WO2002025367A1 - Attenuateur de lumiere a eclairage constant et procede d'attenuation de lumiere a eclairage constant - Google Patents

Attenuateur de lumiere a eclairage constant et procede d'attenuation de lumiere a eclairage constant Download PDF

Info

Publication number
WO2002025367A1
WO2002025367A1 PCT/JP2001/008084 JP0108084W WO0225367A1 WO 2002025367 A1 WO2002025367 A1 WO 2002025367A1 JP 0108084 W JP0108084 W JP 0108084W WO 0225367 A1 WO0225367 A1 WO 0225367A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
constant output
nonlinear
optical material
Prior art date
Application number
PCT/JP2001/008084
Other languages
English (en)
French (fr)
Inventor
Masanori Oto
Yuuichi Morishita
Haruhito Noro
Original Assignee
Showa Electric Wire & Cable Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire & Cable Co.,Ltd. filed Critical Showa Electric Wire & Cable Co.,Ltd.
Priority to US10/380,833 priority Critical patent/US6879436B2/en
Priority to JP2002529307A priority patent/JPWO2002025367A1/ja
Priority to CA002418047A priority patent/CA2418047A1/en
Priority to EP01965686A priority patent/EP1327905A4/en
Priority to AU2001286265A priority patent/AU2001286265A1/en
Publication of WO2002025367A1 publication Critical patent/WO2002025367A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3511Self-focusing or self-trapping of light; Light-induced birefringence; Induced optical Kerr-effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/52Optical limiters

Definitions

  • the present invention relates to an optical attenuator and an optical attenuating method capable of obtaining a substantially constant output light intensity regardless of the intensity of input light.
  • Attenuators have been used to adjust the light intensity in optical communication networks and optical devices.
  • the demand for attenuators has increased rapidly with the recent development of high-density wavelength division multiplexing (DWDM) transmission systems.
  • the attenuator is specifically used in the field of a light intensity adjusting device of a repeater and an optical amplifier in an optical communication network. It is also used for a light intensity adjusting device of optical equipment such as various light sources such as a laser diode (LD). Alternatively, it is used for a device for protecting a photodetector from high-intensity light.
  • LD laser diode
  • At present, fixed and variable types of attenuators used for adjusting light intensity are known.
  • the mechanical variable attenuator includes a type that uses a method of transmitting light spatially to attenuate it, a type that uses a method of inserting a movable attenuation filter in the middle of the optical path, and an optical fiber whose optical axis is aligned. There is a type that attenuates by slightly moving the shaft to cause axial misalignment.
  • Non-mechanical variable attenuators include a Faraday effect type, a waveguide type, a polymer waveguide type utilizing thermo-optic effect, and a Mach-Zehnder waveguide type.
  • variable attenuators do not have the same problems as the fixed attenuators described above.
  • currently used variable attenuators require electrical control and therefore consume power.
  • heat is generated during use, and a driver for controlling the amount of attenuation is required. Therefore, there is a problem that the size of the device is increased by the amount of the control device incorporating the driver.
  • An object of the present invention is to provide an attenuator and an attenuating method capable of always obtaining a constant output light intensity regardless of input light intensity without requiring electrical control. Disclosure of the invention
  • a constant output optical attenuator includes a nonlinear optical material whose refractive index changes depending on the intensity of input light, and an optical axis disposed on an optical axis for receiving output light of the nonlinear optical material.
  • An aperture is provided for passing only light having a certain radius at the center. Therefore, in the attenuation method using the attenuator of the present invention, a constant output light intensity can always be obtained regardless of the intensity of the input light.
  • a constant output optical attenuator comprising: an aperture for passing and outputting only light having a constant radius centered on the optical axis.
  • a slit is arranged on the input side of the nonlinear optical material, and the slit is installed at a position where the center of the long axis is displaced from the optical axis.
  • a convex lens and a slit are arranged on the input side of the nonlinear optical material, and the convex lens is located on the optical axis, and the slit is located at a position where the center of the long axis is displaced from the optical axis.
  • the constant output optical attenuator according to (1) which is installed.
  • the nonlinear optical material is made of a material selected from fine particle dispersed glass, optical ceramics, or organic polymer material. The described constant output light attenuation method.
  • the nonlinear optical material is characterized in that the end face on the light incident side is perpendicular to the optical axis and the end face on the light output side is inclined by a predetermined angle with respect to the optical axis.
  • a slit is disposed on the input side of the nonlinear optical material at a position where the center of the long axis is shifted from the optical axis, and after passing through the slit, the input light is applied to the nonlinear optical material.
  • a convex lens is arranged on the optical axis on the input side of the nonlinear optical material, and a slit is arranged at a position where the center of the long axis is shifted from the optical axis, and the convex lens and the slit are passed through.
  • FIG. 1 shows the relationship between an optical fiber end and an optical attenuator according to an embodiment of the present invention. It is a longitudinal cross-sectional view.
  • FIG. 2 is an explanatory diagram showing characteristics of the optical attenuator according to the present invention.
  • FIG. 3 is a longitudinal sectional view showing a relationship between an optical fiber end and an optical attenuator according to another embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing the relationship between an optical fiber end and an optical attenuator according to a further embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a relationship between an optical fiber end and an optical attenuator according to still another embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view showing the relationship between the end of an optical fiber and an optical attenuator according to still another embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing the relationship between an optical fiber end and an optical attenuator according to a further embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view showing a relationship between an optical fiber end and an optical attenuator according to an embodiment of the present invention.
  • reference numeral 1 denotes a nonlinear optical material.
  • 2 is an aperture. These are arranged on the same optical axis as the input optical fiber 3 and the output optical fiber 4.
  • the light output from the input optical fiber 3 enters the nonlinear optical material 1 and passes through the nonlinear optical material 1.
  • Light that has passed through the nonlinear optical material 1 spreads radially around the optical axis.
  • the aperture 2 allows only light within a certain radius of the light spread in the radial direction to pass.
  • the light that has passed through the aperture 1 is input to the output optical fiber 4. At this time, if various parameters described later are optimized, output light of a constant intensity can be obtained from the output optical fiber 4.
  • An object of the present invention is to provide an optical attenuator and an optical attenuating method capable of obtaining an almost constant output light intensity regardless of the intensity of input light, as described above.
  • the object of the present invention is achieved by a combination of a nonlinear optical material and an aperture.
  • the nonlinear optical material 1 is a substance whose refractive index changes depending on the input light intensity.
  • the refractive index is represented by the following equation.
  • n n. + n 2 IE
  • n. Is the refractive index independent of light intensity
  • n 2 is the second-order nonlinear refractive index
  • E is the electric field strength of light
  • the nonlinear optical material 1 is simply a substance having a constant refractive index.
  • the parallel light beam output from the input optical fiber 3 passes through the nonlinear optical material 1 as it is and enters the output optical fiber. Therefore, if the attenuation of the light in the nonlinear optical material 1 is neglected, the parallel rays output from the input optical fiber 3 enter the output optical fiber with almost no attenuation.
  • the effect of the second term in the above equation increases. That is, since the refractive index of the nonlinear optical material 1 changes depending on the input light intensity, the light input to the nonlinear optical material 1 is bent and output when the input light intensity increases. At this time, the nonlinear optical material 1 plays the role of a convex lens. The light output from the nonlinear optical material 1 is focused between the nonlinear optical material 1 and the aperture 1 2. The light then spreads radially approximately radially, starting at the focal point.
  • the light that spreads outward is blocked by the aperture 12. Therefore, only a part of the light that has passed through a certain radius centered on the optical axis, limited by the aperture 12, is incident on the output optical fiber. Therefore, when the input light intensity is high, the amount of light incident on the output optical fiber decreases. As a result, the light output from the input optical fiber 3 is automatically attenuated and enters the output optical fiber.
  • the aperture here has a circular window centered on the optical axis, and when viewed in the radial direction, allows a light beam of a certain thickness to pass through. It has a function of blocking light spread beyond the radius of.
  • nonlinear optical material used in this embodiment examples include fine particles of copper or copper chloride.
  • FIG. 2 is a diagram showing the relationship between the input light intensity and the output light intensity when the distance L between the nonlinear optical material and the aperture is variously changed.
  • a gap between the input optical fiber 3 and the end face of the nonlinear optical material 1 was filled with a matching oil in order to have optical consistency.
  • the nonlinear optical material used here is a copper fine particle-dispersed alkaline silicate glass.
  • the input is obtained by a method that optimally combines parameters such as the second-order nonlinear refractive index n 2 , the thickness t of the nonlinear optical material, the distance between the nonlinear optical material and the aperture, and the aperture diameter ⁇ of the aperture.
  • An optical attenuator having a constant output light intensity independent of the light intensity can be obtained.
  • FIG. 3 is a longitudinal sectional view showing a relationship between an optical fiber end and an optical attenuator according to another embodiment of the present invention.
  • the nonlinear optical material 11 has an end face on the incident side of the light from the input optical fiber 3 perpendicular to the optical axis, and an end face on the light emitting side. Is inclined at a predetermined angle ⁇ ⁇ ⁇ ⁇ with respect to a plane perpendicular to the optical axis.
  • is in the range of 0 ° ⁇ 0 ⁇ 90 °.
  • Light output from the inside of the nonlinear optical material 11 to the outside toward the aperture 12 is refracted by an angle depending on the refractive index of the nonlinear optical material 11 on a plane inclined by an angle ⁇ .
  • the angle 0 is zero, the light beam output from the inside of the nonlinear optical material 11 to the outside is It becomes symmetrical about the optical axis.
  • Fig. 3 (a) shows an example when the input light intensity is high. Even if the input light intensity is stronger than that in Fig. 1 (b), the light beam output from the inside to the outside of the nonlinear optical material 11 is greatly bent, so that the proportion of the light blocked by the aperture 12 is large. . Only part of the light that has passed through the fixed radius set in the aperture 12 can enter the output optical fiber.
  • the second-order nonlinear refractive index n 2 the thickness t of the nonlinear optical material, the angle 0 of the exit side end face of the nonlinear optical material, the distance between the nonlinear optical material and the aperture, and the opening of the aperture
  • FIG. 4 is a longitudinal sectional view showing a relationship between an optical fiber end and an optical attenuator according to still another embodiment.
  • the nonlinear optical material 11 having the shape shown in FIG. 3 is used. Further, a convex lens 5 was arranged on the optical axis between the input optical fiber 3 and the nonlinear optical material 11. As shown in the figure, a convex lens is arranged, and the refractive index, thickness, etc. of the convex lens are adjusted so that the light beam is focused at the intersection of the optical axis and the end surface of the nonlinear optical material 11 having an angle of 0. Determine. In this way, the input light to the end face having an angle of 0 is converged by the convex lens, the value of the IEI 2 term in the equation (1) increases, and the light attenuation increases.
  • the slit 6 has a rectangular shape through which light passes. 4 As shown in (c), the central part c (indicated by a wavy line) of the long axis of this rectangle is displaced from the optical axis indicated by the dashed line from the input light to the output light. In this way, the intensity distribution of the input light changes from a shape close to a normal distribution to an asymmetric shape in which one of the right and left tails is missing after passing through the slit. Light having such a distribution shape is incident on the nonlinear optical material 11, is largely bent, and then passes through the aperture 12. In the example in the figure, the part where the skirt is missing due to the slit passes through the aperture.
  • the aperture will block the part where the hem is not missing due to the slit. In this way, when the intensity distribution of the input light is made asymmetrical by the slit, an attenuation effect with sharper response can be obtained as compared with the case where the slit is not used.
  • the combination of the nonlinear optical material, the convex lens, and the slit is not limited to the present embodiment.
  • FIG. 5 shows an embodiment in which a nonlinear optical material, a convex lens, and a slit are arranged in combination.
  • the nonlinear optical material may have a shape as shown in Fig. 1, the convex lens and the slit may be arranged individually as shown in Fig. 4, or they may be arranged in combination as shown in this figure. It doesn't matter. In short, what is necessary is just to select the optimal combination to obtain a constant output light.
  • FIG. 6 shows an example in which an optical fiber is used as a nonlinear optical material.
  • the optical fiber 12 is made of multi-component glass.
  • the above-mentioned fine particles (clusters) of copper or copper chloride are dispersed in the central core portion having a high refractive index, and have a nonlinear optical effect.
  • the light emitted from the input optical fiber 3 is input to the optical fiber 12 disposed via the matching oil.
  • the core of the optical fiber 12 is made of fine particle-dispersed glass and has a nonlinear optical effect, the refractive index of the core changes with the input light intensity.
  • the optical fiber 12 plays the role of a convex lens, and the emitted light is bent and focused at the focal point. Then, focusing on this focal point, with respect to the optical axis And radiate almost symmetrically in the radial direction and pass through an aperture 12 arranged on the same optical axis. As described with reference to FIG. 1, the aperture 12 is configured to allow only light within a certain radius to pass through the light spread around the optical axis.
  • the radius of the aperture 2 is optimally set together with the parameters described above, so that the output light intensity is constant irrespective of the light intensity, and input to the output optical fiber 4 ⁇ Using such a method As a result, light having a constant output intensity is output irrespective of the input light intensity.
  • the light is attenuated and output due to reflection in the nonlinear optical material and its input / output end faces, so that a constant output optical attenuator can be obtained.
  • FIG. 7 shows another example of an optical fiber using a nonlinear optical material for the core.
  • a material is used as the nonlinear optical material such that the second-order nonlinear refractive index n 2 of the formula (1) becomes negative at a certain wavelength.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

明 細 書 定出力光減衰器及び定出力光減衰方法
技術分野
本発明は、 入力する光の強度にかかわらず、 ほぼ一定の出力光強度が得ら れる光減衰器及び光減衰方法に関する。
背景技術
従来から、 光通信網や光機器における光強度の調整には、 減衰器が用いら れている。 特に、 最近の高密度波長多重 (D W D M ) 伝送システムの発展に 伴い、 減衰器の需要が急増している。 減衰器は、 具体的には、 光通信網にお ける中継器の光強度調整装置や光増幅器の分野に利用される。 また、 レーザ ダイオード(L D )等の各種光源等の光機器の光強度調整装置に利用される。 あるいは、 光検出器を高強度光から保護するための装置などに利用される。 光強度調整等に用いられる減衰器には、 現在、 固定型と可変型が知られて いる。
固定型減衰器は、 減衰フィルタを使用したり、 減衰ドーパントを添加した 光ファイバを使用して、 一定の減衰量が得られるもので、 減衰量のレベルに 応じて数種類のものが用意されている。 一方、 可変型減衰器には機械式と非 機械式がある。 機械式可変型減衰器には、 光を空間伝送させて減衰させる方 法を用いたタイプや、 光路途中に可動式の減衰フィルタを揷入する方法を用 いたタイプ、 光軸合わせされた光ファイバを微動させて軸ずれを起こさせて 減衰させるタイプ等がある。
また、 非機械式の可変型減衰器には、 ファラデー効果型、 導波路型、 熱光 学効果を利用したポリマー導波路型、 マッハツエンダー導波路型等がある。
ところで、 上記のような従来の技術には、 次のような解決すべき課題があ つた。
例えば光通信網で工事が行われて、 伝送路の光強度が変化した場合には、 減衰器の減衰量を、 伝送路に適合するように変更しなければならない。 しか しながら、固定型減衰器は減衰量が一定だから、必要な減衰量を得るために、 他の適切な減衰量の減衰器と交換しなければならない。 これでは、 伝送路の 急激な光強度の変動に迅速に対応できないという問題点があった。
それに対して、 可変型減衰器は上記のような固定型減衰器に見られるよう な問題はない。 しかしながら、 現在用いられている可変型減衰器は電気的な 制御を必要とするため、 電力を消費する。 また、 使用時に発熱が見られる、 さらに、 減衰量制御のためのドライバーが必要なため、 ドライバ一を組み込 んだ制御装置の分だけ、 装置が大型化する等の問題点があった。
本発明は、 電気的な制御を必要とせず、 入力光強度によらず、 常に一定の 出力光強度が得られる減衰器及び減衰方法を提供しようとするものである。 発明の開示
本発明の定出力光減衰器は、 屈折率が入力する光の強度に依存して変化す る非線形光学材料と、 この非線形光学材料の出力光を受け入れる光軸上に配 置されて光軸を中心とする一定の半径の光のみを通過させるアパーチャ一 とを備えている。 そのため、 本発明の減衰器を用いた減衰方法では、 入力す る光の強度によらず、 常に一定の出力光強度を得ることができる。 この減衰 器及び減衰方法に関連する各発明はそれぞれ次のような手段により発明の 目的を達成する。
( 1 ) 入力する光の強度に依存して屈折率が変化する非線形光学材料と、 この非線形光学材料の出力光を受け入れる光軸上に配置されて、前記出力光 のうち、 前記非線形光学材料の光軸を中心とする一定の半径の光のみを通過 させて出力するアパーチャ一とを備えたことを特徴とする定出力光減衰器。
( 2 ) 前記非線形光学材料は、 微粒子分散ガラス、 光学セラミックス若し くは有機高分子材料から選ばれたことを特徴とする ( 1 ) 記載の定出力光減
( 3 ) 前記非線形光学材料は光の入射側の端面が光軸に対して垂直であり 光の出射側の端面が光軸に対して所定の角度だけ傾斜していることを特徴 とする ( 1 ) 記載の定出力光減衰器。
(4 ) 前記非線形光学材料の入力側の光軸上に凸レンズが配置されている ことを特徴とする ( 1 ) 記載の定出力光減衰器。
(5) 前記非線形光学材料の入力側にス リ ッ トが配置され、 このスリ ッ ト は長軸の中心部を前記光軸からずらした位置に設置されていることを特徴 とする ( 1 ) 記載の定出力光減衰器。
(6) 前記非線形光学材料の入力側に凸レンズとスリ ッ トが配置され、 前 記凸レンズは前記光軸上に、 前記スリ ッ トは長軸の中心部を前記光軸からず らした位置に設置されていることを特徴とする( 1 )記載の定出力光減衰器。
( 7) 前記非線形光学材料は、 コアが非線形光学効果を有する光ファイバ からなることを特徴とする ( 1 ) 記載の定出力光減衰器。
(8 ) 前記コアは微粒子分散ガラスからなることを特徴とする ( 7) 記載 の定出力光減衰器。
(9) 前記コアは 2次の非線形屈折率が波長依存性を有する材料からなる ことを特徴とする (7) 記載の定出力光減衰器。
( 1 0) 前記コアは 2次の非線形屈折率が正である材料からなることを特 徴とする (9) 記載の定出力光減衰器。
( 1 1 ) 前記コアは 2次の非線形屈折率が負である材料からなることを特 徴とする (9) 記載の定出力光減衰器。 '
( 1 2) 入力すべき光を屈折率が前記入力光の強度に依存して変化する非 線形光学材料に通過させて出力し、 前記非線形光学材料の出力光を受け入れ る光軸上に配置されて、 前記出力光のうち、 前記非線形光学材料の光軸を中 心とする一定の半径の光のみを通過させて出力するアパーチャ一によ り減 衰させて定出力光を得ることを特徴とする定出力光減衰方法。
( 1 3) 前記非線形光学材料は、 微粒子分散ガラス、 光学セラ ミ ックス若 しくは有機高分子材料から選ばれたものからなることを特徴とする ( 1 2) 記載の定出力光減衰方法。
( 1 4) 前記非線形光学材料は、 光の入射側の端面が光軸に対して垂直で あり、 光の出射側の端面が光軸に対して所定の角度だけ傾斜していることを 特徴とする ( 1 2) 記載の定出力光減衰方法。
( 1 5) 前記非線形光学材料の入力側の光軸上に配置した凸レンズを通し た後に前記入力光を前記非線形光学材料に通過させることを特徴とする ( 1 2) 記載の定出力光減衰方法。
( 1 6) 前記非線形光学材料の入力側に長軸の中心部を前記光軸からずら した位置にスリ ッ トを配置し、 このスリ ッ トを通した後に前記入力光を前記 非線形光学材料に通過させることを特徴とする ( 1 2) 記載の定出力光減衰 方法。
( 1 7) 前記非線形光学材料の入力側の光軸上に凸レンズを、 また長軸の 中心部を前記光軸からずらした位置にスリ ッ トを配置し、 前記凸レンズとス リ ッ トを通した後に前記入力光を前記非線形光学材料に通過させることを 特徴とする ( 1 2) 記載の定出力光減衰方法。
( 1 8) 前記非線形光学材料は、 コアが非線形光学効果を有する光フアイ バからなることを特徴とする ( 1 2) 記載の定出力光減衰方法。
( 1 9) 前記コアは微粒子分散ガラスからなることを特徴とする ( 1 8) 記載の定出力光減衰方法。
(2 0) 前記コアは 2次の非線形屈折率が波長依存性を有する材料からな ることを特徴とする ( 1 8) 記載の定出力光減衰方法。
(2 1 ) 前記コアは 2次の非線形屈折率が正である材料からなることを特 徴とする (2 0) 記載の定出力光減衰方法。
(2 2) 前記コアは 2次の非線形屈折率が負である材料からなることを特 徴とする (2 0) 記載の定出力光減衰方法。
図面の簡単な説明
図 1は本発明の一実施例を表す光ファイバ端部と光減衰器の関係を示す 縦断面図である。
図 2は本発明による光減衰器の特性を表す説明図である。
図 3は本発明の他の実施例を表す光ファイバ端部と光減衰器の関係を示 す縦断面図である。
図 4は本発明のさらに他の実施例を表す光ファイバ端部と光減衰器の関 係を示す縦断面図である。
図 5は本発明のさらに他の実施例を表す光フアイバ端部と光減衰器の関 係を示す縦断面図である。
図 6は本発明のさらに他の実施例を表す光ファイバ端部と光減衰器の関 係を示す縦断面図である。
図 7は本発明のさらに他の実施例を表す光ファイバ端部と光減衰器の関 係を示す縦断面図である。
発明を実施するための最良の形態
図 1は本発明の一実施例を表す光ファイバ端部と光減衰器の関係を示 す縦断面図である。
図 1において、 1は非線形光学材料である。 2はアパーチャ一である。 こ れらは入力用光ファィバ 3及び出力用光ファイバ 4 と同一光軸上に配置さ れている。 入力用光ファイバ 3から出力された光は、 非線形光学材料 1に入 力し、 非線形光学材料 1 を通過する。 非線形光学材料 1を通過した光は、 光 軸を中心として半径方向に広がる。 アパーチャ一 2は、 半径方向に広がった 光のうち、 一定半径内の光のみを通過させる。 アパーチャ一 2を通過した光 は、 出力用光ファイバ 4に入力される。 この時、 後記する種々のパラメ一タ を最適化すると、出力用光ファイバ 4から、一定の強度の出力光が得られる。 本発明の目的は、 前記したように、 入力する光の強度によらず、 常にほぼ 一定の出力光強度が得られる光減衰器及び光減衰方法を提供するものであ る。 本発明は、 非線形光学材料とアパーチャ一との組み合わせによりその目 的を達成している。 非線形光学材料 1は入力光強度に依存して屈折率が変化する物質で、 その 屈折率は以下の式で表される。
n = n。+ n 2 I E | 2
ここで、 n。は光強度に依存しない屈折率、 n 2は 2次の非線形屈折率、 E は光の電場強度を表す。
図 1 ( a ) のように、 入力光強度が弱い場合には、 前記した式の第 2項の 影響が無視できるから、 非線形光学材料 1は単なる屈折率が一定の物質とな る。 入力用光ファイバ 3から出力された平行光線は、 そのまま非線形光学材 料 1を通過して、 出力用光ファイバに入射する。 従って、 非線形光学材料 1 中の光の減衰を無視すれば、入力用光ファイバ 3から出力された平行光線は. 出力用光ファイバに、 ほとんど減衰しない状態で入射する。
一方、 図 1 ( b ) のように、 入力光強度が強くなるに従い、 前記した式の 第 2項の影響が大きくなる。 即ち、 非線形光学材料 1は入力光強度に依存し て屈折率が変化するから、 非線形光学材料 1に入力した光は、 入力光強度が 強くなると、 曲げられて出力される。 この時非線形光学材料 1は凸レンズの 役割を果たす。 非線形光学材料 1から出力された光は、 非線形光学材料 1 と アパーチャ一 2 との間で焦点を結ぶ。 その後、 この光は、 その焦点を起点と してほぼ放射状に半径方向に広がる。
ところが、 外側に広がった部分の光はアパーチャ一 2により遮られる。 故 に、 アパーチャ一 2によって制限された、 光軸を中心とした一定の半径内を 通過した一部の光だけが、 出力用光ファイバに入射する。 従って、 入力光強 度が強い場合には、 出力用光ファイバに入射する光の光量が減少する。 これ により、 入力用光ファイバ 3から出力された光は、 自動的に減衰して出力用 光ファイバに入射することになる。
上記のような動作によって、 入力光強度が強くなればなるほど減衰量も大 きくなる。 なお、 ここで言うアパーチャ一は、 光軸を中心にした円形の窓を 有するもので、 半径方向にみたとき、 一定の太さの光ビームを通過させ、 こ の半径以上に広がった光を遮る機能を有するものである。
本実施例で用いられる非線形光学材料には、 例えば銅や塩化銅の微粒子
(クラスタ) が分散された微粒子分散ガラス、 P L Z T (鉛とランタンの酸 化物とジルコニウムとチタンの酸化物の固溶体) 等の光学セラミ ックス、 あ るいはポリジアセチレン等の有機高分子材料などが適している。
図 2は、 非線形光学材料とアパーチャ一との距離 Lを種々変えた場合の、 入力光強度と出力光強度の関係を表した図である。 このときの非線形光学材 料は、 屈折率 η。= 1 · 5、 2次の非線形屈折率 η2= 1. 8 X 1 0一8 c m2 /w a t t、 厚さ t = 2 O mmのものである。 また、 アパーチャ一は、 開口 径 φ = 1 と した。 この場合において、 入力用光ファイバ 3と非線形光 学材料 1の端面間には、 光学的整合性を持たせるためにマツチングオイルを 充填した。 ここで用いた非線形光学材料は銅微粒子分散アル力リケィ酸塩ガ ラスである。
図 2は、 L = 1 2. 5の場合に、 入力光強度によらず出力光強度が一定で あることを示している。 このよ うに、 2次の非線形屈折率 n2、 非線形光学 材料の厚さ t;、 非線形光学材料とアパーチャ一間の距離し、 アパーチャ一の 開口径 Φ等のパラメータを最適に組み合わせる方法により、 入力光強度に依 存しない一定の出力光強度の光減衰器を得ることができる。
図 3は本発明の他の実施例を表す光ファイバ端部と光減衰器の関係を示 す縦断面図である。
本実施例では図 3 (b ) に示すように、 非線形光学材料 1 1は、 入力用光 ファイバ 3からの光の入射側の端面が光軸に対して垂直であり、 光の出射側 の端面が光軸に垂直な面に対して所定の角度 Θだけ傾斜した形状となって いる。 ここで Θは、 0° < 0 < 9 0° の範囲とする。 非線形光学材料 1 1の 内部からアパーチャ一 2に向かって外に出力する光は、 角度 Θだけ傾斜した 面で、 非線形光学材料 1 1の屈折率に依存した角度だけ屈折する。 角度 0が ゼロの場合には、 非線形光学材料 1 1の内部から外に出力する光ビームは、 その光軸を中心に軸対象なものになる。
一方、 角度 0だけ傾斜した面から外に出力する光ビームは、 図の ( a ) に 示すように、 光軸に対して非対称なものになる。 これにより、 図 1の実施例 とは異なる応答特性を持つ定出力減衰器が得られる。
図 3 ( a ) は入力光強度が強い場合の例を示したものである。 入力光強度 が、 たとえ図 1 ( b ) より強い場合であっても、 非線形光学材料 1 1の内部 から外に出力する光ビームは大きく曲げられるため、 アパーチャ一 2で遮ら れる光の割合が大きい。 出力用光ファイバにはアパーチャ一 2において設定 された一定の半径内を通過した一部の光しか入射することができない。
即ち、 本実施例では、 2次の非線形屈折率 n 2、 非線形光学材料の厚さ t、 非線形光学材料の出射側端面の角度 0、非線形光学材料とアパーチャ一間の 距離し、 アパーチャ一の開口径 φ等のパラメータを最適に組み合わせること により、 入力光強度に依存しない一定の出力光強度の光減衰器を得ることが できる。
図 4はさらに他の実施例を表す光ファイバ端部と光減衰器の関係を示す 縦断面図である。
図 4 ( a ) に示す実施例では、 図 3に示した形状の非線形光学材料 1 1を 用いる。 さらに、 入力用光ファイバ 3 と非線形光学材料 1 1 との間の光軸上 に、 凸レンズ 5を配置した。 図のように凸レンズを配置して、 光軸と、 非線 形光学材料 1 1の角度 0を有する端面との交点に、 光ビームが集光するよう に、 凸レンズの屈折率や厚さ等を定める。 このようにすると、 角度 0を有す る端面への入力光が凸レンズにより絞られ、 式 ( 1 ) の I E I 2の項の値が 大きくなり、 光の減衰量が大きくなる。
次に図 4 ( b ) にスリ ッ トを配置した場合を説明する。
スリ ッ ト 6は、 光が通過する部分の形状が長方形になっている。 4 ( c ) に示すように、 この長方形の長軸の中心部 c (波線で表示) を、 入力光から 出力光に至る一点鎖線で示す光軸に対して、 ずらして配置する。 このよ うにすると、 入力光の強度分布が、 スリ ツ トを通過した後に、 正規 分布に近い形状から分布の左右どちらかの裾部分が欠けた非対称の形状に 変化する。 このような分布形状の光が非線形光学材料 1 1に入射して大きく 曲げられた後でアパーチャ一 2を通過する。 図の例では、 ス リ ッ トによって 裾部分が欠けた箇所がアパーチャ一を通過する。 スリ ツ トによって裾部分が 欠けていない箇所がアパーチャ一により遮られる。 このように、 入力光の強 度分布をスリ ッ トによって非対称の形状にした場合には、 スリ ッ トを用いな い場合に比べて応答性が急峻な減衰効果が得られることになる。
なお、 非線形光学材料、 凸レンズ、 スリ ツ 卜の組み合わせは本実施例に限 定されない。
図 5は非線形光学材料、 凸レンズ、 スリ ッ トを組み合わせて配置した実施 例を示している。 非線形光学材料は図 1に示すような形状でもよいし、 凸レ ンズ、 スリ ッ トは図 4のようにそれぞれ単独に配置してもよく、 また本図に 示すようにそれぞれを組み合わせて配置してもかまわない。 要するに一定の 出力光を得るために最適な組み合わせを選択すればよい。
図 6は非線形光学材料として光ファイバを用いた例である。
図 6において、 光ファイバ 1 2は、 多成分系ガラスから構成されている。 中心の屈折率の高いコア部には、 前記した銅や塩化銅の微粒子 (クラスタ) が分散され、 非線形光学効果を有する。 入力用光ファイバ 3から出射された 光は、 マッチングオイルを介して配された光ファイバ 1 2に入力される。 光 ファイバ 1 2は、 前記したようにコア部が微粒子分散ガラスで構成され、 非 線形光学効果を有しているために、 コア部の屈折率は入力光強度によって変 化する。
本実施例に用いられている光ファイバの場合は、 式 ( 1 ) の 2次の非線形 屈折率 n 2が波長依存性を有しており、 ある波長で正となるような非線形光 学材料を用いている。 従って光ファイバ 1 2が凸レンズの役割を果たし、 出 射した光は曲げられ、 焦点に集まる。 その後この焦点を中心に、 光軸に対し てほぼ対称に半径方向に広がって、 同一光軸上に配置されたアパーチャ一 2 を通過する。 アパーチャ一 2は図 1で説明したように、 光軸を中心と して広 がった光のうち一定半径内の光のみを通過できるよ うにしてある。 ァパーチ ヤー 2の半径を前記したパラメータと共に最適に設定して、 光強度にかかわ らず出力光強度が一定になるよ うにして、 出力用光ファイバ 4に入力させる < このような方法を用いることにより、入力光強度によらない一定出力強度 の光が出力される。 非線形光学材料中とその入出力端面での反射等により、 光は減衰して出力されるので、 定出力光減衰器を得ることできる。
ここで、 非, 形光学材料と して光ファイバを用いると、 その長さを比較的 自由に選定できる。 また、 プリズムのような素子に比べて非線形相互作用長 を長く取ることができる。 従って、 実質的に大きい非線形光学効果が得られ るという効果がある。 また、 図 1あるいは図 3等に示したような非線形光学 材料は、 光が入出射する端面を光学的に研磨する必要があるが、 光ファイバ の場合にはその必要性がなく、 工程的にも簡略化できるという利点もある。 図 7はコアに非線形光学材料を用いた光ファイバの他の例を示したもの である。
本実施例では図 6の例と異なり、 非線形光学材料として式 ( 1 ) の 2次の 非線形屈折率 n 2が、 ある波長で負となるような材料を用いている。
図 7において、 非線形光学特性を有する光ファイバ 1 3のコアに、 式 ( 1 ) の n 2が負である非線形光学材料を用いると、 光強度が強くなるにつれてコ ァとクラッ ドの屈折率差 Δが小さくなる。 これにより、 コアに閉じこめられ ていた光がクラッ ドに漏れるよ うになるため、 伝送光の減衰量が大きくなる c そして、 光ファイバ 1 3から出力した光の一部が、 光軸上に配置したァパー チヤ一により遮られるために、 一定出力の強度の光が得られるように制御で きる。

Claims

請 求 の 範 囲
1 . 入力する光の強度に依存して屈折率が変化する非線形光学材料と、 こ の非線形光学材料の出力光を受け入れる光軸上に配置されて、 前記出力光の うち、 前記非線形光学材料の光軸を中心とする一定の半径の光のみを通過さ せて出力するアパーチャ一とを備えたことを特徴とする定出力光減衰器。
2 . 前記非線形光学材料は、 微粒子分散ガラス、 光学セラ ミ ックス若しく は有機高分子材料から選ばれたものからなることを特徴とする請求項 1記 載の定出力光減衰器。
3 . 前記非線形光学材料は光の入射側の端面が光軸に対して垂直であり、 光の出射側の端面が光軸に対して所定の角度だけ傾斜していることを特徴 とする請求項 1記載の定出力光減衰器。
4 . 前記非線形光学材料の入力側の光軸上に凸レンズが配置されているこ とを特徴とする請求項 1記載の定出力光減衰器。
5 . 前記非線形光学材料の入力側にス リ ッ トが配置され、 このスリ ッ ト は長軸の中心部を前記光軸からずらした位置に設置されていることを特徴 とする請求項 1記載の定出力光減衰器。
6 . 前記非線形光学材料の入力側に凸レンズとスリ ツ トが配置され、 前記 凸レンズは前記光軸上に、 前記スリ ッ トは長軸の中心部を前記光軸からずら した位置に設置されていることを特徴とする請求項 1記載の定出力光減衰
¾=。
7 . 前記非線形光学材料は、 コアが非線形光学効果を有する光ファイバか らなることを特徴とする請求項 1記載の定出力光減衰器。
8 . 前記コアは微粒子分散ガラスからなることを特徴とする請求項 7記載 の定出力光減衰器。
9 . 前記コアは 2次の非線形屈折率が波長依存性を有する材料からなるこ とを特徴とする請求項 7記載の定出力光減衰器。
1 0 . 前記コアは 2次の非線形屈折率が正である材料からなることを特徴 とする請求項 9記載の定出力光減衰器。
1 1 . 前記コアは 2次の非線形屈折率が負である材料からなることを特徴 とする請求項 9記載の定出力光減衰器。
1 2 . 入力すべき光を屈折率が前記入力光の強度に依存して変化する非線 形光学材料に通過させて出力し、 前記非線形光学材料の出力光を受け入れる 光軸上に配置されて、 前記出力光のうち、 前記非線形光学材料の光軸を中心 とする一定の半径の光のみを通過させて出力するァパ一チヤ一により減衰 させて定出力光を得ることを特徴とする定出力光減衰方法。
1 3 . 前記非線形光学材料は、 微粒子分散ガラス、 光学セラミ ックス若し くは有機高分子材料から選ばれたことを特徴とする請求項 1 2記載の定出 力光減衰方法。
1 4 . 前記非線形光学材料は、 光の入射側の端面が光軸に対して垂直であ り、 光の出射側の端面が光軸に対して所定の角度だけ傾斜していることを特 徴とする請求項 1 2記載の定出力光減衰方法。
1 5 . 前記非線形光学材料の入力側の光軸上に配置した凸レンズを通した 後に前記入力光を前記非線形光学材料に通過させることを特徴とする請求 項 1 2記載の定出力光減衰方法。
1 6 . 前記非線形光学材料の入力側に長軸の中心部を前記光軸からずらし た位置にスリ ッ トを配置し、 このスリ ッ トを通した後に前記入力光を前記非 線形光学材料に通過させることを特徴とする請求項 1 2記載の定出力光減 衰方法。
1 7 . 前記非線形光学材料の入力側の光軸上に凸レンズを、 また長軸の中 心部が前記光軸からずらした位置にスリ ッ トを配置し、 前記凸レンズとスリ ッ トを通した後に前記入力光を前記非線形光学材料に通過させることを特 徴とする請求項 1 2記載の定出力光減衰方法。
1 8 . 前記非線形光学材料は、 コアが非線形光学効果を有する光ファイバ からなることを特徴とする請求項 1 2記載の定出力光減衰方法。
1 9 . 前記コアは微粒子分散ガラスからなることを特徴とする請求項 1 8 記載の定出力光減衰方法。
2 0 . 前記コアは 2次の非線形屈折率が波長依存性を有する材料からなる ことを特徴とする請求項 1 8記載の定出力光減衰方法。
2 1 . 前記コアは 2次の非線形屈折率が正である材料からなることを特徴 とする請求項 2 0記載の定出力光減衰方法。
2 2 . 前記コアは 2次の非線形屈折率が負である材料からなることを特徴 とする請求項 2 0記載の定出力光減衰方法。
PCT/JP2001/008084 2000-09-21 2001-09-18 Attenuateur de lumiere a eclairage constant et procede d'attenuation de lumiere a eclairage constant WO2002025367A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/380,833 US6879436B2 (en) 2000-09-21 2001-09-18 Constant output light attenuator and constant output light attenuating method
JP2002529307A JPWO2002025367A1 (ja) 2000-09-21 2001-09-18 定出力光減衰器及び定出力光減衰方法
CA002418047A CA2418047A1 (en) 2000-09-21 2001-09-18 Constant output light attenuator and constant output light attenuating method
EP01965686A EP1327905A4 (en) 2000-09-21 2001-09-18 DAMPER FOR CONSTANT OUTPUT LIGHT AND DAMPING PROCESS FOR CONSTANT OUTPUT LIGHT
AU2001286265A AU2001286265A1 (en) 2000-09-21 2001-09-18 Constant output light attenuator and constant output light attenuating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-287285 2000-09-21
JP2000287285 2000-09-21

Publications (1)

Publication Number Publication Date
WO2002025367A1 true WO2002025367A1 (fr) 2002-03-28

Family

ID=18771059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008084 WO2002025367A1 (fr) 2000-09-21 2001-09-18 Attenuateur de lumiere a eclairage constant et procede d'attenuation de lumiere a eclairage constant

Country Status (9)

Country Link
US (1) US6879436B2 (ja)
EP (1) EP1327905A4 (ja)
JP (1) JPWO2002025367A1 (ja)
KR (1) KR20030036255A (ja)
CN (1) CN1471657A (ja)
AU (1) AU2001286265A1 (ja)
CA (1) CA2418047A1 (ja)
TW (1) TWI245938B (ja)
WO (1) WO2002025367A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212998A (ja) * 2002-12-26 2004-07-29 Fujitsu Ltd 可変光減衰器
JP2018502435A (ja) * 2014-09-19 2018-01-25 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh ダイオードレーザー

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005075A1 (en) * 2005-06-17 2007-01-04 Bogert Roy B Telescoping plunger assembly
KR100728920B1 (ko) 2005-07-26 2007-06-14 (주)옵토네스트 전광식 가변형 광감쇠기
DE102009029376A1 (de) * 2009-09-11 2011-05-12 Robert Bosch Gmbh Photonendetektor mit paralysierbarem Photonen-empfindlichem Element, insbesondere SPAD, sowie Entfernungsmessgerät mit solchem Photonendetektor
JP6277701B2 (ja) 2013-12-16 2018-02-14 富士通株式会社 光リミッタ、光論理回路、コンパレータ、デジタル変換器、光伝送装置および光処理方法
CN103954355B (zh) * 2014-05-15 2016-04-20 南京工程学院 一种太阳能聚光碟用跟踪传感器
CN104133290A (zh) * 2014-08-21 2014-11-05 刘涛 光学衰减器
WO2022010422A1 (en) * 2020-07-09 2022-01-13 National University Of Singapore Method and device for optical power limiter
WO2024015854A1 (en) * 2022-07-15 2024-01-18 Electro-Optics Technology, Incorporated Laser amplification with passive peak-power filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148242A (ja) * 1986-12-12 1988-06-21 Nec Corp 光制御方法
US4846561A (en) * 1988-06-21 1989-07-11 The United States Of America As Represented By The Secretary Of The Army Monolithic optical power limiter based on two-photon absorption

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776677A (en) 1983-09-29 1988-10-11 Honeywell Inc. Means and method for reducing the amount of light irradiating an object
US5317454A (en) 1984-08-30 1994-05-31 The United States Of America As Represented By The Secretary Of The Army Broadband self-activated optical power limiter system and device
US5348688A (en) 1984-12-17 1994-09-20 The United States Of America As Represented By The Secretary Of The Army Optical power limiters and materials therein
US4952016A (en) 1988-01-05 1990-08-28 British Telecommunications Public Limited Company Optical power limiter
US4973125A (en) 1989-08-25 1990-11-27 National Research Council Of Canada All optical self limiter for fiber optics
US5673140A (en) * 1992-09-08 1997-09-30 British Telecommunications Public Limited Company Non-linear semiconductor optical device
US6134372A (en) 1997-10-01 2000-10-17 Sumitomo Osaka Cement Co., Ltd. Light intensity attenuator and attenuating method
JP2933919B1 (ja) * 1998-08-04 1999-08-16 サンテック株式会社 光アッテネータ及び光アッテネータモジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148242A (ja) * 1986-12-12 1988-06-21 Nec Corp 光制御方法
US4846561A (en) * 1988-06-21 1989-07-11 The United States Of America As Represented By The Secretary Of The Army Monolithic optical power limiter based on two-photon absorption

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.J. HAGAN ET AL.: "Self-protecting semiconductor optical limiters", OPTICSLETTERS, vol. 13, no. 4, April 1988 (1988-04-01), pages 315 - 317, XP002949944 *
S. COURIS, M. KONSTANTAKI, E. KOUDOUMAS: "Characterization of nonlinear optical materials for photonic applications, unconventional optical elements for information storage", PROCESSING AND COMMUNICATIONS, 2000, pages 143 - 154, XP002949943 *
See also references of EP1327905A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212998A (ja) * 2002-12-26 2004-07-29 Fujitsu Ltd 可変光減衰器
JP4557543B2 (ja) * 2002-12-26 2010-10-06 富士通株式会社 可変光減衰器
JP2018502435A (ja) * 2014-09-19 2018-01-25 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh ダイオードレーザー

Also Published As

Publication number Publication date
JPWO2002025367A1 (ja) 2004-01-29
US6879436B2 (en) 2005-04-12
EP1327905A1 (en) 2003-07-16
AU2001286265A1 (en) 2002-04-02
CA2418047A1 (en) 2003-01-31
CN1471657A (zh) 2004-01-28
KR20030036255A (ko) 2003-05-09
US20040033045A1 (en) 2004-02-19
EP1327905A4 (en) 2006-03-22
TWI245938B (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US7224881B2 (en) Variable optical attenuator
US7068890B2 (en) Optical receiver with high dynamic range
US6898348B2 (en) Spectral power equalizer for wavelength-multiplexed optical fiber communication links
US7920763B1 (en) Mode field expanded fiber collimator
AU751728B2 (en) Optical attenuator using isolator and optical communications system including the same
US7295748B2 (en) Variable optical attenuator with wavelength dependent loss compensation
US7209284B2 (en) Optical amplifier using reflection-type variable optical attenuator for feedback
CN101222115A (zh) 半导体激光器模块
JP2003515758A (ja) 相当大きな断面積の光学素子に溶着接続された光ファイバを使用するコリメータの製造
CN100529816C (zh) 聚焦光纤
WO2002025367A1 (fr) Attenuateur de lumiere a eclairage constant et procede d&#39;attenuation de lumiere a eclairage constant
US20100166368A1 (en) Grating like optical limiter
US6915061B2 (en) Variable optical attenuator with MEMS devices
US7522808B2 (en) Variable optical attenuator
US20020097977A1 (en) Variable optical attenuator
CN110832373B (zh) 用于监视光学系统的输出的装置
US10481332B2 (en) Free space variable optical attenuator with integrated input/output power monitors
US6496620B1 (en) Method and apparatus for improving power handling capabilities of polymer fibers
JP6540310B2 (ja) 光ファイバ端末
KR101674005B1 (ko) 단파장 양방향 광송수신모듈
US20050068645A1 (en) Reflective adjustable optical deflector and optical device employing the same
US20030108312A1 (en) Fiber optical devices with high power handling capability
CN105403953A (zh) 波长相关损失补偿的可调光衰减器
JPH09145928A (ja) 光減衰器
WO2012028466A1 (en) Single photon emission system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027018016

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2418047

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002529307

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10380833

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001965686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018179045

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027018016

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001965686

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001965686

Country of ref document: EP