WO2002018794A1 - Vakuumpumpe - Google Patents
Vakuumpumpe Download PDFInfo
- Publication number
- WO2002018794A1 WO2002018794A1 PCT/EP2001/009252 EP0109252W WO0218794A1 WO 2002018794 A1 WO2002018794 A1 WO 2002018794A1 EP 0109252 W EP0109252 W EP 0109252W WO 0218794 A1 WO0218794 A1 WO 0218794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- vacuum pump
- magnet
- axial
- permanent magnet
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/058—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/048—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/051—Axial thrust balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/047—Details of housings; Mounting of active magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0476—Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
- F16C32/0478—Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings with permanent magnets to support radial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
- F16C2360/45—Turbo-molecular pumps
Definitions
- the invention relates to a vacuum pump with a stator on which a rotor with at least one radial magnetic bearing and one axial magnetic bearing is mounted without contact.
- Magnetic bearings are often used to support the rotor in vacuum pumps. Magnetic bearings allow high rotor speeds and are lubricant-free, which prevents contamination of the vacuum side of the pump with lubricant.
- a vacuum pump is known from DE 38 18 556, in which the radial bearings are each formed by permanent magnetic rings which are axially slightly offset from one another. Since the mutually repelling magnetic rings also repel each other in an axial direction due to the offset arrangement, the rotor is preloaded in an axial direction.
- a large lifting magnet is arranged at one axial end of the rotor and has an attractive effect on a rotor disk. The solenoid is like this regulated that it holds the rotor in the axially preloaded position.
- An axial bearing is known from EP 0 414 127, in which two rotor disks are axially magnetized, so that the stator-side magnetic coils, depending on the direction of the current flowing through them, can act on the rotor in both axial directions.
- the rotor-side magnetic disks have an attractive effect on the yoke iron of the magnetic coil, so that considerable axial attractive forces occur in both axial directions, which pull the rotor out of its axial central position and must be compensated for by the magnetic coils.
- the object of the invention is to improve the axial magnetic bearing of a vacuum pump.
- a permanently axially magnetized compensation magnet is provided on the stator, which compensates for the force effect of the magnetic field of the rotor permanent magnet on the yoke.
- the compensation magnet is arranged in opposite polarity to the rotor permanent magnet, so that the rotor permanent magnet and the compensation magnet repel each other.
- the compensation magnet can be arranged directly opposite the rotor permanent magnet separated by an air gap, but can also be arranged elsewhere in the course of the yoke iron.
- the compensation magnet approximately compensates for the axial attractive forces between the rotor permanent magnet and the stator yoke. This will an axial preload in the axial magnetic bearing is avoided.
- the rotor With the magnetic coil, the rotor can therefore be held in a tension-free middle position.
- smaller solenoids can be used to safely control the axial center position of the rotor. Because of the lower control forces to be applied to the solenoid, the heat generated by the solenoid is also considerably reduced.
- the axial magnetic bearing is designed in a ring shape, the magnetic coil, the yoke, the permanent rotor magnet and the compensation magnet being arranged in a ring around the motor. Since the axial magnetic bearing is not arranged on one of the end faces of the rotor, but around the rotor, a vacuum pump with a short overall length is realized.
- a plurality of magnetic coils with segment-like yokes are provided, which are arranged around the rotor in a ring. Furthermore, a plurality of distance sensors can be provided over the circumference for detecting the rotor position and connected to a control device which controls the magnetic coils to compensate for tilting movements of the rotor. In this way, tilting movements of the rotor can be compensated for. Due to the possibility of avoiding tilting movements of the rotor by appropriate control of the axial bearing magnet coils, only permanent magnets can be used for the radial bearing or bearings, which do not permit any regulation of the bearing forces.
- the stator has an eddy current damping disk made of electrically conductive material, which is arranged axially between the permanent rotor magnet and the yoke.
- the eddy current damping disc dampens radial movements of the rotor by means of the eddy currents induced in the damping disc during radial rotor movements. In this way, effective radial damping is realized, which can be provided as an alternative or in addition to the active damping of rotor tilting movements.
- the axial bearing is preferably arranged approximately radially of the center of gravity of the rotor and between two radial bearings, which are each arranged axially of the rotor center of gravity.
- the center of gravity of the rotor is located between the two radial bearings, while the axial bearing lies approximately in the transverse center of gravity.
- the axial bearing is arranged in such a way that the axial magnetic bearings can produce a high torque to generate a corresponding rotor tilting moment.
- the magnet coil is arranged radially on the outside or radially on the inside of the permanent magnets.
- the magnet coil and the permanent magnets are arranged approximately in a transverse plane. In this way, the overall length of the vacuum pump is kept small.
- the yoke is preferably inclined to the axial and / or radially offset to the rotor permanent magnet together with the compensation magnet.
- One end of the yoke iron is preferably arranged axially and the other end of the yoke iron is arranged radially of the rotor permanent magnet.
- the arrangement of a free yoke iron end radially on the outside or inside of the rotor permanent magnet results in a non-nested arrangement of the parts of the axial magnetic bearing.
- the complete rotor can be axially inserted into or removed from the stator from one side. This enables simple assembly of the rotor in the stator.
- the rotor permanent magnet and the compensation magnet are arranged axially on the outside of the magnet coil, the rotor permanent magnet and the compensation magnet can be made relatively large, so that large magnetic forces can be generated. This improves the axial mounting as well as the stabilization against tilting movements of the rotor.
- the axial magnetic bearing is designed as an active magnetic bearing
- the radial bearings are designed as passive magnetic bearings.
- FIG. 1 shows a first embodiment of a vacuum pump according to the invention in longitudinal section
- FIG. 2 shows a second embodiment of a vacuum pump according to the invention with an axial bearing with three magnetic coils
- FIG. 3 shows the three magnetic coils with associated yokes of the axial magnetic bearing of the vacuum pump of FIG. 2,
- Fig. 4 shows a third embodiment of a vacuum pump in which the rotor permanent magnet and the compensation magnet are arranged radially outside of the magnet coil, and
- Fig. 5 shows a fourth embodiment of a vacuum pump according to the invention with the radially inclined magnetic gap surfaces.
- FIGs. 1-5 each show vacuum pumps 10, which are turbomolecular vacuum pumps. Turbomolecular pumps work at high speeds of up to 80,000 revolutions per minute. Because of the high speeds and the high reliability, contactless magnetic bearings have proven useful for mounting the rotor 12 in the stator 14.
- two passive radial magnetic bearings 16, 18 are provided, which are arranged axially spaced from the center of gravity 20 of the rotor 12 at the respective longitudinal ends of the rotor.
- the rotor center of gravity 20 lies approximately in the middle between the two radial bearings 16, 18.
- Both Radial magnetic bearings 16, 18 are each formed from a cylindrical concentric inner sleeve 24 and outer sleeve 22, both of which are magnetized in the axial direction and are arranged in poles with respect to one another such that they radially repel each other.
- Each inner and outer sleeve 24, 22 consists of a package of a plurality of magnetic rings which are axially joined together.
- the multiple magnetic rings of an outer or inner sleeve are axially separated from one another by spacers 26.
- the outer sleeves 22 are fastened to the rotor 12 and rotate about the stator-side inner sleeves 24.
- the two inner sleeves 24 and the two outer sleeves 22 of the two radial bearings 16, 18 are of identical design.
- the inner sleeves 24 of the two radial bearings 16, 18 are axially adjustable by means of adjusting screws 27.
- the two radial bearings 16, 18 bring about an unstable axial equilibrium position, i.e. the rotor 12 tends to move in one or the other axial direction.
- catch bearing 28, 30 designed as a roller bearing.
- the rotor 12 consists essentially of a compressor part 13 and a shaft 15.
- An electric motor 32 is arranged axially between the compressor part 13 and the shaft radial bearing 18, by means of which the rotor 12 is driven without contact.
- the electric motor 32 is a high-frequency motor.
- An axial bearing 40 is arranged between the compressor part 13 and the motor 32.
- the thrust bearing 40 is a magnetic bearing and has an annular magnetic coil 42 which generates a toroidal magnetic field and is surrounded by a yoke iron 44.
- the yoke iron 44 consists of two rings 45, 46 in the shape of an L-section, which form a rectangular frame in cross-section, which is interrupted at the inner corner on the compressor side, that is to say open.
- the yoke iron preferably consists of an iron composite material with a 5% plastic content.
- An axially magnetized annular permanent magnet 50 is fastened axially opposite to the yoke iron 44 on the rotor compressor 13 and is held on the rotor compressor 13 by a sleeve 52.
- the magnetic field generated by the magnet coil 42 has an attractive or repulsive effect on the rotor ring magnet 50 in the axial direction, depending on the polarization of the generated magnetic field, that is to say depending on the direction of current in the magnet coil 42.
- a permanently axially magnetized annular compensating magnet 54 is fixed, which is polarized oppositely to the rotor-side magnet 50, so the rotor permanent magnet 50 and • ⁇ compensating magnet 54 that repel.
- An active thrust bearing is implemented, which can act in both axial directions, i.e. both attracting and repelling.
- an axial inductive distance sensor 60 is provided on the stator housing 58, which detects the exact axial position of the rotor 12 by means of an inductive distance measurement and transmits a corresponding measurement signal to a control device (not shown).
- the control device controls a corresponding control current to the magnet coil 42 in order to correct the axial position of the rotor 12 and to hold the rotor 12 in its central position.
- the stator has an eddy current damping disk 62 made of an electrically highly conductive material, for example made of copper.
- the damping disk 62 is thus arranged axially between the rotor ring magnet 50 and the stator-side compensation magnet 54.
- electrical eddy currents are induced in the damping disk 62 by the rotor ring magnet 50.
- the mecha- African energy of the rotor 12 is inductively transferred to the damping disk 62 and converted there into heat. In this way, vibrations and vibrations of the rotor 12 are effectively damped.
- the magnet coil 42 is insulated from the vacuum part of the vacuum pump 10 by the insulation ring 48.
- the electrical lines of the magnetic coil 42 therefore always run outside the vacuum range of the vacuum pump 10, so that no sealing problems occur.
- the axial bearing 140 of the vacuum pump 110 of FIG. 2 is not one, but three magnetic coils 141, 142, 143 and the like Yoke iron inner ring sections 146 1 # 146 2 , 146 3 and corresponding yoke iron outer ring sections 145 1 -145 3 are formed, as can also be seen in FIG. 3. Between the ring sections 146 x -146 3 segments 147 made of non-magnetic material are arranged, which magnetically separate the yoke iron ring sections 146 1 -146 3 from one another.
- three distance sensors 160 are provided, which determine the axial distance of the rotor 12 from the stator 12 approximately in the transverse plane of the axial bearing 140.
- the rotor position can be detected three-dimensionally by the three axial distance sensors 160, so that not only axial deviations from the central position but also tilting movements of the rotor 12 can be detected. Tilting movements or tilting vibrations of the rotor 12 can be compensated for by the magnet coils 141-143 which can be controlled separately by a control device.
- a vacuum pump 210 shown in FIG.
- the magnet coils 241-243 are arranged radially inside and the rotor ring magnet 250, the stator compensation magnet 254 and the damping disk 262 are arranged radially outside of the magnet coils 241-243. This enables larger permanent magnets, which generate a greater torque on the rotor and thus a greater stabilizing effect. The load capacity of the thrust bearing is increased by the larger permanent magnets.
- the rotor permanent magnet 350, the stator compensation magnet 354 and the damping disk 362 and the gap formed between the damping disk 362 and the rotor permanent magnet 350 are not exactly in the transverse plane, but in arranged at an angle of approximately 15 ° to it.
- the direction of magnetization of the magnets 350, 354 is also inclined at 15 ° to the transverse plane.
- the magnetic forces transmitted between the stator 314 and the rotor 312 are thereby increased and have both an axial and a smaller radial component.
- both the axial position of the rotor 312 in the stator 314 and the radial position of the rotor 312 in the stator 314 can be regulated by suitable regulation of the magnetic coils 141-143. This allows radial breakouts and vibrations of the rotor to be reduced to a minimum.
- the rotor Due to the compensation of the attractive forces between the rotor permanent magnet and the yoke by a compensation magnet, the rotor is free of pre-tension in its central position. Thereby the center position of the rotor can be regulated with relatively small magnet coil currents. This enables small magnetic coils, causes less heat to be generated and reduces the power consumption of the thrust bearing.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01965186A EP1313951A1 (de) | 2000-09-02 | 2001-08-10 | Vakuumpumpe |
JP2002522686A JP2004513277A (ja) | 2000-09-02 | 2001-08-10 | 真空ポンプ |
US10/363,473 US6877963B2 (en) | 2000-09-02 | 2001-08-10 | Vacuum pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10043235A DE10043235A1 (de) | 2000-09-02 | 2000-09-02 | Vakuumpumpe |
DE10043235.2 | 2000-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002018794A1 true WO2002018794A1 (de) | 2002-03-07 |
Family
ID=7654723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/009252 WO2002018794A1 (de) | 2000-09-02 | 2001-08-10 | Vakuumpumpe |
Country Status (5)
Country | Link |
---|---|
US (1) | US6877963B2 (de) |
EP (1) | EP1313951A1 (de) |
JP (1) | JP2004513277A (de) |
DE (1) | DE10043235A1 (de) |
WO (1) | WO2002018794A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004027039B3 (de) * | 2004-06-02 | 2005-11-10 | Technische Universität Chemnitz | Einrichtung zur berührungslosen Messung von Abständen |
GB2553362A (en) * | 2016-09-05 | 2018-03-07 | Edwards Ltd | Vacuum pump assembly |
WO2020165564A1 (en) * | 2019-02-11 | 2020-08-20 | Edwards Limited | Vacuum pump |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10119075A1 (de) * | 2001-04-19 | 2002-10-24 | Leybold Vakuum Gmbh | Vakuumleitung |
DE20211510U1 (de) * | 2002-07-13 | 2003-11-27 | Leybold Vakuum Gmbh | Magnetlager |
DE10254670A1 (de) * | 2002-11-22 | 2004-06-24 | Minebea Co., Ltd. | Elektromotor für einen Pumpenantrieb |
US6914361B2 (en) | 2003-03-07 | 2005-07-05 | Leybold Vakuum Gmbh | Magnetic bearing |
DE10320851A1 (de) * | 2003-05-09 | 2004-11-25 | Leybold Vakuum Gmbh | Turbopumpe |
DE602004025916D1 (de) * | 2004-07-20 | 2010-04-22 | Varian Spa | Rotationsvakuumpumpe und ihr Auswuchtverfahren |
GB0419152D0 (en) * | 2004-08-27 | 2004-09-29 | Kernow Instr Technology Ltd | A contactless magnetic rotary bearing and a rheometer incorporating such bearing |
US20080211252A1 (en) * | 2005-12-19 | 2008-09-04 | Ppg Industries Ohio, Inc. | Method and apparatus for repairing bed-liner coatings |
DE102007036692A1 (de) | 2006-09-22 | 2008-03-27 | Ebm-Papst St. Georgen Gmbh & Co. Kg | Lüfter |
US8267636B2 (en) | 2007-05-08 | 2012-09-18 | Brooks Automation, Inc. | Substrate transport apparatus |
US8823294B2 (en) * | 2007-06-27 | 2014-09-02 | Brooks Automation, Inc. | Commutation of an electromagnetic propulsion and guidance system |
US8659205B2 (en) | 2007-06-27 | 2014-02-25 | Brooks Automation, Inc. | Motor stator with lift capability and reduced cogging characteristics |
US8283813B2 (en) * | 2007-06-27 | 2012-10-09 | Brooks Automation, Inc. | Robot drive with magnetic spindle bearings |
US7834618B2 (en) | 2007-06-27 | 2010-11-16 | Brooks Automation, Inc. | Position sensor system |
JP5663304B2 (ja) | 2007-06-27 | 2015-02-04 | ブルックス オートメーション インコーポレイテッド | 多次元位置センサ |
US9752615B2 (en) | 2007-06-27 | 2017-09-05 | Brooks Automation, Inc. | Reduced-complexity self-bearing brushless DC motor |
KR20100056468A (ko) | 2007-07-17 | 2010-05-27 | 브룩스 오토메이션 인코퍼레이티드 | 챔버 벽들에 일체화된 모터들을 갖는 기판 처리 장치 |
US20100109463A1 (en) * | 2008-10-31 | 2010-05-06 | University Of Virginia Patent Foundation | Hybrid Five Axis Magnetic Bearing System Using Axial Passive PM Bearing Magnet Paths and Radial Active Magnetic Bearings with Permanent Magnet Bias and Related Method |
IT1397707B1 (it) * | 2009-12-22 | 2013-01-24 | Nuovo Pignone Spa | Bilanciamento dinamico di spinta per compressori centrifughi. |
EP2589814B3 (de) | 2010-07-02 | 2024-01-24 | Edwards Japan Limited | Vakuumpumpe |
KR101874070B1 (ko) | 2010-12-16 | 2018-07-03 | 바우뮐러 뉘른베르크 게엠베하 | 전기기기, 특히 펌프장치의 전기기기 |
US9048701B2 (en) * | 2011-08-30 | 2015-06-02 | Siemens Industry, Inc. | Passive magnetic bearings for rotating equipment including induction machines |
DE102011118661A1 (de) | 2011-11-16 | 2013-05-16 | Pfeiffer Vacuum Gmbh | Reibungsvakuumpumpe |
GB2507500B (en) | 2012-10-30 | 2015-06-17 | Edwards Ltd | Vacuum pump |
GB2528765A (en) * | 2012-10-30 | 2016-02-03 | Edwards Ltd | Vacuum pump |
CN104870825B (zh) * | 2013-01-31 | 2018-07-31 | 埃地沃兹日本有限公司 | 真空泵 |
DE102013110251A1 (de) * | 2013-09-17 | 2015-03-19 | Pfeiffer Vacuum Gmbh | Anordnung mit einer Vakuumpumpe sowie Verfahren zur Kompensation eines Magnetfeldes wenigstens eines in einer Vakuumpumpe angeordneten, ein magnetisches Störfeld erzeugenden Bauteiles |
JP6427963B2 (ja) * | 2014-06-03 | 2018-11-28 | 株式会社島津製作所 | 真空ポンプ |
DE102014116241B4 (de) | 2014-11-07 | 2020-05-28 | Pfeiffer Vacuum Gmbh | Vakuumpumpe |
EP3106668B1 (de) * | 2015-06-17 | 2020-08-12 | Pfeiffer Vacuum Gmbh | Vakuumpumpe |
EP3460249B1 (de) * | 2015-07-01 | 2021-03-24 | Pfeiffer Vacuum GmbH | Splitflow-vakuumpumpe |
DE102016012252A1 (de) * | 2016-07-13 | 2018-01-18 | Schwarzer Precision GmbH & Co. KG | Pumpenbaugruppe für eine Pumpe, Pumpe und Verfahren zur Verringerung oder Beseitigung von Störgeräuschen und/oder Vibrationen bei Pumpen |
JP7003418B2 (ja) * | 2017-02-17 | 2022-01-20 | 株式会社島津製作所 | 磁気軸受装置および真空ポンプ |
CN108194374B (zh) * | 2017-12-29 | 2020-02-07 | 李少龙 | 一种磁悬浮内流式转子管道泵 |
GB2578899B (en) * | 2018-11-13 | 2021-05-26 | Edwards Ltd | Vacuum pump |
GB2588146A (en) * | 2019-10-09 | 2021-04-21 | Edwards Ltd | Vacuum pump |
JP2022185262A (ja) * | 2021-06-02 | 2022-12-14 | 株式会社島津製作所 | 真空ポンプおよびリークディテクタ |
GB2621343B (en) * | 2022-08-09 | 2024-10-02 | Leybold Gmbh | Vacuum pump |
GB2621346B (en) * | 2022-08-09 | 2024-10-09 | Leybold Gmbh | Vacuum pump |
GB2621344B (en) * | 2022-08-09 | 2024-07-24 | Leybold Gmbh | Magnetic bearing and vacuum pump |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2286298A1 (fr) * | 1974-09-27 | 1976-04-23 | Balzers Patent Beteilig Ag | Turbopompe a vide |
DE2524061A1 (de) * | 1975-05-30 | 1976-12-09 | Pfeiffer Vakuumtechnik | Magnetisch gelagerte turbovakuumpumpe mit fanglager |
FR2457397A1 (fr) * | 1979-05-21 | 1980-12-19 | Cambridge Thermionic Corp | Turbopompe a vide moleculaire, a groupe magnetique de support a puissance efficace nulle et a servocommande a axe unique |
GB2130655A (en) * | 1982-11-19 | 1984-06-06 | Seiko Instr & Electronics | Rotor assembly for a turbo molecular pump |
DE3818556A1 (de) | 1988-06-01 | 1989-12-07 | Pfeiffer Vakuumtechnik | Magnetlager fuer eine schnell rotierende vakuumpumpe |
EP0414127A1 (de) | 1989-08-25 | 1991-02-27 | Leybold Aktiengesellschaft | Magnetgelagerte Vakuumpumpe |
DE4227663A1 (de) * | 1992-08-21 | 1994-02-24 | Leybold Ag | Verfahren zur Überprüfung der Betriebsposition des rotierenden Systems einer Vakuumpumpe, vorzugsweise Turbomolekularpumpe |
EP0720272A1 (de) * | 1994-12-26 | 1996-07-03 | Alcatel Cit | Drehende Einrichtung mit magnetischem axialem Drucklager und Mitteln zum radialen Schweben |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE976816C (de) * | 1950-09-13 | 1964-05-06 | Max Baermann | Magnetische Lagerung und Zentrierung fuer drehbare Teile |
DE2337226A1 (de) * | 1973-07-21 | 1975-02-06 | Maschf Augsburg Nuernberg Ag | Vakuumpumpe mit einem im innenraum ihres gehaeuses gelagerten laeufer |
JPS5841296A (ja) * | 1981-09-04 | 1983-03-10 | Seiko Instr & Electronics Ltd | 磁気軸受を応用した小型軸流分子ポンプ |
DE3715216A1 (de) * | 1987-05-07 | 1988-11-17 | Doll Robert | Tauchpumpe, insbesondere fuer tiefsiedende fluessigkeiten |
JPH04219493A (ja) * | 1990-08-10 | 1992-08-10 | Ebara Corp | ターボ分子ポンプ |
JPH0921420A (ja) * | 1995-07-06 | 1997-01-21 | Osaka Shinku Kiki Seisakusho:Kk | 高速回転機械の磁気軸受装置 |
US6201329B1 (en) * | 1997-10-27 | 2001-03-13 | Mohawk Innovative Technology, Inc. | Pump having magnetic bearing for pumping blood and the like |
JP3930170B2 (ja) * | 1998-02-18 | 2007-06-13 | 株式会社荏原製作所 | 循環ファン装置 |
-
2000
- 2000-09-02 DE DE10043235A patent/DE10043235A1/de not_active Withdrawn
-
2001
- 2001-08-10 JP JP2002522686A patent/JP2004513277A/ja active Pending
- 2001-08-10 WO PCT/EP2001/009252 patent/WO2002018794A1/de not_active Application Discontinuation
- 2001-08-10 US US10/363,473 patent/US6877963B2/en not_active Expired - Fee Related
- 2001-08-10 EP EP01965186A patent/EP1313951A1/de not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2286298A1 (fr) * | 1974-09-27 | 1976-04-23 | Balzers Patent Beteilig Ag | Turbopompe a vide |
DE2524061A1 (de) * | 1975-05-30 | 1976-12-09 | Pfeiffer Vakuumtechnik | Magnetisch gelagerte turbovakuumpumpe mit fanglager |
FR2457397A1 (fr) * | 1979-05-21 | 1980-12-19 | Cambridge Thermionic Corp | Turbopompe a vide moleculaire, a groupe magnetique de support a puissance efficace nulle et a servocommande a axe unique |
GB2130655A (en) * | 1982-11-19 | 1984-06-06 | Seiko Instr & Electronics | Rotor assembly for a turbo molecular pump |
DE3818556A1 (de) | 1988-06-01 | 1989-12-07 | Pfeiffer Vakuumtechnik | Magnetlager fuer eine schnell rotierende vakuumpumpe |
US5166566A (en) * | 1988-06-01 | 1992-11-24 | Arthur Pfeiffer Vakuumtechnik Gmbh | Magnetic bearings for a high speed rotary vacuum pump |
EP0414127A1 (de) | 1989-08-25 | 1991-02-27 | Leybold Aktiengesellschaft | Magnetgelagerte Vakuumpumpe |
DE4227663A1 (de) * | 1992-08-21 | 1994-02-24 | Leybold Ag | Verfahren zur Überprüfung der Betriebsposition des rotierenden Systems einer Vakuumpumpe, vorzugsweise Turbomolekularpumpe |
EP0720272A1 (de) * | 1994-12-26 | 1996-07-03 | Alcatel Cit | Drehende Einrichtung mit magnetischem axialem Drucklager und Mitteln zum radialen Schweben |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004027039B3 (de) * | 2004-06-02 | 2005-11-10 | Technische Universität Chemnitz | Einrichtung zur berührungslosen Messung von Abständen |
GB2553362A (en) * | 2016-09-05 | 2018-03-07 | Edwards Ltd | Vacuum pump assembly |
WO2020165564A1 (en) * | 2019-02-11 | 2020-08-20 | Edwards Limited | Vacuum pump |
Also Published As
Publication number | Publication date |
---|---|
JP2004513277A (ja) | 2004-04-30 |
EP1313951A1 (de) | 2003-05-28 |
US20030180162A1 (en) | 2003-09-25 |
DE10043235A1 (de) | 2002-03-14 |
US6877963B2 (en) | 2005-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1313951A1 (de) | Vakuumpumpe | |
EP3180542B1 (de) | Magnetdämpfer für schwingungstilger | |
DE2500211C3 (de) | Trägheitsschwungrad für einen Satelliten | |
DE102005030139B4 (de) | Vorrichtung zur magnetischen Lagerung einer Rotorwelle mit Radialführung und Axialregelung | |
DE3844563C2 (de) | ||
DE3409047C2 (de) | ||
DE102007019766B3 (de) | Lagereinrichtung mit einer magnetisch gegenüber einem Stator um eine Achse drehbar gelagerten Welle und einer Dämpfungsvorrichtung | |
WO2001086151A2 (de) | Magnetlagerung mit dämpfung | |
EP1170408B1 (de) | Rotorspinnvorrichtung mit einer berührungslosen passiven radialen Lagerung des Spinnrotors | |
WO2010136325A2 (de) | Lageranordnung für ein berührungsloses magnetisches axiallager und röntgenröhre mit diesem lager | |
WO2003098064A1 (de) | Passives, dynamisch stabilisierendes magnetlager und antrieb | |
EP2927521A2 (de) | Magnetlager, Welle und Wellenlagerung | |
EP1891346B1 (de) | Magnetische lagereinrichtung einer rotorwelle gegen einen stator mit ineinander greifenden rotorscheibenelementen und statorscheibenelementen | |
DE2213447A1 (de) | Magnetische lagerung | |
DE3240809C2 (de) | Magnetlager | |
EP3255760A1 (de) | Elektrische maschine | |
DE20211510U1 (de) | Magnetlager | |
DE4423492A1 (de) | Permanentmagnetisches Radiallager für Rotoren | |
DE10216421A1 (de) | Magnetführungseinrichtung | |
WO2018001811A1 (de) | Vakuumpumpe | |
CH694814A5 (de) | Homopolares, passives, elektrodynamisches Magnetlager mit erhöhter Steifigkeit. | |
DE2258324A1 (de) | Magnetische lagerung rotierender koerper | |
DE102010003675A1 (de) | Magnetisches Radiallager | |
WO2010020204A1 (de) | Magnetführungseinrichtung mit elektromagnetischer dämpfung | |
DE1967085C3 (de) | Magnetische Lagerung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001965186 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10363473 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002522686 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001965186 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001965186 Country of ref document: EP |