WO2002016290A2 - Procede de synthese d'olefines terminales ayant une faible repartition de la masse molaire - Google Patents

Procede de synthese d'olefines terminales ayant une faible repartition de la masse molaire Download PDF

Info

Publication number
WO2002016290A2
WO2002016290A2 PCT/EP2001/009756 EP0109756W WO0216290A2 WO 2002016290 A2 WO2002016290 A2 WO 2002016290A2 EP 0109756 W EP0109756 W EP 0109756W WO 0216290 A2 WO0216290 A2 WO 0216290A2
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
olefins
olefin
metathesis
reaction
Prior art date
Application number
PCT/EP2001/009756
Other languages
German (de)
English (en)
Other versions
WO2002016290A3 (fr
Inventor
Hans Peter Rath
Helmut Mach
Michael Röper
Jürgen STEPHAN
Jörn KARL
Richard Blackborow
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2002214957A priority Critical patent/AU2002214957A1/en
Publication of WO2002016290A2 publication Critical patent/WO2002016290A2/fr
Publication of WO2002016290A3 publication Critical patent/WO2002016290A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/232Carbonates

Definitions

  • the present invention relates to a process for the preparation of long-chain ⁇ -olefins with a narrow molecular weight distribution, the process comprising an isomerizing metathesis and ethenolysis as process steps.
  • the process is preferably suitable for the production of ⁇ -olefins having 6 to 15 carbon atoms.
  • the process can be used for the production of linear ⁇ -olefins with 8 to 12 carbon atoms, more preferably with 9 to 11 carbon atoms, and for ⁇ -olefins with 12 to 15 carbon atoms, which have a certain proportion of branching.
  • olefins Due to their carbon double bond, via which the introduction of a large number of functional groups is possible, olefins represent the most important class of basic chemicals for the chemical industry.
  • olefins which, as is known to the person skilled in the art, are divided into different classes, for example in short - And long-chain, linear and branched olefins or olefins with internal and terminal double bonds exist in a wide variety of manufacturing processes.
  • the cracking of saturated hydrocarbons is the most frequently used process for the preparation of olefins. However, this is particularly suitable for the production of short-chain olefins in the C number range up to max. 4th
  • Linear higher ⁇ -olefins with C numbers of about C 6 to C n represent a class of olefins which, after further processing, have found a wide range of uses in the production of detergents, plasticizers and lubricating oils. There are only a limited number of manufacturing processes for this class of olefins. The dehydration of natural alcohols and the cracking of higher paraffins (wax splitting) are insignificant. The majority of linear ⁇ -olefins are represented by Transition-metal-catalyzed oligomerization of ethylene by the Ziegler process or the so-called SHOP process of Shell, whereby highly linear olefin fractions with ⁇ -olefin contents of> 95% can be obtained.
  • Aluminum alkyls are used as catalysts in the Ziegler process, while phosphine-modified nickel complexes are used as active species in the oligomerization reaction in the SHOP process.
  • the length distribution of the carbon chain follows the so-called Schulz-Flory distribution with a high proportion of short-chain ⁇ -olefins. The proportion of a particular ⁇ -olefin decreases exponentially with increasing carbon number.
  • No. 3,491,163 discloses a build-up reaction for olefins which is not based on a transition metal-catalyzed oligomerization.
  • propylene is first subjected to a metathesis reaction.
  • the thereby resulting freed of lighter and heavier olefins C 4 fraction is then inserted into an isomerized metathesis reaction, after which the resulting C 5 - and C ö -olefin separated from the lighter and heavier isomers and is used again in an isomerizing metathesis.
  • the resulting desired product namely C -C 1 o-olefins
  • is isomerized then freed from lighter and heavier fractions and then isomerized and metatlietized one last time.
  • the respectively separated light and heavy olefins are returned and used again in the reaction or, in the case of ethylene, used in a build-up reaction.
  • a mixture of C ⁇ -C 15 olefins with an internal double bond is obtained.
  • the method described in WO 97/34854 allows the production of linear ⁇ -olefins.
  • the process is characterized in that an olefin mixture of olefins with an internal double bond having 6 to 30 carbon atoms is metatlized under non-equilibrium conditions.
  • the resulting product is separated into a low-boiling olefin component and a higher-boiling olefin component. Both fractions consist of internal olefins.
  • the higher-boiling fraction is then subjected to a metathesis with ethylene (ethenolysis), the ⁇ - Olefins formed.
  • there is no build-up reaction to olefins but only the conversion of an olefin cut with an internal double bond into an olefin cut with terminal double bonds.
  • olefin mixtures have recently gained economic importance which, in addition to linear ⁇ -olefins in the carbon number range up to C 15 , in particular C 12 to C 15 , have a variable proportion of branched ⁇ -olefins in this carbon range.
  • Such olefin mixtures are converted into alkylbenzenes which, after being converted into alkylbenzenesulfonates, are used as detergent raw materials.
  • the process should preferably be linear ⁇ -olefins in the carbon number range from C 8 to C 12 , in particular C 9 to Cn, and branched ⁇ -olefins in the carbon number range from 2 to C 15 or mixtures of these branched olefins with linear ⁇ -olefins same carbon number range.
  • the metathesis reaction can be carried out such that the product obtained has a high proportion of higher olefins by appropriately guiding the circulating currents and skillfully adjusting the suitable reaction conditions. It is thus possible to build up the carbon chain through the metathesis reaction.
  • Suitable starting materials for the metathesis reaction i) are, on the one hand, short-chain linear olefins with carbon numbers from 4 to 10, which can originate, for example, from steam or so-called FCC crackers.
  • such sections contain cis / trans-butenes, cis / trans-pentenes and cis / trans-hexenes with different positions of the double bond.
  • olefins with the desired carbon number or olefin mixtures in the desired carbon number range, which originate from the Fischer-Tropsch process.
  • a C 4 -C 6 olefin mixture is preferably used.
  • C 4 olefins are particularly suitable as starting material.
  • Butanes or obtained by dimerization of ethene can be used. Butanes contained in the C4 fraction are inert. Serve, ancestor or enine, in which are used, are removed using common methods such as extraction or selective hydrogenation.
  • the butene content of the C4 fraction preferably used in the process is 1 to 100% by weight, preferably 60 to 90% by weight.
  • the butene content relates to 1-butene and 2-butene.
  • a C4 fraction is preferably used which is obtained in steam or FCC cracking or in the dehydrogenation of butane.
  • Raffinate II is particularly preferably used as the C4 fraction, the C4 stream being freed from disturbing impurities, in particular oxigenates, by appropriate treatment on adsorber protective beds, preferably on high-surface area aluminum oxides and / or molecular sieves.
  • Raffinate II is obtained from the C4 fraction by first extracting butadiene and / or subjecting it to selective hydrogenation. After separation of isobutene, the raffinate II is then obtained. Suitable processes are disclosed in DE 100 13 253.7 by the applicant.
  • branched C 4 -Cjo olefins can also be used in metathesis i).
  • This variant is interesting in the cases in which ⁇ -olefins are to be produced which are branched or mixtures which contain such branched olefins together with linear ⁇ -olefins.
  • These branched olefins or the mixtures containing them are preferably used for the production of alkylbenzenes or alkylbenzenesulfonates.
  • Another way to get branched olefins is to carry out a metathesis reaction under conditions where the hydrocarbon chain isomerizes. This is explained further below.
  • the metathesis process i) is carried out on a catalyst which catalyzes the metathesis reaction and at the same time the double bond isomerization of the olefins formed.
  • a metathesis catalyst and an isomerization catalyst can be present separately in the reactor.
  • the metathesis and the isomerization reaction can be carried out in separate reactors, one of which contains the isomerization catalyst and the other contains the metathesis catalyst. First the metathesis and then the isomerization can be carried out, but the metathesis can also follow the isomerization.
  • the metathesis catalyst contains a compound of a metal from groups VIb, Vllb or VIII of the periodic table of the elements.
  • the metathesis catalyst preferably contains an oxide of a metal from group VIb or VIIIb of the periodic table of the elements.
  • the metathesis catalyst is selected from the group consisting of Re 2 O, WO 3 and MoO 3 .
  • the isomerization catalyst contains a metal from Groups Ia, Ha, Illb, IVb, Vb or VIII of the Periodic Table of the Elements or a compound thereof.
  • the isomerization catalyst is preferably selected from the group consisting of Re 2 O 7 , RuO 2 , NiO, MgO, Na and K 2 CO 3 .
  • a catalyst is preferably used which is active both as a metathesis and as an isomerization catalyst.
  • Such a catalyst has a combination of the above-mentioned catalyst components, ie contains a compound of a metal from groups VIb, Vllb or VIII for catalyzing the metathesis and an element from groups Ia, Ha, Illb, IVb, Vb or VIII of the periodic table Elements for the catalysis of the isomerization reaction.
  • Preferred and particularly preferred mixed catalysts each contain at least one of the compounds mentioned above as preferred and particularly preferred.
  • the catalysts are generally supported on the usual materials known to the person skilled in the art. Examples of suitable materials include SiO 2 , ⁇ -Al 2 O 3 , MgO, B 2 O 3 or mixtures of these materials, for example ⁇ -Al 2 O 3 / B 2 O 3 / SiO 2 .
  • the isomerizing metathesis i) is generally carried out at temperatures of 20 to 450 ° C. If the production of linear ⁇ -olefins is desired, the temperature in the metathesis reaction i) is preferably in the range from 40 to 100 ° C. In the case of the production of branched ⁇ -olefins, the metathesis i) is preferably carried out at temperatures from 80 to 150 ° C.
  • the pressures used are from 1 to 60 bar, preferably 10 to 45 bar, in particular 30 to 35 bar.
  • reaction parameters known to the person skilled in the art
  • the isomerizing metathesis can be carried out in such a way that a high proportion of olefins in the desired C number range is obtained.
  • reaction parameters include, for example, the C number range of the insert olefons, the choice of catalysts, the reaction temperature, the residence time, the degree of discharge of the product formed, and the composition and degree of recycling of the olefin fraction which are obtained after the isomerizing metathesis and the subsequent separation become.
  • the metathesis reaction i) can be carried out in such a way that the olefins used branch off.
  • This branching can be achieved, for example, by using a catalyst with acidic centers and / or choosing a sufficiently high reaction temperature.
  • a linear C 4 cut is used in the isomerizing metathesis reaction i), a linear C 4 -C 22 olefin fraction is obtained as fraction b) and this in step iv) with ethylene to a linear C 8 -C ⁇ 2 - ⁇ -olefin fraction implemented.
  • a C 9 -C ⁇ - ⁇ -olefin fraction is obtained in iv).
  • the isomerizing metathesis reaction can be carried out continuously or batchwise. Deactivation of the catalyst system is often observed after a certain time. This can be done by regenerating the catalysts, generally remove by heating in an oxygen-containing nitrogen stream and burning off the organic deposits.
  • the product mixture obtained after the isomerizing metathesis i) is then separated using the customary methods, preferably by distillation.
  • the desired olefin fraction b) which is subsequently subjected to ethenolysis or, if desired, is further processed to give valuable products, can be obtained in this way.
  • This desired fraction is preferably the C 14 -C 22 fraction.
  • a low boiler fraction a) which contains C 2 - and C 3 -olefins. These are separated and processed in the usual procedures.
  • a light olefin fraction c) is isolated which contains olefins whose carbon number range is from C 4 to below the carbon number of the desired olefin fraction. This fraction is returned to the isomerizing metathesis. This light fraction is preferably the C -C 13 olefin fraction.
  • a heavy olefin fraction d) is also obtained, which contains olefins whose carbon number range is at values which are higher than the carbon numbers of the desired olefin fraction. If appropriate, this fraction can also be returned to the isomerizing metathesis reaction, alternatively it can also be wholly or partly mixed with fraction b) in the ethenolysis reaction iv).
  • the heavy fraction is preferably C 22+ olefins.
  • olefin fractions a), b), c) and d) obtained can be used as such in some applications in which olefins with internal double bonds are more suitable than ⁇ -olefins, in some cases also more advantageous than ⁇ -olefins due to the lower price.
  • uses of fraction b), preferably the C 14 -C 22 olefin fraction include in particular C 16+ or C 2 n + olefins as solvents with high flash points of> 100 ° C. or 120 ° C. for stretching silicones or other sealants, or C ⁇ -C 13 olefins after hydroformylation and alkoxylation as industrial cleaning agents.
  • the desired olefin fraction is preferably subjected to a metathetic cleavage with ethylene (ethenolysis).
  • the product of value fraction is separated off, preferably by distillation, the higher from the resulting linear ⁇ -olefins and lower boiling fractions are returned to the isomerizing metathesis. If the C 14 -C 22 olefin fraction is used in the ethenolysis, C 8 -C 12 ⁇ -olefins are obtained as the valuable product fraction.
  • fraction d which contains long-chain olefins, or a part thereof, is also introduced into the ethenolysis reaction.
  • the reaction conditions in ethenolysis correspond to the usual conditions known to those skilled in the art for such a reaction.
  • the temperatures are generally from 20 to 160 ° C., preferably 40 to 60 ° C., pressures from 20 to 200 bar, preferably 40 to 80 bar.
  • the catalysts used in ethenolysis correspond to the catalysts used in the isomerizing metathesis reaction as metathesis catalysts.
  • Re 2 O 7 is preferably used.
  • the same carrier materials are also used, preferably ⁇ -Al 2 O 3 .
  • the olefins obtained according to the invention are suitable for various applications.
  • the swamp has the usual methods of Gel permeation chromatography has a molecular weight M N of 520, a viscosity at 100 ° C. of 6 mm 2 / s and a viscosity index of 156, and is suitable as an additive to motor oils.
  • Example r A 200 ml tubular reactor is filled with 53 g MoO 3 / SiO 2 and 46 g RuO 2 on Al 2 O 3 . The reaction is carried out at 130 ° C and 30 bar.
  • Raffinate II obtained from a steam cracker C 4 cut after butadiene extraction (up to> 10 ppm) and subsequent isobutene separation (isobutene content max. 0.5%), is mixed with the recycle streams obtained in the workup and mixed at a flow rate of 100 g / h passed over the reactor.
  • the product stream is distilled in a dividing wall column. Low boilers (ethene and propene) are separated off overhead.
  • a small amount of an olefin fraction containing more than 22 carbon atoms is obtained in the sump.
  • An olefin stream is taken off in the side draw and is distilled off in a further column operated under vacuum. The conditions are chosen so that a hydrocarbon cut containing 14-22 carbon atoms can be separated off in the bottom of this second column.
  • the olefin stream separated off at the top is returned to the reactor.
  • the product stream obtained is reacted directly in a further 200 ml tubular reactor, filled with 149 g of 10% Re O 7 / Al 2 O 3 at 60 ° C. and 40 bar with ethene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de fabrication de α-oléfines linéaires par réaction de métathèse d'isomérisation et éthénolyse consécutive. Ledit procédé consiste I) à introduire une fraction C4-C10-oléfinique dans une réaction de métathèse d'isomérisation ; II) à séparer le mélange obtenu en a) une fraction C2-C3-oléfinique, b) une fraction contenant des oléfines portant le nombre d'atomes de carbone voulu, c) une fraction légère contenant des oléfines portant un nombre d'atomes de carbone supérieur ou égal à 4 et inférieur au nombre d'atomes de carbone de la fraction voulue b), et d) une fraction lourde contenant des oléfines portant un nombre d'atomes de carbone supérieur au nombre d'atomes de carbone de la fraction voulue b) ; III) à réintroduire la fraction légère c) et éventuellement la fraction lourde d) dans la réaction de métathèse d'isomérisation ; IV) à introduire la fraction b) et éventuellement la fraction d) dans une réaction d'éthénolyse ; et V), à isoler la fraction α-oléfinique obtenue en IV). Le procédé selon l'invention permet en particulier d'obtenir des C8-C12-α-oléfines linéaires.
PCT/EP2001/009756 2000-08-23 2001-08-23 Procede de synthese d'olefines terminales ayant une faible repartition de la masse molaire WO2002016290A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002214957A AU2002214957A1 (en) 2000-08-23 2001-08-23 Method for synthesising terminal olefins having a limited molar mass distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000141345 DE10041345A1 (de) 2000-08-23 2000-08-23 Verfahren zur Synthese von terminalen Olefinen mit enger Molgewichtsverteilung
DE10041345.5 2000-08-23

Publications (2)

Publication Number Publication Date
WO2002016290A2 true WO2002016290A2 (fr) 2002-02-28
WO2002016290A3 WO2002016290A3 (fr) 2002-06-27

Family

ID=7653496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/009756 WO2002016290A2 (fr) 2000-08-23 2001-08-23 Procede de synthese d'olefines terminales ayant une faible repartition de la masse molaire

Country Status (3)

Country Link
AU (1) AU2002214957A1 (fr)
DE (1) DE10041345A1 (fr)
WO (1) WO2002016290A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146031B (zh) 2001-03-26 2014-08-06 陶氏环球技术有限责任公司 不饱和脂肪酸酯或不饱和脂肪酸与低级烯烃的置换方法
BR0309359B1 (pt) 2002-04-29 2014-03-18 Dow Global Technologies Inc Composição de alfa,ômega-poliéster de poliol, composição de alfa,ômega-poliéster poliamina e composição de poliéster poliolefina
CN101003459B (zh) * 2002-10-24 2011-08-10 陶氏环球技术有限责任公司 烯烃易位产物混合物的稳定
ATE400542T1 (de) 2003-10-09 2008-07-15 Dow Global Technologies Inc Verbessertes verfahren zur synthese ungesättigter alkohole
DE102004033410A1 (de) * 2004-02-14 2005-09-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen
WO2010051268A1 (fr) 2008-10-31 2010-05-06 Dow Global Technologies Inc. Procédé de métathèse d'oléfines employant un complexe bimétallique du ruthénium avec des ligands pontants hydrido

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491163A (en) * 1967-07-17 1970-01-20 Phillips Petroleum Co Preparation of long chain linear olefins
EP0475245A2 (fr) * 1990-09-11 1992-03-18 Albemarle Corporation Préparation d'alpha-oléfine par éthénolyse
US5243120A (en) * 1991-10-30 1993-09-07 Shell Oil Company Process for the production of olefins
WO1994008922A1 (fr) * 1992-10-19 1994-04-28 Dsm N.V. Procede pour la conversion d'une olefine ou d'un melange d'olefines
WO1997034854A1 (fr) * 1996-03-19 1997-09-25 Shell Internationale Research Maatschappij B.V. Procede pour la preparation des alpha-olefines
DE19827323A1 (de) * 1998-06-19 1999-12-23 Basf Ag Verwendung von metallocenkatalysiert hergestellten Oligodecenen als Komponenten in Schmierstoffen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491163A (en) * 1967-07-17 1970-01-20 Phillips Petroleum Co Preparation of long chain linear olefins
EP0475245A2 (fr) * 1990-09-11 1992-03-18 Albemarle Corporation Préparation d'alpha-oléfine par éthénolyse
US5243120A (en) * 1991-10-30 1993-09-07 Shell Oil Company Process for the production of olefins
WO1994008922A1 (fr) * 1992-10-19 1994-04-28 Dsm N.V. Procede pour la conversion d'une olefine ou d'un melange d'olefines
WO1997034854A1 (fr) * 1996-03-19 1997-09-25 Shell Internationale Research Maatschappij B.V. Procede pour la preparation des alpha-olefines
DE19827323A1 (de) * 1998-06-19 1999-12-23 Basf Ag Verwendung von metallocenkatalysiert hergestellten Oligodecenen als Komponenten in Schmierstoffen

Also Published As

Publication number Publication date
DE10041345A1 (de) 2002-03-07
AU2002214957A1 (en) 2002-03-04
WO2002016290A3 (fr) 2002-06-27

Similar Documents

Publication Publication Date Title
EP3293171B1 (fr) Procédé pour la production flexible d'aldéhydes
EP3019457B1 (fr) Oligomerizatoin de flux c4 à faible teneur en 1-butène
EP1134271B1 (fr) Procédé pour la production de propylène et de hexène
EP1069101A1 (fr) Procédé pour la préparation d'oléfines en C5-/C6
DE60003143T2 (de) Herstellung von sehr reinem Isobuten und von Propen aus Kohlenwasserstoffschnitten mit vier Kohlenstoffatomen
DE60012910T2 (de) Verfahren zur trennung von olefinen von gesättigten kohlenwasserstoffen
EP3045439B1 (fr) Fabrication combinee de butene et d'octene a partir d'ethylene
EP3045438B1 (fr) Fabrication combinée d'au moins de butène et d'octène à partir d'éthylène
EP1784476B1 (fr) Procede pour produire des aldehydes c5 et du propene a partir d'un flux c4 contenant du 1-butene et du 2-butene
EP0946469A1 (fr) Melanges oligomeres derives de cyclopentene, procedes de preparation et d'utilisation desdits melanges
DE19629906A1 (de) Verfahren zur Herstellung von Butenoligomeren aus Fischer-Tropsch-Olefinen
WO2010121591A1 (fr) Procédé de préparation d'hydrocarbures à partir d'alcools gras et utilisation d'hydrocarbures ainsi préparés
DE102006039904A1 (de) Verfahren zur Propenerzeugung in einer Anlage zur Dampfspaltung von Olefinen
DE1300552B (de) Verfahren zur katalytischen Disproportionierung eines Olefins
WO2002016290A2 (fr) Procede de synthese d'olefines terminales ayant une faible repartition de la masse molaire
DE60103335T2 (de) Verfahren zur selektiven Herstellung von Di-Isobuten aus einer i-Buten enthaltenden C4 Beschickung
WO2003011800A1 (fr) Procede de synthese d'olefines terminales par combinaison de metathese isomerisante et de transalkylation isomerisante
EP1379489A1 (fr) Procede de preparation de propylene
EP1373169A1 (fr) Procede modifie de production d'alpha-olefines superieures
EP0841315B1 (fr) Procédé pour l'oligomérisation de l'i-butène
EP1427686B1 (fr) Procede de production de propene par metathese d'olefines c 4 a c 9
DE60015357T2 (de) Verfahren zur abtrennung von olefinen von gesättigten verbindungen
EP3909940B1 (fr) Procédé d'oligomérisation d'oléfines à contrôle de la teneur en oligomères dans les flux d'hydrocarbures à oligomériser
DE10103309A1 (de) Verfahren zur Herstellung höherer Alpha-Olefine
DE10128048A1 (de) Modifiziertes Verfahrens zur Herstellung höherer alpha-Olefine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP