WO2002021056A1 - Echangeur thermique pour appareil refrigerant de stirling, dispositif echangeur thermique, et procede de fabrication d'un dispositif echangeur thermique - Google Patents

Echangeur thermique pour appareil refrigerant de stirling, dispositif echangeur thermique, et procede de fabrication d'un dispositif echangeur thermique Download PDF

Info

Publication number
WO2002021056A1
WO2002021056A1 PCT/JP2001/007515 JP0107515W WO0221056A1 WO 2002021056 A1 WO2002021056 A1 WO 2002021056A1 JP 0107515 W JP0107515 W JP 0107515W WO 0221056 A1 WO0221056 A1 WO 0221056A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
corrugated fin
main body
annular corrugated
annular
Prior art date
Application number
PCT/JP2001/007515
Other languages
English (en)
French (fr)
Inventor
Hitoshi Mochizuki
Yoshiaki Ogura
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000265231A external-priority patent/JP3563679B2/ja
Priority claimed from JP2001042118A external-priority patent/JP3563703B2/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to DE60110813T priority Critical patent/DE60110813T2/de
Priority to EP01963405A priority patent/EP1314938B1/en
Priority to CA002419724A priority patent/CA2419724C/en
Priority to US10/362,928 priority patent/US7225859B2/en
Priority to BRPI0114038-8A priority patent/BR0114038B1/pt
Priority to KR10-2003-7002977A priority patent/KR100523776B1/ko
Publication of WO2002021056A1 publication Critical patent/WO2002021056A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • Heat exchanger for Stirling refrigerator Description Heat exchanger for Stirling refrigerator, heat exchanger body, and method for manufacturing heat exchanger body
  • the present invention relates to a heat exchanger body such as a heat absorber and a radiator provided in a Stirling refrigerator, a heat exchanger thereof, and a method of manufacturing the heat exchanger body.
  • FIG. 29 is a diagram schematically showing a side cross section of a free piston type Stirling refrigerator.
  • a heat absorber 2 which is a low temperature part
  • a regenerator 3 which is a high temperature part
  • Each of the heat absorber 2 and the radiator 4 is a heat exchanger body in which the heat exchangers 22 and 42 are attached to the inner peripheral surface on one end side of the tubular main bodies 21 and 41, respectively.
  • Reference numerals 2 and 42 are adjacent to the regenerator 3 in the cylinder 1.
  • a displacer 6 fixed to one end of the display salod 5 and a biston 7 penetrated by the display salad 5 are provided.
  • the other end of the display salod 5 is connected to a spring 8.
  • the displacer 6 and the bistone 7 form an expansion space 9 inside the heat absorber 2 and a compression space 10 inside the heat radiator 4.
  • the expansion space 9 and the compression space 10 communicate with each other by the regenerator 3 to form a closed circuit.
  • the operation of this free-biston type stirling refrigerator will be described.
  • the piston 7 reciprocates at a predetermined cycle in the axial direction of the cylinder 1 by external power such as a linear motor (not shown).
  • a working gas such as helium is previously sealed in the compression space 10.
  • the working gas in the compression space 10 When the working gas in the compression space 10 is compressed by the movement of the biston 7, the working gas is guided to the expansion space 9 through the regenerator 3 via the heat exchanger 42 of the radiator 4 (see FIG. , Dotted arrow A). At this time, the working gas that generated heat by compression is The heat is exchanged with the external air in 2 to release the heat, and the heat passes through the regenerator 3 to receive the cold stored in the regenerator 3 in advance and is precooled.
  • the displacer 6 When the working gas flows into the expansion space 9, the displacer 6 is pushed rightward against the spring 8, so that the working gas expands and generates cold heat. When the working gas expands to some extent, the displacer 6 is pushed back in the opposite direction by the return force of the spring 8.
  • the working gas in the expansion space 9 passes through the heat exchanger 22 of the ripening device 2, passes through the regenerator 3, and moves again to the compression space 10 (solid arrow A 'in the figure).
  • the working gas is heat-exchanged with the external air in the heat exchanger 22 to absorb the heat, and passes through the regenerator 3 to receive the heat stored in the regenerator 3 and is preheated. You. Then, the working gas that has returned to the compression space 10 is again compressed by the biston 7.
  • the amount of heat absorbed by the heat exchanger 22 of the heat absorber 2 and the amount of heat released by the heat exchanger 42 of the radiator 4 be larger. This is because the efficiency of the pre-cooling and pre-heating of the regenerator 3 with respect to the working gas is improved, so that the load on the regenerator 3 can be reduced, and the refrigeration performance of the Stirling refrigerator can be improved.
  • radiator 4 which is the high-temperature side heat exchanger of the above-described Stirling refrigerator
  • the radiator 4 and its heat exchanger 42 will be described, but the heat absorber 2 and its heat exchanger 22, which are the low-temperature side heat exchangers, have the same configuration.
  • this heat exchanger 42 is an annular corrugated fin 42 1 formed by forming a corrugated thin plate into a cylindrical shape.
  • a large number of V-shaped grooves 421a extending linearly along the axial direction are formed at regular intervals, and have a jagged shape.
  • the portion of the radiator 4 protruding toward the center of the main body 41 is defined as the bottom 4 21 b of each groove 4 21 a, and the portions protruding toward the inner peripheral surface of the main body 41 are adjacent to each other.
  • the diameter of the circle (the outer diameter of the annular corrugated fin 4 21) formed by smoothly connecting the tops 4 2 1 c and the inner diameter of the main body 4 1 are almost the same.
  • the main body 41 and the annular corrugated fin 42 1 are arranged such that their axes are concentric.
  • FIG. 31 is an enlarged view of an essential part of the annular corrugated fin 4 21 as viewed from the axial direction, and shows a state where it is fixed with an adhesive.
  • the adhesive 11 is spread thinly on the inner peripheral surface of the main body 41, and the annular corrugated fins 42 21 are inserted there. Then, the adhesive 11 is dried while the annular corrugated fin 4 21 is held at a predetermined position for a while.
  • FIG. 32 shows a state of being fixed with solder.
  • soldering first, the annular corrugated fin 421 is inserted into the main body 41. Then, while holding the annular corrugated fins 421 in a predetermined position, soldering is performed on a portion where the inner peripheral surface of the main body 41 and the top portion 421c of the annular corrugated fins 421 are in contact with or close to each other. Apply 1 2.
  • a heat exchanger for a Stirling refrigerator of the present invention comprises: an annular corrugated fin obtained by forming a thin plate having a number of grooves formed by corrugation into a cylindrical shape so that the grooves are parallel to an axial direction;
  • the annular corrugated fin is formed integrally with an inner ring-shaped member that is in contact with the inner periphery.
  • annular corrugated fins and the inner ring-shaped member are integrated, Their contact area increases, and they show good thermal conductivity.
  • the integration facilitates handling of the heat exchanger and enables replacement and repair. Therefore, it is very economical and recyclable.
  • bonding means such as brazing or soldering, for the integration.
  • the heat exchanger body of the present invention is obtained by inserting the above heat exchanger for a Stirling refrigerator into the hollow of the tubular main body.
  • the heat exchanger can be attached to the main body by crimping without bonding or welding.
  • at least one end of the main body is formed with a taper such that the wall thickness becomes thinner toward the end along the axial direction, the penetration may be reduced.
  • corrugated projections are formed in close contact with each other and are arranged at equal intervals as a whole, and corresponding to these projections, a corrugated recess is formed on one surface of the main body in the axial direction.
  • a straight corrugated fin in which both ends of the inverted V-shaped groove at both ends are longer than the oblique side of the V-shaped groove between them is rounded into a cylindrical shape, and the ends are brought into contact with each other.
  • the protruding portions formed at the ends of the both ends and protruding in the radial direction from the outer periphery of the annular corrugated fin are fitted into grooves extending in the axial direction on the inner surface of the main body. This prevents the position of the heat exchanger in the inside from shifting in the circumferential direction.
  • the heat exchanger body for example, a tubular introduction member tapered such that one end has substantially the same inner diameter as the main body and the wall thickness becomes thinner toward the other end is obtained by using the one end.
  • a method of detachably attaching the heat exchanger for the Stirling refrigerator to the main body in the axial direction from the other end of the introduction member can be considered.
  • the shape of the surrounding changes, so that the contact area with the inner surface of the main body increases. Therefore, the heat transfer efficiency of the annular corrugated fin is improved, and a heat exchanger body having excellent heat exchange performance can be provided.
  • the heat exchanger for a Stirling refrigerator of the present invention comprises: a ring-shaped korgut fin in which a thin plate having a large number of grooves formed by corrugating is formed into a cylindrical shape so that the grooves are parallel to the axial direction; It is formed by integrating an outer ring-shaped member in contact with the outer periphery of the corrugated fin.
  • annular corrugated fins and the outer ring-shaped member When these annular corrugated fins and the outer ring-shaped member are integrated, their contact area increases, and good thermal conductivity is exhibited. In addition, the integration facilitates handling of the heat exchanger and enables replacement and repair. Therefore, it is very economical and recyclable. In addition, it is preferable to apply bonding means, such as brazing or soldering, for the integration.
  • the heat exchanger body of the present invention is obtained by inserting the above heat exchanger for a Stirling refrigerator into the hollow of the tubular main body.
  • the heat exchanger can be attached to the main body by crimping without bonding or welding.
  • at least one end of the main body is formed with a taper such that the wall thickness becomes thinner toward the end along the axial direction, the penetration may be reduced.
  • the annular corrugated fin is formed by rolling a straight corrugated fin in which V-shaped grooves are continuously connected into a cylindrical shape, and forming one end of the V-shaped groove at one end and an inverted V-shaped groove at the other end. Can be easily manufactured by engaging and connecting with the end sides of.
  • a straight corrugated fin in which a V-shaped groove continuously extends is rounded into a cylindrical shape, and the end of the V-shaped groove at one end and the end of the inverted V-shaped groove at the other end are joined.
  • the surfaces may be connected by spot welding to each other.
  • a straight corrugated fin in which V-shaped grooves are continuously connected is rounded into a cylindrical shape, and the end of the V-shaped groove at one end and the end of the inverted V-shaped groove at the other end are connected to each other.
  • the connection may be made by bonding the surfaces.
  • a straight corrugated fin having a continuous V-shaped groove is rolled into a cylindrical shape, and the end of the V-shaped groove at one end and the end of the inverted V-shaped groove at the other end are mutually joined.
  • the surfaces may be joined by applying a soldering to the surface.
  • a straight corrugated fin in which a V-shaped groove continuously extends is rounded into a cylindrical shape, and the opposite sides of the inverted V-shaped groove at both ends are held so that the surfaces thereof are in contact with each other.
  • the connecting portions may be connected by attaching a joining member having a U-shaped cross section to the tip of the contact portion.
  • a straight corrugated fin in which V-shaped grooves are continuously connected is rounded into a cylindrical shape, and one end of the inverted V-shaped groove is formed on one end of the straight corrugated fin from one side to the other side.
  • the slit formed on the other side of the linear corrugated fin from one side to the other side of the inverted V-shaped groove at the other end of the linear corrugated fin. May be connected.
  • FIG. 1 is an external perspective view of a radiator according to a first embodiment of the present invention.
  • FIG. 2A is an external perspective view showing a heat exchanger of the radiator.
  • FIG. 2B is an exploded perspective view of the heat exchanger.
  • FIG. 3 is an enlarged plan view of a part of the heat exchanger viewed from an axial direction.
  • FIG. 4 is a schematic vertical sectional view of the main body of the radiator and the heat exchanger.
  • FIG. 5 is an enlarged plan view of a part of the radiator viewed from the axial direction.
  • FIG. 6A is a plan view showing a linear corrugated fin.
  • FIG. 6B is an enlarged plan view showing a state in which the linear korgut fins are rounded and both ends are brought close to each other.
  • FIG. 6C is an enlarged plan view showing a part of the completed annular corrugated fin.
  • FIG. 7 is an enlarged plan view of a part of the radiator according to the second embodiment of the present invention as viewed from the axial direction.
  • FIG. 8A is a plan view showing a straight corrugated fin.
  • FIG. 8B is an enlarged plan view showing a state where the straight corrugated fin is rolled and both ends are brought close to each other.
  • FIG. 8C is an enlarged plan view showing a part of the completed annular corrugated fin.
  • FIG. 9 is an enlarged plan view of a part of the radiator according to the third embodiment of the present invention as viewed from the axial direction.
  • FIG. 10A is a plan view showing a linear korgut fin.
  • FIG. 10B is an enlarged plan view showing a state where the straight corrugated fins are rounded and both ends are brought close to each other. '
  • FIG. 10C is an enlarged plan view showing a part of the completed circular corge tofin.
  • FIG. 11 is an enlarged plan view of a radiator according to a fourth embodiment of the present invention as viewed from the axial direction.
  • FIG. 12A is a plan view showing a straight corrugated fin.
  • FIG. 12B is an enlarged plan view showing a state in which the straight corrugated fins are rolled and both ends are brought close to each other.
  • FIG. 12C is an enlarged plan view showing a part of the completed annular corrugated fin.
  • FIG. 13 is an enlarged plan view of a part of a radiator according to a fifth embodiment of the present invention as viewed from the axial direction.
  • FIG. 14A is a plan view showing a straight corrugated fin.
  • FIG. 14B is an enlarged plan view showing a state where the straight corrugated fins are rolled and both ends are brought close to each other.
  • FIG. 14C is an enlarged plan view showing a part of the completed annular corrugated fin.
  • FIG. 15 is an enlarged plan view of a part of a radiator according to a sixth embodiment of the present invention as viewed from the axial direction.
  • FIG. 16A is a plan view showing a straight corrugated fin.
  • FIG. 16B is an enlarged plan view showing a state where the straight corrugated fins are rolled and both ends are brought close to each other.
  • FIG. 16C is an enlarged plan view showing a part of the completed annular corrugated fin.
  • FIG. 17 is an enlarged perspective view showing a main part of FIG. 16B.
  • FIG. 18 is an enlarged plan view of a radiator according to a seventh embodiment of the present invention as viewed from the axial direction.
  • FIG. 19A is a plan view showing a straight corrugated fin.
  • FIG. 19B is a plan view showing an annular corrugated fin formed by rolling a straight corrugated fin and contacting both ends.
  • FIG. 19C is a top view of the cylindrical main body.
  • FIG. 20 is an external perspective view of a part of a radiator according to an eighth embodiment of the present invention.
  • FIG. 21A is an external perspective view showing a heat exchanger of the radiator.
  • FIG. 21B is an exploded perspective view of the heat exchanger.
  • FIG. 22 is an enlarged plan view of a part of the heat exchanger viewed from the axial direction.
  • FIG. 23 is a schematic longitudinal sectional view of the radiator body and the heat exchanger.
  • FIG. 24 is an enlarged plan view of a part of the radiator according to the ninth embodiment of the present invention as viewed from the axial direction.
  • FIG. 25A is a cross-sectional view before the heat exchanger of the radiator is inserted from the introduction member side. ⁇
  • FIG. 25B is a cross-sectional view after the insertion.
  • FIG. 26 is a plan view of a radiator according to a tenth embodiment of the present invention.
  • FIG. 27 is a plan view of the heat exchanger of the radiator.
  • FIG. 28 is a plan view of a cylindrical main body.
  • FIG. 29 is a schematic cross-sectional view of a conventional free piston type Stirling refrigerator.
  • FIG. 30 is an external perspective view of a radiator that is a conventional heat exchanger body.
  • FIG. 31 is an enlarged plan view of a part of a conventional heat exchanger as viewed from the axial direction.
  • FIG. 32 is an enlarged plan view of a part of another conventional heat exchanger viewed from the axial direction.
  • radiator 4 and its heat exchanger 42 Members having the same names as those of the prior art shown in FIGS. 29 to 32 are denoted by the same reference numerals.
  • the radiator 4 and the heat exchanger 42 may be replaced with the heat absorber 2 and the heat exchanger 22 in the description.
  • FIG. 1 is an external perspective view of a radiator 4 which is a heat exchanger body of the present embodiment.
  • FIG. 2A is an external perspective view showing the heat exchanger 42 of the radiator 4, and
  • FIG. 2B is an exploded perspective view thereof.
  • FIG. 3 is an enlarged plan view of a part of the heat sink seen from the axial direction.
  • This heat exchanger 42 comprises an annular corrugated fin 4 21 and an inner ring-shaped member 4 22.
  • the annular corrugated fins 4 21 are formed by forming a corrugated thin plate into a cylindrical shape so that each groove 4 21 a is parallel to the axial direction.
  • the inner ring-shaped member 422 is a cylindrical body made of a material having good thermal conductivity.
  • FIG. 6A to 6C show a manufacturing procedure of the annular corrugated fin '421
  • FIG. 6A is a plan view showing a linear corrugated fin 420
  • FIG. 6C is an enlarged plan view showing a state where the corrugated fins 420 are rounded and both ends are brought close to each other
  • FIG. 6C is an enlarged plan view showing the completed annular corrugated fins 42 1.
  • one end of a linear corrugated fin 420 that is continuously connected to a V-shaped cross-sectional groove 420e is a V-shaped groove 420a, and the other end is The inverted V-shaped groove is 420 b.
  • the length 4 2 0 c of the end of the groove 4 2 0 a and the length 1 of the end 4 2 0 d of the groove 4 2 0 b are both the top 4 2 0 f and the top 4 2 of the groove 4 2 0 e between them. It is machined shorter than the length L of the hypotenuse between 0 f.
  • the straight corrugated fins 420 are bent in the directions of the arrows F1 and F2 in FIG. 6A to form a cylindrical shape, and as shown in FIG. 6B, the end side 420c and the end side 420d are formed. 6c, and their end sides 420c and 420d are hooked together as shown in Fig. 6C to form an annular corrugated fin 421.
  • the annular corrugated fins 421, 21 caught in an attempt to return to the original linear state are pulled together by the ends 4200c, 420d, and the annular corrugated fins 421 are formed into an annular shape. Will be maintained. 4 2 1d is the connection.
  • an inner ring-shaped member 422 is provided around the inner periphery of the annular corrugated fin 421 with the shafts of the ring (the shaft of the annular corrugated fin 421 and the ring-shaped member).
  • 4 2 2 axes are concentric.
  • the diameter of the circle (the inner diameter of the annular corrugated fin 4 21) formed by smoothly connecting the bottoms 4 2 1 b of the annular corrugated fins 4 21 and the outer diameter of the inner ring-shaped member 4 2 2 Is almost equal to
  • annular corrugated fin 42 1 and the inner ring-shaped member 422 are joined by an annular brazing material 13. That is, as shown in Fig. 2B, the annular corrugated fin When the mouthpiece 13 is heated by placing the mouthpiece 13 on the portion where the inner ring-shaped member 4 2 2 comes into contact with the inner ring-shaped member 4, the melted mouthpiece 1 3 will follow the bottom 4 2 1 b of the annular corrugated fin 4 2 1 Down.
  • the brazing material 13 spreads almost uniformly to the portion where the annular corrugated fins 4 21 and the inner ring-shaped member 4 2 2 come into contact. Then, as the brazing material 13 is hardened, the annular corrugated fins 42 1 and the inner ring-shaped members 42 2 are joined and integrated. Although brazing has been described here, soldering may also be performed.
  • the heat exchanger 42 described above is inserted into the main body 41 shown in FIG.
  • the configuration for inserting the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic cross-sectional view of the main body 41 and the heat exchanger 42, both ends of the main body 41 are tapered so that the wall thickness becomes thinner toward the end along the axial direction. (Taper portion 41a ).
  • the outer diameter of the heat exchanger 42 (the outer diameter of the annular corrugated fin 42 1)
  • the heat exchanger 42 when the heat exchanger 42 is inserted from the end of the main body 41, the heat exchanger 42 can be easily inserted at first with a small force. Then, since the inner diameter of the main body 41 gradually decreases and finally becomes smaller than the outer diameter R 1 of the heat exchanger 42, the heat exchanger 42 is inserted while gradually applying a large force. . In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • each bottom 4 2 1 b of the annular corrugated fin 4 2 1 is set up on the inner ring-shaped member 4 2 2, it is stored in the main body 4 1 having an inner diameter R 3 smaller than the outer diameter R 1.
  • the formed annular corrugated fins 42 1 are in a state where the respective grooves 4 21 a are expanded, and an elastic force is generated radially outward.
  • the heat exchanger 42 Since the annular corrugated fin 42 1 has an outer diameter R 1 and a depth of each groove 4 21 a which is constant in the axial direction, the heat exchanger 42 is formed on the inner periphery of the main body 41 by the elastic force. It is uniformly pressed against the surface and fixed in position. At this time, the annular corrugated fins 4 2 1 And the inner ring-shaped member 4 2 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, so that the process is simplified and the production cost is reduced. it can. Also, the heat exchange performance of the heat exchanger body is stabilized.
  • the heat exchanger 42 can be pulled out from the main body 41 and taken out. Therefore, since it can be easily replaced as needed, the problem of economical burden on the user and the problem of recycling at the time of repair can be solved.
  • the heat exchanger 42 used in the present embodiment integrates the annular corrugated fin 4 21 and the inner ring-shaped member 4 22 with brazing, soldering or the like, the heat exchanger 42 is configured separately. Also show good thermal conductivity. Therefore, the heat exchange efficiency is improved.
  • FIG. 7 is an enlarged plan view of the radiator 4 according to the present embodiment as viewed from the axial direction.
  • the radiator 4 of the present embodiment is, like the first embodiment, a heat exchanger 4 comprising an annular corrugated fin 42 1 and an inner ring-shaped member 4 22 attached to the inside thereof. 2 and a cylindrical main body 4 1 on which the heat exchanger 42 is mounted.
  • FIG. 8A to 8C show a manufacturing procedure of the cyclic corrugated fin 421
  • FIG. 8A is a plan view showing the linear corrugated fin 420
  • FIG. 8B is a linear corrugated fin 420
  • FIG. 8C is an enlarged plan view showing a state where both ends are brought closer by rounding 420
  • FIG. 8C is an enlarged plan view showing a part of the completed annular corrugated fin 421.
  • one end of a linear corrugated fin 420 in which V-shaped grooves 420e are continuously connected is a V-shaped groove 420a, and the other end is a V-shaped groove 420a.
  • the inverted V-shaped groove is 420 b.
  • the length L 2 of the edge 4 220 c of the groove 420 a and the edge 420 d of the groove 420 b is the same as the top portion 420 f of the groove 420 e therebetween. It is machined shorter than the length L of the hypotenuse between the tops 420 f.
  • an inner ring-shaped member 422 is in contact with the inner periphery of the annular corrugated fin 421 so that their axes are concentric.
  • the diameter of the circle (inner diameter of the annular corrugated fin 42 1) formed by smoothly connecting the bottoms 4 2 1 b of the annular corrugated fin 4 21 and the outer diameter of the inner ring-shaped member 4 2 2 It is almost equal to the diameter.
  • annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are joined by an annular brazing material 13. That is, as shown in FIG. 2B, when the mouth material 13 is placed at a portion where the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are in contact with each other and ripened, the melted mouth material 13 becomes It flows down along the bottom 4 2 1 b of the annular corrugated fin 4 2 1.
  • the brazing material 13 spreads substantially uniformly around the portion where the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are in contact.
  • the brazing material 13 is hardened, the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are joined and integrated.
  • the above-described heat exchanger 42 is inserted into the main body 41 shown in FIG.
  • the configuration for introducing the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic cross-sectional view of the main body 41 and the heat exchanger 42, both ends of the main body 41 are tapered so that the wall thickness becomes thinner toward the end along the axial direction. It is formed (tapered portion 41a).
  • this heat exchanger 42 when this heat exchanger 42 is inserted from the end of the main body 41, it is initially small.
  • the heat exchanger 42 can be easily inserted with a small force.
  • the inner diameter of the main body 41 gradually decreases and finally becomes smaller than the outer diameter R1 of the heat exchanger 42, the heat exchanger 42 is inserted while gradually applying a large force. Go. In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • each bottom portion 4 21 b of the annular corrugated fin 4 21 is fixed to the inner ring-shaped member 4 22, the main body 4 1 having an inner diameter R 3 smaller than its outer diameter R 1 is formed.
  • the stored corrugated fins 4 2 1 are in a state where the grooves 4 2 1 a are expanded and elastic force is generated radially outward.
  • the annular corrugated fins 42 1 have an outer diameter R 1 and the depth of each groove 4 21 a are constant in the axial direction, the mature exchanger 42 is formed on the inner periphery of the main body 41 by the elastic force. It is uniformly pressed against the surface and fixed in position. At this time, the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, thereby simplifying the process and achieving a reduction in manufacturing cost. it can. Also, the heat exchange performance of the heat exchanger body is stabilized.
  • the heat exchanger 42 can be pulled out from the main body 41 and taken out. Therefore, since it can be easily replaced as needed, the problem of economical burden on the user and the problem of recycling at the time of repair can be solved.
  • the heat exchanger 42 used in the present embodiment is formed separately from the annular corrugated fin 42 1 by integrating the inner ring-shaped member 42 2 with solder or solder. It shows better thermal conductivity than Therefore, the heat exchange efficiency is improved.
  • FIG. 9 is a plan view of a part of the radiator 4 according to the present embodiment as viewed from the axial direction.
  • the radiator 4 of the present embodiment includes a heat exchanger 42 including an annular corrugated fin 42 1 and an inner ring-shaped member 42 2 attached to the inside thereof, similarly to the first embodiment. And a cylindrical main body 41 on which the heat exchanger 42 is mounted.
  • FIG. 10A to 10B show a manufacturing procedure of the annular corrugated fin 421
  • FIG. 10A is a plan view showing a linear corrugated fin 420
  • FIG. 10C is an enlarged plan view showing a state where the straight corrugated fins 420 are rounded and both ends are brought close to each other
  • FIG. 10C is an enlarged plan view showing a part of the completed annular corrugated fins 42 1.
  • one end of a linear colgate fin 420 in which V-shaped cross-sectional grooves 420e are continuously connected is a V-shaped groove 420a, and the other end is The inverted V-shaped groove is 420 b.
  • the length L 3 of the edge 4 20 c of the groove 4 20 a and the edge 4 2 0 d of the groove 4 20 b are both equal to the top 4 2 0 f of the groove 4 2 0 e therebetween. It is machined shorter than the length L of the hypotenuse between the tops 420 f.
  • the colgate fins 420 are rounded into a cylindrical shape (Fig. 10B), and the end surfaces 420c and the application surface of the adhesive 16 at the end edges 420d are brought into contact with each other and held for a while.
  • an annular korgut fin 421 as shown in FIG. 10C. 4 2 1 f is the bonded portion.
  • an inner ring-shaped member 422 is in contact with the inner periphery of the annular corrugated fin 421 such that their axes are concentric.
  • the diameter of the circle (the inner diameter of the annular corrugated fin 42 1) formed by smoothly connecting the bottoms 4 2 1 b of the annular corrugated fin 4 21 and the outer diameter of the inner ring-shaped member 4 2 2 Is almost equal to
  • annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are joined by an annular brazing material 13. That is, as shown in FIG. 2B, when the mouthpiece 13 is placed on the portion where the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are in contact with each other and heated, the melted mouthpiece 13 becomes annular. It flows down along the bottom 4 2 1b of the corge tofin 4 2 1.
  • the brazing material 13 spreads almost uniformly to the portion where the annular corrugated fins 4 21 and the inner ring-shaped member 4 2 2 come into contact.
  • the brazing material 13 hardens, the annular corrugated fins 42 1 and the inner ring-shaped members 4 2 2 And are integrated.
  • the above-described heat exchanger 42 is inserted into the main body 41 shown in FIG.
  • the configuration for introducing the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic sectional view of the main body 41 and the heat exchanger 42, both ends of the main body 41 are tapered so that the wall thickness becomes thinner toward the end along the axial direction. Formed (tapered part 4 1 a) 0
  • the heat exchanger 42 when the heat exchanger 42 is inserted from the end of the main body 41, the heat exchanger 42 can be easily inserted at first with a small force. Then, the inner diameter of the main body 41 gradually decreases, and eventually becomes smaller than the outer diameter R 1 of the heat exchanger 42, so that the heat exchanger 42 is inserted while gradually applying a large force. . In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • the bottoms 4 2 1 b of the annular corrugated fins 4 2 1 are fixed to the inner ring-shaped member 4 2 2, they are housed in the main body 4 1 having an inner diameter R 3 smaller than the outer diameter R 1.
  • the formed annular corrugated fins 42 1 are in a state where the respective grooves 4 21 a are expanded, and an elastic force is generated radially outward.
  • the heat exchanger 42 Since the annular corrugated fin 42 1 has an outer diameter R 1 and a depth of each groove 4 21 a which is constant in the axial direction, the heat exchanger 42 is formed on the inner periphery of the main body 41 by the elastic force. It is uniformly pressed against the surface and fixed in position. At this time, the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, so that the process is simplified and the production cost is reduced. it can. Also, the heat exchange performance of the heat exchanger body is stabilized.
  • the heat exchanger 42 can be pulled out from the main body 41 and taken out. Therefore, it can be easily replaced if necessary. It can solve the problem of economical burden on the user during repair and recycling.
  • the heat exchanger 42 used in the present embodiment integrates the annular corrugated fin 4 21 and the inner ring-shaped member 4 22 with brazing, soldering or the like, the heat exchanger 42 is configured separately. Also show good thermal conductivity. Therefore, the heat exchange efficiency is improved.
  • FIG. 11 is a plan view of a part of the radiator 4 according to the present embodiment as viewed from the axial direction.
  • the radiator 4 of the present embodiment is, similarly to the first embodiment, a heat exchanger 4 composed of an annular corrugated fin 4 21 and an inner ring-shaped member 4 22 attached to the inside thereof. 2 and a cylindrical main body 4 1 on which the heat exchanger 42 is mounted.
  • FIGS. 12A to 12C show the manufacturing procedure of the annular corrugated fins 421
  • FIG. 12A is a plan view showing the linear corrugated fins 420
  • FIG. FIG. 12C is an enlarged plan view showing a state where the straight corrugated fins 420 are rounded and both ends are brought close to each other
  • FIG. 12C is an enlarged plan view showing a part of the completed annular corrugated fins 42 1.
  • one end of a linear colgate fin 420 that continuously connects V-shaped grooves 420e is a V-shaped groove 420a, and the other end is The inverted V-shaped groove is 420 b.
  • both the length L 4 of the edge 4 20 c of the groove 4 20 a and the edge 4 20 d of the groove 4 20 b are the same as the top 4 2 0 f of the groove 4 2 0 e therebetween. It is machined shorter than the length L of the hypotenuse between the tops 420 f.
  • the inner periphery of the annular corrugated fin 4 21 The ring-shaped members 422 are in contact with each other so that their axes are concentric.
  • the diameter of the circle (the inner diameter of the annular corrugated fin 42 1) formed by smoothly connecting the bottoms 4 2 1 b of the annular corrugated fins 4 21 and the outer diameter of the inner ring-shaped member 4 2 2 Is almost equal to
  • annular corrugated fins 42 1 and the inner ring-shaped member 422 are joined by an annular brazing material 13. That is, as shown in FIG. 2B, when the mouthpiece 13 is placed on the portion where the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are in contact and heated, the melted mouthpiece 13 becomes It flows down along the bottom city 4 2 1b of the circular corrugated fin 4 2 1.
  • the brazing material 13 spreads substantially uniformly around the portion where the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are in contact. Then, as the brazing material 13 is hardened, the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are joined and integrated. Although brazing has been described here, soldering may also be performed.
  • the above-described heat exchanger 42 is inserted into the main body 41 shown in FIG.
  • the configuration for introducing the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic cross-sectional view of the main body 41 and the heat exchanger 42, both ends of the main body 41 are tapered so that the wall thickness becomes thinner toward the end along the axial direction. It is formed (tapered portion 41a).
  • the outer diameter of the heat exchanger 42 (the outer diameter of the annular corrugated fin 42 1)
  • the heat exchanger 42 when the heat exchanger 42 is inserted from the end of the main body 41, the heat exchanger 42 can be easily inserted at first with a small force. Then, since the inner diameter of the main body 41 gradually decreases and finally becomes smaller than the outer diameter R1 of the heat exchanger 42, the heat exchanger 42 is inserted while gradually applying a large force. Go. In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • each bottom 4 2 1 b of the annular corrugated fin 4 2 1 is an inner ring-shaped member. Since it is fixed to 4 2 2, the annular corrugated fin 4 2 1 housed in the main body 4 1 with an inner diameter R 3 smaller than its outer diameter R 1 is in a state where each groove 4 2 1 a is expanded. And an elastic force is generated radially outward.
  • the heat exchanger 42 Since the outer diameter R 1 and the depth of each groove 4 21 a of the annular corrugated fin 42 1 are constant in the axial direction, the heat exchanger 42 is attached to the main body 41 by the above-mentioned natural force. It is evenly pressed against the inner peripheral surface and fixed in position. At this time, the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, so that the process is simplified and the production cost is reduced. it can. Also, the heat exchange performance of the heat exchanger body is stabilized.
  • the heat exchanger 42 can be pulled out from the main body 41 and taken out. Therefore, since it can be easily replaced as needed, the problem of economical burden on the user and the problem of recycling at the time of repair can be solved.
  • the heat exchanger 42 used in the present embodiment integrates the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 with a mouth or solder, the heat exchanger 42 is configured separately. It shows better conductivity than it does. Therefore, the heat exchange efficiency is improved.
  • FIG. 13 is a plan view of a part of the radiator 4 according to the present embodiment as viewed from the axial direction.
  • the radiator 4 of the present embodiment is, similarly to the first embodiment, a heat exchanger 4 2 composed of an annular corrugated fin 4 21 and an inner ring-shaped member 4 2 2 brazed inside thereof. And a cylindrical main body 41 to which the heat exchanger 42 is attached.
  • FIGS. 14A to 14C show a manufacturing procedure of the annular corrugated fins 421
  • FIG. 14A is a plan view showing the linear corrugated fins 420
  • FIG. 14C is an enlarged plan view showing a state in which the corrugated fins 420 are rounded and both ends are brought closer
  • FIG. 14C is an enlarged plan view showing a part of the completed annular corrugated fins 42.
  • one end and the other end of the linear colgate fin 420 where the V-shaped cross-sectional grooves 420e are continuously connected are inverted V-shaped grooves 420b. ing.
  • the length L 5 of both ends 4 2 0 c and 4 2 0 d of the grooves 4 2 0 b at both ends is the same as the top 4 2 0 f of the grooves 4 2 0 e between them. It is shorter than the length L of the hypotenuse between the tops 420 f.
  • an inner ring-shaped member 42 is in contact with the inner periphery of the annular corrugated fin 42 1 so that their axes are concentric.
  • the diameter of the circle (the inner diameter of the annular corrugated fin 42 1) formed by smoothly connecting the bottoms 4 2 1 b of the annular corrugated fins 4 21 and the outer diameter of the inner ring-shaped member 4 2 2 Is almost equal to
  • annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are joined by an annular brazing material 13. That is, as shown in FIG. 2B, when the mouthpiece 13 is placed on the portion where the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are in contact with each other and heated, the melted mouthpiece 13 becomes annular. It flows down along the bottom 4 2 1b of the corrugated fin 4 2 1.
  • the brazing material 13 spreads substantially uniformly around the portion where the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are in contact. Then, as the brazing material 13 is hardened, the annular korgut fin 42 1 and the inner ring-shaped member 42 2 are joined and integrated. Although brazing has been described here, soldering may also be performed.
  • the above-described heat exchanger 42 is inserted into the main body 41 shown in FIG.
  • the configuration for introducing the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic cross-sectional view of the main body 41 and the heat exchanger 42, both ends of the main body 41 are formed so that the wall thickness becomes thinner toward the end along the axial direction. A taper is formed (taper portion 41a).
  • the outer diameter of the heat exchanger 42 (the outer diameter of the annular corrugated fin 42 1)
  • the heat exchanger 42 when the heat exchanger 42 is inserted from the end of the main body 41, the heat exchanger 42 can be easily inserted at first with a small force. Then, since the inner diameter of the main body 41 gradually decreases and finally becomes smaller than the outer diameter R1 of the heat exchanger 42, the heat exchanger 42 is inserted while gradually applying a large force. Go. In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • each bottom 4 2 1 b of the annular corrugated fin 4 2 1 is fixed to the inner ring-shaped member 4 2 2, it is stored in the main body 4 1 having an inner diameter R 3 smaller than its outer diameter R 1.
  • the annular corrugated fins 4 21 are in a state where the respective grooves 4 2 1 a are expanded, and an elastic force is generated radially outward.
  • the heat exchanger 42 is formed on the inner periphery of the main body 41 by the elastic force. It is uniformly pressed against the surface and fixed in position. At this time, the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, so that the process is simplified and the production cost is reduced. it can. Also, the heat exchange performance of the heat exchanger body is stabilized.
  • FIG. 15 is a plan view of a part of the radiator 4 according to the present embodiment viewed from the axial direction.
  • the radiator 4 of the present embodiment is, similarly to the first embodiment, a heat exchanger 4 composed of an annular corrugated fin 42 1 and an inner ring-shaped member 4 22 attached to the inside thereof. 2 and a cylindrical main body 4 1 on which the heat exchanger 42 is mounted.
  • FIG. 16 shows the manufacturing procedure of the annular corrugated fins 421
  • FIG. 16A is a plan view showing the linear corrugated fins 420
  • FIG. 16C is an enlarged plan view showing a state in which the both ends are brought close together
  • FIG. 16C is an enlarged plan view showing the completed annular corge tofin 421
  • FIG. It is a perspective view of a part.
  • each of the side edges 420c and 420d has a straight corrugated fin 420 from one side 420g to the other side 420h and another side 420h. There is provided a slit 19 extending from one side to the 20 g side.
  • an inner ring-shaped member 422 is in contact with the inner periphery of the vertical corrugated fin 421 so that their axes are concentric.
  • the inner diameter of the annular korgut fine 422) and the outer diameter of the inner ring-shaped member 422 are almost equal.
  • the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are joined by an annular brazing material 13. That is, as shown in FIG. 2B, when the mouthpiece 13 is placed on a portion where the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are in contact and heated, the melted mouthpiece 13 becomes It flows down along the bottom 4 2 1 b of the annular corrugated fin 4 2 1.
  • the brazing material 13 spreads substantially uniformly around the portion where the annular corrugated fins 4 21 and the inner ring-shaped members 4 2 2 are in contact. Then, as the brazing material 13 is hardened, the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 are joined and integrated. Although brazing has been described here, soldering may also be performed.
  • the heat exchanger 42 described above is inserted into the main body 41 shown in FIG.
  • the configuration for introducing the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 4 which is a schematic sectional view of the main body 41 and the mature exchanger 42, both ends of the main body 41 are tapered so that the wall thickness becomes thinner toward the end along the axial direction. Formed (tapered part 4 1 a) 0
  • the outer diameter of the heat exchanger 42 (the outer diameter of the annular corrugated fin 42 1)
  • the heat exchanger 42 when the heat exchanger 42 is inserted from the end of the main body 41, the heat exchanger 42 can be easily inserted at first with a small force. Then, since the inner diameter of the main body 41 gradually decreases, and eventually becomes smaller than the outer diameter R 1 of the heat exchanger 42, the heat exchanger 42 is inserted while gradually applying a large force. Go. In this way, the heat exchanger 42 can be easily inserted into the main body 41.
  • each bottom 4 2 1 b of the annular corrugated fin 4 2 1 is fixed to the inner ring-shaped member 4 2 2, it is stored in the main body 4 1 having an inner diameter R 3 smaller than its outer diameter R 1.
  • the annular corrugated fins 421 are in a state in which the grooves 421 a are expanded, and an elastic force is generated radially outward.
  • the annular corrugated fin 4 21 has an outer diameter R 1 and a depth of each groove 4 21 a. Since it is constant in the axial direction, the heat exchanger 42 is uniformly pressed against the inner peripheral surface of the main body 41 and fixed in position by the elastic force. At this time, the annular corrugated fins 42 1 and the inner ring-shaped members 42 2 are firmly fixed and do not deform.
  • the heat exchanger 42 can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, so that the process is simplified and the production cost is reduced. it can. In addition, the heat exchange performance of the heat exchanger is stabilized.
  • the heat exchanger 42 can be pulled out from the main body 41 and taken out. Therefore, since it can be easily replaced as needed, the economic burden on the user at the time of repair and the problem of recycling can be solved.
  • the heat exchanger 42 used in the present embodiment integrates the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 with a mouth or solder, the heat exchanger 42 is configured separately. It shows better thermal conductivity than it does. Therefore, the heat exchange efficiency is improved. '
  • FIG. 18 is a plan view of the radiator 4 according to the present embodiment as viewed from the axial direction.
  • the radiator 4 of the present embodiment is, like the first embodiment, a heat exchanger 4 2 composed of an annular corrugated fin 4 21 and an inner ring-shaped member 4 22 attached to the inside thereof. And a cylindrical main body 41 to which the heat exchanger 42 is mounted.
  • FIG. 19A to FIG. 19C show a production procedure of the cyclic corrugated fins 421
  • FIG. 19A is a plan view showing a linear corrugated fin 420
  • FIG. 19C is a plan view showing an annular corrugated fin 421 formed by rolling the corrugated fins 420 and bringing both ends close together
  • FIG. 19C is a top view of the cylindrical main body 41.
  • one end and the other end of the linear colgate fin 420 in which the V-shaped groove 420 e continuously extends are inverted V-shaped grooves 420 b It has become.
  • the length L 7 of both ends 4 2 0 c and 4 2 0 d of the grooves 4 2 0 b at both ends is the same as the term 4 2 0 f of the grooves 4 2 0 e between them. Length of the hypotenuse between the top 4 20 f and length L Well processed.
  • An annular corrugated fin 421 as shown in FIG. 19B is formed by holding a state in which the tips of ⁇ 420 c and the edges 420 d are in contact with each other.
  • the distal ends of the side edges 420c and 420d are positioned more radially than the outer periphery of the annular corrugated fin 421 (the circumference of a circle formed by smoothly connecting the tops 4221c).
  • a protruding portion 4 21 h protruding outside the frame is formed.
  • the inner diameter of the cylindrical body 41 is selected to be substantially equal to the outer diameter of the annular corrugated fin 42. Further, as shown in FIG. 19C, a concave portion 41 a that can be fitted to the protruding portion 421 h of the annular corrugated fin 421 is provided at one location on the inner surface of the outer heat exchanger 3 in the axial direction. It has been extended.
  • the annular corrugated fins 42 1 are aligned with the center axis of the main body 41, and the projections 42 21 h are fitted into the concave portions 41 a of the main body and inserted from the axial direction.
  • the one end surface of the annular corrugated fin 42 1 is inserted until the open end of the main body 41 is aligned.
  • a force trying to return to the original linear corrugated fin 420 is applied to the protruding portion 4 21 h of the annular corrugated fin 4 21, but the protruding portion 4 2 1 h is in the recess 4 a. Since the movement is restricted, the annular corrugated fin 4 21 changes to a force that tries to spread in the radial direction. Therefore, since the annular corrugated fins 42 21 are spread and pressed against the inner surface of the main body 41, the annular corrugated fins 42 can be held at a predetermined position while maintaining the shape. '
  • the outer diameter of the cylindrical inner ring-shaped member 422 is selected to be substantially equal to the inner diameter of the annular corrugated fin 421 (diameter of a circle formed by smoothly connecting the grooves 2b). Then, the center of the inner ring-shaped member 422 is aligned with the center axis of the annular corrugated fin 421 in the main body 1 and inserted from the axial direction. Then, the heat exchanger 42 is mounted inside the main body 41 by attaching it to the contact portion between the inner periphery of the annular colgate fin 42 1 and the outer surface of the inner ring-shaped member 42 2 to be integrated. As a result, a radiator 4 as shown in FIG. 18 is obtained.
  • FIG. 20 is an external perspective view of a radiator 4 which is a heat exchanger body of the present embodiment.
  • FIG. 21A is an external perspective view showing a heat exchanger 42 ′ incorporated in the radiator 4, and
  • FIG. 21B is an exploded perspective view thereof.
  • the heat exchanger 42 ' is composed of an annular corrugated fin 421, an outer ring-shaped member 42' and a heat exchanger.
  • the annular corrugated fin 421 is manufactured by the procedure described in each of the first to seventh embodiments.
  • the outer ring-shaped member 4 2 2 ′ is a cylindrical body made of a material having good thermal conductivity and elasticity.
  • an outer ring-shaped member 42 2 ′ is in contact with the outer periphery of the annular corrugated fin 42 1 so that their axes are concentric with each other.
  • the outer diameter of the annular corrugated fins 42 1 is substantially equal to the inner diameter of the outer ring-shaped member 42 2 ′.
  • the annular corrugated fin 42 1 and the outer ring-shaped member 42 2 ′ are similar to the annular corrugated fin 42 1 and the inner ring-shaped member 42 2 of the first embodiment. It is joined and fixed with brazing material 13 or solder.
  • the above-described heat exchanger 42 ′ is inserted into the main body 41 shown in FIG. 20 so that the axes are concentric with each other to form the radiator 4.
  • the configuration for inserting the heat exchanger 42 into the main body 41 is as follows. That is, as shown in FIG. 23 which is a schematic cross-sectional view of the main body 41 and the heat exchanger 42 ′, both ends of the main body 41 are tapered in the same manner as in the first embodiment (tapered portion 4). 1 a) 0
  • the heat exchanger 42 ' can be easily inserted into the main body 41 by the tapered portion 4la.
  • the The heat exchanger 42 ' is pressed against the inner peripheral surface of the main body 41 by an elastic force generated in the annular corrugated fin 42 and the outer ring-shaped member 42' and fixed in position.
  • the annular corrugated fins 42 1 and the outer ring-shaped members 42 2 ′ are firmly fixed and do not deform.
  • the heat exchanger 4 2 ′ can be fixed at an appropriate position in the main body 41 without using an adhesive or solder, and the main body 4 1 and the heat exchanger 4 2 ′ are different from each other. Since it is not fixed, it can be taken out freely. Further, since the annular corrugated fins 42 1 and the outer ring-shaped members 42 2 ′ are integrated, they show better thermal conductivity.
  • FIG. 24 is an enlarged plan view of a part of the radiator 4 according to the present embodiment viewed from the axial direction.
  • Fig. 25 shows a part of the manufacturing procedure of the radiator 4.
  • Fig. 25A is a cross-sectional view before the heat exchanger 42 is inserted from the introduction member 14 side. It is sectional drawing after insertion.
  • the cylindrical main body 41 is fixed to the jig 15 together with the introduction member 14 so that the axial direction thereof is substantially horizontal.
  • the introduction member 14 provided adjacent to the main body 41 has an outer diameter substantially equal to that of the main body 41, and the inner diameter is substantially equal to the inner diameter of the main body 41 at the joint portion, and increases as the distance from the joint portion increases It has a sectional shape of the inner surface having a tapered portion 14a.
  • the annular corrugated fins 421 are formed in an annular shape by rolling the linear corrugated fins 420 and fixing both ends.
  • the annular corrugated fins 421 are formed of a highly flexible material which is easily deformed by an external force.
  • an inner ring-shaped member 4 22 selected to have an outer diameter slightly larger than the inner diameter is inserted into the annular corrugated fin 4 21 from the axial direction to produce a heat exchanger 42. .
  • the heat exchanger 42 is inserted axially from the open end of the introduction member 14.
  • the annular corrugated fins 42 1 are pressed from the center to the outside by the inner ring-shaped member 42 2 in the radial direction, and are reduced from the portion having the larger inner diameter along the tapered portion 14 a of the introduction member 14. Gradually to the place It will be pushed into.
  • the insertion is terminated when the one end surface of the annular corrugated fin 42 reaches the junction between the main body 41 and the introduction member 14.
  • the top 4 21 c of the annular corrugated fin 42 1 rubs against the inner surface of the introduction member 14, and its shape is changed from an arc shape to a planar shape.
  • the degree of this deformation increases as the hardness S of the material of the introduction member 14 and the hardness of the material of the annular corrugated fin 42 1 become greater.
  • the contact area between the annular corrugated fins 4 21 and the inner surface of the main body 41 is increased.
  • FIG. 26 is a plan view of a radiator 42 according to the present embodiment
  • FIG. 27 is a plan view of a heat exchanger 42
  • FIG. 28 is a plan view of a cylindrical main body 41. .
  • the main body 41 is formed by pouring the molten metal into a mold and solidifying it. As shown in FIG. 28, a wavy concave part 41 m extending in the axial direction is formed on the entire inner surface of the main body. It is given at equal intervals.
  • the concave portion 41 m is shaped so that the convex portion 421 k of the annular corrugated fin 42 1 ′ can be fitted.
  • a cylindrical inner ring-shaped member 42 2 having an outer diameter slightly equal to the inner diameter is inserted into the corrugated fin 4 21 ′ in advance, and the contact portion is formed.
  • a heat exchanger 42 as shown in FIG. 27 is prepared.
  • the center of the heat exchanger 42 is aligned with the center axis of the main body 41 and inserted from the axial direction. At this time, as shown in FIG.
  • the annular corrugated fin 4 2 1 ′ is firmly adhered to the inner surface of the main body 4 1, and a sufficient contact area is secured over the entire circumference of the annular corrugated fin 4 2 1 ′.
  • a radiator 4 having excellent performance can be stably provided.
  • the heat exchanger of the present invention does not need to be manually bonded to the main body, so that the productivity of the heat exchanger body can be improved and the production cost can be reduced. Moreover, the obtained heat exchanger body has little variation in quality and has stable heat exchange performance. In addition, the heat exchanger improves the heat conductivity by integrating the corrugated fin and the inner or outer ring-shaped member, thereby improving the heat exchange efficiency.
  • the heat exchanger can be pulled out from the main body and taken out. Therefore, even if the corrugated fins are damaged and the quality of the heat exchanger deteriorates, the corrugated fins can be easily replaced as needed, making them very economical and suitable for recycling. .
  • the end of the main body of the heat exchanger body has a taper, even if the outer diameter of the heat exchanger is larger than the inner diameter of the main body, the heat exchanger can be smoothly inserted.
  • annular corrugated fins there is no need to manually attach the annular corrugated fins to the inside of the tubular body by bonding or welding. Therefore, an improvement in the productivity of the heat effect gas is achieved. In addition, a uniform contact state is obtained over the entire circumference of the annular corrugated fin, so that a heat exchanger body having excellent performance can be stably supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

明細書 スターリング冷凍機用熱交換器、 熱交換器体及び熱交換器体の製造方法 技術分野
本発明は、 スターリング冷凍機に備えられる吸熱器や放熱器などの熱交換器体 とその熱交換器、 及び熱交換器体の製造方法に関するものである。 背景技術
まず、 スタ一リ ング機関を利用したフリーピス トン型スターリング冷凍機の一 般的な構成について説明する。 図 2 9は、 フリーピス トン型スターリング冷凍機 の側面断面を概略的に示した図である。シリンダ 1内には低温部となる吸熱器 2、 再生器 3、 及び高温部となる放熱器 4がこの順に収納されている。 吸熱器 2及び 放熱器 4はいずれも管状の本体 2 1 , 4 1の一端側の内周面に熱交換器 2 2 , 4 2 を取り付けて成る熱交換器体であり、 各熱交換器 2 2 , 4 2はシリ ンダ 1内で再 生器 3に隣接している。
上記シリンダ 1内にはディスプレーサロッ ド 5の一端に固着したディスプレー サ 6 と該ディスプレーサロッ ド 5が貫通したビス トン 7が配設されている。また、 ディスプレーサロッ ド 5の他端はスプリング 8に接続されている。 シリンダ 1内 ではこれらディスプレーサ 6 とビス トン 7によって、 吸熱器 2の内部に膨張空間 9が形成され放熱器 4の内部に圧縮空間 1 0が形成されている。 これら膨張空間 9 と圧縮空間 1 0とは再生器 3によって連通して閉回路を構成している。
このフリービス トン型スタ一リ ング冷凍機の動作について説明する。 ビス トン 7はリニァモータ(図示せず)などの外部動力により、 シリンダ 1の軸方向に所定 の周期にて往復運動する。 また、 圧縮空間 1 0には予めヘリ ウムなどの作動ガス が封入されている。
ビス トン 7の移動により圧縮空間 1 0内の作動ガスが圧縮されると、 その作動 ガスは放熱器 4の熱交換器 4 2を介して再生器 3を通り膨張空間 9に導かれる (図中、点線矢印 A )。 このとき、 圧縮によって熱を生じた作動ガスは熱交換器 4 2にて外部の空気と熱交換されて熱を放出し、 再生器 3を通ることで該再生器 3 に予め蓄えられていた冷熱を受け取って予冷される。
作動ガスが膨張空間 9に流入するとディスプレーサ 6はスプリング 8に抗して 右方向に押し込まれるので、 作動ガスは膨張し冷熱が生じる。 そして、 ある程度 作動ガスが膨張すると、 スプリング 8の復帰力によりディスプレーサ 6は反対方 向に押し返される。
これによつて、 膨張空間 9内の作動ガスは吸熟器 2の熱交換器 2 2を介して再 生器 3を通り再び圧縮空間 1 0に移動する(図中、実線矢印 A ' )。 このとき、 作 動ガスは熱交換器 2 2にて外部の空気と熱交換されて熱を吸収し、 再生器 3を通 ることで該再生器 3に蓄えられていた熱を受け取って予熱される。 そして、 圧縮 空間 1 0に戻った作動ガスは再びビス トン 7の圧縮を受ける。
このような一連のサイクルが連続して繰り返されることにより、 吸熱器 2にて 極低温の冷熱が取り出される。 ここでは、 吸熱器 2の熱交換器 2 2での吸熱量と 放熱器 4の熱交換器 4 2での放熱量とは大きい方が好ましい。 なぜならば、 作動 ガスに対する再生器 3の予冷及び予熱の効率が向上するので、 再生器 3にかかる 負担を軽減でき、 ひいてはスターリング冷凍機の冷凍性能の向上が達成できるか らである。
次に、 上述したスターリング冷凍機の高温側熱交換器体である放熱器 4につい て図 3 0を参照して説明する。 尚、 ここでは放熱器 4 とその熱交換器 4 2につい てのみ述べるが、 低温側熱交換器体である吸熱器 2 とその熱交換器 2 2も同様の 構成である。
図 3 0に示すように、 この熱交換器 4 2はコルゲート加工した薄板を円筒状に 成形した環状コルゲートフィ ン 4 2 1である。 そして、 軸方向に沿って直線状に 延びる V字型の溝 4 2 1 aが多数、 等間隔に形成されており、 ぎざぎざ状となつ ている。
ここでは、 放熱器 4の本体 4 1の中心側に突出している部分を各溝 4 2 1 aの 底部 4 2 1 b とし、 本体 4 1の内周面の側に突出している部分を隣り合う溝 4 2 1 aによって形成された頂部 4 2 1 c とする。 各頂部 4 2 1 cを滑らかに結んで できる円の直径(環状コルゲートフイン 4 2 1の外径)と本体 4 1の内径とはほぼ 等しく、 本体 4 1 と環状コルゲートフイン 4 2 1 とは互いの軸が同心となるよう に配されている。
この本体 4 1の内周面と環状コルゲートフイン 4 2 1の頂部 4 2 1 c とは接着 剤又ははんだによって強固に固定されている。 図 3 1は環状コルゲ一トフイン 4 2 1を軸方向から見た要部拡大図であり、接着剤にて固定した状態を示している。 この場合、 先ず本体 4 1の内周面に接着剤 1 1を薄く塗り広げておき、 そこに環 状コルゲートフィ ン 4 2 1を挿入する。 そして、 所定の位置に環状コルゲートフ イン 4 2 1をしばらく保持した状態で接着剤 1 1を乾燥させる。
また、 図 3 2ははんだにて固定した状態を示している。 はんだ付けの場合は、 先ず環状コルゲ一 トフイン 4 2 1を本体 4 1內に揷入する。 そして、 環状コルゲ 一トフイ ン 4 2 1 を所定の位置に保持した状態で、 本体 4 1の内周面と環状コル ゲートフィン 4 2 1の頂部 4 2 1 c とが接触もしくは近接する部分にはんだ 1 2 を施す。
しかしながら、 上述した従来の熱交換器体では接着又ははんだ付けによる固定 の工程が手作業で行われていた。 故に、 この工程は非常に手間と時間がかかるの で、 生産性が悪く製造コス トの削減が困難であった。 また、 製品の品質、 即ち熱 交換性能にばらつきが生じやすく、 製品の安定性や信頼性に欠けていた。
さらに、 スターリ ング冷凍機を長期間使用するのに伴って環状コルゲートフィ ン 4 2 1が損傷した場合、 これを取り外して交換することはできなかった。 従つ て、 修理時における使用者の経済的負担や、 地球環境に配慮した資源の再生利用 いわゆるリサイクルという点で問題があった。 発明の開示
本発明は、 上記の課題を解決するためになされたものである。 即ち、 本発明の スターリング冷凍機用熱交換器は、 コルゲー ト加工により多数の溝が形成された 薄板を前記溝が軸方向と平行になるように円筒状に成形した環状コルゲートフィ ンと、 該環状コルゲートフィンの内周に接する内側リング状部材とが一体化して 成るものである。
これら環状コルゲートフィンと内側リング状部材が一体化されていると、 それ らの接触面積が増加し、 良好な熱伝導性を示す。 しかも、 一体化によって熱交換 器の取り扱いが容易になり、 交換修理も可能となる。 従って、 非常に経済的で、 リサイクル性にも富んでいる。 なお、 その一体化には接着手段、 例えばロウ付け やはんだ付けを施すとよい。
そして、 本発明の熱交換器体は、 上記のスターリング冷凍機用熱交換器を管状 の本体の中空に揷入して得られるものである。 この場合、 前記本体の内径を前記 熱交換器の外径よりもわずかに小さく しておく と、 接着や溶接をすることなく圧 着によって熱交換器を本体に装着することができる。 更に、 前記本体の少なく と も一端に軸方向に沿って端側にいくほど壁厚が薄くなるようなテーパーを形成す ると、 揷入がしゃすくてよい。
また、 前記環状コルゲー トフィンの周囲に、 互いに密着して全体として等間隔 に並ぶ波形の凸部を形成するとともに、 これらの凸部に対応して前記本体の內面 に波形の凹部を軸方向に延設した場合は、 熱交換器を本体内へ挿入する際に、 前 記凸部と凹部を嵌合することにより、 本体内の熱交換器の位置が円周方向にずれ るのを防止できる。
或いは、 両端の逆 V字状の溝の端辺がその間の V字状の溝の斜辺より長くなつ た直線状コルゲートフィンを筒状に丸め、 前記両端辺同士を互いの表面を接触さ せるように保持しておき、 前記両端辺の先端に形成され前記環状コルゲートフィ ンの外周より半径方向に突出した突出部を前記本体の内面に軸方向に延設した溝 に嵌合することにより、 本体内の熱交換器の位置が円周方向にずれるのを防止で さる。
この熱交換器体の製造方法としては、 例えば、 一端が前記本体と内径がほぼ等 しく、 他端側にいくほど壁厚が薄くなるようにテーパーが施された管状の導入部 材を前記一端で前記本体に着脱自在に装着し、 前記スターリ ング冷凍機用熱交換 器を前記導入部材の前記他端から軸方向に挿入していく方法が考えられる。 この 方法により製造された熱交換器体では、 環状コルゲートフィンが導入部材を通過 する際に、 周囲の形状が変わるため、 本体の内面との接触面積が拡大する。 従つ て、 環状コルゲートフィ ンの熱伝導効率が向上し、 熱交換性能に優れた熱交換器 体を提供できる。 また、 本発明のスターリング冷凍機用熱交換器は、 コルゲート加工により多数 の溝が形成された薄板を前記溝が軸方向と平行になるように円筒状に成形した環 状コルグートフイ ンと、 該環状コルゲートフインの外周に接する外側リング状部 材とが一体化して成るものである。
これら環状コルゲートフィンと外側リング状部材が一体化されていると、 それ らの接触面積が増加し、 良好な熱伝導性を示す。 しかも、 一体化によって熱交換 器の取り扱いが容易になり、 交換修理も可能となる。 従って、 非常に経済的で、 リサイクル性にも富んでいる。 なお、 その一体化には接着手段、 例えばロウ付け やはんだ付けを施すとよい。
そして、 本発明の熱交換器体は、 上記のスターリング冷凍機用熱交換器を管状 の本体の中空に揷入して得られるものである。 この場合、 前記本体の内径を前記 熱交換器の外径よりもわずかに小さく しておく と、 接着や溶接をすることなく圧 着によって熱交換器を本体に装着することができる。 更に、 前記本体の少なく と も一端に軸方向に沿って端側にいくほど壁厚が薄くなるようなテーパーを形成す ると、 揷入がしゃすくてよい。
なお、 前記環状コルゲートフィンは、 V字状の溝が連続して繋がる直線状コル ゲートフィンを筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝 の端辺とを係合して連結することにより容易に作製できる。
或いは、 V字状の溝が連続して繫がる直線状コルゲートフィンを筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互いの表面にスポ ッ ト溶接を施すことにより連結してもよい。
或いは、 V字状の溝が連続して繋がる直線状コルゲートフインを筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互いの表面に接着 を施すことにより連結してもよい。
或いは、 V字状の溝が連続して繋がる直線状コルゲ一トフィンを筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互いの表面に口ゥ 付けを施すことにより連結してもよい。
或いは、 V字状の溝が連続して繫がる直線状コルゲートフインを筒状に丸め、 その両端の逆 V字状の溝の端辺同士を互いの表面を接触させるように保持してお き、 その接触部の先端に断面コの字状の接合部材を装着することにより連結して もよい。
或いは、 V字状の溝が連続して繋がる直線状コルゲートフインを筒状に丸め、 その一端の逆 V字状の溝の端辺に前記直線状コルゲートフィンのー側面から他側 面側に形成したスリ ッ トと、 前記直線状コルゲートフィンの他端の逆 V字状の溝 の端辺に前記直線状コルゲートフィンの他側面から一側面側に形成したスリ ッ ト とを相互に嵌め込むことにより連結してもよい。
図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る放熱器の外観斜視図である。
図 2 Aは、 その放熱器の熱交換器を示す外観斜視図である。
図 2 Bは、 その熱交換器の分解斜視図である。
図 3は、 その熱交換器の一部を軸方向から見た拡大平面図である。
図 4は、 その放熱器の本体及び熱交換器の概略縦断面図である。
図 5は、 その放熱器の一部を軸方向から見た拔大平面図である。
図 6 Aは、 直線状コルゲートフィンを示す平面図である。
図 6 Bは、 直線状コルグートフィンを丸めて両端を接近させた状態を示す拡大 平面図である。
図 6 Cは、 完成した環状コルゲートフィンの一部を示す拡大平面図である。 図 7は、 本発明の第 2の実施形態に係る放熱器の一部を軸方向から見た拡大平 面図である。
図 8 Aは、 直線状コルゲートフィンを示す平面図である。
図 8 Bは、 直線状コルゲ一トフィンを丸めて両端を接近させた状態を示す拡大 平面図である。
図 8 Cは、 完成した環状コルゲートフィンの一部を示す拡大平面図である。 図 9は、 本発明の第 3の実施形態に係る放熱器の一部を軸方向から見た拡大平 面図である。
図 1 0 Aは、 直線状コルグートフィンを示す平面図である。 図 1 0 Bは、 直線状コルゲートフィンを丸めて両端を接近させた状態を示す拡 大平面図である。 '
図 1 0 Cは、 完成した環状コルゲ一トフィ ンの一部を示す拡大平面図である。 図 1 1は、 本発明の第 4の実施形態に係る放熱器を軸方向から見た拡大平面図 である。
図 1 2 Aは、 直線状コルゲートフィンを示す平面図である。
図 1 2 Bは、 直線状コルゲートフィンを丸めて両端を接近させた状態を示す拡 大平面図である。
図 1 2 Cは、 完成した環状コルゲートフィンの一部を示す拡大平面図である。 図 1 3は、 本発明の第 5の実施形態に係る放熱器の一部を軸方向から見た拡大 平面図である。
図 1 4 Aは、 直線状コルゲートフィンを示す平面図である。
図 1 4 Bは、 直線状コルゲートフィンを丸めて両端を接近させた状態を示す拡 大平面図である。
図 1 4 Cは、 完成した環状コルゲートフィンの一部を示す拡大平面図である。 図 1 5は、 本発明の第 6の実施形態に係る放熱器の一部を軸方向から見た拡大 平面図である。
図 1 6 Aは、 直線状コルゲートフィンを示す平面図である。
図 1 6 Bは、 直線状コルゲートフィンを丸めて両端を接近させた状態を示す拡 大平面図である。
図 1 6 Cは、 完成した環状コルゲートフィンの一部を示す拡大平面図である。 図 1 7は、 図 1 6 Bの要部を示す拡大斜視図である。 図 1 8は、 本発明の第 7の実施形態に係る放熱器を軸方向から見た拡大平面図 である。
図 1 9 Aは、 直線状コルゲートフィンを示す平面図である。
図 1 9 Bは、 直線状コルゲートフィンを丸めて両端を接触させることにより形 成される環状コルゲートフィンを示す平面図である。
図 1 9 Cは、 円筒の本体の上面図である。 図 2 0は、 本発明の第 8の実施形態に係る放熱器の一部の外観斜視図である。 図 2 1 Aは、 その放熱器の熱交換器を示す外観斜視図である。
図 2 1 Bは、 その熱交換器の分解斜視図である。
図 2 2は、 その熱交換器の一部を軸方向から見た拡大平面図である。
図 2 3は、 その放熱器の本体及び熱交換器の概略縦断面図である。
図 2 4は、 本発明の第 9の実施形態に係る放熱器の一部を軸方向から見た拡大 平面図である。
図 2 5 Aは、 その放熱器の熱交換器を導入部材側から揷入する前の断面図であ る。 ·
図 2 5 Bは、 その揷入後の断面図である。
図 2 6は、 本発明の第 1 0の実施形態に係る放熱器の平面図である。
図 2 7は、 その放熱器の熱交換器の平面図である。
図 2 8は、 円筒の本体の平面図である。
図 2 9は、 従来のフリーピス トン型スターリング冷凍機の断面概略図である。 図 3 0は、 従来の熱交換器体である放熱器の外観斜視図である。
図 3 1は、 従来の一例の熱交換器の一部を軸方向から見た拡大平面図である。 図 3 2は、従来の他の例の熱交換器の一部を軸方向から見た拡大平面図である。 発明を実施するための最良の形態
以下、 本発明の実施形態について図面を参照して説明する。 尚、 図 2 9〜 3 2 に示す従来技術と同じ名称の部材には同一の符号を付している。 また、 各実施形 態では放熱器 4とその熱交換器 4 2についてのみ説明するが、 その構成や部材の 材料の選択、 設計変更などについては吸熱器 2とその熱交換器 2 2にも適用でき る。 従って、 特に断らない限り、 説明で放熱器 4及び熱交換器 4 2を吸熱器 2及 び熱交換器 2 2に読み変えてもよいのはもちろんである。
本発明の第 1の実施形態について説明する、 図 1は本実施形態の熱交換器体で ある放熱器 4の外観斜視図である。 また、 図 2 Aは該放熱器 4の熱交換器 4 2を 示す外観斜視図であり、 図 2 Bはその分解斜視図である。 また、 図 3は、 その放 熱器の一部を軸方向から見た拡大平面図である。 この熱交換器 4 2は環状コルゲ一トフイン 4 2 1 と内側リング状部材 4 2 2と から成る。 環状コルゲートフィン 4 2 1は、 コルゲート加工した薄板を各溝 4 2 1 aが軸方向と平行になるように円筒状に成形して成るものである。 また、 内側 リング状部材 4 2 2は良好な熱伝導性を有する材料から成る筒体である。
まず、 本実施形態で用いる環状コルグートフイン 4 2 1の製造方法について説 明する。 図 6 Aから図 6 Cは環状コルゲ一トフィ ン' 4 2 1の製造手順を示してお り、 図 6 Aは直線状コルゲートフィン 4 2 0を示す平面図であり、 図 6 Bは直線 状コルゲートフィン 4 2 0を丸めて両端を接近させた状態を示す拡大平面図であ り、 そして図 6 Cは完成した環状コルゲートフイ ン 4 2 1を示す拡大平面図であ る。
図 6 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コル ゲートフィ ン 4 2 0の一端は V字状の溝 4 2 0 aであり、 他端は逆 V字状の溝 4 2 0 bになっている。 なお、 ?冓 4 2 0 aの端辺 4 2 0 c及び溝 4 2 0 bの端辺 4 2 0 dの長さ 1はともに、 その間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短く加工されている。
そして、 図 6 Aの矢印 F 1及び F 2方向に曲げて、 直線状コルゲートフィン 4 2 0を筒状に丸め、 図 6 Bのよ うに端辺 4 2 0 c と端辺 4 2 0 dとを接近させ、 かつ、 図.6 Cのように、 それらの端辺 4 2 0 c , 4 2 0 dを引っ掛け合わせるこ とにより、 環状コルゲートフイン 4 2 1を形成する。 これにより、 環状コルゲー トフイン 4 2 1は元の直線状態に戻ろう として引っ掛けられた端辺 4 2 0 c , 4 2 0 d同士が互いに引っ張り合い、 環状コルゲートフイン 4 2 1の環状にされた 形状が保たれること となる。 4 2 1 dはその連結部である。
図 2 A及び図 5に示すように、 環状コルゲ一トフイン 4 2 1の内周には内側リ ング状部材 4 2 2が、 互いの軸 (環状コルゲートフイン 4 2 1の軸とリング状部 材 4 2 2の軸) が同心となるように接している。 ここでは、 環状コルゲートフィ ン 4 2 1の各底部 4 2 1 bを滑らかに結んでできる円の直径(環状コルゲ一トフ イン 4 2 1の内径)と、 内側リング状部材 4 2 2の外径とはほぼ等しい。
これら環状コルゲートフイ ン 4 2 1 と内側リング状部材 4 2 2 とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熱する と、 溶解した口ゥ材 1 3は環状コルゲートフイン 4 2 1の底部 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すように、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるように揷 入されて放熱器 4 となる。 熱交換器 4 2を本体 4 1に挿入するための構成は次の 通りである。 即ち、 本体 4 1及び熱交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1 の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テ—パー部 4 1 a )。
そして、熱交換器 4 2の外径(環状コルゲートフイ ン 4 2 1の外径) R 1 (= φ B ) は、 本体 4 1の両端面での最大の内径 R 2 (= φ Β + α よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= φ Β - α より もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から揷入していく と、 最初は小さ い力で簡単に熱交換器 4 2を揷入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 よりも小さく なるので、 徐々に大きな 力を加えながら熱交換器 4 2を挿入していく。 このよ うにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲートフイン 4 2 1の各底部 4 2 1 bが内側リング状部材 4 2 2に罔定されていることから、 その外径 R 1 より も小さい内径 R 3の本体 4 1に収納された環状コルゲ一トフイン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲートフイン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弾性力によって熱交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲー トフィン 4 2 1 と内側リング状部材 4 2 2とは強固に固定されていて変形しない。
上述したように、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス トの削 減を達成できる。 また、 熱交換器体の熱交換性能が安定する。
また、 環状コルゲートフイン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担ゃリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2をロウやはんだなどにて一体化していることから、 別 個に構成されているよりも良好な熱伝導性を示す。 従って、 熱交換効率が向上す る。
次に、 本発明の第 2の実施形態について説明する。 図 7は、 本実施形態に係る 放熱器 4を軸方向から見た拡大平面図である。 本実施形態の放熱器 4は、 上記第 1の実施形態と同様に、 環状コルゲートフイ ン 4 2 1及びその内側に口ゥ付けさ れた内側リ ング状部材 4 2 2からなる熱交換器 4 2 と、 この熱交換器 4 2が装着 された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルゲ一トフイ ン 4 2 1の製造方法について説 明する。図 8 A〜図 8 Cは環状コルゲ一トフイン 4 2 1の製造手順を示しており、 図 8 Aは直線状コルゲートフイン 4 2 0を示す平面図であり、 図 8 Bは直線状コ ルゲートフイ ン 4 2 0を丸めて両端を接近させた状態を示す拡大平面図であり、 そして図 8 Cは完成した環状コルゲートフイン 4 2 1の一部を示す拡大平面図で ある。
図 8 Aのよ うに、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コル ゲートフイ ン 4 2 0の一端は V字状の溝 4 2 0 aであり、 他端は逆 V字状の溝 4 2 0 bになっている。 なお、 溝 4 2 0 aの端辺 4 2 0 c及び溝 4 2 0 bの端辺 4 2 0 dの長さ L 2はともに、 その間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短く加工されている。
そして、 図 8 Aの矢印 F l , F 2の方向に曲げて、 直線状コルゲートフィン 4 2 0を筒状に丸め、 図 8 Bのように接近させた端辺 4 2 0 c と端辺 4 2 0 dの表 面の一部に口ゥ付け又はスポッ ト溶接を施して接触状態で接合することにより、 図 8 Cのような環状コルゲ一 トフイン 4 2 1を形成する。 4 2 1 eはその口ゥ付 け又は溶接部である。
図 2 A及び図 7に示すように、 環状コルゲートフイン 4 2 1の内周には内側リ ング状部材 4 2 2が、 互いの軸が同心となるように接している。 ここでは、 環状 コルゲー トフィ ン 4 2 1の各底部 4 2 1 bを滑らかに結んでできる円の直径(環 状コルゲートフィ ン 4 2 1の内径)と、 内側リ ング状部材 4 2 2の外径とはほぼ 等しい。
これら環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熟する と、 溶解した口ゥ材 1 3は環状コルゲートフイン 4 2 1の底部 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すように、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるように揷 入されて放熱器 4となる。 熱交換器 4 2を本体 4 1に揷入するための構成は次の 通りである。 即ち、 本体 4 1及び熱交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テーパー部 4 1 a )。
そして、熱交換器 4 2の外径(環状コルゲートフイン 4 2 1の外径) R Ι (= φ Β ) は、 本体 4 1の両端面での最大の内径 R 2 (= φ Β + α よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= ψ Β - α 2 )よ り もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から揷入していく と、 最初は小さ い力で簡単に熱交換器 4 2を挿入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 よりも小さくなるので、 徐々に大きな 力を加えながら熱交換器 4 2を揷入していく。 このよ うにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲー トフィ ン 4 2 1の各底部 4 2 1 bが内側リ ング状部材 4 2 2に固定されていることから、 その外径 R 1 よりも小さい内径 R 3の本体 4 1に収納された澴状コルゲ一 トフイ ン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲートフイン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弾性力によって熟交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2とは強固に固定されていて変形しない。
上述したように、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス 卜の削 減を達成できる。 また、 熱交換器体の熱交換性能が安定する。
また、 環状コルゲートフイン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担ゃリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2をロウやはんだなどにて一体化していること力ゝら、 別 個に構成されているより も良好な熱伝導性を示す。 従って、 熱交換効率が向上す る。
次に、 本発明の第 3の実施形態について説明する。 図 9は、 本実施形態に係る 放熱器 4の一部を軸方向から見た平面図である。 本実施形態の放熱器 4は、 上記 第 1の実施形態と同様に、 環状コルゲ一トフイン 4 2 1及びその内側に口ゥ付け された内側リング状部材 4 2 2からなる熱交換器 4 2 と、 この熱交換器 4 2が装 着された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルゲートフイン 4 2 1の製造方法について説 明する。 図 1 0 A〜図 1 0 Bは環状コルゲートフイ ン 4 2 1の製造手順を示して おり、 図 1 0 Aは直線状コルゲ一トフイン 4 2 0を示す平面図であり、 図 1 0 B は直線状コルゲートフイン 4 2 0を丸めて両端を接近させた状態を示す拡大平面 図であり、 そして図 1 0 Cは完成した環状コルゲートフイン 4 2 1の一部を示す 拡大平面図である。
図 1 0 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コ ルゲートフイン 4 2 0の一端は V字状の溝 4 2 0 aであり、 他端は逆 V字状の溝 4 2 0 bになっている。 なお、 溝 4 2 0 aの端辺 4 2 0 c及び溝 4 2 0 bの端辺 4 2 0 dの長さ L 3はともに、 その間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短く加工されている。
そして、 図 1 0 Aの矢印 F l , F 2方向に曲げて、 あらかじめ表面に瞬間接着 剤等の接着剤 1 6を塗布した端辺 4 2 0 c , 4 2 0 dを合わせるように直線状コ ルゲートフィン 4 2 0を筒状に丸め (図 1 0 B )、 更に、 端辺 4 2 0 c と端辺 4 2 0 dの接着剤 1 6の塗布面を接触させてしばらく保持することにより接着し、 図 1 0 Cのような環状コルグートフイン 4 2 1を形成する。 4 2 1 f はその接着 部である。
図 2 A及び図 9に示すように、 環状コルゲートフイン 4 2 1の内周には内側リ ング状部材 4 2 2が、 互いの軸が同心となるように接している。 ここでは、 環状 コルゲートフイ ン 4 2 1の各底部 4 2 1 bを滑らかに結んでできる円の直径(環 状コルゲートフイ ン 4 2 1 の内径)と、 内側リング状部材 4 2 2の外径とはほぼ 等しい。
これら環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2 とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熱する と、 溶解した口ゥ材 1 3は環状コルゲ一トフイン 4 2 1の底部 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すように、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるように挿 入されて放熱器 4 となる。 熱交換器 4 2を本体 4 1に揷入するための構成は次の 通りである。 即ち、 本体 4 1及び熱交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テーパー部 4 1 a ) 0
そして、熱交換器 4 2の外径(環状コルゲートフイ ン 4 2 1の外径) R 1 (= φ B ) は、 本体 4 1の両端面での最大の内径 R + )よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= φ Β - α 2 )より もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から挿入していく と、 最初は小さ い力で簡単に熱交換器 4 2を揷入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 よりも小さくなるので、 徐々に大きな 力を加えながら熱交換器 4 2を挿入していく。 このよ うにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲートフイン 4 2 1の各底部 4 2 1 bが内側リング状部材 4 2 2に固定されていること力 ら、 その外径 R 1 より も小さい内径 R 3の本体 4 1に収納された環状コルゲートフイン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲートフイン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弾性力によって熱交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲートフィン 4 2 1 と内側リング状部材 4 2 2とは強固に固定されていて変形しない。
上述したよ うに、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス トの削 減を達成できる。 また、 熱交換器体の熱交換性能が安定する。
また、 瑷状コルゲートフイ ン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担ゃリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2をロウやはんだなどにて一体化していることから、 別 個に構成されているより も良好な熱伝導性を示す。 従って、 熱交換効率が向上す る。
次に、 本発明の第 4の実施形態について説明する。 図 1 1は、 本実施形態に係 る放熱器 4の一部を軸方向から見た平面図である。 本実施形態の放熱器 4は、 上 記第 1の実施形 と同様に、 環状コルゲートフイン 4 2 1及びその内側に口ゥ付 けされた内側リ ング状部材 4 2 2からなる熱交換器 4 2と、 この熱交換器 4 2が 装着された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルゲートフイン 4 2 1の製造方法について説 明する。 図 1 2 A〜図 1 2 Cは環状コルゲートフイン 4 2 1の製造手順を示して おり、 図 1 2 Aは直線状コルゲ一トフイ ン 4 2 0を示す平面図であり、 図 1 2 B は直線状コルゲー トフイン 4 2 0を丸めて両端を接近させた状態を示す拡大平面 図であり、 そして図 1 2 Cは完成した環状コルゲートフイン 4 2 1の一部を示す 拡大平面図である。
図 1 2 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コ ルゲートフイン 4 2 0の一端は V字状の溝 4 2 0 aであり、 他端は逆 V字状の溝 4 2 0 bになっている。 なお、 溝 4 2 0 a の端辺 4 2 0 c及び溝 4 2 0 bの端辺 4 2 0 dの長さ L 4はともに、 その間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短く加工されている。
そして、 図 1 2 Aの矢印 F l , F 2方向に曲げて、 あらかじめ表面にペース ト 状のはんだ 1 7を均一に塗布した端辺 4 2 0 c , 4 2 0 dを合わせるようにコル ゲートフイ ン 4 2 0を筒状に丸め (図 1 2 B )、 端辺 4 2 0 c と端辺 4 2 0 dの はんだ 1 7の塗布面を接触させてしばらく加熱することによりはんだ付けし、 図 1 2 Cのよ うな環状コルゲートフイン 4 2 1を形成する。 4 2 l gはそのロウ付 け又は溶接部である。
図 2 A及び図 1 1に示すように、 環状コルゲートフイン 4 2 1の内周には内側 リング状部材 4 2 2が、 互いの軸が同心となるように接している。 ここでは、 環 状コルゲートフィ ン 4 2 1の各底部 4 2 1 b を滑らかに結んでできる円の直径 (環状コルゲー トフイン 4 2 1の内径)と、 内側リ ング状部材 4 2 2の外径とはほ ぼ等しい。
これら環状コルゲ一トフイン 4 2 1 と内側リング状部材 4 2 2 とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲ一トフイン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熱する と、 溶解した口ゥ材 1 3は環状コルゲートフイン 4 2 1の底都 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すように、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるよ うに揷 入されて放熱器 4 となる。 熱交換器 4 2を本体 4 1に揷入するための構成は次の 通りである。 即ち、 本体 4 1及び熱交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1 の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テーパー部 4 1 a )。
そして、熱交換器 4 2の外径(環状コルゲートフイン 4 2 1の外径) R 1 (= φ B ) は、 本体 4 1の両端面での最大の内径 R 2 (= φ Β + α よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= φ Β - α 2 )より もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から揷入していく と、 最初は小さ い力で簡単に熱交換器 4 2を挿入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 よりも小さくなるので、 徐々に大きな 力を加えながら熱交換器 4 2を揷入していく。 このようにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲートフイン 4 2 1 の各底部 4 2 1 bが内側リング状部材 4 2 2に固定されていることから、 その外径 R 1 より も小さい内径 R 3の本体 4 1に収納された環状コルゲートフイン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲ一トフイ ン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弹性力によって熱交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2 とは強固に固定されていて変形しない。
上述したよ うに、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス トの削 減を達成できる。 また、 熱交換器体の熱交換性能が安定する。
また、 環状コルゲートフイン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担ゃリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲ一トフイン 4 2 1 と内側リング状部材 4 2 2を口ゥやはんだなどにて一体化していることから、 別 個に構成されているよりも良好な熟伝導性を示す。 従って、 熱交換効率が向上す る。
次に、 本発明の第 5の実施形態について説明する。 図 1 3は、 本実施形態に係 る放熱器 4の一部を軸方向から見た平面図である。 本実施形態の放熱器 4は、 上 記第 1の実施形態と同様に、 環状コルゲートフイ ン 4 2 1及びその内側にロウ付 けされた内側リング状部材 4 2 2からなる熱交換器 4 2と、 この熱交換器 4 2が 装着された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルゲートフイン 4 2 1の製造方法について説 明する。 図 1 4 A〜図 1 4 Cは環状コルゲートフイン 4 2 1の製造手順を示して おり、 図 1 4 Aは直線状コルゲートフィン 4 2 0を示す平面図であり、 図 1 4 B は直線状コルゲートフイン 4 2 0を丸めて両端を接近させた状態を示す拡大平面 図であり、 そして図 1 4 Cは完成した環状コルゲートフイン 4 2 1の一部を示す 拡大平面図である。 図 1 4 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コ ルゲートフイン 4 2 0の一端及び他端は逆 V字状の溝 4 2 0 bになっている。 な お、 両端の溝 4 2 0 bの端辺 4 2 0 c及ぴ端辺 4 2 0 dの長さ L 5はともに、 そ の間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短 く加工されている。
そして、 図 1 4 Aの矢印 F 1 , F 2方向に曲げて、 端辺 4 2 0 c, 4 2 0 dを 合わせるように直線状コルゲートフィ ン 4 2 0を筒状に丸め (図 1 4 B )、 端辺 4 2 0 c と端辺 4 2 0 dを互いの表面がその全面で接触した状態で保持し、 弾性 が強い材料からなる断面コの字状の接合部材 1 8で連結することにより、 図 1 4 Cのような環状コルゲートフイ ン 4 2 1 を形成する。
図 2 A及び図 1 3に示すように、 環状コルゲートフイン 4 2 1の内周には内側 リ ング状部材 4 2 2が、 互いの軸が同心となるように接している。 ここでは、 環 状コルゲートフィ ン 4 2 1の各底部 4 2 1 bを滑らかに結んでできる円の直径 (環状コルゲートフイ ン 4 2 1の内径)と、 内側リング状部材 4 2 2の外径とはほ ぼ等しい。
これら環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2 とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熱する と、 溶解した口ゥ材 1 3は環状コルゲートフイン 4 2 1の底部 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すよ うに、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルグートフイン 4 2 1 と内側リング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるように揷 入されて放熱器 4となる。 熱交換器 4 2を本体 4 1に揷入するための構成は次の 通りである。 即ち、 本体 4 1及び熱交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テーパー部 4 1 a )。
そして、 熱交換器 4 2の外径(環状コルゲートフイン 4 2 1の外径) R 1 (= ψ B ) は、 本体 4 1の両端面での最大の内径 R 2 (= φ Β + α よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= φ Β - οί 2 )より もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から揷入していく と、 最初は小さ い力で簡単に熱交換器 4 2を揷入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 よりも小さくなるので、 徐々に大きな 力を加えながら熱交換器 4 2を揷入していく。 このよ うにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲートフイン 4 2 1の各底部 4 2 1 bが内側リング状部材 4 2 2に固定されていることから、 その外径 R 1 よりも小さい内径 R 3の本体 4 1に収納された環状コルゲ一トフイン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲートフイン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弾性力によって熱交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲートフィン 4 2 1 と内側リング状部材 4 2 2 とは強固に固定されていて変形しない。
上述したように、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス トの削 減を達成できる。 また、 熱交換器体の熱交換性能が安定する。
また、 環状コルゲートフイ ン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担やリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲ一トフイン 4 2 1 と内側リング状部材 4 2 2を口ゥやはんだなどにて一体化していることから、 別 個に構成されているよりも良好な熱伝導性を示す。 従って、 熱交換効率が向上す る。 次に、 本発明の第 6の実施形態について説明する。 図 1 5は、 本実施形態に係 る放熱器 4の一部を軸方向から見た平面図である。 本実施形態の放熱器 4は、 上 記第 1の実施形態と同様に、 環状コルゲ一トフイン 4 2 1及びその内側に口ゥ付 けされた内側リング状部材 4 2 2からなる熱交換器 4 2と、 この熱交換器 4 2が 装着された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルゲートフイ ン 4 2 1の製造方法について説 明する。 図 1 6は環状コルゲートフイン 4 2 1の製造手順を示しており、 図 1 6 Aは直線状コルゲートフイン 4 2 0を示す平面図であり、 図 1 6 Bは直線状コル ゲートフィ ン 4 2 0を丸めて両端を接近させた状態を示す拡大平面図であり、 図 1 6 Cは完成した環状コルゲ一トフイン 4 2 1を示す拡大平面図であり、 そして 図 1 7は図 1 6 Bの要部の斜視図である。
図 1 6 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繋がる直線状コ ルゲートフイン 4 2 0の一端及び他端は逆 V字状の溝 4 2 0 bになっている。 な お、 両端の溝 4 2 0 bの端辺 4 2 0 c及ぴ端辺 4 2 0 dの長さ L 6はともに、 そ の間にある溝 4 2 0 eの頂部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより短 く加工されている。 また、 端辺 4 20 c , 4 20 dにはそれぞれ、 図 1 7に示す ように、 直線状コルゲートフイン 42 0の一側面 4 2 0 gから他側面 4 20 h側 及び他側面 4 2 0 hから一側面 4 20 g側に伸びるスリ ッ ト 1 9が設けられてい る。
そして、 図 1 6 Aの矢印 F 1 , F 2方向に曲げて、 端辺 4 2 0 c , 4 2 0 dを 合わせるように直線状コルゲ一トフイ ン 4 2 0を筒状に丸め (図 1 6 B)、 更に、 端辺 4 2 0 cのスリ ッ ト 1 9 と端辺 4 2 0 dのスリ ッ ト 1 9が交互に嵌り合うよ うに端辺 4 2 0 c , 4 2 0 dを連結することにより、 図 1 6 Cのような環状コル ゲートフィン 4 2 1を形成する。
図 2 A及び図 1 5に示すように、 瑷状コルゲートフイン 4 2 1の内周には内側 リング状部材 4 2 2が、 互いの軸が同心となるように接している。 ここでは、 菝 状コルゲートフイン 4 2 1の各底部 4 2 1 bを滑らかに結んでできる円の直径
(環状コルグー トフイ ン 4 2 1の内径)と、 内側リング状部材 4 2 2の外径とはほ ぼ等しい。 これら環状コルゲートフイン 4 2 1 と内側リング状部材 4 2 2とは、 円環状の ロウ材 1 3にて接合される。 即ち、 図 2 Bに示すように、 環状コルゲートフイ ン 4 2 1 と内側リ ング状部材 4 2 2が接する部分に口ゥ材 1 3を置いて加熱する と、 溶解した口ゥ材 1 3は環状コルゲートフイン 4 2 1の底部 4 2 1 bに沿って 流下する。
これによつて、 図 3に示すように、 ロウ材 1 3は環状コルゲートフィン 4 2 1 と内側リ ング状部材 4 2 2とが接する部分にほぼ一様に行き渡る。 そして、 ロウ 材 1 3が硬化することで環状コルゲートフイ ン 4 2 1 と内側リング状部材 4 2 2 とは接合一体化される。 尚、 ここではロウ付けについて説明したが、 このほかは んだ付けなどが施されてもよい。
上述した熱交換器 4 2は図 1に示す本体 4 1に互いの軸が同心となるように揷 入されて放熱器 4 となる。 熱交換器 4 2を本体 4 1に揷入するための構成は次の 通りである。 即ち、 本体 4 1及び熟交換器 4 2の断面概略図である図 4に示すよ うに、 本体 4 1の両端には軸方向に沿って端側にいくほど壁厚が薄くなるように テーパーが形成されている(テーパー部 4 1 a ) 0
そして、 熱交換器 4 2の外径(環状コルゲ一トフイン 4 2 1の外径) R 1 (= ψ B ) は、 本体 4 1の両端面での最大の内径 R 2 (= φ Β + α よりもわずかに小さく、 またテーパー部 4 1 a より も軸方向に内側での内径 R 3 (= φ Β - α 2 )より もわず かに大きく構成されている。
従って、 この熱交換器 4 2を本体 4 1の端部から挿入していく と、 最初は小さ い力で簡単に熱交換器 4 2を揷入できる。 そして、 本体 4 1の内径は徐々に小さ くなり最終的には熱交換器 4 2の外径 R 1 より も小さくなるので、 徐々に大きな 力を加えながら熱交換器 4 2を揷入していく。 このよ うにすると、 熱交換器 4 2 を本体 4 1に簡単に揷入できる。
ここでは、 環状コルゲートフイン 4 2 1の各底部 4 2 1 bが内側リング状部材 4 2 2に固定されていることから、 その外径 R 1 よりも小さい内径 R 3の本体 4 1に収納された環状コルゲ一トフイン 4 2 1は各溝 4 2 1 aが押し広げられた状 態となり、 径方向外側に弾性力が生じる。
そして、 該環状コルゲートフイン 4 2 1は外径 R 1及び各溝 4 2 1 aの深さは 軸方向に一定であることから、 前記弾性力によって熱交換器 4 2は本体 4 1の内 周面に均一に圧接され位置固定される。 このとき、 環状コルゲー トフィン 4 2 1 と内側リ ング状部材 4 2 2とは強固に固定されていて変形しない。
上述したように、 本実施形態では接着剤やはんだを用いなくても熱交換器 4 2 を本体 4 1内の適切な位置に固定できるので、 工程が簡素化され製造コス トの削 減を達成できる。 また、 熱交換器体の熟交換性能が安定する。
また、 環状コルゲートフイン 4 2 1が損傷した場合には本体 4 1から該熱交換 器 4 2を引き抜いて取り出すこともできる。 従って、 必要に応じて容易に交換す ることができるので、 修理時における使用者の経済的負担やリサイクルの問題を 解消できる。
さらに、 本実施形態で用いられる熱交換器 4 2は環状コルゲートフイン 4 2 1 と内側リ ング状部材 4 2 2を口ゥやはんだなどにて一体化していることから、 別 個に構成されているよりも良好な熱伝導性を示す。 従って、 熱交換効率が向上す る。 '
本発明の第 7の実施形態について図面を参照して説明する。 図 1 8は、 本実施 形態に係る放熱器 4を軸方向から見た平面図である。 本実施形態の放熱器 4は、 上記第 1の実施形態と同様に、 環状コルゲ一トフイン 4 2 1及びその内側に口ゥ 付けされた内側リ ング状部材 4 2 2からなる熱交換器 4 2と、 この熱交換器 4 2 が装着された円筒の本体 4 1 とから成っている。
まず、 本実施形態で用いる環状コルグートフイン 4 2 1 の製造方法について説 明する。 図 1 9 A〜図 1 9 Cは環状コルゲ一トフイン 4 2 1の製造手順を示して おり、 図 1 9 Aは直線状コルゲートフイン 4 2 0を示す平面図であり、 図 1 9 B は直線状コルゲートフイン 4 2 0を丸めて両端を接近させて形成したした環状コ ルゲートフィ ン 4 2 1を示す平面図であり、 そして図 1 9 Cは円筒の本体 4 1の 上面図である。
図 1 9 Aのように、 V字状の断面形状の溝 4 2 0 eが連続的に繫がる直線状コ ルゲートフイン 4 2 0の一端及び他端は逆 V字状の溝 4 2 0 bになっている。 な お、 両端の溝 4 2 0 bの端辺 4 2 0 c及び端辺 4 2 0 dの長さ L 7はともに、 そ の間にある溝 4 2 0 eの項部 4 2 0 f と頂部 4 2 0 f の間の斜辺の長さ Lより長 く加工されている。
そして、 図 1 9 Aの矢印 F 1 , F 2方向に曲げて、 端辺 4 2 0 c , 4 2 0 dを 合わせるように直線状コルゲートフイ ン 4 2 0を筒状に丸め、 少なく とも端迈 4 2 0 c と端辺 4 2 0 dの先端同士が接触する状態で保持することにより、 図 1 9 Bのような環状コルゲートフイン 4 2 1を形成する。 これにより、端辺 4 2 0 c , 4 2 0 dの先端部は、 環状コルゲートフイン 4 2 1の外周 (各頂部 4 2 1 cを滑 らかに結んでできる円の円周) より半径方向の外側に突出する突出部 4 2 1 hを 形成することとなる。
円筒の本体 4 1の内径は、 環状コルゲートフイン 4 2 1の外径と略等しい寸法 に選ばれている。 また、 外側熱交換器 3の内面の一箇所には、 図 1 9 Cに示すよ うに、 環状コルゲートフイン 4 2 1の突出部 4 2 1 hと嵌合可能な凹部 4 1 aが 軸方向に延設されている。
そして、 環状コルゲートフイン 4 2 1は、 その中心を本体 4 1の中心軸に合わ せると ともに、 その突出部 4 2 1 hを本体の凹部 4 1 aに嵌合させて軸方向から 挿入する。 このとき、 図 1のよ うに、 環状コルゲートフイン 4 2 1の一端面が本 体 4 1の開放端と揃う位置まで揷入する。
環状コルゲートフイン 4 2 1の突出部 4 2 1 hには、 元の直線状コルゲートフ イ ン 4 2 0に戻ろう とする力が作用するが、 突出部 4 2 1 hは凹部 4 1 a内に動 きを規制された状態であるため、 環状コルゲートフイン 4 2 1が半径方向に広が ろう とする力に変わる。 従って、 環状コルゲートフイン 4 2 1は広がって本体 4 1の内面に圧着されるので、 形を維持したまま所定の位置に保持しておく ことが できる。 '
一方、 円筒状の内側リング状部材 4 2 2の外径は、 環状コルゲートフィン 4 2 1の内径 (溝部 2 bを滑らかに結んでできる円の直径) より とほぼ等しい寸法に 選ばれている。 そして、 この内側リング状部材 4 2 2の中心を本体 1内の環状コ ルゲートフィン 4 2 1の中心軸に合わせて軸方向から揷入する。 そして、 環状コ ルゲートフイン 4 2 1の内周と内側リ ング状部材 4 2 2の外面との接触部分に口 ゥ付けして一体化することにより、 本体 4 1内に熱交換器 4 2が装着され、 図 1 8のような放熱器 4が得られる。 従って、 環状コルゲートフイン 4 2 1の本体 4 1への接着や溶接といった工程 が省略され生産性の向上が図られるとともに、 環状コルグートフイン 4 2 1を圧 着によって確実に固定でき、 しかも、 環状コルグートフイン 4 2 1の全周に渡つ て均一な接触状態が得られるため、性能に優れた放熱器 4を安定して提供できる。 次に、 本発明に係る第 8の実施形態について説明する。 図 2 0は本実施形態の 熱交換器体である放熱器 4の外観斜視図である。 また、 図 2 1 Aは該放熱器 4に 内蔵された熱交換器 4 2 ' を示す外観斜視図であり、 図 2 1 Bはその分解斜視図 である。
この熱交換器 4 2 ' は環状コルゲートフイ ン 4 2 1 と外側リ ング状部材 4 2 2 ' とカゝら成る。 環状コルゲートフィン 4 2 1は、 上記第 1〜第 7の各実施形態で 説明した手順によって作製されるものである。 また、 外側リング状部材 4 2 2 ' は良好な熱伝導性及び弾性を有する材料から成る筒体である。
図 2 1 Aに示すように、 環状コルゲートフイン 4 2 1の外周には外側リ ング状 部材 4 2 2 ' 、 互いに軸が同心となるように接している。 ここでは、 環状コル ゲー トフィン 4 2 1の外径と外側リング状部材 4 2 2 ' の内径とはほぼ等しい。 また、 環状コルゲートフイン 4 2 1 と外側リング状部材 4 2 2 ' とは、 図 2 2に 示すように、 第 1実施形態の環状コルゲートフイン 4 2 1及び内側リング状部材 4 2 2と同様に、 ロウ材 1 3やはんだなどにて接合、 固定されている。
上述した熱交換器 4 2 ' は図 2 0に示す本体 4 1に互いの軸が同心となるよう に揷入されて放熱器 4となる。 熱交換器 4 2 ' を本体 4 1に挿入するための構成 は次の通りである。 即ち、 本体 4 1及び熱交換器 4 2 ' の断面概略図である図 2 3に示すように、 本体 4 1の両端には第 1実施形態と同様にテーパーが形成され ている(テーパー部 4 1 a )0
そして、 熱交換器 4 2 ' の外径(外側リ ング状部材 4 2 2 ' の外径) R Γ (=φ Β ' )は本体 4 1の両端面での最大の内径 R 2' (= ψ- Β '+ α ' )よりもわずかに小 さく、 またテーパー部 4 1 &ょりも軸方向に内側での内径1 3'. (=(& 5, -α 2' ) より もわずかに大きく構成されている。
従って、 上記第 1の実施形態と同様に、 熱交換器 4 2 ' はテーパー部 4 l aに よって簡単に本体 4 1に揷入することができる。 また、 本体 4 1内に収納された 熱交換器 4 2 ' は、 環状コルゲートフイ ン 4 2 1及び外側リング状部材 4 2 2 ' に生じる弾性力によって本体 4 1 の内周面に圧接され位置固定される。このとき、 環状コルゲートフイン 4 2 1 と外側リング状部材 4 2 2 ' とは強固に固定されて いて変形しない。
上述したように、 本実施形態も接着剤やはんだを用いずに熱交換器 4 2 ' を本 体 4 1内に適切な位置に固定できる上、 本体 4 1 と熱交換器 4 2 ' とは固着して いないので自在に取り出すことができる。 また、 環状コルゲートフイン 4 2 1 と 外側リ ング状部材 4 2 2 ' とは一体化されていることからいっそう良好な熱伝導 性を示す。
本発明の第 9の実施形態について図面を参照して説明する。 図 2 4は、 本実施 形態に係る放熱器 4の一部を軸方向から見た拡大平面図である。 図 2 5は、 その 放熱器 4の製造手順の一部であり、 図 2 5 Aは熱交換器 4 2を導入部材 1 4側か ら揷入する前の断面図、 図 2 5 Bはその挿入後の断面図である。
図 2 5 A及び図 2 5 Bに示すように、 円筒の本体 4 1は、 その軸方向が略水平 になるよう導入部材 1 4とともに治具 1 5に固定されている。 本体 4 1に隣接し て設けられた導入部材 1 4は、 本体 4 1 と略等しい外径を有し、 その内径は接合 部分では本体 4 1の内径とほぼ等しく、 接合部から離れるに従い大きくなるテー パー部 1 4 aを有した内面の断面形状となっている。
以下、 本実施形態に係る放熱器 4の製造手順について図 2 5 A , 図 2 5 Bを参 照して説明する。 環状コルゲートフィン 4 2 1は、 上記第 1〜第 6の実施形態で 述べたように直線状コルゲートフイン 4 2 0を丸めて両端を固定することによ り、 環状に形成されている。 尚、 この環状コルゲートフイン 4 2 1は、 外力によ り容易に変形する柔軟性に富む材料によつて形成しておく。
あらかじめ、 環状コルゲー トフィン 4 2 1内には、 その内径よりわずかに大き な外径に選ばれた内側リング状部材 4 2 2が軸方向から嵌入して熱交換器 4 2を 作製してお ^。 そして、 図 2 5 Aのように、 熱交換器 4 2を導入部材 1 4の開放 端から軸方向に揷入していく。 これにより、 環状コルゲートフィン 4 2 1は、 内 側リング状部材 4 2 2によって中心から外側へ半径方向に圧迫されながら導入部 材 1 4のテーパー部 1 4 aに沿って内径の大きなところから小さなところへ徐々 に押し込まれていく こととなる。
そして、 図 2 5 Bに示すように、 環状コルゲートフイン 4 2 1の一端面が、 本 体 4 1 と導入部材 1 4の接合部に達したところで揷入を終了する。 これにより、 環状コルゲー トフイ ン 4 2 1 の頂部 4 2 1 cは導入部材 1 4の内面と擦れ合つ て、 その形状が円弧形状から平面状へと変形していく。 この変形の程度は、 導入 部材 1 4の材質の硬さ力 S、 環状コルゲートフイン 4 2 1の材質より硬いほど、 大 きくなる。 これにより、 図 2 4のように、 環状コルゲートフィン 4 2 1 と本体 4 1の内面との接触面積が拡大される。 従って、 環状コルゲートフイ ン 4 2 1から 本体 4 1へ熱伝達の効率が向上し、 放熱器 4の熱交換性能の向上が達成される。 本発明の第 1 0の実施形態について図面を参照して説明する。 図 2 6は本実施 形態に係る放熱器 4 2の平面図であり、図 2 7は、熱交換器 4 2の平面図であり、 そして図 2 8は円筒の本体 4 1の平面図である。
環状コルゲートフイ ン 4 2 1 ' の外周には、 丸みを帯びた波形の凸部 4 2 1 k が形成されており、 隣り合う凸部 4 2 1 kは互いに密着して全体として等間隔に 並んでいる。 一方、 本体 4 1は溶融した金属を金型に流し込んで固めることによ り形成され、 図 2 8に示すように、 その内面の全周には軸方向に延びる波形の凹 部 4 1 mが等間隔で施されている。 この凹部 4 1 mは、 上記環状コルゲートフィ ン 4 2 1 ' の凸部 4 2 1 kが嵌合可能な形状になっている。
図 2 Aに示すように、 あらかじめ、 コルゲートフィ ン 4 2 1 ' の内側に、 その 内径とわずかにほぼ等しい外径を有する円筒状の内側リング状部材 4 2 2を揷入 し、 接触部分をロウ付けすることにより、 図 2 7のよ うな熱交換器 4 2を作製し ておく。 そして、 図 4に示すように、 この熱交換器 4 2の中心を本体 4 1の中心 軸に合わせて軸方向から揷入する。 このとき、 図 2 6のように、 環状コルゲート フィン 4 2 1 ' の凸部 4 2 1 k と本体 4 1の凹部 4 1 mとが填り合うため、 熱交 換器 4 2の本体 4 1內における円周方向に沿う位置固定が確実な放熱器 4が得ら れる。 従って、 本実施形態によると、 環状コルゲートフイン 4 2 1 ' が本体 4 1 の内面に強固に密着され、 環状コルゲートフイン 4 2 1 ' の全周に渡って充分な 接触面積が確保されるため、 性能に優れた放熱器 4を安定して提供できる。 産業上の利用可能性
以上説明したように、 本発明の熱交換器は本体との手作業による接着を必要と しないので、熱交換器体の生産性が向上し製造コス トの削減を達成できる。また、 得られた熱交換器体は品質のばらつきが少なく、 安定した熱交換性能を有する。 また、 熱交換器はコルゲートフィンと内側又は外側リング状部材とを一体化す ることで熱伝導性が良好となり、 熱交換効率が向上する。
また、 熱交換器体の本体に熱交換器を圧接させて位置固定するので、 該熱交換 器は本体より引き抜いて取り出すことができる。 従って、 コルゲートフィンが損 傷を受けて熱交換器の品質が低下しても、 必要に応じてコルゲートフィンを容易 に交換することができるため、非常に経済的であり、 リサイクルにも適している。 特に、 熱交換器体の本体の端部にテーパーを形成した構成であると、 熱交換器 の外径が本体の内径よりも大きくてもスムーズに揷入することができる。
また、 環状コルゲートフィンを接着や溶接により筒状の本体内に手作業で装着 する必要がなく、 単なる揷入だけで確実に圧着固定できる。 よって、 熱効果気体 の生産性の向上が達成される。 しかも、 環状コルゲー トフィンの全周に渡って均 一な接触状態が得られるため、 性能に優れた熱交換器体を安定供給できる。

Claims

請求の範囲
1 . コルゲート加工により多数の溝が形成された薄板を前記溝が軸方向と平行に なるように円筒状に成形した環状コルゲートフインと、 該環状コルゲートフイン の内周に接する内側リング状部材とが一体化して成ることを特徴とするスターリ ング冷凍機用熱交換器。
2 . 請求項 1に記載のスターリング冷凍機用熱交換器を管状の本体の中空に揷入 して成る熱交換器体において、 前記本体の内径を前記熱交換器の外径より もわず かに小さく したことを特徴とする熱交換器体。
3 . 請求項 2に記載の熱交換器体であって、 前記本体の少なく とも一端には軸方 向に沿って端側にいくほど壁厚が薄くなるようにテーパーが形成されており、 前 記本体の最大の内径を前記熱交換器の外径よりも大きく した。
4 . 請求項 2に記載の熱交換器体であって、 前記環状コルゲートフィンの周囲に は、 互いに密着して全体として等間隔に並ぶ波形の凸部が形成されており、 これ らの凸部に対応して前記本体の内面に軸方向に延設した波形の凹部に前記凸部を 嵌合するようにした。 ·
5 . 請求項 2に記載の熱交換器体であって、 前記環状コルゲートフィンは、 両端 の逆 V字状の溝の端辺がその間の V字状の溝の斜辺より長くなった直線状コルゲ 一トフインを筒状に丸め、 前記両端辺同士を互いの表面を接触させるように保持 して前記環状コゲートフィンを作製しておき、 前記両端辺の先端に形成され前記 環状コルゲートフインの外周より半径方向に突出した突出部を前記本体の内面に 軸方向に延設した溝に嵌合するよ うにした。
6 . 請求項 2に記載の熱交換器体の製造方法において、 一端が前記本体と内径が ほぼ等しく、 他端側にいくほど壁厚が薄くなるようにテーパーが施された管状の 導入部材を前記一端で前記本体に着脱自在に装着し、 前記スターリング冷凍機用 熱交換器を前記導入部材の前記他端から軸方向に揷入していく ことを特徴とする 熱交換器体の製造方法。
7 . コルゲート加工により多数の溝が形成された薄板を前記溝が軸方向と平行に なるように円筒状に成形した環状コルゲ一トフインと、 該環状コルグートフイ ン の外周に接する外側リング状部材とが一体化して成ることを特徴とするスターリ ング冷凍機用熱交換器。
8 . 請求項 7に記載のスターリング冷凍機用熱交換器を管状の本体の中空に揷入 して成る熱交換器体において、 前記本体の内径を前記熱交換器の外径よりもわず かに小さく したことを特徴とする熱交換器体。
9 . 請求項 8に記載の熱交換器体であって、 前記本体の少なく とも一端には軸方 向に沿って端側にいく ほど壁厚が薄くなるようにテーパーが形成されており、 前 記本体の最大の内径を前記熱交換器の外径よりも大きく した。
1 0 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルグートフィンは、 V字状の溝が連続して繋がる直線状コルゲートフインを 筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを係合 することにより連結して成る。
1 1 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルゲ一トフィンは、 V字状の溝が連続して繋がる直線状コルグートフインを 筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互い の表面にスポッ ト溶接を施すことにより連結して成る。
1 2 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルゲートフィンは、 V字状の溝が連続して繋がる直線状コルゲートフインを 筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互い の表面に接着を施すことにより連結して成る。
1 3 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルゲートフィンは、 V字状の溝が連続して繋がる直線状コルゲートフインを 筒状に丸め、 その一端の V字状の溝の端辺と他端の逆 V字状の溝の端辺とを互い の表面に口ゥ付けを施すことにより連結して成る。
1 4 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルゲートフィ ンは、 V字状の溝が連続して繋がる直線状コルゲ一トフインを 筒状に丸め、 その両端の逆 V字状の溝の端辺同士を互いの表面を接触させるよう に保持しておき、 その接触部の先端に断面コの字状の接合部材を装着することに より連結して成る。
1 5 . 請求項 1又は 7に記載のスターリング冷凍機用熱交換器であって、 前記環 状コルゲートフィンは、 V字状の溝が連続して繁がる直線状コルゲ一トフインを 筒状に丸め、 その一端の逆 V字状の溝の端辺に前記直線状コルゲートフィンのー 側面から他側面側に形成したスリ ッ トと、 前記直線状コルゲートフィンの他端の 逆 V字状の溝の端辺に前記直線状コルゲートフィンの他側面から一側面側に形成 したスリ ッ トとを相互に嵌め込むことにより連結して成る。
PCT/JP2001/007515 2000-09-01 2001-08-30 Echangeur thermique pour appareil refrigerant de stirling, dispositif echangeur thermique, et procede de fabrication d'un dispositif echangeur thermique WO2002021056A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60110813T DE60110813T2 (de) 2000-09-01 2001-08-30 Wärmeaustauscher für stirling-kältemaschine, wärmeaustauscherkörper und herstellungsverfahren des wärmeaustauschkörpers
EP01963405A EP1314938B1 (en) 2000-09-01 2001-08-30 Heat exchanger for stirling refrigerating machine, heat exchanger body, and method of manufacturing heat exchanger body
CA002419724A CA2419724C (en) 2000-09-01 2001-08-30 Heat exchanger element and heat exchanger member for a stirling cycle refrigerator and method of manufacturing such a heat exchanger member
US10/362,928 US7225859B2 (en) 2000-09-01 2001-08-30 Heat exchanger element and heat exchanger member for a stirling cycle refrigerator and method of manufacturing such a heat exchanger member
BRPI0114038-8A BR0114038B1 (pt) 2000-09-01 2001-08-30 elemento de trocador de calor e membro de trocador de calor para um refrigerador de ciclo stirling e método para fabricação deste membro de trocador de calor.
KR10-2003-7002977A KR100523776B1 (ko) 2000-09-01 2001-08-30 열 교환기체 및 열 교환기체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-265231 2000-09-01
JP2000265231A JP3563679B2 (ja) 2000-09-01 2000-09-01 スターリング冷凍機用熱交換器及び熱交換器体
JP2001-42118 2001-02-19
JP2001042118A JP3563703B2 (ja) 2001-02-19 2001-02-19 スターリング冷凍機用熱交換器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2002021056A1 true WO2002021056A1 (fr) 2002-03-14

Family

ID=26599062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007515 WO2002021056A1 (fr) 2000-09-01 2001-08-30 Echangeur thermique pour appareil refrigerant de stirling, dispositif echangeur thermique, et procede de fabrication d'un dispositif echangeur thermique

Country Status (9)

Country Link
EP (1) EP1314938B1 (ja)
KR (1) KR100523776B1 (ja)
CN (1) CN1206489C (ja)
BR (1) BR0114038B1 (ja)
CA (1) CA2419724C (ja)
DE (1) DE60110813T2 (ja)
ES (1) ES2240502T3 (ja)
TW (1) TW552384B (ja)
WO (1) WO2002021056A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169915A1 (en) 2011-06-10 2012-12-13 Aic Spółka Akcyjna Heat exchanger tube
CN112438003A (zh) * 2018-07-13 2021-03-02 Abb瑞士股份有限公司 用于高压开关设备的散热器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305391A (zh) * 2011-08-29 2012-01-04 环雅环保科技(上海)有限公司 翅片散热器
CN102425971B (zh) * 2011-11-10 2014-02-19 上海交通大学 带交错翅片的热交换器管、制作方法及其应用
TWI534403B (zh) * 2013-12-10 2016-05-21 建準電機工業股份有限公司 熱交換管
CN103775240B (zh) * 2014-01-24 2015-11-18 宁波荣捷特机械制造有限公司 一种斯特林循环装置内的散热片
CN103791764A (zh) * 2014-01-27 2014-05-14 南京航空航天大学 一种非接触式涡流发生器强化换热方法及其装置
CN105043143B (zh) * 2015-08-27 2017-03-22 西安交通大学 一种环形通道内管式气‑气换热器
CN106051482A (zh) * 2016-06-07 2016-10-26 浙江嘉熙科技有限公司 相变抑制翅片式散热器led灯
CN108453452A (zh) * 2017-10-31 2018-08-28 山东中科万隆电声科技有限公司 斯特林机换热器翅片焊接结构及其焊接方法
CN107976101B (zh) * 2017-12-22 2023-07-14 上海发电设备成套设计研究院有限责任公司 一种外翅片换热管的使用方法
CN108195098B (zh) * 2018-01-10 2020-01-10 中国科学院上海技术物理研究所 同轴型脉冲管制冷机的分体焊接式热端换热器的制造方法
US10753653B2 (en) 2018-04-06 2020-08-25 Sumitomo (Shi) Cryogenic Of America, Inc. Heat station for cooling a circulating cryogen
CN111936802B (zh) * 2018-04-06 2022-10-14 住友(Shi)美国低温研究有限公司 冷却循环制冷剂的热站
CN111720236B (zh) * 2019-03-20 2023-07-28 内蒙古工业大学 斯特林发动机中的加热器和斯特林发动机
CN110486987B (zh) * 2019-09-11 2024-04-09 武汉亚格光电技术股份有限公司 藕芯式制冷蒸发器
CN110542341A (zh) * 2019-09-17 2019-12-06 常州大学 一种高密度耦合双效强化管
CN111076443A (zh) * 2019-11-18 2020-04-28 上海厚酷科技有限公司 一种制冷机换热系统
CN111089435A (zh) * 2019-11-18 2020-05-01 上海厚酷科技有限公司 一种制冷机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280815A (ja) * 1992-03-30 1993-10-29 Tokyo Gas Co Ltd 外燃機関の熱交換器
JPH0886526A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd ヴィルミエルガス機関
JP2001091075A (ja) * 1999-09-27 2001-04-06 Sharp Corp スターリング機関用熱交換器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB581586A (en) * 1944-07-10 1946-10-17 Morris Motors Ltd Improvements relating to tubular heat interchange apparatus particularly for heating air
US4373577A (en) * 1980-07-21 1983-02-15 International Harvester Co. Heat exchanger assembly
FR2575816B1 (fr) * 1984-10-29 1987-02-27 Pioch Rene Cuve de transformateur a refroidissement par radiateurs radiaux et concentriques et a contenance reduite
NL8702600A (nl) * 1987-10-30 1989-05-16 Meijer Sjoerd Warmtewisselaar en plaatmateriaal daarvoor.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280815A (ja) * 1992-03-30 1993-10-29 Tokyo Gas Co Ltd 外燃機関の熱交換器
JPH0886526A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd ヴィルミエルガス機関
JP2001091075A (ja) * 1999-09-27 2001-04-06 Sharp Corp スターリング機関用熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1314938A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169915A1 (en) 2011-06-10 2012-12-13 Aic Spółka Akcyjna Heat exchanger tube
CN112438003A (zh) * 2018-07-13 2021-03-02 Abb瑞士股份有限公司 用于高压开关设备的散热器

Also Published As

Publication number Publication date
BR0114038A (pt) 2003-07-22
CA2419724C (en) 2005-10-11
CA2419724A1 (en) 2003-02-19
ES2240502T3 (es) 2005-10-16
EP1314938A4 (en) 2004-05-12
KR20030028830A (ko) 2003-04-10
DE60110813D1 (de) 2005-06-16
CN1483129A (zh) 2004-03-17
KR100523776B1 (ko) 2005-10-26
CN1206489C (zh) 2005-06-15
TW552384B (en) 2003-09-11
EP1314938A1 (en) 2003-05-28
DE60110813T2 (de) 2006-02-02
BR0114038B1 (pt) 2010-11-30
EP1314938B1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US7225859B2 (en) Heat exchanger element and heat exchanger member for a stirling cycle refrigerator and method of manufacturing such a heat exchanger member
WO2002021056A1 (fr) Echangeur thermique pour appareil refrigerant de stirling, dispositif echangeur thermique, et procede de fabrication d'un dispositif echangeur thermique
CN110081765A (zh) 热交换器
US10982796B2 (en) Dual pipe
CN100400866C (zh) 冷却器的活塞组件
JP2008256253A (ja) 熱交換器及び熱交換器の製造方法
JP3563679B2 (ja) スターリング冷凍機用熱交換器及び熱交換器体
JP3591707B2 (ja) スターリング機関用熱交換器
JP3563703B2 (ja) スターリング冷凍機用熱交換器及びその製造方法
KR102091990B1 (ko) 차량의 배기가스용 열교환 케이스 제조방법
JP3899173B2 (ja) 熱交換器
JP2000283664A (ja) 冷凍サイクル用熱交換パイプ及びその製造方法
JP2006258400A (ja) スターリング機関用熱交換器
JP2000018873A5 (ja)
JPH086846B2 (ja) 管材に対する嵌合部材の嵌合固着方法
JP2004239486A (ja) 熱交換器およびその製造方法
JP4324912B2 (ja) 熱交換器用ヘッダの製造方法および熱交換器用ヘッダ
JP3263566B2 (ja) スターリング機器のギャップ式熱交換器
JPH0218195B2 (ja)
JP2003239805A (ja) スターリング機関用熱交換器及びその製造方法
JPH05272887A (ja) コルゲートフィン型熱交換器
JPH06234031A (ja) フィンドコイル式熱交換器の製造方法
JP2006138568A (ja) スターリング冷凍機用熱交換器
JPH10185461A (ja) 熱交換器およびその製造方法
JPS59113940A (ja) 熱交換素板の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN IL IN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2419724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 319/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001963405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037002977

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 01815042X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037002977

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001963405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10362928

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001963405

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037002977

Country of ref document: KR