WO2002021196A1 - Optical signal transmitter and optical signal transmitting method - Google Patents

Optical signal transmitter and optical signal transmitting method Download PDF

Info

Publication number
WO2002021196A1
WO2002021196A1 PCT/JP2001/007698 JP0107698W WO0221196A1 WO 2002021196 A1 WO2002021196 A1 WO 2002021196A1 JP 0107698 W JP0107698 W JP 0107698W WO 0221196 A1 WO0221196 A1 WO 0221196A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
polarization
optical signal
path
optical path
Prior art date
Application number
PCT/JP2001/007698
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Nishioka
Toshio Hasegawa
Hirokazu Ishizuka
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to AU2001284435A priority Critical patent/AU2001284435B2/en
Priority to KR1020037003348A priority patent/KR100567691B1/ko
Priority to CA002420447A priority patent/CA2420447A1/en
Priority to AU8443501A priority patent/AU8443501A/xx
Priority to US10/363,817 priority patent/US20040005056A1/en
Priority to EP01963439A priority patent/EP1324101A4/en
Publication of WO2002021196A1 publication Critical patent/WO2002021196A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Definitions

  • the present invention relates to, for example, a transmission device in a Faraday mirror type quantum cryptography device.
  • Figure 7 shows, for example, G. R ibordy, et.a 1.
  • Quantum CRYP TOGRAPHY DEVICE AND METHOD the quantum cryptography transmission device 100 includes a power plug 1 connected to the communication optical fiber 110, and an optical pulse input from the communication optical fiber 110 to the power blur 1.
  • Photodetector 2 which detects the light source
  • polarization controller 3 which adjusts the polarization mode of the input light pulse, attenuates the intensity of the light pulse, and changes the intensity of the light pulse output from the quantum cryptographic device to the quantum level (per pulse).
  • Attenuator 4 which turns the photons into 0.1), reflects the input pulse by rotating its plane of polarization by 90 degrees, thus TE polarization Input pulse is reflected as a TM-polarized optical pulse, and the TM-polarized input pulse is reflected as a TE-polarized optical pulse.
  • Frearaday mirror 7 and phase modulator 8 that applies phase modulation to the passing pulse.
  • a control board 9 which controls the polarization mode of the input light pulse, attenuates the intensity of the light pulse, and changes the intensity of the light pulse output from the quantum cryptographic device to the quantum level (per pulse).
  • Attenuator 4 which turns the photons into 0.1), reflects the input pulse by rotating its plane of polarization by
  • TE polarization (TRANSV ER SEE LECTR IC POLAR I ZAT I ON WAVE) is a light wave in which the direction of vibration of the electric vector is perpendicular to the plane of incidence and the direction of vibration of the magnetic vector is within the plane of incidence.
  • TM polarization (TRANS VER SE MAGNET IC POLAR I ZAT I ON WAVE
  • the quantum cryptography receiver 200 includes a power blur 51, a photon detector 52, a photon detector 53, a polarization controller 54, a polarization controller 55, a polarization beam splitter 56, a circular modulator 57, and a phase modulator 58. , A control plate 59, a laser 60, a short optical path 61, and a long optical path 62.
  • the quantum cryptography receiver 200 of FIG. 7 generates an optical pulse P by the laser 60.
  • the optical pulse P is split by the coupler 51 into a short optical path 61 and a long optical path 62.
  • the polarization of the light pulse in the long optical path 62 is adjusted by the polarization controller 55, passed through the phase modulator 58, and output to the communication optical fiber 110 by the polarization beam splitter 56.
  • the optical pulse on the short optical path 61 is also output to the communication optical fiber 110. Since the long optical path 62 has a longer path than the short optical path 61, two different pulses P1 and P2 are output to the communication optical fiber 110. Thus, the optical pulses P 1 and P 2 having two different polarization modes are output to the communication optical fiber 110.
  • Light pulses P1 and P2 having two different polarization modes are input to the quantum cryptographic transmission device 100 at different timings through the communication optical fiber 110.
  • the optical pulses P 1 and P 2 input via the communication optical fiber 110 are each split into two by the coupler 1, and one of the optical pulses P 1 and P 2 split by the coupler 1 is an optical pulse. Detected by detector 2. According to the optical pulse detection timing of the optical detector 2, the phase modulator 8 Modulation is applied only to the light pulse P2 of 1, P2.
  • the other optical pulses P 1 and P 2 split by the coupler 1 are adjusted in polarization plane by the polarization controller 3 so that the phase modulator 8 operates optimally.
  • the first optical pulse P1 of the two optical pulses P1 and P2 input to the quantum cryptography transmitter 100 is shifted at a shifted timing so that it is in the TE polarization mode. Is done. Therefore, the second light pulse P 2 is in the TM polarization mode.
  • An optical pulse that passes through the polarization controller 3 and the attenuator 4 and travels to the Faraday mirror 7 passes through the phase modulator 8 and is input to the Faraday mirror 7.
  • the optical pulse input to the Faraday mirror 7 is such that an optical pulse having a polarization mode of TE polarization is reflected as a TM-polarized optical pulse, and a TM-polarized optical pulse is reflected as a TE-polarized optical pulse. It is reflected.
  • the reflected light pulse passes through the phase modulator 8 again.
  • the phase modulator 8 is controlled to apply phase modulation only to the second optical path ⁇ 2 of the two optical paths ⁇ 1 and ⁇ 2 reflected by the Faraday mirror 7 and passing through the phase modulator 8.
  • the timing is adjusted by plate 9.
  • the optical pulse # 2 that has been subjected to the phase modulation is transmitted so as to reverse the optical path that has entered the communication optical fiber 110.
  • the two light pulses ⁇ 1 and ⁇ 2 that have passed through the phase modulator 8 after being reflected by the Faraday mirror 7 are directed to the attenuator 4.
  • the attenuator 4 reduces the intensity of the optical pulse until the intensity of the optical pulse that has been phase-modulated by the phase modulator 8 reaches a quantum level (0.1 photons per pulse). Thereafter, the optical pulse passes through the polarization controller 3 and the power blur 1 in this order, and is transmitted to the communication optical fiber 110.
  • L 4 shown in FIG. 8 represents a loss in intensity of each optical pulse when the optical pulses P 1 and P 2 pass through the attenuator 4, and L 8 represents each loss when passing through the phase modulator 8. Represents the loss of light pulse intensity. Further, in FIG. 8, the loss that the optical pulses P 1 and P 2 receive when passing through each part is indicated by an arrow L.
  • the intensity of an optical pulse input from the communication optical fiber 110 is S
  • the TE polarization loss of the phase modulator 8 is L 8 (TE)
  • the TM polarization loss of the phase modulator 8 is L 8 (TM)
  • other losses are LZ, and the following values are assumed.
  • L Assuming that the total light intensity loss is L, L can be obtained by the following equation.
  • An optical signal transmitting apparatus receives an optical signal, forms an optical path of the optical signal, and transmits a first optical path for transmitting the optical signal;
  • First and second polarization beam splitters provided in the first optical path, for separating an optical signal from the first optical path;
  • the optical signal transmitting device further comprises:
  • the first optical path is used as a forward path and a return path of an optical signal
  • the second optical path is used as a forward path and a return path of an optical signal separated by the first and second polarization beam splitters.
  • the first optical path receives an optical signal having a TE-polarized optical pulse and a TM-polarized optical pulse,
  • the first and second polarization beam splitters separate the TE-polarized light pulses.
  • the phase modulator is characterized in that it applies phase modulation to an optical pulse of TE polarization.
  • An optical signal transmission method according to the present invention comprises:
  • the optical signal transmitting method includes a forward path and a return path for reciprocating the optical path by reflecting the optical signal,
  • the phase modulation step is performed in the return path step.
  • An optical signal transmitting apparatus receives an optical signal, forms an optical path of the optical signal, and transmits and receives an optical signal.
  • a polarizing beam splitter provided at an end of the transmission / reception optical path and separating an optical signal from the transmission / reception optical path;
  • Both ends are connected to the polarizing beam splitter, and a loop optical path serving as an optical path for recirculating the optical signal separated by the polarizing beam splitter to the polarizing beam splitter;
  • a phase modulator provided in the loop optical path to apply phase modulation to the optical signal; and a polarization mode converter provided in the loop optical path to change the polarization mode of the optical signal.
  • the polarization mode changer has a first 'slow force bra that changes the polarization mode by connecting the first axis and the slow axis of the polarization axis of the optical fiber,
  • the transmission and reception optical paths are used as the outward path and the return path of the optical signal
  • the loop optical path is characterized in that it is used as a forward path and a return path of the optical signal split by the polarization beam splitter. Further, the transmission / reception optical path receives an optical signal having a TE-polarized optical pulse and a TM-polarized optical pulse, and the polarization beam splitter separates the TE-polarized optical pulse and the TM-polarized optical pulse. The phase modulator applies phase modulation to the TE-polarized light pulse.
  • An optical signal transmitting method is characterized in that a TE polarization and a TM polarization are separated from an optical signal flowing through a transmission / reception optical path and having a TE polarization and a TM polarization and output to one end and the other end of the loop optical path.
  • the above optical signal transmission method includes: a forward path step of reciprocating an optical signal in a transmission / reception optical path; a return path step; and a recirculation step of flowing the optical signal through a loop optical path.
  • the phase modulation step is performed in a reflux step.
  • FIG. 1 is an optical system configuration diagram of a Faraday mirror type quantum cryptography transmission device according to a preferred embodiment of the present invention.
  • -FIG. 2 is an operation flowchart of FIG.
  • FIG. 3 is a diagram showing a state of a light pulse.
  • FIG. 4 is a diagram showing a time-series passing state of an optical pulse.
  • FIG. 5 is an optical system configuration diagram according to the second embodiment.
  • FIG. 6 is a configuration diagram of an optical system according to the second embodiment.
  • FIG. 7 is an overall configuration diagram of a conventional Faraday mirror type quantum cryptography device.
  • FIG. 8 is a state diagram of light pulses of a conventional Faraday mirror type quantum cryptography transmission device.
  • FIG. 9 is a configuration diagram of an optical system according to the third embodiment.
  • FIG. 10 is an operation flowchart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an optical system configuration diagram showing a quantum cryptography transmission device 100 in a Faraday mirror type quantum cryptography device.
  • the Faraday one-mirror type quantum cryptography transmission device uses two polarization beam splitters to make the forward and return paths of the optical path in the transmission device different.
  • a quantum cryptography transmission device 100 is a power detector 1 connected to a communication optical fiber 110, and an optical detection device for detecting an optical pulse input from the communication optical fiber 110 to the power fiber 1.
  • Device 2 a polarization controller 3 for adjusting the polarization mode of the input light pulse, attenuating the intensity of the light pulse, and changing the intensity of the light pulse output from the quantum encryption device to a quantum level (0.1 photons per pulse).
  • the attenuator 4 makes the light pulse according to its polarization mode, and the TE-polarized light pulse is automatically sent to the modulation light path 13 through the phase modulator 8 and to the bypass light path 11 to bypass the TM-polarized light pulse.
  • the optical path connecting the attenuator 4, the polarization beam splitter 5, the polarization beam splitter 6, and the Faraday mirror 7 is the first optical path R1.
  • An optical path connecting the polarization beam splitter 5, the phase modulator 8, and the polarization beam splitter 6 is a second optical path R2.
  • the second optical path R2 is arranged in parallel with the first optical path R1.
  • the phase modulator 8 is arranged on the second optical path R2.
  • Other configurations are the same as in FIG.
  • FIG. 2 is an operation flowchart of the quantum signal transmitter 100.
  • FIG. 3 is a state diagram of each part of the light pulse.
  • FIG. 4 is a diagram showing a time-series passing state of optical pulses in the bypass optical path 11 and the modulation optical path 13.
  • P, P 1 and P 2 indicate pulses.
  • the arrows of L 4, L 5, L 6, and L 8 at the top of each pulse indicate the attenuator 4, polarization beam splitter 5, polarization beam splitter 6, and phase modulator 8, respectively. This indicates that there is a loss of light intensity due to
  • optical pulses P 1 and P 2 having two different polarization modes are input to the quantum cryptography transmission device 100 of FIG. 1 at different timings through a communication optical fiber 110.
  • the optical pulses P 1 and P 2 input via the communication optical fiber 110 are each split into two by the coupler 1, and one of the optical pulses P 1 and P 2 split by the coupler 1 is a photodetector Detected by 2.
  • the phase modulator 8 modulates only the light pulse P2 of the light pulses P1 and P2 according to the light pulse detection timing of the light detector 2.
  • the other optical pulses P 1 and P 2 split by the coupler 1 are adjusted in polarization plane by the polarization controller 3 so that the phase modulator 8 operates optimally (S 2).
  • the first optical pulse P 1 out of the two optical pulses P 1 and P 2 input to the quantum cryptography transmission device 100 with the timing shifted is adjusted so as to be in the TE polarization mode. You. Therefore, the second light pulse is in the TM polarization mode.
  • the intensity of the light pulse is weakened by the attenuator 4 (S3).
  • An optical pulse passing through the polarization controller 3 and traveling toward the Faraday mirror 7 is output from the polarization beam splitter 5, and an optical pulse P 1 having a polarization mode of TE polarization passes through the modulation optical path 13 passing through the phase modulator 8.
  • the TM-polarized light pulse P2 is selected as the bypass optical path 11 directly to the polarization beam splitter 6 (S4).
  • the two light pulses P 1 and P 2 having passed through different optical paths are both merged by the polarization beam splitter 6 and input to the Faraday mirror 7 (S5).
  • the optical pulse input to the Faraday mirror 7 is reflected as a TM-polarized optical pulse P 1 for a TE-polarized optical pulse, and a TE-polarized optical pulse for a TE-polarized optical pulse P 2. It is reflected (S6).
  • the two light pulses P1 and P2 that have passed through such different optical paths are combined by the polarizing beam splitter 5 and travel to the attenuator 4 (S9).
  • the attenuator 4 attenuates the intensity of the optical pulse until the intensity of the optical pulse subjected to the phase modulation by the phase modulator 8 reaches a quantum level (0.1 photons per pulse) (S10). Thereafter, the optical pulse passes through the polarization controller 3 and the coupler 1 in this order, and is transmitted to the communication optical fiber 110 (S11).
  • the optical pulse passing through the bypass optical path 11 which is a part of the first optical path R1 is only the optical pulse of the TM polarization.
  • optical pulses passing through the modulated optical path 13 of the second optical path R2 are only TE polarized optical pulses.
  • the order in which these light pulses pass is the order of arrows A1, A2, and A3 in FIG. Arrows A4, A5, and A6 are arranged in this order.
  • the intensity of the optical pulse input from the communication optical fiber 110 is S
  • the intensity loss of the optical pulse by the polarization beam splitter 5 is L 5
  • the intensity loss of the optical pulse by the polarization beam splitter 6 is L 6.
  • the loss of the intensity of the optical pulse due to the phase modulator 8 is L8, and the other loss is LZ, and the following values are taken.
  • the other loss LZ includes the loss L4 of the intensity of the optical pulse due to the attenuator 4 in FIG. Also, in FIG. 4, the loss incurred when the light pulses Pl and P2 pass through each part is indicated by the arrow L.
  • L Assuming that the total light intensity loss is L, L can be obtained by the following equation.
  • the optical pulse incident on the transmitting device includes two optical pulses of the TE polarization and the TM polarization with respect to the phase modulator 8.
  • This optical pulse is reflected by the Faraday mirror 7 in which the TE polarization is converted into the TM polarization and the TM polarization is rotated into the TE polarization by rotating the polarization plane and output from the transmission device.
  • a single optical pulse passes through the phase modulator 8 in two states of TE polarization and TM polarization.
  • the phase modulator 8 has a low transmittance with respect to the TM polarization, and in the conventional configuration, the incident pulse is output with a reduction of, for example, 40 dB.
  • the polarization beam splitter 5 Using two polarization beam splitters 6, the TM-polarized light pulse bypasses the phase modulator 8. Only the TE polarized light pulse is passed through the phase modulator 8. Thus, the reduction of the incident pulse is suppressed to 30 dB, and an improvement of 10 dB in S / N ratio is achieved.
  • the optical path in the quantum cryptography transmitter is provided separately for the forward path and the return path by using the two polarization beam splitters 5 and 6, and the phase modulation is performed on one of the optical paths.
  • the Faraday-mirror type quantum cryptography transmission device characterized by installing the device 8 has been described.
  • the optical pulse passing through the quantum cryptographic transmitter is separated into the forward path and the return path by the two polarization beam splitters 5 and 6, and passes through the phase modulator 8 only once and the TE polarization Since the light passes only in the polarization mode of the wave, the loss of the incident pulse due to the quantum cryptography transmitter 100 becomes 30 dB when the attenuator 4 is removed, which is equivalent to the loss of the prior art quantum cryptography transmitter 100.
  • an improvement of 10 dB has been achieved. Therefore, at the time of adjustment, an improvement of 10 dB in terms of the S / N ratio is achieved, and adjustment of the quantum cryptographic device can be realized more easily.
  • Embodiment 2 Embodiment 2
  • the polarization beam splitter 5 and the polarization beam splitter 6 that reflect the TE polarization and pass the TM polarization are used, but as shown in FIG. It is useless to use a polarizing beam splitter 5a that reflects light and a polarizing beam splitter 6a that passes TE polarized light.
  • a polarization beam splitter 5 that passes through the TM polarization and a polarization beam splitter 6a that passes through the TE polarization may be used.
  • a polarization beam splitter 6 that passes through the TE polarization and a polarization beam splitter 6 that passes through the TM polarization may be used.
  • the Faraday mirror 7 is used, but other than the Faraday mirror 7 may be used as long as it has the same function as the Faraday mirror 7.
  • Embodiment 3 is used, but other than the Faraday mirror 7 may be used as long as it has the same function as the Faraday mirror 7.
  • FIG. 9 is a diagram showing a configuration in which the Faraday mirror 7 is not used.
  • the transmission device includes a transmission / reception optical path R3 and a loop optical path R4.
  • a polarization controller 3, an attenuator 4, and a polarization beam splitter 5 are provided in the transmission / reception optical path R3.
  • the polarization beam splitter 5 has three ports A, B, and C.
  • the A port connects the transmission / reception optical path R3.
  • the B port connects one end of the loop optical path R4.
  • the C port connects the other end of the loop optical path R4. With this configuration, the optical signal output from the B port is input to the C port.
  • the optical signal output from port C is input to port B.
  • Such looping of an optical signal between the B port and the C port using the loop optical path R4 is hereinafter referred to as reflux.
  • a phase modulator 8 and a fast 'slow coupler 70 are provided in the loop optical path R4.
  • the first 'slow coupler 70 changes the TM polarization to the TE polarization by connecting the fast axis and the slow axis of the polarization axis of the optical fiber, and changes the TE polarization to the TM polarization. is there.
  • the first slow power bra 70 is an example of a polarization mode changer.
  • the polarization beam splitter 5 is used to separate the TM polarized light pulse and the TE polarized light pulse, and the TE polarized light pulse is passed directly to the phase modulator 8.
  • the T M polarized light pulse passes through the first port of the phase modulator 8 via the first 'slow coupler 70.
  • FIG. 10 is an operation flowchart of the quantum cryptography transmitting apparatus 100 shown in FIG.
  • the TE-polarized light pulse separated by the polarization beam splitter 5 is input to the phase modulator 8, and undergoes phase modulation (S8).
  • the TE-polarized optical pulse subjected to the phase modulation is input to the first ⁇ slow coupler 70, the polarization mode is changed (S12), and output as a TM-polarized optical pulse. .
  • the TM-polarized light pulse separated by the polarization beam splitter 5 is input to the first-slow coupler 70, changed from TM-polarized light to TE-polarized light (S12), and output.
  • the TE-polarized light pulse output from the first 'slow coupler 70 is input to the phase modulator 8, but is not subjected to phase modulation and is output to the polarization beam splitter 5 as it is.
  • the above-described forward path step S40 and return path step S60 are operations performed in the transmission / reception optical path R3.
  • the recirculation step S50 described above is an operation performed in the loop optical path R4.
  • the TE-polarized optical pulse output from the B port passes through the phase modulator 8 only once and is returned to the C port.
  • first 'slow force bra 70 is an example of a polarization mode changer, and if it is possible to change between the TM polarization and the TE polarization, other devices may be used. I do not care. For example, 1/2 plate ( ⁇ is wavelength) May be used. Alternatively, the optical communication cable may be twisted 90 degrees. Alternatively, the optical communication cables may be connected 90 degrees orthogonally. Industrial applicability
  • the optical path in the apparatus is separated for the forward path and the return path, and the light pulse passing therethrough is transmitted to the phase modulator 8.
  • the strength loss can be reduced, and the S / N ratio at the time of adjusting the quantum cryptography transmitter can be increased, and the adjustment is facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

明 細 書 光信号送信装置及び光信号送信方法 技術分野
この発明は、 例えば、 ファラディーミラー方式量子暗号装置における 送信装置に関するものである。 背景技術
図 7は例えば、 G. R i b o r d y, e t . a 1. "Au t oma e d ' l u g & p l a y' q u a n t um k e y d i s t r i b u t i o n, " E LECTRON I C S LETTER S V o 1. 34 N o. 22 p p . 2 1 1 6 - 2 1 1 7 ( 1 9 9 8) もしく は国際特許公開公報 WO 9 8/ 1 0 56 0 QUANTUM CRYP TOGRAPHY DEV I CE AND METHODに示された従 来のファラディーミラ一方式量子暗号装置の構成図であり、 図 7におい て、 量子暗号送信装置 1 00は、 通信用光ファイバ一 1 0と接続する力 プラ 1、 この力ブラ- 1に通信用光ファイバ一 1 0から入力された光パル スを検出する光検出器 2、 入力された光パルスの偏光モードを調整する 偏光コントローラ 3、 光パルスの強度を減衰し、 当該量子暗号装置から 出力される光パルスの強度を量子レベル (パルスあたり光子 0. 1個) にするアツテネータ 4、 入力されたパルスをその偏光面を 9 0度回転さ せて反射する、 従って、 TE偏波の入力パルスは TM偏波の光パルスと して反射し、 TM偏波の入力パルスは TE偏波の光パルスとして反射す るファラディーミラー 7、 通過するパルスに位相変調をかける位相変調 器 8、 制御板 9から構成されている。 ここで、 TE偏波 (TRANSV ER S E E LECTR I C POLAR I ZAT I ON WAVE) とは、 電気べク トルの振動方向が入射面に垂直で、 磁気べク トルの振動 方向は入射面内にあるような光波をいう。 また、 TM偏波 (TRANS VER S E MAGNET I C POLAR I ZAT I ON WAVE
) とは、 磁気べク トルの振動方向が入射面に垂直で、 電気べク トルの振 動方向は入射面内にあるような光波をいう。 量子暗号受信装置 200は 、 力ブラ 5 1、 光子検出器 5 2、 光子検出器 5 3、 偏光コントローラ 5 4、 偏光コントローラ 5 5、 偏光ビームスプリッタ 5 6、 サーキユレ一 タ 5 7、 位相変調器 58、 制御板 5 9、 レーザ 6 0、 短光路 6 1、 長光 路 6 2から構成されている。
次に動作について図 8を用いて説明する。 図 7の量子暗号受信装置 2 00は、 レーザ 60により光パルス Pを発生させる。 光パルス Pはカプ ラ 5 1により短光路 6 1と長光路 6 2とに分割される。 長光路 6 2の光 パルスは偏光コントローラ 5 5により偏光面を調整され、 位相変調器 5 8を通り偏光ビームスプリッタ 56により通信用光ファイバ一 1 0に出 力される。 短光路 6 1の光パルスも通信用光ファイバ一 1 0に出力され る。 短光路 6 1より長光路 6 2の方が長い経路をもつので、 2つの異な つたパルス P 1と P 2が通信用光ファイバ一 1 0に出力される。 こうし て、 通信用光ファイバ一 1 0には、 2つの異なった偏光モードをもった 光パルス P 1と P 2が出力される。
量子暗号送信装置 1 00には通信用光ファイバ一 1 0を通して、 2つ の異なった偏光モードをもった光パルス P 1と P 2がタイミングをずら して入力される。 通信用光ファイバ一 1 0を介して入力された光パルス P 1と P 2とはそれぞれカプラ 1により 2つに分割され、 カプラ 1で分 割された一方の光パルス P 1 , P 2は光検出器 2により検知される。 光 検出器 2の光パルス検出タイミングに従い、 位相変調器 8は光パルス P 1, P 2のうち光パルス P 2のみに変調をかけることになる。 カプラ 1 で分割されたもう一方の光パルス P 1 , P 2は、 位相変調器 8が最適に 作用するように偏光コントローラ 3により偏光面を調整される。 このと き、 タイミングをずらして量子暗号送信装置 1 0 0に入力された 2つの 光パルス P 1と P 2のうち 1番目の光パルス P 1は T E偏波の偏光モー ドになるように調整される。 従って、 2番目の光パルス P 2は T M偏波 の偏光モードになる。 偏光コントローラ 3とアツテネータ 4とを通過し ファラディーミラー 7に向かう光パルスは位相変調器 8を通過しファラ ディーミラー 7に入力される。 ファラディーミラー 7に入力された光パ ルスは、 その偏光モードが T E偏波の光パルスは T M偏波の光パルスと して反射され、 T M偏波の光パルスは T E偏波の光パルスとして反射さ れる。 反射された光パルスは再び位相変調器 8を通過する。 位相変調器 8はファラディーミラー 7で反射されて位相変調器 8を通過する 2つの 光パ ス Ρ 1, Ρ 2のうち 2番目の光パ ス Ρ 2にのみ位相変調をかけ るように制御板 9によりタイミングが調整されている。 位相変調を受け た光パルス Ρ 2は通信用光ファイバ一 1 0に向けて入射してきた光路を 逆行するように送信される。 ファラディーミラー 7を反射後に位相変調 器 8を通過した 2つの光パルス Ρ 1, Ρ 2はアツテネータ 4に向かう。 アツテネータ 4は位相変調器 8で位相変調を受けた光パルスの強度が量 子レベル (パルスあたり光子 0 . 1個) になるまで光パルスの強度を減 衰させる。 このあと光パルスは偏光コントローラ 3、 力ブラ 1の順に通 過して通信用光ファイバ一 1 0に送信される。
従来のファラディーミラー方式量子暗号送信装置は、 当該装置に入力 された光パルスが同一光路を往路と復路で通過するため、 光パルスが位 相変調器 8を 2回通過し、 かつ、 偏光モードが比較的損失の少ない Τ Ε 偏波と損失の極めて大きい Τ Μ偏波の両モードで通過するため、 光強度 の損失 Lが非常に大きくなる。 量子暗号装置調整時は S/N比 (シダナ ル Zノイズ比) を高めるためアツテネータ 4を外して各部の調整を行な うが、 光強度の損失 Lが大きいと量子暗号装置調整時における S/N比 が極端に小さくなる問題点があった。
ここで、 光強度の損失について説明する。
まず、 図 8に示す L 4は、 アツテネータ 4を光パルス P 1, P 2が通 過するときの各光パルスの強度の損失を表し、 L 8は、 位相変調器 8を 通過するときの各光パルスの強度の損失を表す。 また、 図 8では、 光パ ルス P 1, P 2が各部を通過するときに受ける損失を Lの矢印で示して いる。
たとえば、 通信用光ファイバ一 1 0から入力した光パルスの強度を S とし、 位相変調器 8の TE偏波の損失を L 8 (TE) とし、 位相変調器 8の TM偏波の損失を L 8 (TM) とし、 その他の損失を L Zとし、 以 下のような値をとるものとする。
なお、 その他の損失 LZには、 L 4が含まれる。
S = 50 d B
L 8 (T E) = 6 d B
L 8 (TM) = 30 d B
L Z = 2 d B
全体の光強度の損失を Lとすると、 Lは以下の式で求めることができ る。
L= L 8 (TE) +L Z + L 8 (TM) + L Z
= 6+ 2+ 30 + 2
= 40 d B
アツテネータ 4を外して調整する場合の光パルスの強度を Mとすると M= S-L= 50-40= 10 d B
となり、 損失 Lが大きいほど光パルスの強度 Mは小さくなり、 SZN比 が悪くなり、 調整作業がしにくくなる。
この発明は、 量子暗号調整時に光強度損失の小さい量子暗号送信装置 を提供することを目的とする。 発明の開示
この発明に係る光信号送信装置は、 光信号を受信し、 光信号の光路と なるとともに、 光信号を送信する第 1の光路と、
上記第 1の光路に設けられ、 第 1の光路から光信号を分離する第 1と 第 2の偏光ビームスプリッタと、
上記第 1と第 2の偏光ビームスプリッタの間に設けられ、 第 1と第 2 の偏光スプリッタにより分離された光信号の光路となる第 2の光路と、 上記第 2の光路に設けられ、 光信号に位相変調をかける位相変調器と を有することを特徴とする。 上記光信号送信装置は、 さらに、
上記第 1の光路の端部に光信号の偏光モードを変更するとともに光信 号を反射するミラーを備え、
上記第 1の光路は、 光信号の往路と復路として用いられ、
上記第 2の光路は、 第 1と第 2の偏光ビームスプリッタにより分離さ れた光信号の往路と復路として用いられることを特徴とする。 上記第 1の光路は、 T E偏波の光パルスと TM偏波の光パルスとを有 する光信号を受信し、
上記第 1と第 2の偏光ビームスプリッタは、 TE偏波の光パルスを分 離し、 ' 上記位相変調器は、 T E偏波の光パルスに位相変調をかけることを特 徴とする。 この発明に係る光信号送信方法は、
第 1の光路を流れ、 T E偏波と T M偏波とを有する光信号から T E偏 波を第 2の光路に分離する分離工程と、
分離工程により第 2の光路に分離された T E偏波に対して位相変調を かける位相変調工程と、
位相変調工程により位相変調をかけられた T E偏波を第 1の光路に合 流させる合流工程と
を備えたことを特徴とする。 上記光信号送信方法は、 光信号を反射させて光路を往復させる往路ェ 程と復路工程とを有し、
位相変調工程は、 復路工程において実行されることを特徴とする。 この発明に係る光信号送信装置は、 光信号を受信し、 光信号の光路と なるとともに、 光信号を送信する送受信光路と、
送受信光路の端部に設けられ、 送受信光路からの光信号を分離する偏 光ビームスプリッタと、
両端が上記偏光ビームスプリッタに接続され、 上記偏光ビームスプリ ッタにより分離された光信号を上記偏光ビームスプリッタに環流させる 光路となるループ光路と、
ループ光路に設けられ、 光信号に位相変調をかける位相変調器と、 ループ光路に設けられ、 光信号の偏光モードを変更する偏光モード変 更器と
を有することを特徴とする。 また、 偏光モード変更器は、 光ファイバ一の偏波軸のファース ト軸と スロー軸を接続することで偏光モードを変更するファース ト ' スロー力 ブラを備え、
送受信光路は、 光信号の往路と復路として用いられ、
ループ光路は、 偏光ビームスプリッタにより分離された光信号の往路 と復路として用いられることを特徴とする。 また、 送受信光路は、 T E偏波の光パルスと T M偏波の光パルスとを 有する光信号を受信し、 上記偏光ビームスプリッタは、 T E偏波の光パ ルスと T M偏波の光パルスを分離し、 上記位相変調器は、 T E偏波の光 パルスに位相変調をかけることを特徴とする。 この発明に係る光信号送信方法は、 送受信光路を流れ T E偏波と T M 偏波とを有する光信号から T E偏波と T M偏波とを分離してループ光路 の一端と他端とへ出力する分離工程と、
分離工程により分離された T E偏波に対してループ光路において位相 変調をかける位相変調工程と、
ループ光路の他端と一端とから出力される光信号を合流させる合流ェ 程と
を備えたことを特徴とする。 上記光信号送信方法は、 送受信光路において光信号を往復させる往路 工程と、 復路工程と、 ループ光路において光信号を貫流させる環流工程 とを有し、
上記位相変調工程は、 環流工程において実行されることを特徴とする
図面の簡単な説明
図 1は、 この発明の好適な実施の形態のファラディーミラー方式量子 暗号送信装置の光学系構成図である。 - 図 2は、 図 1の動作フローチャートである。
図 3は、 光パルスの状態を示す図である。
図 4は、 光パルスの時系列通過状況を示す図である。
図 5は、 実施の形態 2の光学系構成図である。
図 6は、 実施の形態 2の光学系構成図である。
図 7は、 従来からあるファラディーミラー方式量子暗号装置全体構成 図である。
図 8は、 従来からあるファラディーミラー方式量子暗号送信装置の光 パルスの状態図である。
図 9は、 実施の形態 3の光学系構成図である。
図 1 0は、 図 9の動作フローチャートである。 発明を実施するための最良の形態
実施の形態 1 .
図 1はファラディーミラー方式量子暗号装置における量子暗号送信装 置 1 0 0を示す光学系構成図である。 この実施の形態に係るファラディ 一ミラー方式量子暗号送信装置は、 2つの偏光ビームスプリッタを用い ることにより送信装置内光路の往路と復路を異なるものとしたものであ る。 図において、 量子暗号送信装置 1 0 0は、 通信用光ファイバ一 1 0と 接続する力ブラ 1、 この力ブラ 1に通信用光ファイバ一 1 0から入力さ れた光パルスを検出する光検出器 2、 入力された光パルスの偏光モード を調整する偏光コントローラ 3、 光パルスの強度を減衰し、 当該量子暗 号装置から出力される光パルスの強度を量子レベル (パルスあたり光子 0 . 1個) にするアツテネータ 4、 光パルスをその偏光モードに従い、 T E偏波の光パルスは位相変調器 8を通す変調光路 1 3に、 T M偏波の 光パルスをバイパスするバイパス光路 1 1に自動的に切り替える偏光ビ 一ムスプリッタ 5と偏光ビームスプリッタ 6、 入力されたパルスをその 偏光面を 9 0度回転させて反射する、 従って、 T E偏波の入力パルスは T M偏波の光パルスとして反射し、 T M偏波の入力パルスは T E偏波の 光パルスと して反射するファラディーミラー 7、 通過するパルスに位相 変調をかける位相変調器 8を備えている。 アツテネータ 4、 偏光ビーム スプリッタ 5, 偏光ビームスプリッタ 6、 ファラディーミラー 7を結ぶ 光路が第 1の光路 R 1である。 また、 偏光ビームスプリッタ 5、 位相変 調器 8、 偏光ビームスプリッタ 6を結ぶ光路が第 2の光路 R 2である。 第 2の光路 R 2は、 第 1の光路 R 1に対して並列に配置される。 位相変 調器 8は、 第 2の光路 R 2に配置されている。 その他の構成は、 図 7と 同じである。
次に動作について図 2, 図 3, 図 4を用いて説明する。
図 2は、 量子喑号送信装置 1 0 0の動作フローチャートである。 図 3 は、 光パルスの各部における状態図である。 図 4はバイパス光路 1 1と 変調光路 1 3における光パルスの時系列通過状況を示す図である。 図 3 , 図 4において、 P , P 1 , P 2はパルスを示す。 また、 各パルスの上 部に記載した L 4 , L 5 , L 6 , L 8の矢印はそれぞれアツテネータ 4 、 偏光ビームスプリッタ 5、 偏光ビームスプリッタ 6、 位相変調器 8に よる光強度の損失があることを示している。
(1) 往路工程 S 20
まず、 図 1の量子暗号送信装置 1 00には通信用光ファイバ一 1 0を 通して、 2つの異なった偏光モードをもった光パルス P 1, P 2がタイ ミングをずらして入力される (S 1) 。 通信用光ファイバ一 1 0を介し て入力された光パルス P 1 , P 2はそれぞれカプラ 1により 2つに分割 され、 カプラ 1で分割された一方の光パルス P 1, P 2は光検出器 2に より検知される。 光検出器 2の光パルス検出タイミングに従い、 位相変 調器 8は光パルス P 1, P 2のうち光パルス P 2のみに変調をかけるこ とになる。 カプラ 1で分割されたもう一方の光パルス P 1, P 2は、 位 相変調器 8が最適に作用するように偏光コントローラ 3により偏光面を 調整される (S 2) 。 このとき、 タイミングをずらして量子暗号送信装 置 1 00に入力された 2つの光パルス P 1, P 2のうち 1番目の光パル ス P 1は TE偏波の偏光モードになるように調整される。 従って、 2番 目の光パルスは TM偏波の偏光モードになる。 次にアツテネータ 4によ り光パルスの強度が弱められる (S 3) 。 偏光コントローラ 3を通過し ファラディーミラー 7に向かう光パルスは偏光ビームスプリッタ 5によ り、 その偏光モードが TE偏波の光パルス P 1は位相変調器 8を通過す る変調光路 1 3に、 TM偏波の光パルス P 2は直接偏光ビームスプリツ タ 6に向かうバイパス光路 1 1に選択される (S 4) 。 異なる光路を通 過した 2つの光パルス P 1 , P 2はいずれも偏光ビームスプリッタ 6で 合流されファラディーミラー 7に入力される (S 5) 。 ファラディーミ ラー 7に入力された光パルスは、 その偏光モードが T E偏波の光パルス は TM偏波の光パルス P 1として反射され、 TM偏波の光パルスは TE 偏波の光パルス P 2として反射される (S 6) 。
(2) 復路工程 S 30 反射された光パルス P 1, P 2は偏光ビームスプリッタ 6でその偏光 モードに従い T E偏波の光パルス P 2は位相変調器 8を通過する変調光 路 1 3に、 T M偏波の光パルス P 1は直接偏光ビームスプリッタ 5に向 かうバイパス光路 1 1に選択される (S 7 ) 。 位相変調器 8はファラデ ィーミラー 7で反射されて位相変調器 8を通過する光パルス P 2にのみ 位相変調をかけるように制御板 9によりタイミングが調整されている ( S 8 ) 。 位相変調を受けなかった光パルス P 1と位相変調を受けた光パ ルス P 2とは通信用光ファイバ一 1 0に向けて, 入射してきた光路を逆 行するように送信される。 ファラディーミラー 7を反射後このように異 なる光路を通過した 2つの光パルス P 1, P 2は偏光ビームスプリッタ 5で合流されアツテネータ 4に向かう (S 9 ) 。 アツテネータ 4は位相 変調器 8で位相変調を受けた光パルスの強度が量子レベル (パルスあた り光子 0 . 1個) になるまで光パルスの強度を減衰させる (S 1 0 ) 。 このあと光パルスは偏光コントローラ 3、 カプラ 1の順に通過して通信 用光ファイバ一 1 0に送信される (S 1 1 ) 。
図 4に示すように、 第 1の光路 R 1の一部分であるバイパス光路 1 1 を通過する光パルスは、 T M偏波の光パルスのみである。 一方、 第 2の 光路 R 2の変調光路 1 3を通過する光パルスは T E偏波の光パルスのみ である。 これらの光パルスが通過する順番は、 図 4の矢印 A 1, A 2 , A 3の順番である。 また、 矢印 A 4, A 5 , A 6の順である。
ここで、 光強度の損失について説明する。
たとえば、 通信用光ファイバ一 1 0から入力した光パルスの強度を S とし、 偏光ビームスプリッタ 5による光パルスの強度の損失を L 5とし 、 偏光ビームスプリッタ 6による光パルスの強度の損失を L 6とし、 位 相変調器 8による光パルスの強度の損失を L 8とし、 その他の損失を L Zとし、 以下のような値をとるものとする。 なお、 その他の損失 LZには、 図 4のアツテネータ 4による光パルス の強度の損失 L 4等が含まれる。 また、 図 4では、 光パルス P l, P 2 が各部を通過するときに受ける損失を Lの矢印で示している。
S = 50 d B
L 5 = 5 d B
L 6 = 5 d B
L 8 = 6 d B
L Z = 2 d B
全体の光強度の損失を Lとすると、 Lは以下の式で求めることができ る。
L= (L 5 + L 6 ) + L Z + (L 6 + L 8 + L 5) + L Z
= 5 + 5+ 2+ 5 + 6 + 5+ 2
= 30 d B
前述したように、 送信装置に入射する光パルスは、 位相変調器 8に対 する T E偏波と T M偏波の 2つの光パルスがある。 この光パルスはファ ラディーミラー 7で TE偏波は TM偏波に、 TM偏波は TE偏波に偏光 面が回転されて反射され送信装置から出力される。 従来は、 位相変調器 8には、 1つの光パルスで TE偏波と TM偏波の 2つの状態で通過する 。 しかし、 位相変調器 8は TM偏波に関して透過率が低く、 従来の構成 では、 入射パルスはたとえば、 40 d B低下して出力されることになる しかし、 この実施の形態では、 偏光ビームスプリッタ 5, 偏光ビーム スプリッタ 6を 2個用いて、 TM偏波の光パルスは、 位相変調器 8をバ ィパスする。 TE偏波の光パルスのみを位相変調器 8に通す。 こうして 、 入射パルスの低減は 30 d Bに抑えられ、 S/N比に換算して 1 0 d Bの向上が図られる。 以上のように、 この実施の形態では、 2つの偏光ビームスプリッタ 5 , 偏光ビームスプリッタ 6を用いて量子暗号送信装置内光路を往路と復 路を別々に設け、 いずれか一方の光路上に位相変調器 8を設置すること を特徴とするファラディーミラー方式量子暗号送信装置を説明した。 この実施の形態では、 量子暗号送信装置を通過する光パルスは 2つの 偏光ビームスプリッタ 5, 偏光ビームスプリッタ 6により往路と復路が 別になり, 位相変調器 8を一回しか通過しない、 かつ、 T E偏波の偏光 モードでしか通過しないので、 入射パルスの量子暗号送信装置 1 0 0に よる損失がアツテネータ 4を外したとき 3 0 d Bとなり、 従来技術の量 子暗号送信装置 1 0 0の損失に比べて 1 0 d Bの向上が実現できている 。 従って、 調整時には S / N比に換算して 1 0 d Bの向上が図られ、 よ り容易に量子暗号装置の調整を実現できる。 実施の形態 2 .
図 1においては、 T E偏波を反射し、 T M偏波を通過する偏光ビーム スプリッタ 5と偏光ビームスプリッタ 6を用いていたが、 図 5に示すよ うに T E偏波を通過させ、 T M偏波を反射する偏光ビームスプリッタ 5 aと T E偏波を通過する偏光ビームスプリッタ 6 aを用いてもかなわな い。
また、 図 6に示すように、 T M偏波を通過する偏光ビームスプリッタ 5と T E偏波を通過する偏光ビームスプリッタ 6 aを用いてもかまわな い。 あるいは、 図示していないが、 T E偏波を通過する 5 aと T M偏波 を通過する偏光ビームスプリッタ 6を用いてもかまわない。
また、 図 1においては、 ファラディーミラー 7を用いていたが、 ファ ラディーミラー 7と同様の機能を持つものであればファラディーミラー 7以外を用いてもかまわない。 実施の形態 3 .
図 9は、 ファラディーミラー 7を用いない構成を示す図である。 図 9において、 送信装置は、 送受信光路 R 3とループ光路 R 4を備え ている。
送受信光路 R 3には、 偏光コントローラ 3とアツテネータ 4と偏光ビ 一ムスプリッタ 5が設けられている。 偏光ビームスプリッタ 5は、 A, B, Cの 3つのポートを有している。 Aポートは、 送受信光路 R 3を接 続する。 Bポートは、 ループ光路 R 4の一端を接続する。 Cポートは、 ループ光路 R 4の他端を接続する。 このように構成することにより、 B ポートから出力された光信号は、 Cポートに入力される。 また、 Cポー トから出力された光信号は、 Bポートに入力される。
このように、 ループ光路 R 4を用いて光信号を Bポートと Cポートの 間でループさせることを、 以下環流という。
ループ光路 R 4には、 位相変調器 8とファース ト ' スローカプラ 7 0 が設けられている。 ファースト 'スローカプラ 7 0は、 光ファイバ一の 偏波軸のファースト軸とスロー軸を接続することで T M偏波を T E偏波 に変更するとともに、 T E偏波を T M偏波に変更するものである。 ファ 一ス ト ' スロー力ブラ 7 0は、 偏光モード変更器の一例である。
偏光ビームスプリッタ 5を用いて T M偏波の光パルスと T E偏波の光 パルスを分離し、 T E偏波の光パルスは、 直接位相変調器 8に通す。 T M偏波の光パルスは、 ファース ト ' スローカプラ 7 0を介して位相変調 器 8のもう一方の口に通す。
図 1 0は、 図 9に示した量子暗号送信装置 1 0 0の動作フローチヤ一 トである。
( 1 ) 往路工程 S 4 0 図 1 0に示す往路工程 S 40の S 1〜S 4の動作は、 図 2に示した S 1〜S 4の動作と同じである。
(2) 環流工程 S 50
偏光ビームスプリッタ 5により分離された TE偏波の光パルスは、 位 相変調器 8に入力され、 位相変調を受ける (S 8) 。 次に、 位相変調を 受けた T E偏波の光パルスは、 ファース ト ■ スローカプラ 70に入力さ れ、 偏光モードが変更され (S 1 2) 、 TM偏波の光パルスと して出力 される。
一方、 偏光ビームスプリッタ 5で分離された TM偏波の光パルスは、 ファース ト · スローカプラ 70に入力され、 TM偏波から TE偏波に変 更され (S 1 2) 、 出力される。 ファース ト ' スローカプラ 70から出 力された TE偏波の光パルスは、 位相変調器 8に入力されるが、 位相変 調は行われず、 そのまま偏光ビームスプリッタ 5に出力される。
(3) 復路工程 S 60
図 1 0の復路工程 S 60の S 9〜S 1 1の動作は、 図 2に示した S 9
〜S 1 1の動作と同じである。
前述した往路工程 S 40と復路工程 S 60とは、 送受信光路 R 3にお いて行われる動作である。 また、 前述した環流工程 S 50は、 ループ光 路 R 4において行われる動作である。
図 9に示す構成を用いた場合でも、 Bポートから出力された TE偏波 の光パルスは、 位相変調器 8を一度だけ通過して Cポートに返送される
。 従って、 光強度の損失は最小限に抑えられ、 前述した実施の形態と同 じ効果を奏することができる。
なお、 前述したファース ト ' スロー力ブラ 70は、 偏光モード変更器 の一例であり、 TM偏波と TE偏波との間での変更が可能なものであれ ば、 他の機器を用いても構わない。 例えば、 1/2え板 (λは、 波長) を用いても構わない。 或いは、 光通信ケーブルを 9 0度ねじるようにし ても構わない。 或いは、 光通信ケーブルを 9 0度直交させて接続しても 構わない。 産業上の利用可能性
以上のように、 この発明の好適な実施の形態のファラディーミラー量 子暗号方式送信装置によれば装置内光路は往路と復路で別々になってお り、 通過する光パルスは位相変調器 8を一度だけ通過すればよいので、 強度損失を低減でき、 量子暗号送信装置調整時における S /N比を高め ることができ調整が容易になるという効果がある。
また、 この発明の好適な実施の形態によれば、 ループ光路を用いるよ うにしたので、 ファラディーミラーを用いることがなくなり、 装置の構 成が簡単になるという効果がある。

Claims

請求の範囲
1 . 光信号を受信し、 光信号の光路となるとともに、 光信号 を送信する第 1の光路と、
上記第 1の光路に設けられ、 第 1の光路から光信号を分離する第 1と 第 2の偏光ビームスプリッタと、
上記第 1と第 2の偏光ビームスプリッタの間に設けられ、 第 1と第 2 の偏光スプリッタにより分離された光信号の光路となる第 2の光路と、 上記第 2の光路に設けられ、 光信号に位相変調をかける位相変調器と を有することを特徴とする光信号送信装置。
2 . 上記光信号送信装置は、 さらに、
上記第 1の光路の端部に光信号の偏光モードを変更するとともに光信 号を反射するミラーを備え、
上記第 1の光路は、 光信号の往路と復路として用いられ、
上記第 2の光路は、 第 1と第 2の偏光ビームスプリッタにより分離さ れた光信号の往路と復路として用いられることを特徴とする請求項 1記 載の光信号送信装置。
3 . 上記第 1の光路は、 T E偏波の光パルスと T M偏波の光 パルスとを有する光信号を受信し、
上記第 1と第 2の偏光ビームスプリッタは、 T E偏波の光パルスを分 離し、
上記位相変調器は、 T E偏波の光パルスに位相変調をかけることを特 徴とする請求項 1記載の光信号送信装置。
4 . 第 1の光路を流れ、 T E偏波と T M偏波とを有する光信 号から T E偏波を第 2の光路に分離する分離工程と、
分離工程により第 2の光路に分離された T E偏波に対して位相変調を かける位相変調工程と、
位相変調工程により位相変調をかけられた T E偏波を第 1の光路に合 流させる合流工程と
を備えたことを特徴とする光信号送信方法。
5 . 上記光信号送信方法は、 光信号を反射させて光路を往復 させる往路工程と復路工程とを有し、
位相変調工程は、 復路工程において実行されることを特徴とする請求 項 4記載の光信号送信方法。
6 . 光信号を受信し、 光信号の光路となるとともに、 光信号 を送信する送受信光路と、
送受信光路の端部に設けられ、 送受信光路からの光信号を分離する偏 光ビームスプリッタと、
両端が上記偏光ビームスプリッタに接続され、 上記偏光ビームスプリ ッタにより分離された光信号を上記偏光ビームスプリッタに環流させる 光路となるループ光路と、
ループ光路に設けられ、 光信号に位相変調をかける位相変調器と、 ループ光路に設けられ、 光信号の偏光モードを変更する偏光モード変 更器と
を有することを特徴とする光信号送信装置。
7 . 偏光モード変更器は、 光ファイバ一の偏波軸のファース ト軸とスロー軸を接続することで偏光モードを変更するファースト · ス ロー力プラを備え、
送受信光路は 光信号の往路と復路として用いられ、
ループ光路は、 偏光ビームスプリッタにより分離された光信号の往路 と復路として用いられることを特徴とする請求項 6記載の光信号送信装
8. 送受信光路は、 TE偏波の光パルスと TM偏波の光パル スとを有する光信号を受信し、 上記偏光ビームスプリッタは、 TE偏波 の光パルスと TM偏波の光パルスを分離し、 上記位相変調器は、 TE偏 波の光パルスに位相変調をかけることを特徴とする請求項 6記載の光信 号送信装置。
9. 送受信光路を流れ TE偏波と TM偏波とを有する光信号 から TE偏波と TM偏波とを分離してループ光路の一端と他端とへ出力 する分離工程と、
分離工程により分離された TE偏波に対してループ光路において位相 変調をかける位相変調工程と、
ループ光路の他端と一端とから出力される光信号を合流させる合流ェ 程と
を備えたことを特徴とする光信号送信方法。
1 0. 上記光信号送信方法は、 送受信光路において光信号を往 復させる往路工程と、 復路工程と、 ループ光路において光信号を貫流さ せる環流工程とを有し、
上記位相変調工程は、 環流工程において実行されることを特徴とする 請求項 9記載の光信号送信方法。
PCT/JP2001/007698 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method WO2002021196A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2001284435A AU2001284435B2 (en) 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method
KR1020037003348A KR100567691B1 (ko) 2000-09-07 2001-09-05 광 신호 송신 장치 및 광 신호 송신 방법
CA002420447A CA2420447A1 (en) 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method
AU8443501A AU8443501A (en) 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method
US10/363,817 US20040005056A1 (en) 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method
EP01963439A EP1324101A4 (en) 2000-09-07 2001-09-05 OPTICAL SIGNAL TRANSMITTER AND METHOD FOR TRANSMITTING OPTICAL SIGNALS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000272037 2000-09-07
JP2000-272037 2000-09-07
JP2001-218096 2001-07-18
JP2001218096A JP4060551B2 (ja) 2000-09-07 2001-07-18 光信号送信装置及び光信号送信方法

Publications (1)

Publication Number Publication Date
WO2002021196A1 true WO2002021196A1 (en) 2002-03-14

Family

ID=26599459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007698 WO2002021196A1 (en) 2000-09-07 2001-09-05 Optical signal transmitter and optical signal transmitting method

Country Status (9)

Country Link
US (1) US20040005056A1 (ja)
EP (1) EP1324101A4 (ja)
JP (1) JP4060551B2 (ja)
KR (1) KR100567691B1 (ja)
CN (1) CN1237368C (ja)
AU (2) AU8443501A (ja)
CA (1) CA2420447A1 (ja)
TW (1) TW571143B (ja)
WO (1) WO2002021196A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324647B1 (en) 2000-10-23 2008-01-29 Bbn Technologies Corp. Quantum cryptographic key distribution networks with untrusted switches
JP4619578B2 (ja) * 2001-07-25 2011-01-26 三菱電機株式会社 信号状態制御装置及び信号状態制御方法
US7457416B1 (en) 2002-07-17 2008-11-25 Bbn Technologies Corp. Key distribution center for quantum cryptographic key distribution networks
US7460670B1 (en) 2002-12-20 2008-12-02 Bbn Technologies Corp. Systems and methods for managing quantum cryptographic networks
US7236597B2 (en) 2002-12-20 2007-06-26 Bbn Technologies Corp. Key transport in quantum cryptographic networks
US7706535B1 (en) 2003-03-21 2010-04-27 Bbn Technologies Corp. Systems and methods for implementing routing protocols and algorithms for quantum cryptographic key transport
US7430295B1 (en) 2003-03-21 2008-09-30 Bbn Technologies Corp. Simple untrusted network for quantum cryptography
JP4632652B2 (ja) * 2003-10-10 2011-02-16 日本電気株式会社 量子暗号鍵配布システム及びそれに用いる同期方法
EP1687921A4 (en) * 2003-11-12 2008-03-12 Magiq Technologies Inc DETECTOR AUTOCALIBRATION IN QKD SYSTEMS
JP5142095B2 (ja) * 2003-11-28 2013-02-13 独立行政法人科学技術振興機構 通信システム及びそれを用いた通信方法
CN1651947A (zh) 2004-02-02 2005-08-10 中国科学技术大学 一种偏振控制编码方法、编码器和量子密钥分配系统
US7515716B1 (en) 2004-02-26 2009-04-07 Bbn Technologies Corp. Systems and methods for reserving cryptographic key material
US7697693B1 (en) 2004-03-09 2010-04-13 Bbn Technologies Corp. Quantum cryptography with multi-party randomness
KR100687752B1 (ko) 2005-10-14 2007-02-27 한국전자통신연구원 광학적 클럭 신호 추출 방법 및 장치
KR100759811B1 (ko) * 2005-12-08 2007-09-20 한국전자통신연구원 고속 자동 보상 양자 암호 송수신장치 및 방법
KR100890389B1 (ko) 2006-12-05 2009-03-26 한국전자통신연구원 편광 무의존 단방향 양자 암호 수신 및 송수신 장치
JP5182049B2 (ja) * 2008-12-09 2013-04-10 富士通株式会社 偏波変換デバイス及び偏波多重変調器
US20100284054A1 (en) * 2009-05-08 2010-11-11 Honeywell International Inc. Modulation of unpolarized light
US12007605B2 (en) 2011-06-08 2024-06-11 Skorpios Technologies, Inc. Monolithically-integrated, polarization-independent circulator
US9453965B2 (en) * 2011-06-08 2016-09-27 Skorpios Technologies, Inc. Systems and methods for photonic polarization rotators
KR101610747B1 (ko) 2014-08-19 2016-04-08 한국과학기술연구원 양자 암호 통신 장치 및 방법
US20160337041A1 (en) * 2015-05-15 2016-11-17 Futurewei Technologies, Inc. Polarization Independent Reflective Modulator
WO2018017958A2 (en) 2016-07-22 2018-01-25 Skorpios Technologies, Inc. Monolithically-integrated, polarization-independent circulator
CN107872314B (zh) 2016-09-27 2020-06-26 华为技术有限公司 编码装置、光反射器及基于其的量子密钥分发设备及系统
US10551640B2 (en) 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators
US10222676B2 (en) 2017-01-27 2019-03-05 Futurewei Technologies, Inc. Polarization insensitive integrated optical modulator
US10330959B2 (en) 2017-05-22 2019-06-25 Futurewei Technologies, Inc. Polarization insensitive micro ring modulator
US10243684B2 (en) 2017-05-23 2019-03-26 Futurewei Technologies, Inc. Wavelength-division multiplexed polarization-insensitive transmissive modulator
CN110149153B (zh) * 2018-02-13 2020-12-01 华为技术有限公司 光调制器、调制方法及光调制系统
GB2571521B (en) * 2018-02-22 2021-07-07 Toshiba Kk A transmitter for a quantum communication system, a quantum communication system and a method of generating intensity modulated Photon pulses
EP4351043A1 (en) * 2022-10-05 2024-04-10 Fundació Institut de Ciències Fotòniques Optical system for phase modulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289124A (ja) * 1992-04-06 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存型光パルス分離回路
JPH09247086A (ja) * 1996-03-08 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 量子暗号の構成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511086A (en) * 1995-03-22 1996-04-23 The Texas A&M University System Low noise and narrow linewidth external cavity semiconductor laser for coherent frequency and time domain reflectometry
US6188768B1 (en) * 1998-03-31 2001-02-13 International Business Machines Corporation Autocompensating quantum cryptographic key distribution system based on polarization splitting of light
AU2748101A (en) * 1999-10-27 2001-06-06 California Institute Of Technology Opto-electronic devices for processing and transmitting rf signals based on brillouin selective sideband amplification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289124A (ja) * 1992-04-06 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存型光パルス分離回路
JPH09247086A (ja) * 1996-03-08 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 量子暗号の構成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. ZBINDEN ET AL.: "Quant um cryptography", APPLIED PHYSICS B, vol. 67, 1998, pages 743 - 748, XP002949593 *
See also references of EP1324101A4 *

Also Published As

Publication number Publication date
JP4060551B2 (ja) 2008-03-12
AU2001284435B2 (en) 2004-09-23
EP1324101A4 (en) 2007-11-14
EP1324101A1 (en) 2003-07-02
KR100567691B1 (ko) 2006-04-05
CA2420447A1 (en) 2003-02-25
JP2002156615A (ja) 2002-05-31
CN1452727A (zh) 2003-10-29
AU8443501A (en) 2002-03-22
KR20030032012A (ko) 2003-04-23
TW571143B (en) 2004-01-11
US20040005056A1 (en) 2004-01-08
CN1237368C (zh) 2006-01-18

Similar Documents

Publication Publication Date Title
WO2002021196A1 (en) Optical signal transmitter and optical signal transmitting method
US7457548B2 (en) Quantum optical transmission device and quantum optical generator device therefor
US10222822B2 (en) Photonic quantum memory with polarization-to-time entanglement conversion and time-to-polarization entanglement conversion
US9030731B2 (en) Quantum entangled photon pair generator
WO2019080530A1 (zh) 一种相位解码方法、装置和量子密钥分发系统
WO2005076517A1 (en) A polarisation-controlled encoding method, encoder and quantum key distribution system
WO2005112335A1 (ja) 量子暗号通信装置
WO2021128557A1 (zh) 量子通信光路系统和量子通信方法
US9488847B2 (en) Variable optical attenuator
JP4138307B2 (ja) 光信号を再生成する方法
US8314988B2 (en) Polarization insensitive optical circuit
US8452185B2 (en) Polarization insensitive optical circuit
JP4388316B2 (ja) 量子暗号通信装置および方法
CN217590831U (zh) 一种基于时间相位编码的qkd系统
JP4500074B2 (ja) 偏波無依存型光学機器
US6188810B1 (en) Reversible ring coupler for optical networks
KR101987739B1 (ko) 단일모드 광섬유 기반 벨 상태 측정장치
WO2023207573A1 (zh) 一种小型化的时间相位解码器及qkd接收方
US20230280531A1 (en) Integrated polarization controller systems
JP2827501B2 (ja) 光セルフ・ルーテイング回路
JP2008109666A (ja) 自由空間光通信に基づく全光信号識別再生のためのシステムおよび方法
JP2004361697A (ja) 光パルス列変換装置
JPH01243599A (ja) 半導体レーザモジュール
JPH07107586B2 (ja) 偏波面制御装置
JPH0879182A (ja) 光通信装置及び光ネットワーク

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR MX NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2420447

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001284435

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001963439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037003348

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10363817

Country of ref document: US

Ref document number: 018152791

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037003348

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001963439

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001284435

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020037003348

Country of ref document: KR