JP4138307B2 - 光信号を再生成する方法 - Google Patents

光信号を再生成する方法 Download PDF

Info

Publication number
JP4138307B2
JP4138307B2 JP2001390425A JP2001390425A JP4138307B2 JP 4138307 B2 JP4138307 B2 JP 4138307B2 JP 2001390425 A JP2001390425 A JP 2001390425A JP 2001390425 A JP2001390425 A JP 2001390425A JP 4138307 B2 JP4138307 B2 JP 4138307B2
Authority
JP
Japan
Prior art keywords
clock signal
signal
phase
section
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390425A
Other languages
English (en)
Other versions
JP2002207229A (ja
JP2002207229A5 (ja
Inventor
アンドレ ベッセ ピエール
レウソルド ジュエルグ
Original Assignee
ルーセント テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルーセント テクノロジーズ インコーポレーテッド filed Critical ルーセント テクノロジーズ インコーポレーテッド
Publication of JP2002207229A publication Critical patent/JP2002207229A/ja
Publication of JP2002207229A5 publication Critical patent/JP2002207229A5/ja
Application granted granted Critical
Publication of JP4138307B2 publication Critical patent/JP4138307B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信に係り、特に、光通信信号の波長変換および3R(再増幅(re-amplification)、再タイミング(re-timing)および再成形(re-shaping))光信号再生成(regeneration)を提供するための方法および装置に関する。
【0002】
【従来の技術】
将来の光通信ネットワークの絶えず増大するキャパシティの需要を満たすために、一定かつ許容可能な光信号品質が、そのようなネットワーク全体について維持されなければならない。特に、3R(再増幅、再タイミングおよび再成形)光信号リジェネレーションを提供するための方法および装置は、光ファイバ、光コンポーネントおよびそれを通しての光通信に関連する分散、損失、クロストークおよび他の非線形性のために必要とされる。
【0003】
【発明が解決しようとする課題】
本発明の目的は、光通信信号の波長変換および3R(再増幅、再タイミングおよび再成形)光信号再生成を提供するための単純、安価なデバイスの開発を可能にする方法および装置を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、3R光信号リジェネレーションを提供する方法および装置(3R光信号リジェネレータ)を開発した。本発明の方法は、特に、再タイミングおよび再成形を提供するためによく適しており、光増幅器との組合せで使用される場合、再増幅も提供する。本発明による新規な方法および装置は、1)少なくとも1つの光信号からエンコードされた光クロック信号を生成すること、2)振幅調節(振幅変調)されたクロック信号が生成されるように、リジェネレータの遅延干渉(delay interference)セクション中にエンコードされたクロック信号を導入すること、および3)振幅調節されたクロック信号を出力することを含み、出力振幅調節クロック信号は、入力光信号中に存在する情報を保存する。
【0005】
従来技術とは異なり本発明による方法および装置は、遙かに単純、安価なデバイスの開発を可能にする。
【0006】
【発明の実施の形態】
図1において、同時波長変換を伴う3R光信号リジェネレーションのコンセプトの概略図が示されている。具体的には、入力信号(Pin)110は、再生成されたリジェネレーティッド(regenerated)信号(Preg)140が生成されるように、3Rリジェネレータ130の動作により、クロック信号(Pin)120にマップされる。これから分かるように、このコンセプトは、再成形(reshaping)、再生成された信号140が、クロック信号120の一般的な形(general shape)を示す、再タイミング(retiming)、再生成された信号140が、クロック信号120の一般的タイミング(general timing)を示す、および代替的に、増幅器の動作によりおよびクロック信号パワーを選択的に選ぶことによる再増幅(reamplification)を含む。同時波長変換がなされるところで、クロック信号120は、新しい所望の波長を示す。
【0007】
図2において、本発明による一般化された3R信号リジェネレータ200が示されている。特に、3R信号リジェネレータは、調節セクション210、カップリングセクション220および遅延干渉(delay-interference)セクション230を含む。したがって、入力信号(Pin)240は、カップリングセクション220に与えられ、クロック信号(Pclk)250は、調節セクション210に与えられ、そして、遅延干渉セクション230に提供される。遅延干渉セクション230の出力は、所望の特性、特に、リタイム(retime)およびリシェープ(reshape)を示す再生成された信号(Preg)260である。さらに、前述したように、再生成された信号260は、任意的に、波長変換も示すことができる。
【0008】
一実施形態において、調節セクション210は、クロック信号(Pclk)250の透過を可能にしかつその屈折率が、入力信号(Pin)240で調節されうる1つの媒体またはいくつかの異なる媒体を含む。勿論、屈折率は、電圧変化、温度変化または電流注入の手段により、非線形効果の手段により調節され得る(即ち、屈折率は、強い光信号の存在において変化する)。
【0009】
延長セクション210中において利用されうる材料は、例えば、InGaAsP,InGaAlAs,Ga,As等を含む半導体光増幅器(SOA)、アブソーバ、光ファイバ、ガラス、カルコゲナイト(chalcogenite)ガラス、半導体、クラシックベースド導波材料、液体またはガスである。
【0010】
図2に明示的に示されていないSOAに基づく1つの具現化は、以下のように動作し得る。入力信号(Pin)240は、屈折率関連キャリア減少(depletion)効果を利用することにより、SOA中の媒体の屈折率を調節する。代替的に、入力信号(Pin)240は、フォトダイオードに導かれて、光電流を生じる。この光電流は、SOAに注入され、またはSOAの電圧を変化させるために使用され、これは、SOA中のキャリア密度を変化させ、屈折率を調節する。さらに別の具現化において、カー効果(Kerr-effect)が、入力信号(Pin)240を加えることにより、図示しないファイバ中の屈折率を調節するために利用され得る。読者に明らかであるように、多くの他の具現化も、容易に考えられる。
【0011】
図2において、カップリングセクション220は、入力信号(Pin)240を、調節セクション210中に直接的に導入し、または、代替的に、調節セクション210の屈折率を変化させるために使用され得るように、入力信号(Pin)240を導入しかつ修正する。1つの例示的実施形態において、カップリングセクション220は、入力信号(Pin)240を、クロック信号(Pclk)250の信号パスに結合させる光カプラを含むことができ、クロック信号(Pclk)250は、ほぼ(generally)非線形材料の屈折率をその結果として調節する。
【0012】
そのような単純なカプラは、例えば、調節セクション210の前、または調節セクション210と遅延干渉セクション230との間に置かれ得る。別の実施形態において、カップリングセクション220は、調節セクション210と遅延干渉セクション230との間に配置された光サーキュレータを含み得る。さらに別の実施形態において、カップリングセクション220は、光入力信号(Pin)240を信号電流に変換する光ホトディテクタを含み得る。この結果として得られる信号電流は、調節セクション210に導入され、そこで、屈折率を変化させる。
【0013】
図2において、遅延干渉セクション230は、図示しない、光スプリッタ、光コンバイナおよびそれらの間の複数の光パスを含む。好ましくは、スプリッタおよびコンバイナは、同じデバイスであり得る。動作において、遅延干渉セクション230は、クロック信号(Pclk)250を2つの信号に分割するために使用され、この2つの信号は、それらがコンバイナの動作によりその後再結合されるまで、光干渉パスに沿って異なる時間伝播する。
【0014】
そして、コンバイナは、干渉(コンストラクティブまたはディストラクティブの)を、2つの分割信号間の相対移送関係に依存して、出力(Pconv)260に導入する。光干渉パス中に配置される場合、移送シフタおよび/または利得/吸収セクションは有利である。光干渉パスを進む(traversing)分割信号のうちの一方から生じる2つの分割信号の時間遅れΔtは、近似的にΔt=N・Δtclkにより表される。ここで、N=1,2,3...であり、導入される・Δtclkは、実質的に、その後のクロック信号パルス間の時間遅れである。
【0015】
図3において、本発明の動作を例示するデバイスの概略を示す。特に、図3は、λにおいて入力信号Pin310およびλにおいてクロック信号Pclk320を入力として受け入れ、その後、λにおいて再生成された信号Pconv330を出力する3R信号リジェネレータ300を示す。動作において、入力信号Pin310は、図3に明示的に示されていない調節セクションの屈折率を、上述したプロセスのうちの1つにより、直接的または間接的に調節し、これにより、クロック信号Pclk320の位相Φcw346を調節する。
【0016】
屈折率変化の強さは、クロック信号Pclk320の位相を、ほぼ0より大きいがπよりあまり大きくない量だけ調節するように適合されている。誘導される位相シフトのライズタイム(rise time)は、使用される基礎になるプロセスに依存する。通常、Pin310信号のパルス幅により制限されるほとんど瞬間的なプロセスであるが、誘導される位相の衰退は典型的により遅い。
【0017】
調節セクションの後に、Pclk320信号は、遅延干渉セクションにガイドされ、そこで、それぞれスプリッタ350およびコンバイナ370の動作により、分割されかつその後再結合される。分割信号は、一方が遅延ループ360を含み、他方が位相シフタ365を含む少なくとも2つの別個のパス、即ち「アーム」を進む。
【0018】
π位相シフトを示すより短い干渉計(interferometer)パスを通過するクロック信号は、カプラにまず到達し、出力ポート380bにおいて「スイッチングウィンドウを開く」。クロック信号がより長い干渉計パスを通過するときよりΔt後の時点において、位相差は、リセットされ、出力ポート380におけるスイッチングウィンドウは閉じる。第2の入力データパルスが続く場合、スイッチングウィンドウは、より短い干渉計パスにおけるクロックの位相を再びセットすることにより再びオープンされる。出力への結果のクロックパルスの実質的なコンストラクティブおよびディストラクティブ干渉を得るために、結果のクロックパルスΔtclkの時間遅れと実質的に同じになるように、遅延時間Δtを選ぶことが必要である。
【0019】
図2中で参照符号220で示されたようなカップリングユニットが具現化され得る多様な方法がある。図4(a)−(f)において、そのような多様な具現化が示されている。図4(a)は、調節セクション420および遅延干渉セクション430の前に配置された単純なコンバイナ(カプラ)410を示す。これは、入力クロック信号および入力信号の両方を、コプロパゲーティングマナー(co-propagating manner)で調節セクションに結合することを許容する。
【0020】
図4(b)は、調節セクション420と遅延干渉セクション430との間に配置されたカプラ410を示す。入力信号は、カウンタプロパゲーティングマナー(counterpropagating manner)で導入される。好都合なことに、制御信号からクロックを分離するためにフィルタが必要とされない。また、光アイソレータが、望まれる場合、入力側において使用され得る。
【0021】
図4(c)は、調節セクション420と遅延干渉セクション430との間に配置されたサーキュレータ440を含む。サーキュレータ440は、入力信号を、調節セクション420に導入する。サーキュレータ440は、歪みなしに、クロック信号を遅延干渉セクション430にマップする。
【0022】
図4(d)は、光カプラ410およびサーキュレータ440の両方を含む。クロック信号および入力信号が、光カプラ410により導入される。この構成は、遅延干渉セクション430からの反射が、再生成されたパルスを含むサーキュレータ440により引き出されることを仮定している。
【0023】
図4(e)は、入力信号を調節セクション420に導入するグレーティング420(a)を有する本発明の3Rリジェネレータを示す。グレーティング420(a)は、調節セクション420の前または後のファイバまたは導波路中に配置され得る。
【0024】
図4(f)は、入力信号を検出しかつ非線形媒体の電流(または電圧)の調節をするために使用され得るフォトダイオード450を含む。勿論、これらの多くの他のタイプおよび変形が、可能であり、当業者に自明である。
【0025】
図5(a)−(e)は、本発明の3Rリジェネレータの遅延干渉セクションの変形を示す。容易に分かるように、干渉計遅延スキームは、異なる長さの光パスを使用する、または代替的に、光信号の異なる部分に対する異なる伝播速度を有する。例えば、それらは、光カプラ、グレーティング、ミラー、偏光スプリッタ、高次モードカプラの形の光スプリッタおよびコンバイナを含む。カプラは、例えば、対称または非対称分割子を有することができ、または調節可能であり得る。
【0026】
図5(a)において、干渉セクションは、2つのカプラおよび異なる長さの2つの干渉アームにより形成される。図5(c)において、1つのカプラの後には、2つの光ガイディング手段が続く。このガイディング手段は、光がカプラに反射して戻されるように、反射表面において終端されている。2つの光パスの長さは異なる。図5(d)において、干渉計が示されており、光の一部が、確立R1で反射して戻され、光の残りの部分が、少し後に、確立R2で反射して戻される。
【0027】
その後、2つの後ろ向きに反射された部分が、出力に干渉する。図5(e)において、クロック信号が、所定の偏光状態で、複屈折(birefringement)クリスタルまたは他の材料中に導入される。異なる偏光を有する2つの信号が、互いに所定の遅れを伴って材料をでる。それらは、その後、同じ偏光状態に回転され、結合されて、それらが、コンストラクティブまたはディストラクティブに干渉できるようになる。
【0028】
図6(a)は、ファイバで具現化された本発明の3Rリジェネレータを示す。具体的には、リジェネレータ600は、調節セクション610、入力信号カップリングユニットおよび遅延干渉セクション630を含み、この遅延干渉セクション630は、複屈折ファイバ、位相シフタ634およびポラライザ(polarizer)636を有する。複屈折ファイバ632は、異なる偏光の光に対して、異なる群速度(group velocity)を示す偏光モード分散ファイバであり得る。
【0029】
ファイバの長さは、異なるモード間の遅延を決定する。図6から分かるように、調節セクション610から遠いファイバの一方の端部に、位相シフティングエレメント634が設けられている。この位相シフタは、ハーフウェーブプレート(half-wave plate)、偏光コントローラまたは別の適切なエレメントであり得る。より詳細には、ファイバを通過する光のほぼ半分が出力に結合されるように配置されたポラライザが設けられる。
【0030】
代替的な構成において、追加的な位相シフタ、ウェーププレートまたはポラライザが、調節セクションと遅延セクションとの間に挿入されることができ、これにより、より安定な動作を確かにする。一般に、安定な動作を確かにするために、ユニットの全体または一部を温度制御することが望ましい。入力信号は、カウンタプロパゲーティング動作において、SOAに結合され得る。そのような構成のうちの一例は、図6(b)に示されている。
【0031】
【発明の効果】
以上述べたように、本発明によれば、光通信信号の波長変換および3R(再増幅、再タイミングおよび再成形)光信号再生成を提供するための単純、安価なデバイスの開発を可能にする方法および装置を提供することができる。
【0032】
特許請求の範囲の発明の要件の後に括弧で記載した番号がある場合は、本発明の一実施例の対応関係を示すものであって、本発明の範囲を限定するものと解釈すべきではない。
【図面の簡単な説明】
【図1】本発明による同時波長変換を伴う3R信号リジェネレーションのコンセプトを示す図。
【図2】本発明による一般化された3R信号リジェネレータを示す図。
【図3】本発明による3R信号リジェネレータの動作を示す図。
【図4】本発明による3R信号リジェネレータの代替的な形を示す図。
【図5】本発明による遅延干渉セクションの代替的な形を示す図。
【図6】本発明の3Rリジェネレータの単純化された実施形態を示す図。
【符号の説明】
110 Pin(入力信号)
120 Pclk(クロック信号)
130 3Rリジェネレータ
140 Preg(再生成された信号)
200 3R信号リジェネレータ
210 調節セクション
220 カップリングユニット
230 遅延干渉セクション
240 入力信号
250 クロック信号
260 出力
300 3R信号リジェネレータ
310 入力信号
320 クロック信号
330 再生成された信号
350 スプリッタ
360 遅延ループ
365 位相シフタ
370 コンバイナ
380 出力ポート
600 リジェネレータ
610 調節セクション
620 カップリングユニット
630 遅延干渉セクション
634 位相シフタ
636 ポラライザ

Claims (7)

  1. 光信号を再生成する方法において、
    変調セクションにおいて入力光信号によってクロック信号を位相変調することにより、前記入力光信号から位相のエンコードされたクロック信号を生成するステップと、
    振幅変調されたクロック信号が生成されるように、リジェネレータの遅延干渉セクションに前記位相のエンコードされたクロック信号を導入するステップとを有し、前記振幅変調されたクロック信号の生成は、
    前記位相のエンコードされたクロック信号を2つの部分に分割するステップと、
    前記位相のエンコードされたクロック信号のうちの一方の部分を他方の部分に対してΔtだけ遅延させるステップであって、ここでΔt≒N×Δt clk であり、Δt clk は、後続のクロック信号パルス間で測定されるクロックパルス時間遅れであり、Nは整数である、ステップと、
    前記位相のエンコードされたクロック信号の前記遅延された部分と前記他方の部分とを結合して、振幅変調されたクロック信号を得るステップとを含み、
    本方法はさらに、
    前記振幅変調されたクロック信号を前記遅延干渉セクションから出力するステップを有し、
    前記出力された振幅変調されたクロック信号が、前記入力光信号中に存在する情報を保存することを特徴とする光信号を再生成する方法。
  2. 前記振幅変調されたクロック信号を光学的に増幅するステップをさらに有することを特徴とする請求項記載の方法。
  3. 前記位相のエンコードされたクロック信号を偏光させるステップをさらに有することを特徴とする請求項記載の方法。
  4. 前記遅延干渉セクションは、
    前記位相のエンコードされたクロック信号に対する前記分割するステップ及び前記遅延させるステップを行うための複屈折ファイバと、
    前記複屈折ファイバに光学的に接続され、前記リジェネレータの前記遅延干渉セクションにおける前記結合の前に、前記位相のエンコードされたクロック信号の前記遅延された部分と前記他方の部分の相対的な位相を干渉のために調節する位相シフタとを含むことを特徴とする請求項記載の方法。
  5. 前記遅延干渉セクションは、前記位相シフタ光学的に接続されて前記遅延干渉セクションから前記振幅変調されたクロック信号を出力するポラライザをさらに含むことを特徴とする請求項記載の方法。
  6. 前記生成するステップが、
    前記入力光信号を、光リジェネレータのカップリングセクションに与えるステップと、
    前記クロック信号を、前記光リジェネレータの変調セクションに与えるステップとをさらに含む
    ことを特徴とする請求項1記載の方法。
  7. 前記カップリングセクションが、前記入力光信号を、前記クロック信号を変調するために前記変調セクションに提供される電気信号に変換するフォトダイオードを含む
    ことを特徴とする請求項記載の方法。
JP2001390425A 2000-12-22 2001-12-21 光信号を再生成する方法 Expired - Fee Related JP4138307B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/745785 2000-12-22
US09/745,785 US6931212B2 (en) 2000-12-22 2000-12-22 3R optical signal regeneration

Publications (3)

Publication Number Publication Date
JP2002207229A JP2002207229A (ja) 2002-07-26
JP2002207229A5 JP2002207229A5 (ja) 2005-07-07
JP4138307B2 true JP4138307B2 (ja) 2008-08-27

Family

ID=24998241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390425A Expired - Fee Related JP4138307B2 (ja) 2000-12-22 2001-12-21 光信号を再生成する方法

Country Status (4)

Country Link
US (1) US6931212B2 (ja)
JP (1) JP4138307B2 (ja)
CN (1) CN1242573C (ja)
CA (1) CA2363665C (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6832053B2 (en) * 2000-12-22 2004-12-14 Lucent Technologies Inc. Delayed interference wavelength converter and/or 2R regenerator
DE10118958B4 (de) * 2001-04-10 2006-11-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optischer 3R Regenerator mit Wellenlängenumsetzung
US7203427B2 (en) * 2001-05-15 2007-04-10 Alphion Corporation Redundant path all-optical regeneration, reshaping and wavelength conversion for enhanced yield
AUPR673701A0 (en) * 2001-07-31 2001-08-23 University Of Queensland, The Optical signal regeneration
US7440179B2 (en) * 2002-05-29 2008-10-21 Alphion Corporation SOA-MZI device fault isolation
US7010234B2 (en) * 2002-07-29 2006-03-07 Alcatel Optronics Usa, Inc. All-optical regenerator for retiming, reshaping and retransmitting an optical signal
US6798557B1 (en) * 2003-05-22 2004-09-28 Lucent Technologies Inc. Direct optical N-state phase shift keying
JP4139963B2 (ja) * 2003-02-28 2008-08-27 日本電気株式会社 光信号再生中継器および光信号再生方法
US6947206B2 (en) * 2003-07-18 2005-09-20 Kailight Photonics, Inc. All-optical, tunable regenerator, reshaper and wavelength converter
DE10344319A1 (de) * 2003-09-19 2005-04-28 Fraunhofer Ges Forschung Wellenlängen-erhaltender optischer Signalregenerator
JP2006039037A (ja) * 2004-07-23 2006-02-09 Mitsubishi Electric Corp 半導体光遅延干渉器
US7489874B2 (en) * 2005-02-28 2009-02-10 Alcatel-Lucent Usa Inc. Method and apparatus for demodulation of optical differential phase shift keyed signals
US7590358B2 (en) * 2005-02-28 2009-09-15 Vladimir Grigoryan Optical regenerative amplifier for binary phase shift-keying signals
WO2009030822A1 (en) * 2007-09-05 2009-03-12 Luxdyne Oy Protocol-independent regeneration of optical data signals
EP3872464B1 (en) * 2020-02-28 2024-05-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for imaging or spectroscopy with a non-linear interferometer
CN115308844B (zh) * 2022-07-04 2023-11-24 厦门市三安集成电路有限公司 用于多信道全光信号处理的单片集成芯片及其处理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036424B2 (ja) * 1996-01-12 2000-04-24 日本電気株式会社 信号再生機能を有する光中継器
GB2320634A (en) * 1996-12-19 1998-06-24 Northern Telecom Ltd Optical sampling by using an interferometer to modulate a pulse train
JP3438770B2 (ja) * 1998-03-06 2003-08-18 Kddi株式会社 光ディジタル再生装置
JP2000323786A (ja) * 1999-05-14 2000-11-24 Fujitsu Ltd 信号光の波形整形のための方法、装置及びシステム
JP2001183714A (ja) * 1999-12-27 2001-07-06 Kddi Corp 光波形整形装置
US6437905B1 (en) * 2000-07-07 2002-08-20 Lucent Technologies Inc. Optical wavelength converter
US6832053B2 (en) * 2000-12-22 2004-12-14 Lucent Technologies Inc. Delayed interference wavelength converter and/or 2R regenerator

Also Published As

Publication number Publication date
CN1360407A (zh) 2002-07-24
US20020080453A1 (en) 2002-06-27
US6931212B2 (en) 2005-08-16
CA2363665C (en) 2008-02-05
JP2002207229A (ja) 2002-07-26
CN1242573C (zh) 2006-02-15
CA2363665A1 (en) 2002-06-22

Similar Documents

Publication Publication Date Title
JP4138307B2 (ja) 光信号を再生成する方法
EP0804751B1 (en) Optical switch
US6477300B2 (en) Method, device, and system for waveform shaping of signal light
JP3989627B2 (ja) 光ゲート装置、該装置の製造方法及び該装置を備えたシステム
JP4472222B2 (ja) 信号光を波形整形するための方法、装置及びシステム
JP3458613B2 (ja) 波長変換装置及び光演算装置
JP3882979B2 (ja) 波形整形のための装置及びシステム
JP3766462B2 (ja) ソリトンに対して同期変調を行うことによってソリトン光信号を再生するためのインライン再生装置
JP3563563B2 (ja) バイナリ光信号の整形装置、ならびに前記信号を変更するための同装置の使用
JP2002023208A (ja) 信号光を波形整形するための方法及び装置
JPH09236835A (ja) 調整可能な光学振幅位相変調器およびこのような変調器を含むソリトン再生器
JP2002044020A (ja) 光信号再生装置
JPH07287262A (ja) 非線形光繊維のループ鏡型の完全光スイッチ装置
AU742088B2 (en) Optical wavelength converter
US7631378B2 (en) Optical waveform shaper
JP2002365682A (ja) 全光学波長変換器、全光学再生器、全光学信号処理素子、及び、全光学変換方法
US6832053B2 (en) Delayed interference wavelength converter and/or 2R regenerator
US20050053385A1 (en) Optical apparatus and optical processing method
EP1255157A1 (en) Intensity modulation of optical signals
US6377388B1 (en) Optical signal processor
US20050180758A1 (en) Optical regenerator for high bit rate return-to-zero transmission
JPH06504407A (ja) 干渉計
Wong et al. Reduction of bit-pattern dependent errors from a semiconductor optical amplifier using an optical delay interferometer
US20020018612A1 (en) Optical NRZ-RZ format converter
Kang et al. Ultrafast optical time demultiplexers using semiconductor optical amplifiers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees