WO2019080530A1 - 一种相位解码方法、装置和量子密钥分发系统 - Google Patents

一种相位解码方法、装置和量子密钥分发系统

Info

Publication number
WO2019080530A1
WO2019080530A1 PCT/CN2018/093044 CN2018093044W WO2019080530A1 WO 2019080530 A1 WO2019080530 A1 WO 2019080530A1 CN 2018093044 W CN2018093044 W CN 2018093044W WO 2019080530 A1 WO2019080530 A1 WO 2019080530A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
polarization
pulse
optical
output
Prior art date
Application number
PCT/CN2018/093044
Other languages
English (en)
French (fr)
Inventor
许华醒
谢海永
廖勇
莫小范
程旭升
Original Assignee
中国电子科技集团公司电子科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司电子科学研究院 filed Critical 中国电子科技集团公司电子科学研究院
Publication of WO2019080530A1 publication Critical patent/WO2019080530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords

Definitions

  • the present invention relates to the field of optical transmission secure communication technologies, and in particular, to a phase decoding method, apparatus, and quantum key distribution system.
  • the optical fiber In the process of optical pulse transmission through the optical fiber quantum channel, the optical fiber is not symmetrically cross-sectioned, and the core refractive index is unevenly distributed in the radial direction.
  • One way to decode the receiver is to use a polarization maintaining device, but doing so usually requires knowing the polarization state of the light pulse. Therefore, if a polarization maintaining device is employed at the receiving end of the quantum key distribution system, it is often necessary to provide a complex polarization state monitoring and/or calibration device to detect and/or calibrate the polarization state of the incident light pulse to meet this condition.
  • an unequal-arm Faraday-Michaelson interference ring which can prevent the polarization state of the optical pulse from being affected by the random birefringence of the fiber channel and the polarization state change therefrom, and maintain the interference result. Stable output.
  • this kind of interference ring loss is large, and the insertion loss of the phase modulator is one of the main factors causing large loss. Specifically, when the phase modulator is placed on one arm of the interference ring, the light pulse passes through the phase modulator twice due to the back and forth transmission, thereby causing a large loss of the interference ring and a low system efficiency.
  • the main object of the present invention is to provide a phase decoding method, apparatus and quantum key distribution system for solving the problem of unstable output results due to the aforementioned polarization state change in a phase-encoding quantum key distribution application.
  • a phase decoding method comprising:
  • Phase decoding the first transmission optical pulse and the second transmission optical pulse respectively, and transmitting each of the first transmission optical pulse and the second transmission optical pulse after phase decoding Two sub-optical outputs associated therewith;
  • the beam is an output light pulse.
  • phase decoding of the first path transmission optical pulse and the second path transmission optical pulse respectively comprises:
  • the transmission optical pulse is split into two sub-transmission optical pulses, and the two sub-transmission optical pulses are split. After the combination, the two sub-optical paths associated with it are output.
  • the polarization states of the corresponding two-way transmission optical pulses are controlled such that the corresponding The two-way transmitted light pulses have the same polarization state when combined.
  • phase decoding method according to claim 1, wherein the method further comprises:
  • the polarization states of the respective light pulses are controlled such that the polarization states of the two-way output light pulses undergoing polarization combining are orthogonal to each other when the polarization is combined.
  • controlling the polarization states of the respective light pulses comprises:
  • a phase decoding device comprising: a polarization beam splitter, two phase decoders, and one or two polarization beam combiners,
  • the polarizing beam splitter is configured to polarize and split an input optical pulse of an incident arbitrary polarization state into a first transmission optical pulse and a second transmission optical pulse whose polarization states are orthogonal to each other;
  • the two phase decoders are configured to phase decode the first path transmission optical pulse and the second path transmission optical pulse, respectively, and output the corresponding one transmission optical pulse after phase decoding through two sub-optical paths associated therewith. ;
  • Each of said polarization combiners is for dividing a sub-output light pulse from one of two sub-optical paths associated with said first path-transmitted light pulse and two sub-segments associated with said second path-transmitted light pulse
  • the sub-output light pulses of one of the optical paths are polarized and combined into one output light pulse.
  • each of said phase decoders is configured to:
  • a transmission optical pulse for phase decoding by the phase decoder is split into two sub-transmission optical pulses, and the split two sub-transmission optical pulses are combined and output through two sub-optical paths associated therewith.
  • phase decoding device of claim 5 wherein the polarizing beam splitter, the phase decoder, the polarization combiner, and associated discrete light and waveguide devices are both used.
  • a polarization control type device for controlling a polarization state of each optical pulse such that two sub-transmission optical pulses corresponding to each of the first transmission light pulse and the second transmission light pulse are combined
  • the polarization states at the same time are the same, and the polarization states of the two-way sub-output light pulses that are subjected to polarization combining are orthogonal to each other at the time of polarization combining.
  • phase decoding device of any of aspects 5 to 7, wherein the polarizing beam splitter, the phase decoder, the polarization combiner, and associated discrete devices for conducting light are used.
  • the waveguide device is a polarization-maintaining device to maintain the polarization state of each light pulse.
  • phase decoding device characterized in that the phases modulated by the two phase decoders are identical.
  • phase decoding apparatus employ an unequal arm Mach-Zehnder interference ring or an unequal arm Michelson interference ring.
  • phase decoding apparatus wherein the two phase decoders use an unequal-arm Michelson interference ring and the input port and the output port of the unequal-arm Michelson interference ring are the same port.
  • One of the polarization combiners is the same device as the polarization beam splitter, and the phase decoding device further includes an optical circulator,
  • the optical circulator is located at a front end of the polarizing beam splitter; an input optical pulse of the incident arbitrary polarization state is input from a first port of the optical circulator and is output from a second port of the optical circulator To the polarizing beam splitter; an output optical pulse outputted from a polarization combiner that is the same device as the polarizing beam splitter is input to a second port of the optical circulator and from the optical circulator Three port output.
  • a quantum key distribution system comprising: a single photon source, a phase encoder, a quantum channel, one or two single photon detectors, and a phase decoding device according to any of aspects 5-11 ,
  • the single photon source is used to generate a single photon light pulse
  • the phase encoder is configured to phase encode a single photon optical pulse generated by the single photon source
  • the quantum channel is configured to transmit a single photon optical pulse
  • the phase decoding device is configured to perform phase decoding on a single photon optical pulse transmitted through the quantum channel according to a quantum key distribution protocol, wherein a single photon optical pulse transmitted through the quantum channel is used as the incident arbitrary polarization One-way input light pulse;
  • Each of the single photon detectors is coupled to one of a polarization combiner of the phase decoding device for detecting a single photon optical pulse output by the phase decoding device, and based on the detection result and the quantum key distribution protocol Quantum key distribution is performed, wherein the single photon optical pulse output by the phase decoding device is an output optical pulse outputted by one of the polarization combiners of the phase decoding device.
  • phase encoder adopts any one of the following: an unequal arm Mach-Zehnder interference ring, an unequal arm Michelson interference ring, an unequal arm.
  • a Faraday-Michelson interference ring the phase decoding device according to any one of the aspects 5-11.
  • phase decoding method characterized in that the input optical pulse before polarization splitting is phase-modulated according to a quantum key distribution protocol, or the first transmitted optical pulse obtained by polarization splitting is obtained. And each of the transmitted optical pulses in the second transmitted optical pulse is phase-modulated according to a quantum key distribution protocol, or at least one of the transmitted optical pulses is quantumd after each of the transmitted optical pulses is split into two sub-transmitted optical pulses.
  • the key distribution protocol performs phase modulation.
  • phase decoding device wherein the input light pulse before polarization splitting is phase-modulated by a quantum key distribution protocol or polarized beam splitting before the polarization beam splitter
  • Each of the obtained first transmission light pulse and the second transmission light pulse is phase-modulated according to a quantum key distribution protocol, or after each transmission optical pulse is split into two sub-transmission optical pulses.
  • the phase decoder phase modulates at least one of the sub-transmission optical pulses by a quantum key distribution protocol.
  • the present invention provides a solution for a quantum key distribution system based on an unequal-arm Mach-Zehnder interference loop to establish efficient environmental interference immunity.
  • phase interpolation which is independent of the polarization of the incident input light pulse, can be achieved at the receiving end by selecting a suitable interference ring.
  • the present invention also provides an additional technical solution, as follows.
  • the present invention provides a phase decoding method, the method comprising:
  • the first transmitted light pulse is phase-decoded and the second transmitted light pulse is polarized and combined into one output light pulse.
  • phase decoding is performed on the first path transmission optical pulse and the second path transmission optical pulse, respectively, including:
  • the polarization state of the optical pulse is controlled such that the polarization states of the two-path transmission optical pulses before combining the two-way sub-output optical pulses are the same.
  • the method further includes:
  • the polarization states of the light pulses are controlled such that the polarization states of the two-way output light pulses when the polarizations are combined are orthogonal to each other.
  • controlling the polarization state of the light pulse comprises:
  • the polarization state of the sustaining light pulse is always constant.
  • the present invention also provides a phase decoding apparatus comprising: a polarization beam splitter, two phase decoders, and one or two polarization beam combiners;
  • the polarizing beam splitter is configured to polarize and split an incident input optical pulse into a first transmitting light pulse and a second transmitting light pulse;
  • the two phase decoders are configured to perform phase decoding on the first path transmission optical pulse and the second path transmission optical pulse, respectively, and each of the transmitted optical pulses obtains two path output optical pulses after phase decoding;
  • the polarization beam combiner is configured to combine the first path transmission optical pulse in the phase decoded one of the path output light pulses and the second path transmission light pulse in the phase decoded one of the path output light pulses to be combined into one way Output light pulse.
  • phase decoder is specifically configured to:
  • the one transmitted optical pulse is split into two sub-transmission optical pulses, and the split two sub-transmission optical pulses are combined into two sub-output optical pulses.
  • the polarization beam splitter, the phase decoder, the polarization combiner, and the discrete device and the waveguide device used for conducting light are both polarization control devices to control the polarization state of the light pulse.
  • the polarization states of the two-way sub-transmission optical pulses before combining the two-way sub-output optical pulses are the same, and the polarization states of the two-way sub-output optical pulses when the polarization is combined are orthogonal to each other.
  • the polarization beam splitter, the phase decoder, the polarization combiner, and the discrete device and the waveguide device used for conducting light are polarization maintaining devices to maintain the polarization state of the optical pulse. change.
  • the phases modulated by the two phase decoders are consistent.
  • the two phase decoders use an unequal arm Mach-Zehnder interference ring or an unequal arm Michelson interference ring.
  • the polarization combiner and the polarization component is the same device, and the device further includes: an optical circulator.
  • the optical circulator is located at a front end of the polarizing beam splitter; a light pulse input from a first port of the optical circulator is output from a second port of the optical circulator to the polarizing beam splitter; A light pulse output from the polarization beam splitter to the second port of the optical circulator is output from a third port of the optical circulator.
  • the present invention also provides a quantum key distribution system comprising: a single photon source, a phase encoder, a quantum channel, a single photon detector, and the phase decoding device described above;
  • the phase encoder is configured to phase encode a single photon optical pulse generated by the single photon source
  • the phase decoding device is configured to perform phase decoding on a single photon optical pulse transmitted by the quantum channel according to a quantum key distribution protocol
  • the single photon detector is configured to detect a single photon optical pulse output by the phase decoding device, and perform quantum key distribution according to the detection result and the quantum key distribution protocol.
  • the phase encoder adopts any one of the following: an unequal arm Mach-Zehnder interference ring, an unequal arm Michelson interference ring, an unequal arm Faraday-Michaelson interference ring, and the phase decoding device described above.
  • the phase decoding method, device and quantum key distribution system of the present invention splits an input input optical pulse of an incident arbitrary polarization state into a first transmission light pulse and a second transmission optical pulse, respectively
  • the optical pulse is transmitted for phase decoding, and each transmitted optical pulse is outputted through the associated two sub-optical paths after phase decoding, and the sub-output optical pulse from one of the two sub-optical paths associated with the first transmitted optical pulse is
  • the sub-output optical pulses from one of the two sub-optical paths associated with the second transmitted optical pulse are polarized and combined into one output optical pulse.
  • Phase decoding is to split a transmission optical pulse into two sub-transmission optical pulses, and combine the two sub-transmission optical pulses after splitting, and then output through two sub-optical paths associated therewith.
  • the polarization states of the respective light pulses are controlled such that the polarization states of the corresponding two-way transmission light pulses at the time of combining are the same, and the polarization states of the two-way output light pulses when the polarization is combined are orthogonal to each other.
  • the polarization state of the optical pulse transmitted to the receiving end is randomly changed due to environmental influence, which affects the stability of the quantum secure communication system.
  • the invention can effectively solve the influence of the random variation of the polarization state of the input light pulse on the stability of the system, and realize the stable phase decoding of the interference immunity of the transmission fiber environment.
  • the present invention has no constraint on the type of interference loop used by the phase decoder, and the most commonly used unequal-arm Mach-Zehnder type interference ring can be used, so that the optical pulse can be reduced only by one phase modulator when decoding.
  • the insertion loss at the receiving end significantly increases the system efficiency.
  • the present invention makes it possible to provide a stable and efficient quantum key distribution system technical solution with low insertion loss.
  • the solution of the present invention is simple and easy to implement.
  • FIG. 1 is a flow chart of a phase decoding method according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a phase decoding apparatus according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a phase decoding apparatus according to another preferred embodiment of the present invention.
  • phase decoding apparatus 4 is a schematic structural diagram of a phase decoding apparatus according to another preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a structure of an unequal-arm Mach-Zehnder interference ring according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a structure of an unequal-arm Michelson interference ring according to a preferred embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a structure of an unequal-arm Faraday-Michaelson interference ring according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the structure of a quantum key distribution system according to a preferred embodiment of the present invention.
  • a phase decoding method is as shown in FIG. 1 , and specifically includes the following steps:
  • Step S101 Polarizing and splitting an input light pulse of an incident arbitrary polarization state into a first transmission light pulse and a second transmission light pulse.
  • the polarization state of the incident input light pulse may be any polarization state, and the polarization states of the first transmitted light pulse and the second transmitted light pulse after the polarization splitting are orthogonal to each other.
  • Step S102 phase decoding the first transmission optical pulse and the second transmission optical pulse respectively, and output each transmitted optical pulse after phase decoding through two sub-optical paths associated therewith.
  • performing phase decoding on the first path transmission optical pulse and the second path transmission optical pulse respectively includes:
  • the transmission optical pulse is split into two sub-transmission optical pulses, and the two sub-transmission optical pulses are split. After the combination, the two sub-optical paths associated with it are output.
  • phase output optical pulses are obtained by phase decoding the first path transmission optical pulse and the second path transmission optical pulse, respectively.
  • the two sub-transmission optical pulses obtained by splitting the transmitted optical pulse are combined after the relative delay and output through the two sub-optical paths associated therewith.
  • the relative delay is in accordance with the provisions and requirements of the Quantum Key Distribution Protocol, and will not be repeated here.
  • the polarization state of the optical pulses is controlled such that the polarization states of the corresponding two-way sub-transmitted optical pulses are the same when combined.
  • Step S103 outputting the sub-output light pulse output from any one of the two sub-optical paths associated with the first-path transmission optical pulse and the sub-output light output from any of the two sub-optical paths associated with the second-path transmission optical pulse The pulse polarization is combined into one output light pulse.
  • the method further includes:
  • the polarization states of the respective light pulses are controlled such that the polarization states of the two-way output light pulses at the time of polarization combining are orthogonal to each other.
  • controlling the polarization states of the respective light pulses includes:
  • the polarization state of each light pulse is maintained to remain constant; or the polarization state of each light pulse is subjected to known modulation.
  • phase modulation of the optical pulses is necessary for phase decoding at the receiving end.
  • the input optical pulse before polarization splitting may be phase-modulated according to a quantum key distribution protocol, or the first transmitted optical pulse and the second transmitted light obtained by polarization splitting may be used.
  • Each of the transmitted optical pulses in the pulse is phase-modulated according to a quantum key distribution protocol, or one of the at least one of the transmitted optical pulses may be subjected to a quantum key distribution protocol after each transmitted optical pulse is split into two sub-transmitted optical pulses. Phase modulation.
  • phase modulation is required and specified by the quantum key distribution protocol itself, and will not be described herein.
  • a phase decoding device specifically includes the following components: a polarization beam splitter 201, two phase decoders 202, and two polarization combiners 203.
  • the polarization beam splitter 201 is configured to split the polarization of one input light pulse of any incident polarization state into a first transmission light pulse and a second transmission light pulse.
  • the polarization state of the incident input light pulse may be any polarization state, and the polarization states of the first transmitted light pulse and the second transmitted light pulse after the polarization splitting are orthogonal to each other.
  • Two phase decoders 202 are respectively disposed on the two optical paths between the polarization beam splitter 201 and the two polarization combiners 203 for respectively performing the first path transmission light pulse and the second path transmission light pulse.
  • the phase is decoded and each transmitted optical pulse is output after phase decoding via the associated two sub-optical paths.
  • each phase decoder 202 is used to:
  • a transmission optical pulse is split into two sub-transmission optical pulses, and the two sub-transmission optical pulses after the splitting are combined and output through two sub-optical paths associated therewith.
  • the two sub-transmission optical pulses obtained by splitting the transmitted optical pulse are combined after the relative delay and output through the two sub-optical paths associated therewith.
  • the relative delay is in accordance with the provisions and requirements of the Quantum Key Distribution Protocol, and will not be repeated here.
  • the input optical pulse before polarization splitting may be phase-modulated by the quantum key distribution protocol before the polarization beam splitter 201, or may be obtained by polarization splitting.
  • Each of the transmitted light pulse and the second transmitted light pulse is phase-modulated according to a quantum key distribution protocol, or may be decoded by a corresponding phase after each transmitted optical pulse is split into two sub-transmitted optical pulses.
  • the transmitter 202 performs phase modulation on at least one of the sub-transmission optical pulses in accordance with a quantum key distribution protocol.
  • phase modulation by the phase decoder the phases modulated by the two phase decoders 202 are identical.
  • the two phase decoders 202 employ an unequal arm Mach-Zehnder interference ring or an unequal arm Michelson interference ring.
  • Each polarization combiner 203 is operative to convert one of the two output optical pulses from one of the two sub-optical paths associated with the first transmitted optical pulse and one of the two sub-optical paths associated with the second transmitted optical pulse
  • the sub-output light pulses are polarized and combined into one output light pulse.
  • the two sub-output optical pulses input to the polarization combiner 203 are synchronized to the polarization combiner 203 and combined into one output optical pulse.
  • one of the polarization beam combiners 203 and the polarization beam splitter 201 is the same device, in which case the device also includes an optical circulator.
  • the optical circulator is located at the front end of the polarization beam splitter 201; an input optical pulse of the incident arbitrary polarization state is input from the first port of the optical circulator and is output from the second port of the optical circulator to a polarization beam splitter 201; an output light pulse outputted from the polarization combiner 203 of the same device as the polarization beam splitter 201 is input to a second port of the optical circulator and from the third of the optical circulator Port output.
  • the polarization beam splitter 201, the phase decoder 202, the polarization combiner 203, and the associated discrete light and waveguide devices used for conducting light are all polarization controlled devices to control the polarization state of each optical pulse. So that the two sub-transmission optical pulses corresponding to each of the first transmission light pulse and the second transmission optical pulse have the same polarization state at the time of combining, and two paths for polarization combining The polarization states of the output light pulses at the time of polarization combining are orthogonal to each other.
  • phase decoder and associated discrete light and waveguide devices used for conducting light may be collectively referred to as optical devices on the optical path between the polarization beam splitter and the polarization combiner.
  • the polarization beam splitter 201, the phase decoder 202, the polarization combiner 203, and the associated discrete light and waveguide devices used for conducting light are polarization maintaining devices to maintain the polarization state of each light pulse.
  • the phase decoder and associated discrete light and waveguide devices used for conducting light may be collectively referred to as optical devices on the optical path between the polarization beam splitter and the polarization combiner.
  • the phase decoding device of the present embodiment includes two polarization combiners, but in practice, only one polarization combiner can be provided as needed.
  • a phase decoding device specifically includes the following components: a polarization beam splitter 301, two phase decoders 302 and 303, and two polarization combiners 304 and 305. .
  • the polarization beam splitter 301 splits the polarization of one input light pulse into two transmitted light pulses.
  • One of the transmitted optical pulses is phase-decoded by the phase decoder 302 and output through the two sub-optical paths; the other transmitted optical pulse is phase-decoded by the phase decoder 303 and output through the two sub-optical paths.
  • the output of one sub-path from phase decoder 302 and the output of one sub-path from phase decoder 303 are combined by polarization combiner 304 into one output; the output of the other sub-path from phase decoder 302 and from phase
  • the output of the other sub-path of decoder 303 is combined by polarization combiner 305 into one output.
  • the two sub-output optical pulses input to either of the polarization combiners 304 and 305 are synchronized to the polarization combiner.
  • the phases modulated by the phase decoder 302 and the phase decoder 303 coincide.
  • the devices on the optical path between the polarization beam splitter, the polarization beam combiner, the polarization beam splitter, and the polarization beam combiner are polarization control type devices.
  • phase modulation is performed here at the phase decoder 302 and the phase decoder 303, it is also possible to phase-modulate the input light pulses before polarization splitting by the quantum key distribution protocol before the polarization beam splitter 301.
  • each of the two transmitted optical pulses obtained by polarization splitting is phase modulated by a quantum key distribution protocol.
  • a phase decoding device specifically includes the following components: an optical circulator 401, a polarization beam splitter 402, two phase decoders 403 and 404, and a polarization combiner. 405. Among them, the polarization beam splitter 402 can simultaneously function as a polarization combiner.
  • the input light pulse is input through the first port A of the optical circulator 401 and output to the polarization beam splitter 402 via the second port B of the optical circulator 401.
  • the polarization beam splitter 402 polarizes and splits an input light pulse received from the second port B into two transmitted light pulses.
  • One of the transmitted optical pulses is phase-decoded by the phase decoder 403 and output through the two sub-optical paths; the other transmitted optical pulse is phase-decoded by the phase decoder 404 and output through the two sub-optical paths.
  • the phase decoders 403 and 404 employ unequal-arm Michelson interference rings, and the input ports and output ports of the two phase decoders are identical.
  • the output of one sub-path from phase decoder 403 and the output of one sub-path from phase decoder 404 are combined by polarization beam splitter 402 into a second port B output to optical circulator 401, and passed through an optical circulator.
  • the third port C output of 401; the output of the other sub-path from phase decoder 403 and the output of the other sub-path from phase decoder 404 are combined by polarization combiner 405 into one output.
  • the two sub-output optical pulses input to either of the polarization beam splitter 402 and the polarization combiner 405 acting as a polarization combiner are synchronized to the respective polarization combiners.
  • the phases modulated by the phase decoder 403 and the phase decoder 404 are identical.
  • the devices on the optical path between the polarization beam splitter, the polarization beam combiner, the polarization beam splitter, and the polarization beam combiner are polarization control type devices.
  • phase modulation is performed at phase decoder 403 and phase decoder 404, it is also possible to phase modulate the input optical pulses before polarization splitting by a quantum key distribution protocol prior to polarization beam splitter 402.
  • each of the two transmitted optical pulses obtained by polarization splitting is phase modulated by a quantum key distribution protocol.
  • An unequal-arm Mach-Zehnder interference ring is as shown in FIG. 5, and specifically includes the following components: two 2 ⁇ 2 3dB beam splitters 503 and 506, a delay line 504, and A phase modulator 505.
  • the beam splitter can also be called and used as a beam combiner.
  • One of the two ports 501 and 502 on one side of the 3dB beam splitter 503 serves as the input of the phase encoder, and one of the two ports 507 and 508 on one side of the 3dB beam splitter 506 serves as the output of the phase encoder.
  • Delay line 504 and phase modulator 505 are respectively inserted into the two arms of the Mach-Zehnder interference ring.
  • the optical pulse enters the beam splitter 503 via the port 501 or 502 of the beam splitter 503 and is split into two paths, one is delayed by the delay line 504, and the other is phase-modulated by the phase modulator 505, after the relative delay.
  • a beam splitter 506 Light pulses transmitted on the two optical paths are combined by a beam splitter 506 to generate a pulse of light and output by port 507 or 508.
  • the delay line 504 and the phase modulator 505 are located on the same arm of the Mach-Zehnder interference ring, the above results are not affected.
  • the components on the optical path between the 3dB beam splitter, the delay line, the phase modulator, and the two 3dB beam splitters are polarization-controlled devices or polarization-maintaining devices.
  • An unequal-arm Michelson interference ring is as shown in FIG. 6, and specifically includes the following components: a 2 ⁇ 2 3dB beam splitter 603, two mirrors 605 and 607, and a phase modulator 606. And delay line 604.
  • the beam splitter can also be called and used as a beam combiner.
  • Two ports 601 and 602 on one side of the 3dB beam splitter 603 serve as an input end and an output end of the phase encoder, respectively; one of the two ports on the other side of the 3dB beam splitter 603 sequentially connects the delay line 604 and the reflection.
  • the mirror 605 and the other port on the same side are sequentially connected to the phase modulator 606 and the mirror 607.
  • the optical pulse enters the beam splitter 603 via the port 601 of the beam splitter 603 and is split into two optical pulse transmissions, one delayed by the delay line 604, reflected back by the mirror 605, and the other phase is phased by the phase modulator 606.
  • the beam splitter 603 After being modulated, it is reflected back by the mirror 607, and the reflected light pulses transmitted on the two optical paths are combined by the beam splitter 603 to be outputted by a routing port 602.
  • the delay line 604 and the phase modulator 606 are serially connected to the same port, the above results are not affected.
  • the light pulse is input from port 602, output from port 601, and port 601 or 602 as both input and output, the result is the same.
  • the unequal-arm Michelson interference ring the 3dB beam splitter, the delay line, the mirror, the phase modulator, the device on the optical path between the 3dB beam splitter and the two mirrors are all polarization-controlled devices or polarizations. Hold type device.
  • interference rings shown in Figures 5 and 6 can be used as the phase decoder as described above, such as the phase decoder described in connection with any of Figures 2-4.
  • An unequal-arm Faraday-Michaelson interference ring is as shown in FIG. 7, and specifically includes the following components: a 2 ⁇ 2 3dB beam splitter 703, two 90-degree rotating Faraday mirrors 705, and 707, delay line 704, and phase modulator 706.
  • the beam splitter can also be called and used as a beam combiner.
  • Two ports 701 and 702 on one side of the 3dB beam splitter 703 serve as input and output terminals of the phase encoder, respectively; one of the two ports on the other side of the 3dB beam splitter 703 is sequentially connected to the delay line 704, 90 degrees.
  • the Faraday Mirror 705 is rotated, and the other port on the same side is sequentially connected to the phase modulator 706 and the 90-degree rotating Faraday Mirror 707.
  • the light pulse enters the beam splitter 703 via the port 701 of the beam splitter 703 and is split into two paths, one of which is delayed by the delay line 704, reflected back by the 90 degree rotating Faraday Mirror 705, and the other is passed through the phase modulator 706.
  • the Faraday Mirror 707 After phase modulation, the Faraday Mirror 707 is reflected back by the 90-degree rotation, and the reflected optical pulses transmitted on the two optical paths are combined by the beam splitter 703 to form a routing port 702 for output.
  • the phase modulator 706 and the delay line 704 are connected in series on the same port, the above results are not affected.
  • the light pulse is input from port 702, output from port 701, and port 701 or 702 as both input and output, the result is the same.
  • a quantum key distribution system specifically includes the following components: a single photon source 801, a phase encoder 802, a quantum channel 803, and two single photon detectors 805 and 806. And the phase decoding device 804 described above.
  • a single photon source 801 is used to generate a single photon light pulse.
  • Phase encoder 802 is used to phase encode a single photon optical pulse generated by single photon source 801.
  • Quantum channel 803 is used to transmit single photon optical pulses.
  • quantum channel 803 transmits the phase encoded single photon optical pulse to phase decoding device 804.
  • the phase decoding device 804 is configured to phase decode the single photon optical pulse transmitted through the quantum channel 803 in accordance with a quantum key distribution protocol.
  • the single photon detectors 805 and 806 are used to detect the single photon light pulse outputted by the phase decoding device 804, and perform quantum key distribution according to the detection result and the quantum key distribution protocol.
  • the single photon source 801 transmits a single photon optical pulse into the phase encoder 802.
  • the phase encoder 802 phase encodes the single photon optical pulse, and the phase encoded optical pulse is transmitted to the phase decoding device 804 via the quantum channel 803.
  • the phase decoding device 804 The incident single photon pulse is phase decoded, and the optical pulse output by the phase decoding device 804 is sent to a single photon detector 805 or a single photon detector 806.
  • the phase encoder 802 and the phase decoding device 804 respectively phase encode and decode the optical pulses in accordance with the quantum key distribution protocol, and perform key distribution according to the quantum key distribution protocol.
  • the phase encoder 802 can adopt any one of the following: an unequal arm Mach-Zehnder interference ring, an unequal arm Michelson interference ring, an unequal arm Faraday-Michaelson interference ring, and the phase decoding device described above.
  • the quantum channel 803 may be an optical waveguide, an optical fiber, a free space, a discrete optical element, a planar waveguide optical element, a fiber optic element, or a light propagation path in which any two or more of the above are combined.
  • the idea of the present invention is to perform polarization diversity processing on an incident input light pulse at a receiving end, and split the input optical pulse into two transmitted optical pulses whose polarization states are orthogonal to each other, so that an arbitrary input can be made.
  • the light pulse uses a polarization control type device or a polarization maintaining type device.
  • the present invention makes it possible to avoid system stability caused by the random variation of the polarization state of the optical pulse during transmission by using the polarization control type device or the polarization maintaining type device at the receiving end in the quantum key distribution application.
  • the problem is without prior knowledge or determination of the polarization state of the input light pulse - that is, eliminating the need for the aforementioned complex polarization state monitoring and/or calibration device.
  • the interference ring used by the phase decoding means at the receiving end can be of various types including the unequal arm Mach-Zehnder interference ring, and is not limited to the unequal arm Michelson interference ring. Therefore, by selecting a suitable interference ring, a lower insertion loss at the receiving end can be achieved while solving the problem of system stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提出了一种相位解码方法、装置和量子密钥分发系统,该方法包括:将入射的任意偏振态的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲;分别对第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将每路传输光脉冲在相位解码后经两条子光路输出;将第一路传输光脉冲在相位解码后得到的一路子输出光脉冲与第二路传输光脉冲在相位解码后得到的一路子输出光脉冲偏振合束为一路输出光脉冲。本发明可有效解决光脉冲偏振态随机变化对系统稳定性产生的影响,实现传输光纤环境干扰免疫的稳定相位解码。此外,本发明可采用不等臂马赫-曾德尔干涉环,光脉冲在解码时只需经过一次相位调制器,减小了接收端的插入损耗,提高了系统效率。

Description

一种相位解码方法、装置和量子密钥分发系统 技术领域
本发明涉及光传输保密通信技术领域,尤其涉及一种相位解码方法、装置和量子密钥分发系统。
背景技术
对于以不等臂干涉环为基础的相位编码量子密钥分发系统,在光脉冲经光纤量子信道传输的过程中,因光纤制作存在截面非圆对称、纤芯折射率沿径向不均匀分布等非理想情况,以及光纤在实际环境中受温度、应变、弯曲等影响而产生双折射效应,光脉冲在到达接收端时的偏振态会发生随机变化,造成相位解码干涉环输出结果不稳定,并且此现象随着光纤距离的增加恶化明显。
一种接收端解码方式是采用保偏器件,但这样做通常需要知道光脉冲的偏振态。因此若在量子密钥分发系统的接收端采用保偏器件,通常需要设置复杂的偏振态监测和/或校准装置来对入射的光脉冲的偏振态进行检测和/或校准以满足此条件。
另外,在现有技术中提出了一种不等臂法拉第-迈克尔逊干涉环,其可使光脉冲的偏振态不受光纤信道随机双折射及源于此的偏振态变化的影响,保持干涉结果稳定输出。但是,这种干涉环损耗较大,其中相位调制器的插损是引起较大损耗的主要因素之一。具体而言,当相位调制器置于干涉环的一臂时,光脉冲由于来回传输会经过相位调制器两次,从而造成干涉环的损耗较大、系统效率偏低。
发明内容
本发明的主要目的在于提出一种相位解码方法、装置和量子密钥分发系统,用以解决相位编码量子密钥分发应用中因前述的偏振态变化而导致的输出结果不稳定的问题。
本发明提供至少以下技术方案:
1.一种相位解码方法,其特征在于,所述方法包括:
将入射的任意偏振态的一路输入光脉冲偏振分束为偏振态相互正交的第一路传输光脉冲和第二路传输光脉冲;
分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将所述第一路传输光脉冲和第二路传输光脉冲中的每路传输光脉冲在相位解码后经与其相关联的两条子光路输出;
将从与第一路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲和从与第二路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲偏振合束为一路输出光脉冲。
2.根据方案1所述的相位解码方法,其特征在于,所述分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码包括:
对于所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲,将该路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出,
其中,在对所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲进行相位解码的过程中,控制相应的两路子传输光脉冲的偏振态,以使得所述相应的两路子传输光脉冲在合束时的偏振态相同。
3.根据方案1所述的相位解码方法,其特征在于,所述方法还包括:
在偏振分束至偏振合束的过程中,控制各光脉冲的偏振态,以使得进行偏振合束的两路子输出光脉冲在偏振合束时的偏振态相互正交。
4.根据方案2或3所述的相位解码方法,其特征在于,控制各光脉冲的偏振态包括:
通过使用偏振保持型器件,维持各光脉冲的偏振态保持不变。
5.一种相位解码装置,其特征在于,所述装置包括:一个偏振分束器、两个相位解码器以及一个或两个偏振合束器,
所述偏振分束器用于将入射的任意偏振态的一路输入光脉冲偏振分束为偏振态相互正交的第一路传输光脉冲和第二路传输光脉冲;
所述两个相位解码器用于分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将相应的一路传输光脉冲在相位解码后经与其相关联的两条子光路输出;
每个所述偏振合束器用于将来自与所述第一路传输光脉冲相关联的两条子光路中之一的子输出光脉冲和来自与所述第二路传输光脉冲相关联的两条子光路中之一的子输出光脉冲偏振合束为一路输出光脉冲。
6.根据方案5所述的相位解码装置,其特征在于,每个所述相位解码器被配置为:
将由该相位解码器进行相位解码的一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出。
7.根据方案5所述的相位解码装置,其特征在于,所述偏振分束器、所述相位解码器、所述偏振合束器以及相关联的传导光使用的分立器件和波导器件均为偏振控制型器件,以对各光脉冲的偏振态进行控制,使得与所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲相应的两路子传输光脉冲在合束时的偏振态相同,以及使得进行偏振合束的两路子输出光脉冲在偏振合束时的偏振态相互正交。
8.根据方案5至7中任一所述的相位解码装置,其特征在于,所述偏振分束器、所述相位解码器、所述偏振合束器以及相关联的传导光使用的分立器件和波导器件均为偏振保持型器件,以维持各光脉冲的偏振态不变。
9.根据方案5所述的相位解码装置,其特征在于,所述两个相位解码器调制的相位一致。
10.根据方案5所述的相位解码装置,其特征在于,所述两个相位解码器采用不等臂马赫-曾德尔干涉环或不等臂迈克尔逊干涉环。
11.根据方案10所述的相位解码装置,其特征在于,所述两个相位解码器采用不等臂迈克尔逊干涉环且不等臂迈克尔逊干涉环的输入端口和输出端口为同一端口,所述偏振合束器中之一与所述偏振分束器为同一器件,并且所述相位解码装置还包括光环形器,
其中所述光环形器位于所述偏振分束器前端;所述入射的任意偏振态的一路输入光脉冲从所述光环形器的第一端口输入并从所述光环形器的第二端口输出至所述偏振分束器;从与所述偏振分束器为同一器件的偏振合束器输出的一路输出光脉冲输入至所述光环形器的第二端口并从所述光环形器的第三端口输出。
12.一种量子密钥分发系统,其特征在于,包括:单光子源、相位编码器、量子信道、一个或两个单光子探测器和根据方案5~11中任一所述的相位解码装置,
所述单光子源用于产生单光子光脉冲;
所述相位编码器用于对所述单光子源产生的单光子光脉冲进行相位编码;
所述量子信道用于传输经单光子光脉冲;
所述相位解码装置用于按照量子密钥分发协议对经所述量子信道传输来的单光子光脉冲进行相位解码,其中经所述量子信道传输来的单光子光脉冲作为所述入射的任意偏振态的一路输入光脉冲;
每个所述单光子探测器耦合至所述相位解码装置的偏振合束器之一,用于对所述相位解码装置输出的单光子光脉冲进行检测,并根据检测结果以及量子密钥分发协议进行量子密钥分发,其中所述相位解码装置输出的单光子光脉冲为所述相位解码装置的偏振合束器之一输出的一路输出光脉冲。
13.根据方案12所述的量子密钥分发系统,其特征在于,所述相位编码器采用以下任意一种:不等臂马赫-曾德尔干涉环、不等臂迈克尔逊干涉环、不等臂法拉第-迈克尔逊干涉环、根据方案5~11中任一所述的相位解码装置。
14.根据方案1或2所述的相位解码方法,其特征在于,对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者对偏振分束得到的第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制,或者在每路传输光脉冲分束为两路子传输光脉冲后对其中至少一路子传输光脉冲按量子密钥分发协议进行相位调制。
15.根据方案5或6所述的相位解码装置,其特征在于,在所述偏振分束器之前对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者对偏振分束得到的第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制,或者在每路传输光脉冲分束为两路子传输光脉冲后由相应的相位解码器对其中至少一路子传输光脉冲按量子密钥分发协议进行相位调制。
本发明为基于不等臂马赫-曾德尔干涉环建立高效的环境干扰免疫的量子密钥分发系统提供了解决方案。利用本发明,可选地,可以通过选择合适的干涉环,在接收端实现低插损的与入射的输入光脉冲的偏振无关的相位解码。
本发明还提供附加的技术方案,具体如下。
本发明提供了一种相位解码方法,所述方法包括:
将入射的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲;
分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且每路传输光脉冲在相位解码后均得到两路子输出光脉冲;
将第一路传输光脉冲在相位解码后的任一路子输出光脉冲与第二路传输光脉冲在相位解码后的任一路子输出光脉冲偏振合束为一路输出光脉冲。
可选的,所述分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,包括:
将一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束为两路子输出光脉冲;
其中,在对一路传输光脉冲进行相位解码的过程中,控制光脉冲的偏振态,以使在合束为两路子输出光脉冲之前的两路子传输光脉冲的偏振态相同。
可选的,所述方法还包括:
在偏振分束至偏振合束的过程中,控制光脉冲的偏振态,以使偏振合束时的两路子输出光脉冲的偏振态相互正交。
可选的,所述控制光脉冲的偏振态,包括:
通过使用偏振保持型器件,维持光脉冲的偏振态始终保持不变。
此外,本发明还提供一种相位解码装置,包括:偏振分束器、两个相位解码器、以及一个或两个偏振合束器;
所述偏振分束器,用于将入射的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲;
所述两个相位解码器,用于分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且每路传输光脉冲在相位解码后均得到两路子输出光脉冲;
所述偏振合束器,用于将第一路传输光脉冲在相位解码后的任一路子输出光脉冲与第二路传输光脉冲在相位解码后的任一路子输出光脉冲偏振合束为一路输出光脉冲。
可选的,所述相位解码器,具体用于:
将一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束为两路子输出光脉冲。
可选的,所述偏振分束器、所述相位解码器、所述偏振合束器、以及传导光使用的分立器件和波导器件均为偏振控制型器件,以对光脉冲的偏振态进行控制,使得在合束为两路子输出光脉冲之前的两路子传输光脉冲的偏振态相同,以及使得偏振合束时的两路子输出光脉冲的偏振态相互正交。
可选的,所述偏振分束器、所述相位解码器、所述偏振合束器、以及传导光使用的分立器件和波导器件均为偏振保持型器件,以维持光脉冲的偏振态保持不变。
可选的,所述两个相位解码器调制的相位一致。
可选的,所述两个相位解码器采用不等臂马赫-曾德尔干涉环或不等臂迈克尔逊干涉环。
可选的,当所述两个相位解码器采用不等臂迈克尔逊干涉环且不等臂迈克尔逊干涉环的输入端口和输出端口为同一端口时,所述偏振合束器与所述偏振分束器为同一器件,此时,所述装置还包括:光环形器。所述光环形器,位于所述偏振分束器前端;所述光环形器的第一端口输入的光脉冲从所述光环形器的第二端口输出至所述偏振分束 器;从所述偏振分束器输出至所述光环形器的第二端口的光脉冲从所述光环形器的第三端口输出。
此外,本发明还提供一种量子密钥分发系统,包括:单光子源、相位编码器、量子信道、单光子探测器和上述介绍的相位解码装置;
所述单光子源,用于产生单光子光脉冲;
所述相位编码器,用于对所述单光子源产生的单光子光脉冲进行相位编码;
所述量子信道,用于传输单光子光脉冲;
所述相位解码装置,用于按照量子密钥分发协议对由所述经量子信道传输来的单光子光脉冲进行相位解码;
所述单光子探测器,用于对所述相位解码装置输出的单光子光脉冲进行检测,并根据检测结果以及量子密钥分发协议进行量子密钥分发。
可选的,所述相位编码器采用以下任意一种:不等臂马赫-曾德尔干涉环、不等臂迈克尔逊干涉环、不等臂法拉第-迈克尔逊干涉环、上述介绍的相位解码装置。
采用上述技术方案,本发明可至少具有下面陈述的优点。本发明所述的相位解码方法、装置和量子密钥分发系统,将入射的任意偏振态的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲,分别对两路传输光脉冲进行相位解码,每路传输光脉冲在相位解码后均经由相关联的两条子光路输出,将来自与第一路传输光脉冲相关联的两条子光路中之一的子输出光脉冲与来自与第二路传输光脉冲相关联的两条子光路中之一的子输出光脉冲偏振合束为一路输出光脉冲。相位解码是将一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出。控制各光脉冲的偏振态,使合束时的相应的两路子传输光脉冲的偏振态相同,以及使偏振合束时的两路子输出光脉冲的偏振态相互正交。通常,光脉冲经光纤量子信道传输时,会因环境影响导致传输至接收端的光脉冲的偏振态产生随机变化,影响量子保密通信系统工作稳定性。本发明可有效解决输入光脉冲偏振态随机变化对系统稳定性产生的影 响,实现传输光纤环境干扰免疫的稳定相位解码。此外,本发明对相位解码器采用的干涉环的类型没有约束,可使用最常用的不等臂马赫-曾德尔型干涉环,使光脉冲在解码时只需经过一次相位调制器,大大减小了接收端的插入损耗,可观地提高了系统效率。因而,本发明使得能够提供一种低插损的稳定高效量子密钥分发系统技术方案。另外,本发明的方案简便、易于实现。
附图说明
图1为本发明一优选实施例的相位解码方法的流程图;
图2为本发明一优选实施例的相位解码装置的组成结构示意图;
图3为本发明另一优选实施例的相位解码装置的组成结构示意图;
图4为本发明另一优选实施例的相位解码装置的组成结构示意图;
图5为本发明一优选实施例的不等臂马赫-曾德尔干涉环的组成结构示意图;
图6为本发明一优选实施例的不等臂迈克尔逊干涉环的组成结构示意图;
图7为本发明一优选实施例的不等臂法拉第-迈克尔逊干涉环的组成结构示意图;
图8为本发明一优选实施例的量子密钥分发系统的组成结构示意图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请的一部分,并与本发明的实施例一起用于阐释本发明的原理。为了清楚和简化目的,当其可能使本发明的主题模糊不清时,对本文所描述的器件的已知功能和结构的详细具体说明将省略。
本发明一优选实施例的一种相位解码方法如图1所示,具体包括以下步骤:
步骤S101:将入射的任意偏振态的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲。
具体的,入射的输入光脉冲的偏振态可以是任意偏振态,偏振分束后的第一路传输光脉冲和第二路传输光脉冲的偏振态相互正交。
步骤S102:分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将每路传输光脉冲在相位解码后经与其相关联的两条子光路输出。
具体的,所述分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码包括:
对于所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲,将该路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出。
这样,通过分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,得到两路子输出光脉冲。
这里,具体的,由一路传输光脉冲分束得到的两路子传输光脉冲在相对延时后合束并经与其相关联的两条子光路输出。相对延时按照量子密钥分发协议的规定和要求进行,本文不进行赘述。
其中,在对每一路传输光脉冲进行相位解码的过程中,控制光脉冲的偏振态,以使得相应的两路子传输光脉冲在合束时的偏振态相同。
步骤S103:将从与第一路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲和从与第二路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲偏振合束为一路输出光脉冲。
进一步的,所述方法还包括:
在偏振分束至偏振合束的过程中,控制各光脉冲的偏振态,以使得偏振合束时的两路子输出光脉冲的偏振态相互正交。
更进一步的,控制各光脉冲的偏振态包括:
通过使用偏振保持型器件,维持各光脉冲的偏振态始终保持不变;或者,使各光脉冲的偏振态经受已知的调制。
虽然上面没有明确说明,但本领域技术人员应理解,在接收端为进行相位解码,对光脉冲进行相位调制是必要的。
具体的,在图1的方法中,可以对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者可以对偏振分束得到的第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制,或者可以在每路传输光脉冲分束为两路子传输光脉冲后对其中至少一路子传输光脉冲按量子密钥分发协议进行相位调制。
上述的相位调制是量子密钥分发协议本身所要求和规定的,本文不进行赘述。
本发明一优选实施例的一种相位解码装置如图2所示,具体包括以下组成部分:偏振分束器201、两个相位解码器202以及两个偏振合束器203。
偏振分束器201用于将入射的任意偏振态的一路输入光脉冲偏振分束为第一路传输光脉冲和第二路传输光脉冲。
具体的,入射的输入光脉冲的偏振态可以是任意偏振态,偏振分束后的第一路传输光脉冲和第二路传输光脉冲的偏振态相互正交。
两个相位解码器202分别设置于偏振分束器201和两个偏振合束器203之间的两条光路上,用于分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将每路传输光脉冲在相位解码后经由相关联的两条子光路输出。
具体的,每个相位解码器202用于:
将一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出。
这里,具体的,由一路传输光脉冲分束得到的两路子传输光脉冲在相对延时后合束并经与其相关联的两条子光路输出。相对延时按照量子密钥分发协议的规定和要求进行,本文不进行赘述。
需要说明的是,对于图2的相位解码装置,可以在偏振分束器201之前对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者可以对偏振分束得到的第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制,或者可以在 每路传输光脉冲分束为两路子传输光脉冲后由相应的相位解码器202对其中至少一路子传输光脉冲按量子密钥分发协议进行相位调制。
进一步的,在由相位解码器进行相位调制的情况下,两个相位解码器202调制的相位一致。
更进一步的,两个相位解码器202采用不等臂马赫-曾德尔干涉环或不等臂迈克尔逊干涉环。
每个偏振合束器203用于将来自与第一路传输光脉冲相关联的两条子光路中之一的子输出光脉冲和来自与第二路传输光脉冲相关联的两条子光路中之一的子输出光脉冲偏振合束为一路输出光脉冲。
具体的,输入至偏振合束器203的两路子输出光脉冲同步到达偏振合束器203并合束为一路输出光脉冲。
进一步的,当两个相位解码器202采用不等臂迈克尔逊干涉环且不等臂迈克尔逊干涉环的输入端口和输出端口为同一端口时,偏振合束器203中的一个与偏振分束器201为同一器件,此时,所述装置还包括光环形器。
其中所述光环形器位于偏振分束器201前端;所述入射的任意偏振态的一路输入光脉冲从所述光环形器的第一端口输入并从所述光环形器的第二端口输出至偏振分束器201;从与偏振分束器201为同一器件的那个偏振合束器203输出的一路输出光脉冲输入至所述光环形器的第二端口并从所述光环形器的第三端口输出。
更进一步的,偏振分束器201、相位解码器202、偏振合束器203以及相关联的传导光使用的分立器件和波导器件均为偏振控制型器件,以对各光脉冲的偏振态进行控制,使得与所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲相应的两路子传输光脉冲在合束时的偏振态相同,以及使得进行偏振合束的两路子输出光脉冲在偏振合束时的偏振态相互正交。偏振合束器203的正交基的本征态与偏振合束时的两路子输出光脉冲的正交偏振态一致。这里,所述的相位解码器和相关联的传导光使用的分立器件和波导器件可以统称为偏振分束器与偏振合束器之间的光路上的光器件。
优选的,偏振分束器201、相位解码器202、偏振合束器203以及相关联的传导光使用的分立器件和波导器件均为偏振保持型器件,以维持各光脉冲的偏振态不变。同样地,这里,所述的相位解码器和相关联的传导光使用的分立器件和波导器件可以统称为偏振分束器与偏振合束器之间的光路上的光器件。
如图2所示,本实施例的相位解码装置包括两个偏振合束器,但是,在实际应用中也可根据需要只设置一个偏振合束器。
本发明另一优选实施例的一种相位解码装置如图3所示,具体包括以下组成部分:偏振分束器301、两个相位解码器302和303,以及两个偏振合束器304和305。
偏振分束器301将一路输入光脉冲偏振分束为两路传输光脉冲。一路传输光脉冲经过相位解码器302进行相位解码后经其两条子光路输出;另一路传输光脉冲经过相位解码器303进行相位解码后经其两条子光路输出。来自相位解码器302的一条子光路的输出和来自相位解码器303的一条子光路的输出经偏振合束器304合束为一路输出;来自相位解码器302的另一条子光路的输出和来自相位解码器303的另一条子光路的输出经偏振合束器305合束为一路输出。输入至偏振合束器304和305中任一的两个子输出光脉冲同步到达该偏振合束器。相位解码器302和相位解码器303调制的相位一致。相位解码装置中,偏振分束器、偏振合束器、所述偏振分束器与偏振合束器之间光路上的器件均为偏振控制型器件。尽管这里提到在相位解码器302和相位解码器303处进行相位调制,但也可能的是,在偏振分束器301之前对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者对偏振分束得到的两路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制。
本发明另一优选实施例的一种相位解码装置如图4所示,具体包括以下组成部分:光环形器401、偏振分束器402、两个相位解码器403和404,以及偏振合束器405。其中,偏振分束器402可以同时充当偏振合束器。
输入光脉冲经光环形器401的第一端口A输入,并经光环形器401的第二端口B输出至偏振分束器402。偏振分束器402将从第二端口B接收的一路输入光脉冲偏振分束为两路传输光脉冲。一路传输光脉冲经过相位解码器403进行相位解码后经其两条子光路输出;另一路传输光脉冲经过相位解码器404进行相位解码后经其两条子光路输出。相位解码器403和404采用不等臂迈克尔逊干涉环,两个相位解码器各自的输入端口和输出端口相同。来自相位解码器403的一条子光路的输出和来自相位解码器404的一条子光路的输出经偏振分束器402合束为一路输出至光环形器401的第二端口B,并经光环形器401的第三端口C输出;来自相位解码器403的另一条子光路的输出和来自相位解码器404的另一条子光路的输出经偏振合束器405合束为一路输出。输入至充当偏振合束器的偏振分束器402和偏振合束器405中任一的两个子输出光脉冲同步到达相应的偏振合束器。相位解码器403和相位解码器404调制的相位一致。相位解码装置中,偏振分束器、偏振合束器、所述偏振分束器与偏振合束器之间光路上的器件均为偏振控制型器件。尽管这里提到在相位解码器403和相位解码器404处进行相位调制,但也可能的是,在偏振分束器402之前对偏振分束前的输入光脉冲按量子密钥分发协议进行相位调制,或者对偏振分束得到的两路传输光脉冲中的每一路传输光脉冲按量子密钥分发协议进行相位调制。
本发明一优选实施例的一种不等臂马赫-曾德尔干涉环如图5所示,具体包括以下组成部分:两个2×2的3dB分束器503和506、延时线504,以及一个相位调制器505。这里,分束器亦可称为和用作合束器。
3dB分束器503的一侧的两个端口501和502之一作为相位编码器的输入端,3dB分束器506的一侧的两个端口507和508之一作为相位编码器的输出端,延时线504和相位调制器505分别插入马赫-曾德尔干涉环的两个臂。工作时,光脉冲经分束器503的端口501或502进入分束器503分成两路传输,一路经过延时线504延时,另一路经相位调制器505进行相位调制,相对延时后的在两条光路上传输的光脉冲经分束器506合成一路光脉冲并由端口507或508输出。当延时线504 和相位调制器505位于马赫-曾德尔干涉环的同一臂时,上述结果不受影响。不等臂马赫-曾德尔干涉环中,3dB分束器、延时线、相位调制器、所述两个3dB分束器之间光路上的器件均为偏振控制型器件或偏振保持型器件。
本发明一优选实施例的一种不等臂迈克尔逊干涉环如图6所示,具体包括以下组成部分:2×2的3dB分束器603、两个反射镜605和607、相位调制器606,以及延时线604。这里,分束器亦可称为和用作合束器。
3dB分束器603的一侧的两个端口601和602分别作为相位编码器的输入端和输出端;3dB分束器603的另一侧的两个端口之一依次连接延时线604、反射镜605,同侧另一端口则顺序连接相位调制器606、反射镜607。工作时,光脉冲经分束器603的端口601进入分束器603分成两路光脉冲传输,一路经延时线604延时,由反射镜605反射回来,另一路经相位调制器606进行相位调制后再经反射镜607反射回来,反射回来的在两条光路上传输的光脉冲经分束器603合成一路由端口602输出。当延时线604和相位调制器606串接在同一端口时,上述结果不受影响。光脉冲由602端口输入、由601端口输出和以端口601或602同时作为输入和输出时,结果相同。不等臂迈克尔逊干涉环中,3dB分束器、延时线、反射镜、相位调制器、所述3dB分束器与两个反射镜之间光路上的器件均为偏振控制型器件或偏振保持型器件。
图5和6所示的干涉环均可用作前文所述的相位解码器,如结合图2-4中任一描述的相位解码器。
本发明一优选实施例的一种不等臂法拉第-迈克尔逊干涉环如图7所示,具体包括以下组成部分:2×2的3dB分束器703、两个90度旋转法拉第反射镜705和707、延时线704,以及相位调制器706。这里,分束器亦可称为和用作合束器。
3dB分束器703的一侧的两个端口701和702分别作为相位编码器的输入和输出端;3dB分束器703的另一侧的两个端口之一依次连接延时线704、90度旋转法拉第反射镜705,同侧另一端口则顺序连接相位调制器706、90度旋转法拉第反射镜707。工作时,光脉冲经分束器 703的端口701进入分束器703分成两路传输,一路经过延时线704延时,由90度旋转法拉第反射镜705反射回来,另一路经相位调制器706进行相位调制后再经90度旋转法拉第反射镜707反射回来,反射回来的在两条光路上传输的光脉冲经分束器703合成一路由端口702输出。当相位调制器706和延时线704串接在同一端口时,上述结果不受影响。光脉冲由702端口输入、由701端口输出和以端口701或702同时作为输入和输出时,结果相同。
本发明一优选实施例的一种量子密钥分发系统如图8所示,具体包括以下组成部分:单光子源801、相位编码器802、量子信道803、两个单光子探测器805和806,以及上述介绍的相位解码装置804。
单光子源801用于产生单光子光脉冲。
相位编码器802用于对单光子源801产生的单光子光脉冲进行相位编码。
量子信道803用于传输单光子光脉冲。特别地,量子信道803将经相位编码的单光子光脉冲传输至相位解码装置804。
相位解码装置804用于按照量子密钥分发协议对经量子信道803传输来的单光子光脉冲进行相位解码。
单光子探测器805和806用于对相位解码装置804输出的单光子光脉冲进行检测,并根据检测结果以及量子密钥分发协议进行量子密钥分发。
单光子源801发射一个单光子光脉冲进入相位编码器802,相位编码器802对单光子光脉冲进行相位编码,相位编码后的光脉冲经量子信道803传输至相位解码装置804,相位解码装置804对入射的单光子脉冲进行相位解码,相位解码装置804输出的光脉冲发送至单光子探测器805或单光子探测器806。相位编码器802和相位解码装置804按照量子密钥分发协议分别对光脉冲进行相位编码和解码,并根据量子密钥分发协议进行密钥分发。
具体的,相位编码器802可以采用以下任意一种:不等臂马赫-曾德尔干涉环、不等臂迈克尔逊干涉环、不等臂法拉第-迈克尔逊干涉环、上述介绍的相位解码装置。
量子信道803可以是光波导、光纤、自由空间、分立光学元件、平面波导光学元件、纤维光学元件或上述中任意两个以上组合成的光传播通道。
总体而言,本发明的思想在于:在接收端对入射的输入光脉冲进行偏振分集处理,将输入光脉冲偏振分束为偏振态相互正交的两路传输光脉冲,使得可以对任意的输入光脉冲使用偏振控制型器件或偏振保持型器件。
相应地,本发明使得可以:在量子密钥分发应用中,在接收端通过使用偏振控制型器件或偏振保持型器件来避免因光脉冲在传输过程中偏振态易随机变化而导致的系统稳定性问题,而无需事先知晓或确定输入光脉冲的偏振态——即消除对前面提到的复杂的偏振态监测和/或校准装置的需要。
另外,利用本发明,接收端的相位解码装置所使用的干涉环可以为各种类型的——包括不等臂马赫-曾德尔干涉环在内,而不限于不等臂迈克尔逊干涉环。因而,通过选择合适的干涉环,在解决系统稳定性问题的同时可以实现接收端较低的插损。
通过上文的说明,应当可对本发明为达成预定目的所采取的技术手段及功效有更加深入且具体的了解,然而所附图示仅是提供参考与说明之用,并非用来对本发明加以限制。

Claims (13)

  1. 一种相位解码方法,其特征在于,所述方法包括:
    将入射的任意偏振态的一路输入光脉冲偏振分束为偏振态相互正交的第一路传输光脉冲和第二路传输光脉冲;
    分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将所述第一路传输光脉冲和第二路传输光脉冲中的每路传输光脉冲在相位解码后经与其相关联的两条子光路输出;
    将从与第一路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲和从与第二路传输光脉冲相关联的两条子光路中任一输出的子输出光脉冲偏振合束为一路输出光脉冲。
  2. 根据权利要求1所述的相位解码方法,其特征在于,所述分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码包括:
    对于所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲,将该路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出,
    其中,在对所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲进行相位解码的过程中,控制相应的两路子传输光脉冲的偏振态,以使得所述相应的两路子传输光脉冲在合束时的偏振态相同。
  3. 根据权利要求1所述的相位解码方法,其特征在于,所述方法还包括:
    在偏振分束至偏振合束的过程中,控制各光脉冲的偏振态,以使得进行偏振合束的两路子输出光脉冲在偏振合束时的偏振态相互正交。
  4. 根据权利要求2或3所述的相位解码方法,其特征在于,控制各光脉冲的偏振态包括:
    通过使用偏振保持型器件,维持各光脉冲的偏振态保持不变。
  5. 一种相位解码装置,其特征在于,所述装置包括:一个偏振分束器、两个相位解码器以及一个或两个偏振合束器,
    所述偏振分束器用于将入射的任意偏振态的一路输入光脉冲偏振分束为偏振态相互正交的第一路传输光脉冲和第二路传输光脉冲;
    所述两个相位解码器用于分别对所述第一路传输光脉冲和第二路传输光脉冲进行相位解码,且将相应的一路传输光脉冲在相位解码后经与其相关联的两条子光路输出;
    每个所述偏振合束器用于将来自与所述第一路传输光脉冲相关联的两条子光路中之一的子输出光脉冲和来自与所述第二路传输光脉冲相关联的两条子光路中之一的子输出光脉冲偏振合束为一路输出光脉冲。
  6. 根据权利要求5所述的相位解码装置,其特征在于,每个所述相位解码器被配置为:
    将由该相位解码器进行相位解码的一路传输光脉冲分束为两路子传输光脉冲,并将分束后的两路子传输光脉冲合束后经与其相关联的两条子光路输出。
  7. 根据权利要求5所述的相位解码装置,其特征在于,所述偏振分束器、所述相位解码器、所述偏振合束器以及相关联的传导光使用的分立器件和波导器件均为偏振控制型器件,以对各光脉冲的偏振态进行控制,使得与所述第一路传输光脉冲和第二路传输光脉冲中的每一路传输光脉冲相应的两路子传输光脉冲在合束时的偏振态相同,以及使得进行偏振合束的两路子输出光脉冲在偏振合束时的偏振态相互正交。
  8. 根据权利要求5至7中任一项所述的相位解码装置,其特征在于,所述偏振分束器、所述相位解码器、所述偏振合束器以及相关联的传导光使用的分立器件和波导器件均为偏振保持型器件,以保持各光脉冲的偏振态不变。
  9. 根据权利要求5所述的相位解码装置,其特征在于,所述两个相位解码器调制的相位一致。
  10. 根据权利要求5所述的相位解码装置,其特征在于,所述两个相位解码器采用不等臂马赫-曾德尔干涉环或不等臂迈克尔逊干涉环。
  11. 根据权利要求10所述的相位解码装置,其特征在于,所述两个相位解码器采用不等臂迈克尔逊干涉环且不等臂迈克尔逊干涉环的输入端口和输出端口为同一端口,所述偏振合束器中之一与所述偏振分束器为同一器件,并且所述相位解码装置还包括光环形器,
    其中所述光环形器位于所述偏振分束器前端;所述入射的任意偏振态的一路输入光脉冲从所述光环形器的第一端口输入并从所述光环形器的第二端口输出至所述偏振分束器;从与所述偏振分束器为同一器件的偏振合束器输出的一路输出光脉冲输入至所述光环形器的第二端口并从所述光环形器的第三端口输出。
  12. 一种量子密钥分发系统,其特征在于,包括:单光子源、相位编码器、量子信道、一个或两个单光子探测器和根据权利要求5~11中任一项所述的相位解码装置,
    所述单光子源用于产生单光子光脉冲;
    所述相位编码器用于对所述单光子源产生的单光子光脉冲进行相位编码;
    所述量子信道用于传输单光子光脉冲;
    所述相位解码装置用于按照量子密钥分发协议对经所述量子信道传输来的单光子光脉冲进行相位解码,其中经所述量子信道传输来的单光子光脉冲作为所述入射的任意偏振态的一路输入光脉冲;
    每个所述单光子探测器耦合至所述相位解码装置的偏振合束器之一,用于对所述相位解码装置输出的单光子光脉冲进行检测,并根据检测结果以及量子密钥分发协议进行量子密钥分发,其中所述相位解码装置输出的单光子光脉冲为所述相位解码装置的偏振合束器之一输出的一路输出光脉冲。
  13. 根据权利要求12所述的量子密钥分发系统,其特征在于,所述相位编码器采用以下任意一种:不等臂马赫-曾德尔干涉环、不等臂迈克尔逊干涉环、不等臂法拉第-迈克尔逊干涉环、根据权利要求5~11中任一项所述的相位解码装置。
PCT/CN2018/093044 2017-10-26 2018-06-27 一种相位解码方法、装置和量子密钥分发系统 WO2019080530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711018889.6 2017-10-26
CN201711018889.6A CN107612690B (zh) 2017-10-26 2017-10-26 一种相位解码方法、装置和量子密钥分发系统

Publications (1)

Publication Number Publication Date
WO2019080530A1 true WO2019080530A1 (zh) 2019-05-02

Family

ID=61080986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093044 WO2019080530A1 (zh) 2017-10-26 2018-06-27 一种相位解码方法、装置和量子密钥分发系统

Country Status (2)

Country Link
CN (1) CN107612690B (zh)
WO (1) WO2019080530A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612690B (zh) * 2017-10-26 2021-05-07 中国电子科技集团公司电子科学研究院 一种相位解码方法、装置和量子密钥分发系统
WO2019080565A1 (zh) * 2017-10-26 2019-05-02 中国电子科技集团公司电子科学研究院 相位解码方法、相位解码接收装置和量子密钥分发系统
CN108650091B (zh) * 2018-07-18 2024-04-19 中国电子科技集团公司电子科学研究院 相位解码方法、相位解码接收装置和量子密钥分发系统
CN110351068B (zh) * 2018-04-02 2024-02-09 浙江九州量子信息技术股份有限公司 一种基于波导的量子密钥分发系统及方法
CN109391471B (zh) * 2018-10-15 2021-07-06 中国科学技术大学 一种混合波导集成干涉仪和量子密钥分配系统
CN109104277B (zh) * 2018-10-29 2023-09-15 中国电子科技集团公司电子科学研究院 直流调制量子密钥分发相位解码方法和装置及相应系统
CN109039624B (zh) * 2018-10-29 2023-05-19 中国电子科技集团公司电子科学研究院 直流调制量子密钥分发时间比特-相位解码方法和装置
CN109039625B (zh) * 2018-10-29 2023-05-26 中国电子科技集团公司电子科学研究院 量子密钥分发时间比特-相位解码方法、装置及系统
CN109039620B (zh) * 2018-10-29 2023-04-25 中国电子科技集团公司电子科学研究院 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109039626B (zh) * 2018-10-29 2023-05-23 中国电子科技集团公司电子科学研究院 相差控制的量子密钥分发时间比特-相位解码方法和装置
CN109039617B (zh) * 2018-10-29 2024-05-03 中国电子科技集团公司电子科学研究院 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109120401B (zh) * 2018-10-29 2023-07-28 中国电子科技集团公司电子科学研究院 偏振正交旋转的直流调制量子密钥分发时间比特-相位解码方法、装置和系统
CN109039623B (zh) * 2018-10-29 2023-05-23 中国电子科技集团公司电子科学研究院 直流调制量子密钥分发相位解码方法和装置及相应的系统
CN109039618B (zh) * 2018-10-29 2023-08-04 中国电子科技集团公司电子科学研究院 量子密钥分发相位解码方法和装置及相应系统
CN109150524B (zh) * 2018-10-29 2024-05-17 中国电子科技集团公司电子科学研究院 一种相位解码方法、装置和量子密钥分发系统
CN109039622B (zh) * 2018-10-29 2023-08-11 中国电子科技集团公司电子科学研究院 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109039619B (zh) * 2018-10-29 2023-05-26 中国电子科技集团公司电子科学研究院 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109150525B (zh) * 2018-10-29 2023-08-22 中国电子科技集团公司电子科学研究院 量子密钥分发相位解码方法和装置及相应系统
CN110456518B (zh) * 2019-03-08 2023-08-15 中国电子科技集团公司电子科学研究院 偏振无关双光束干涉方法和装置
CN110430049B (zh) * 2019-07-24 2024-01-23 赵义博 一种抗偏振扰动的相位编码量子密钥分发系统
CN110601768A (zh) * 2019-10-18 2019-12-20 中国电子科技集团公司电子科学研究院 集成波导解码装置和量子密钥分发系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106161009A (zh) * 2016-08-19 2016-11-23 浙江神州量子网络科技有限公司 基于时间‑相位编码的量子密钥分发系统及编码装置和解码装置
CN107612690A (zh) * 2017-10-26 2018-01-19 中国电子科技集团公司电子科学研究院 一种相位解码方法、装置和量子密钥分发系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693970B2 (en) * 2009-04-13 2014-04-08 Viasat, Inc. Multi-beam active phased array architecture with independant polarization control
CN104075705A (zh) * 2014-06-26 2014-10-01 中航捷锐(北京)光电技术有限公司 一种提高速率敏感性的光纤陀螺仪
GB2551685B (en) * 2016-02-16 2019-12-11 Toshiba Kk An optical device, a transmitter for a quantum communication system and a quantum communication system
CN106685655B (zh) * 2017-01-16 2019-08-16 华南师范大学 一种相位偏振多自由度调制qkd网络系统及方法
CN107070655A (zh) * 2017-05-24 2017-08-18 中国电子科技集团公司电子科学研究院 一种偏振和相位纠缠编码方法、装置和量子密钥分配系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106161009A (zh) * 2016-08-19 2016-11-23 浙江神州量子网络科技有限公司 基于时间‑相位编码的量子密钥分发系统及编码装置和解码装置
CN107612690A (zh) * 2017-10-26 2018-01-19 中国电子科技集团公司电子科学研究院 一种相位解码方法、装置和量子密钥分发系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU , XIAOMING ET AL.: "A High-Speed Quantum Key Distribution System Based on Faraday- Michelson Interferometers", THE 7TH IEEELINTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY, 14 November 2014 (2014-11-14) - 26 January 2016 (2016-01-26), XP032727214, DOI: 10.1109/ICAIT.2014.7019546 *

Also Published As

Publication number Publication date
CN107612690A (zh) 2018-01-19
CN107612690B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2019080530A1 (zh) 一种相位解码方法、装置和量子密钥分发系统
WO2018214888A1 (zh) 偏振和相位纠缠编码方法、装置和量子密钥分配系统
JP6729852B2 (ja) 符号化装置、ならびにそれに基づく量子鍵配送デバイスおよびシステム
CN108650091B (zh) 相位解码方法、相位解码接收装置和量子密钥分发系统
JP5144733B2 (ja) 偏光制御エンコーダ及び量子鍵分配システム
CN109150525B (zh) 量子密钥分发相位解码方法和装置及相应系统
CN100592685C (zh) 量子密码通信系统和在通信终端处设置平均光子数的方法
CN109150524B (zh) 一种相位解码方法、装置和量子密钥分发系统
CN109039617B (zh) 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109104277B (zh) 直流调制量子密钥分发相位解码方法和装置及相应系统
CN109150522B (zh) 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN109120403B (zh) 基于偏振正交旋转的直流调制量子密钥分发相位解码方法、装置及系统
GB2405294A (en) Receiver for a quantum cryptography communication system
WO2005112335A1 (ja) 量子暗号通信装置
CN109039621B (zh) 直流调制量子密钥分发相位解码方法和装置及相应系统
WO2020182059A1 (zh) 量子密钥分发相位编解码器、相应的编解码装置及系统
CN109039618B (zh) 量子密钥分发相位解码方法和装置及相应系统
CN113708932A (zh) 用于量子密钥分发的相位编码装置及量子密钥分发系统
CN109039622B (zh) 量子密钥分发时间比特-相位解码方法和装置及相应系统
JP5019979B2 (ja) 量子暗号受信装置およびそれを使用する量子暗号受信方法
CN110752882A (zh) 一种低误码率的相位编码系统及其接收端
CN110572260B (zh) 一种应用于量子密钥分发的脉冲延时器及延时方法
JP4388316B2 (ja) 量子暗号通信装置および方法
CN109039620B (zh) 量子密钥分发时间比特-相位解码方法和装置及相应系统
CN110545180A (zh) 偏振编码装置及量子密钥分发光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871540

Country of ref document: EP

Kind code of ref document: A1