WO2002020332A1 - Method and apparatus for torque control of a machine - Google Patents

Method and apparatus for torque control of a machine Download PDF

Info

Publication number
WO2002020332A1
WO2002020332A1 PCT/US2000/024535 US0024535W WO0220332A1 WO 2002020332 A1 WO2002020332 A1 WO 2002020332A1 US 0024535 W US0024535 W US 0024535W WO 0220332 A1 WO0220332 A1 WO 0220332A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator phase
phase voltage
angle
machine
operating mode
Prior art date
Application number
PCT/US2000/024535
Other languages
English (en)
French (fr)
Inventor
Malakondaiah Naidu
Rassem R. Henry
Thomas W. Nehl
Original Assignee
Delphi Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies, Inc. filed Critical Delphi Technologies, Inc.
Priority to JP2002524972A priority Critical patent/JP2004508793A/ja
Priority to PCT/US2000/024535 priority patent/WO2002020332A1/en
Priority to EP00959983A priority patent/EP1317371A4/en
Publication of WO2002020332A1 publication Critical patent/WO2002020332A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time

Definitions

  • the invention relates generally to torque control of a machine, and in particular to torque control of permanent magnet (PM) synchronous machines used in electric power steering systems.
  • PM permanent magnet
  • PM synchronous motors are attractive as servo drives because of their high power densities.
  • the stator phases of such motors may be electrically excited to produce a controlled torque on the rotor, the torque being proportional to the field intensity of the rotor magnets and the amplitude of the stator phase excitation, thus permitting control of the rotor motion.
  • feedback signals representing rotor position and rotor velocity are used.
  • These feedback sensors are often generated using current sensors connected to phase windings of a PM synchronous motor to achieve effective torque control.
  • An exemplary system using current sensors for rotor position control is described in U.S. Patent 5,569,994.
  • An exemplary embodiment of the invention is a method for torque control of a PM synchronous machine.
  • the method includes obtaining a torque command signal and a machine speed and determining an operating mode in response to the torque command signal and the machine speed.
  • the operating mode includes a first operating mode and a second operating mode.
  • a stator phase voltage magnitude is computed and an angle between the stator phase voltage and a stator phase back emf is determined in response to the stator phase voltage magnitude.
  • the stator phase voltage is set to a predetermined magnitude and the angle between the stator phase voltage and the stator phase back emf is determined in response to the predetermined magnitude.
  • Figure 1 illustrates torque control below the base speed in the voltage mode
  • Figure 2 illustrates torque control above the base speed in the voltage mode
  • Figure 3 is a flow diagram of an exemplary embodiment of the torque control system
  • Figure 4 illustrates torque vs. speed of a PM motor in voltage mode control
  • Figure 5 illustrates phase current vs. speed of a PM motor in voltage mode control
  • An exemplary embodiment of the invention is a method for controlling the torque of a PM machine in a first mode below the base speed and in a second mode above the base speed without the use of current sensors.
  • the machine is a motor.
  • the machine phase voltages and their angles with respect to their back emfs are determined based on measured speed and known machine parameters. These voltages are fed to the machine by means of a PWM inverter at an optimum computed angle with respect to their back emfs to obtain required torque.
  • This controller mimics the performance of a conventional current controller without low frequency torque ripple otherwise caused by current sensors due to the dc off-set.
  • the exemplary embodiment of the invention is applicable in two running modes of a PM synchronous machine.
  • the first mode (referred to as a constant torque mode) is below a base speed where the back emf is less than the battery voltage. Based on known machine parameters and the speed, computed voltages are impressed across the machine terminals at an optimum angle such that the stator phase currents are co-phasal with their respective back emfs to produce maximum torque per ampere. This mode is shown in Figure 1 and described in further detail herein.
  • the second mode is above the base speed (referred to as extended mode) where the back emfs exceed the battery voltage. For a given torque command, the required computed voltages are impressed at the machine terminals at an optimum computed angle with respect to their back emfs.
  • the phase current leads the back emf thereby reducing the air gap flux and producing the required torque.
  • This mode is shown in Figure 2 and described in further detail herein.
  • the speed ranges defining the first mode and the second mode depends upon the inductance of the machine.
  • V the stator phase terminal voltage
  • phase voltages are impressed across the machine terminals at an angle ⁇ 0 such that the phase currents I are in phase with the respective back emf E for maximum torque per ampere, as shown in Figure
  • the electromagnetic torque produced by the machine is given as
  • the terminal phase voltage is given as
  • V 2 (E+IR) 2 +(IX) 2 (2)
  • V 2 ⁇ (Ke ⁇ O m +Ki T crad ) 2 +K 2 (T cmd ⁇ m ) 2 ⁇ (3)
  • T cmd is the torque required of the motor by the system, i.e., power steering system.
  • V can be obtained from a V 2 vs V lookup table to minimize the computational time.
  • V a V sin ( ⁇ 0 + 0) (8)
  • V b V sin ( ⁇ 0 + 0+240) (9)
  • V C V sin ( ⁇ 0 + 0+120) (10)
  • T cmd can be obtained as a function of load angle, ⁇ i using (11) and (12) as
  • Tcmd ⁇ 3Ke/(R 2 +X 2 ) ⁇ ⁇ (V m cos ⁇ 1 -K e ⁇ m )R+(X V m sin ⁇ i) ⁇ (13)
  • V m is the maximum available phase voltage of the PWM inverter.
  • FIG. 3 is an exemplary block diagram of a control system for a permanent magnet synchronous machine in both the first and second modes.
  • a three phase pulse width modulation (PWM) inverter 104 converts battery voltage from battery 102 to phase voltages and provides the phase voltages to the PM motor 105.
  • An encoder 106 is coupled to the shaft of the PM motor 105 to measure the rotation angle ⁇ of the PM motor 105.
  • a controller shown as 101 receives the rotation angle ⁇ and other inputs and generates phase voltages N a , N b and N c as described herein.
  • the controller 101 may be implemented using a microprocessor along with conventional associated components (e.g., memory, communications device, etc.). Components such as look up tables may be used in controller 101 as described herein.
  • the steps performed by the controller 101 are shown in flowchart form within controller 101.
  • the rotation angle ⁇ is used to provide a calculation of the mechanical angular frequency ⁇ in radians/second at speed computation step 110.
  • the stator phase voltage magnitude N is determined using the torque command signal T cmd requesting a torque from the PM motor and ⁇ as inputs to calculate N 2 . As shown at step 118, N 2 is equal to
  • N 2 ⁇ (K e ⁇ m +K, T cmd ) 2 +K 2 (T cmd ⁇ m ) 2 ⁇ (3)
  • N K 2 -[(P L a )/ (3K e )] 2 (5) N may determined from N 2 by a look up table accessed at 118.
  • the voltage N determined at 118 is compared to a maximum inverter voltage N m that can be generated by inverter 104.
  • the maximum inverter voltage N m is determined as where is a constant and V bat is the battery voltage provided by battery 102.
  • step 126 it is determined whether V is less than V m . If not, the PM motor 105 is to operate in the first mode and flow proceeds to step 112 where the controller determines the three phase voltages based on N and angle ⁇ 0 . A value designated l/V derived at step 118 and ⁇ are used at 130 to determine ⁇ 0 as follows:
  • a further look up table may be used to compute ⁇ 0 based on IN and ⁇ at step 130.
  • the values of ⁇ , ⁇ 0 and V are used at step 112 to determine phase voltages V a , V b , and V c .
  • the phase voltages V a , V , and V c are coupled to the PWM inverter 104 for application to the PM motor 105. If the Tcm d signal input to step 118 generates a value V greater than V m , this indicates the second mode of operation and decision element 126 directs flow to step 134 where V is set equal to V m .
  • a lookup table may be used to determine the value of ⁇ i from sin ⁇ i.
  • step 138 the angle ⁇ i may be adjusted based on an iterative loop described herein. On the initial determination of ⁇ i . , step 138 may be omitted.
  • step 140 cos ⁇ i and sin ⁇ i values are derived (e.g., by look up tables) and provides to step 148 where a computed torque value Z is determined based on the voltage V m and the angle ⁇ i. Z represents a computed torque value at the angle i.
  • a demanded torque value Y is calculated at step 150. The computed torque value Z and the demanded torque value Y are compared at step 152.
  • step 114 phase voltages V a .
  • V b , and V c are determined based on ⁇ i and Vm.
  • the phase voltages V a , V , and V c are coupled to the PWM inverter 104 for application to the PM motor 105.
  • step 154 it is determined if the measured current I d is greater than or equal to a current limit Idmax-
  • the measured current Id may be provided from a current sensor located outside of the phase windings.
  • step 154 results in a yes, the system cannot increase the current and the existing angle ⁇ i is used at step 114 for computation of the phase voltages. If Id is less than I dmax. flow proceeds to step 138 where the angle ⁇ i may be incremented or decremented as necessary. If the current demanded torque value Y n is greater than or equal to the prior demanded torque value Y n -i, then the value of ⁇ i is incremented by + ⁇ . Alternatively, if Y n is less than Y n - l5 ⁇ i is decremented by - ⁇ and flow proceeds to step 140 where the iterative process continues until either the demanded torque value Y is met or exceeded or the maximum current I d max is reached.
  • a 12V, PM motor was simulated using this method over the entire speed range taking the current limit of the machine into account.
  • Figure 4 shows the torque-speed characteristics at rated conditions while the Figure 5 shows the current drawn at different speeds with and without phase angle advance of ⁇ i described above. Using this method higher torques can be obtained in the extended speed range as compared with the conventional operation. It is possible to optimally design the machine to obtain the required torque-speed characteristics over the entire speed range.
  • the exemplary embodiment of the invention described herein provides a cost effective torque control method without current sensors over the extended speed range.
  • the control method and controller may be implemented in conjunction with an electric power steering system to control torque generation in the power steering system.
  • the exemplary embodiment of the invention described herein provides numerous advantages. Torque per ampere in the constant torque region below the base speed is maximized by placing the back emf and current signals in phase as shown in Figure 1. Torque control capability in the extended speed range above the base speed is provided for optimum performance. Low frequency torque due to the use of current sensors is eliminated. This elimination is desirable when the controller is used in connection with a steering column mounted electric power steering system.
  • the controller can be easily implemented in a low cost microcontroller since the mathematical operations involved include only additions and multiplications along with look up tables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
PCT/US2000/024535 2000-09-07 2000-09-07 Method and apparatus for torque control of a machine WO2002020332A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002524972A JP2004508793A (ja) 2000-09-07 2000-09-07 機械のトルク制御方法及び装置
PCT/US2000/024535 WO2002020332A1 (en) 2000-09-07 2000-09-07 Method and apparatus for torque control of a machine
EP00959983A EP1317371A4 (en) 2000-09-07 2000-09-07 METHOD AND DEVICE FOR TORQUE CONTROL OF A MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/024535 WO2002020332A1 (en) 2000-09-07 2000-09-07 Method and apparatus for torque control of a machine

Publications (1)

Publication Number Publication Date
WO2002020332A1 true WO2002020332A1 (en) 2002-03-14

Family

ID=21741752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/024535 WO2002020332A1 (en) 2000-09-07 2000-09-07 Method and apparatus for torque control of a machine

Country Status (3)

Country Link
EP (1) EP1317371A4 (ja)
JP (1) JP2004508793A (ja)
WO (1) WO2002020332A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040629A (en) * 1989-05-17 1991-08-20 Koyo Seiko Co., Ltd. Motor-driven power steering apparatus
US5076381A (en) * 1988-07-11 1991-12-31 Mitsubishi Denki Kabushiki Kaisha Power steering apparatus and rotary detector used therefor
US5881836A (en) * 1996-04-12 1999-03-16 Koyo Seiko Co., Ltd. Electric power steering apparatus
US5984042A (en) * 1996-02-21 1999-11-16 Koyo Seiko Co. Electric power steering apparatus
US6129172A (en) * 1997-07-23 2000-10-10 Koyo Seiko Co., Ltd. Electric power steering apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59206926D1 (de) * 1992-09-24 1996-09-19 Siemens Ag Verfahren und vorrichtung zur regelung eines umrichtergespeisten permanenterregten synchronmotors
GB2301904B (en) * 1995-06-05 1999-12-08 Kollmorgen Corp System and method for controlling brushless permanent magnet motors
FI112735B (fi) * 1997-12-03 2003-12-31 Kone Corp Menetelmä synkronisen kestomagneettimoottorin ohjaamiseksi
US6137251A (en) * 1998-07-31 2000-10-24 S/L Montivideo Technology, Inc. Brushless DC motor controller with speed control from zero to above based speed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076381A (en) * 1988-07-11 1991-12-31 Mitsubishi Denki Kabushiki Kaisha Power steering apparatus and rotary detector used therefor
US5040629A (en) * 1989-05-17 1991-08-20 Koyo Seiko Co., Ltd. Motor-driven power steering apparatus
US5984042A (en) * 1996-02-21 1999-11-16 Koyo Seiko Co. Electric power steering apparatus
US5881836A (en) * 1996-04-12 1999-03-16 Koyo Seiko Co., Ltd. Electric power steering apparatus
US6129172A (en) * 1997-07-23 2000-10-10 Koyo Seiko Co., Ltd. Electric power steering apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1317371A4 *

Also Published As

Publication number Publication date
EP1317371A4 (en) 2009-05-06
JP2004508793A (ja) 2004-03-18
EP1317371A1 (en) 2003-06-11

Similar Documents

Publication Publication Date Title
Husain et al. Unified control for switched reluctance motors for wide speed operation
EP1083649B1 (en) Motor system capable of obtaining high efficiency and method for controlling a motor
JP3467961B2 (ja) 回転電機の制御装置
US6498449B1 (en) Low ripple torque control of a permanent magnet motor without using current sensors
JP3686596B2 (ja) 永久磁石モータ用の制御システム
US6566829B1 (en) Method and apparatus for torque control of a machine
US8766571B2 (en) Method and apparatus for controlling an electrical machine
JPH08182398A (ja) 永久磁石形同期電動機の駆動装置
JPS6024676B2 (ja) 永久磁石同期電動機を制御する装置
JP2003199389A (ja) モータの制御装置及びその制御方法
Fu et al. A sensorless direct torque control technique for permanent magnet synchronous motors
JP3531428B2 (ja) モータの制御装置及び制御方法
US6025691A (en) Synchronous motor control system and method of controlling synchronous motor
JP3473178B2 (ja) 回転電機の制御装置
JP3278556B2 (ja) 交流電動機制御装置
Kubota et al. Speed sensorless field oriented control of induction motor with rotor resistance adaptation
JPH08275599A (ja) 永久磁石同期電動機の制御方法
EP0503879A2 (en) Synchronous motor with permanent magnets and motor system
JPH10243679A (ja) 同期電動機の制御装置
JP4380271B2 (ja) 同期電動機の制御装置
Brunner et al. Sensorless control of a Planetary Motor
WO2002020332A1 (en) Method and apparatus for torque control of a machine
JP3680618B2 (ja) 永久磁石形同期電動機の制御装置
JP3503893B2 (ja) ステッピングモータの制御方式及び駆動装置
JP3178568B2 (ja) 同期電動機の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002524972

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2000959983

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000959983

Country of ref document: EP