の接続状態を示す。矢
印は電界の方向を示す。電極端子9,10に振動
子11の長さたて1次振動モードの共振周波数に
等しい周波数の電圧を印加すれば、振動子11は
第7図に示すように長さたて1次振動モードと面
内屈曲3次振動モードとが混りあつた形の振動モ
ードで振動する。第8図は本発明実施例の支持構
造を示す斜視図である。振動子11の電極端子
9,10は円筒形の気密端子12のステム13,
14に導電接着剤15で固着されている。
FIG. 4 is a diagram illustrating the cut direction of an embodiment of the present invention made of quartz. The X, Y, and Z axes indicate the electrical, mechanical, and optical axes of the crystal, respectively. The vibrator 11 moves around the X-axis from the Z-cut state,
It is rotated by an angle θ (the positive direction of θ is counterclockwise). FIG. 5 is a graph showing the resonant frequency temperature characteristics in the embodiment of the present invention and the conventional example. Curve A is the longitudinal first-order vibration mode (n=1)
and in-plane bending third-order vibration mode (i = 3) are coupled, the resonance frequency is approximately 500KHz, (h/l) = 0.10,
θ=-5°. Curve B is for a conventional E-type vibrator, and the longitudinal primary vibration mode is hardly coupled with the in-plane bending vibration mode. The resonance frequency in this case is approximately 510 KHz, (h/l)=0.075, and θ=1°. As can be seen from Figure 5, the temperature ranges from 0°C to 40°C.
The frequency deviation (Δf/f) between them is about half smaller in the embodiment of the present invention than in the conventional E-type vibrator. FIG. 6A is a perspective view showing the electrode arrangement according to the embodiment of the present invention. Vibrating branch 1 made of crystal,
Metal thin film electrodes 6 and 7 are fixed to the surfaces of 2 and 3 by vapor deposition or the like. A metal film 8 is fixed to the tips of the vibrating branches 1, 2, and 3 as an additional mass for frequency adjustment. Figure 6B shows vibration branches 1, 2,
3 shows the connection state of the electrodes viewed from the length direction. Arrows indicate the direction of the electric field. If a voltage with a frequency equal to the resonance frequency of the longitudinal primary vibration mode of the vibrator 11 is applied to the electrode terminals 9 and 10, the vibrator 11 will be in the vertical primary vibration mode as shown in FIG. It vibrates in a mixed vibration mode of the 3rd order vibration mode and the in-plane bending vibration mode. FIG. 8 is a perspective view showing a support structure according to an embodiment of the present invention. The electrode terminals 9 and 10 of the vibrator 11 are connected to the stem 13 of the cylindrical airtight terminal 12,
14 with a conductive adhesive 15.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は中周波で比較的
周波数温度特性がよいこと。振動子のベース部
(支持部)の振動変位が小さくなるので支持が極
めて容易であること。ホトリソグラフイー技術
によつて作れるため量産性があることなどから本
発明は高精度電子時計の時間基準振動子として大
きなメリツトを有する。
As explained above, the present invention has relatively good frequency temperature characteristics at medium frequencies. The vibration displacement of the base part (supporting part) of the vibrator is small, so it is extremely easy to support it. The present invention has great merits as a time reference oscillator for high-precision electronic watches because it can be manufactured using photolithography technology and can be mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来及び本発明に係るE型振動子の形
状を示す斜視図、第2図Aは従来のE型振動子に
存在する長さたて1次振動モードの説明図、第2
図Bは従来のE型振動子に存在する面内屈曲3次
振動モードの説明図、第3図は一般的な片持はり
の斜視図、第4図は本発明のカツト方位の説明
図、第5図は本発明実施例及び従来例の共振周波
数温度特性を示すグラフ、第6図Aは本発明実施
例の金属薄膜電極の配置を示す斜視図、第6図B
は金属薄膜電極の接続状態の説明図、第7図は本
発明実施例の振動モードの説明図、第8図は本発
明実施例の支持構造を示す斜視図である。 1,2,3……振動枝、4……振動変位の方向
と大きさ、5……振動モード、6,7……金属薄
膜電極、9,10……電極端子、11……本発明
実施例の振動子、12……気密端子、13,14
……ステム、15……導電接着剤。
FIG. 1 is a perspective view showing the shape of the conventional E-type vibrator and the present invention, FIG.
Figure B is an explanatory diagram of the in-plane bending third-order vibration mode existing in a conventional E-type vibrator, Figure 3 is a perspective view of a general cantilever beam, and Figure 4 is an explanatory diagram of the cut orientation of the present invention. FIG. 5 is a graph showing the resonant frequency temperature characteristics of the embodiment of the present invention and the conventional example, FIG. 6A is a perspective view showing the arrangement of the metal thin film electrode of the embodiment of the present invention, and FIG. 6B
7 is an explanatory diagram of the connection state of metal thin film electrodes, FIG. 7 is an explanatory diagram of the vibration mode of the embodiment of the present invention, and FIG. 8 is a perspective view of the support structure of the embodiment of the present invention. 1, 2, 3... Vibration branch, 4... Direction and magnitude of vibration displacement, 5... Vibration mode, 6, 7... Metal thin film electrode, 9, 10... Electrode terminal, 11... Implementation of the present invention Example vibrator, 12... Airtight terminal, 13, 14
... Stem, 15 ... Conductive adhesive.

Claims (1)

【特許請求の範囲】 1 カツト方位がZカツトの状態からX軸のまわ
りに角度θ(θの正の方向は反時計方向とする)
だけ回転した3本の振動枝を有する水晶からなる
圧電振動子にあつて、3本の該振動枝の各側面に
は励振用の金属薄膜電極が固着され、中央の振動
枝と両側の振動枝とは互に逆位相で振動を行う圧
電振動子において、 長さたて1次振動モード(n=1)と該圧電振
動子に存在する面内屈曲高次振動モード(n=
2、3、4)のうちの1つとが結合するように構
成することを特徴とする圧電振動子。
[Claims] 1. Angle θ around the X axis from the state where the cut direction is Z cut (the positive direction of θ is counterclockwise)
In a piezoelectric vibrator made of quartz crystal, which has three vibrating branches rotated by In a piezoelectric vibrator that vibrates in phase opposite to
A piezoelectric vibrator characterized in that it is configured to be coupled with one of 2, 3, and 4).
JP5794681A 1981-04-17 1981-04-17 Piezoelectric oscillator Granted JPS57173218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5794681A JPS57173218A (en) 1981-04-17 1981-04-17 Piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5794681A JPS57173218A (en) 1981-04-17 1981-04-17 Piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS57173218A JPS57173218A (en) 1982-10-25
JPH0150132B2 true JPH0150132B2 (en) 1989-10-27

Family

ID=13070193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5794681A Granted JPS57173218A (en) 1981-04-17 1981-04-17 Piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS57173218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031975A1 (en) * 2000-10-10 2002-04-18 Citizen Watch Co., Ltd. Torsional vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031975A1 (en) * 2000-10-10 2002-04-18 Citizen Watch Co., Ltd. Torsional vibrator

Also Published As

Publication number Publication date
JPS57173218A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
JP5651822B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP2002158559A (en) Lame-mode crystal vibrator
JPS5923909A (en) Piezoelectric resonator
JPH0150135B2 (en)
JPH0150134B2 (en)
JPS5838015A (en) Piezoelectric oscillator
JPH0150132B2 (en)
JPH0150133B2 (en)
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP3749917B2 (en) Manufacturing method of crystal oscillator
JPH10327038A (en) Piezoelectric vibrator
JPS583411A (en) Piezoelectric oscillator
JP3363457B2 (en) Torsional crystal oscillator
JPS6365167B2 (en)
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS5912810Y2 (en) piezoelectric vibrator
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JPS625366B2 (en)
JP4697190B6 (en) Manufacturing methods for crystal units and crystal units
JPS5827547Y2 (en) crystal oscillator
JP4697190B2 (en) Manufacturing methods for crystal units and crystal units
JPS587702Y2 (en) Width-slip crystal oscillator
JPH0349467Y2 (en)
JP4453017B2 (en) Manufacturing method of crystal unit