WO2002015208A1 - Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci - Google Patents

Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci Download PDF

Info

Publication number
WO2002015208A1
WO2002015208A1 PCT/JP2001/006857 JP0106857W WO0215208A1 WO 2002015208 A1 WO2002015208 A1 WO 2002015208A1 JP 0106857 W JP0106857 W JP 0106857W WO 0215208 A1 WO0215208 A1 WO 0215208A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium powder
niobium
powder
group
capacitor
Prior art date
Application number
PCT/JP2001/006857
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Omori
Kazumi Naito
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27481524&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002015208(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP01955623.2A priority Critical patent/EP1324359B2/en
Priority to CA002418865A priority patent/CA2418865A1/en
Priority to AU7773401A priority patent/AU7773401A/xx
Priority to CNB018139752A priority patent/CN100477040C/zh
Priority to AU2001277734A priority patent/AU2001277734B2/en
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to KR10-2003-7001280A priority patent/KR20030020420A/ko
Priority to JP2002520249A priority patent/JP4562986B2/ja
Priority to KR1020067021463A priority patent/KR100758945B1/ko
Priority to BR122015027076A priority patent/BR122015027076B1/pt
Priority to KR1020057023858A priority patent/KR100759290B1/ko
Priority to BR0113215-6A priority patent/BR0113215A/pt
Publication of WO2002015208A1 publication Critical patent/WO2002015208A1/ja
Priority to AU2007200912A priority patent/AU2007200912B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • Niobium powder sintered body thereof, and capacitor using the same
  • the present invention relates to a niobium powder capable of producing a capacitor having a large capacity per unit mass and good leakage current characteristics, a sintered body using the same, and a capacitor using the sintered body.
  • Capacitors used in electronic devices such as mobile phones and personal computers are desired to be small and have large capacities. Of these capacitors, tantalum capacitors are preferred because of their large capacity for their size and good performance.
  • a sintered body of tantalum powder is used as the anode body of this tantalum capacitor. In order to increase the capacity of these tantalum capacitors, it is necessary to increase the mass of the sintered body or use a sintered body in which the surface area is increased by finely crushing tantalum powder.
  • the method of increasing the mass of the sintered body inevitably increases the shape of the capacitor and does not satisfy the demand for miniaturization.
  • the method of increasing the specific surface area by pulverizing the tantalum powder the pore diameter of the tantalum sintered body is reduced, and the number of closed pores is increased in the sintering step, making it difficult to impregnate the cathode agent in a later process. .
  • Niobium is a material having a large dielectric constant.
  • Japanese Patent Application Laid-Open No. 55-157226 discloses that from agglomerated powder, niobium fine powder having a particle size of 2.0 zm or smaller is pressed and sintered, and the formed sintered body is cut into small pieces. There is disclosed a method of manufacturing a sintered element for a capacitor in which a lead portion is joined and then sintered again. However, the publication does not show details of capacitor characteristics.
  • U.S. Pat. No. 4,084,965 discloses a capacitor in which a niobium ingot is hydrogenated and pulverized to obtain 5.1 m of niobium powder, which is sintered and used.
  • the disclosed capacitor has a large leakage current value (hereinafter sometimes abbreviated as L C value), and is not practical.
  • Japanese Patent Application Laid-Open No. 10-242004 discloses improving the LC value by nitriding a part of niobium powder.
  • a capacitor having a specifically large LC value may appear.
  • U.S. Pat.No. 6,051,044 discloses a niobium powder having a specific BET specific surface area and a specific nitrogen content, and also discloses a method for reducing leakage current. There is no disclosure or suggestion of niobium powder containing other elements that can form an alloy with such niobium.
  • an object of the present invention is to provide a niobium powder capable of providing a capacitor having a large capacity per unit mass, a small leakage current value and a high heat resistance, a sintered body using the same, and a capacitor using the sintered body. Is to provide.
  • the present inventors have conducted intensive studies on the above-mentioned problems, and as a result, by including at least one or more elements selected from various elements capable of forming an alloy with niobium, niobium has a small particle size and a high capacity.
  • the present inventors have also found that the capacitor can be stabilized with a low LC with heat resistance, and completed the present invention. That is, the present invention Are the following niobium powders for capacitors (1) to (29), sintered bodies obtained by sintering the niobium powders (30) to (31), capacitors (32) to (42), and (43) ) To (46), a method for producing niobium powder, (47) an electronic circuit, and (48) an electronic device.
  • the alloy used in the present invention includes a solid solution with the other alloy component. Unless otherwise specified, “ppm” and “%” used in the present invention represent mass ppm and mass%.
  • Capacitors for the niobium powder Cap
  • niobium powder for a capacitor according to the above (1) comprising at least one element selected from the group consisting of chromium, molybdenum, and tungsten.
  • niob powder for a capacitor as described in (1) above comprising at least one element selected from the group consisting of boron, aluminum, gallium, indium and thallium.
  • the above item (1) containing at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth.
  • Niobium powder for capacitors containing at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth.
  • Niobium powder for capacitors containing at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth.
  • the powder for capacitor according to the above item 8 which contains at least one element selected from the group consisting of rhenium, zinc, arsenic, phosphorus, germanium, tin and neodymium.
  • the niobium sintered body according to 30 or 31 as one electrode comprising: a dielectric formed on the surface of the sintered body; and the other electrode provided on the dielectric. Capacitors.
  • the other electrode is composed of an organic semiconductor, the organic semiconductor is composed of benzopyrroline tetramer and chloranil, the organic semiconductor is mainly composed of tetrathiotetracene, and the organic semiconductor is mainly composed of tetracyanoquinodimethane.
  • the conductive polymer is represented by the following general formula (1) or general formula (2)
  • ⁇ 4 may be the same or different, and each represents a hydrogen atom, a linear or branched saturated or unsaturated alkyl group or alkoxy group having 1 to 10 carbon atoms, or an alkyl ester group, a halogen atom, a nitro group, Xia amino group, a primary, secondary or tertiary Amino group, a CF 3 group, a monovalent radical selected from the group consisting of phenyl group and a substituted off Eniru group.
  • the hydrocarbon chains of 1 and R 2 and R 3 and R 4 are bonded to each other at an arbitrary position, and at least one or more 3- to 7-membered saturated or unsaturated ring with the carbon atom substituted by such a group.
  • the divalent chain that forms a cyclic structure of a hydrocarbon may be formed in the cyclic bonding chain, and a bond of a compound such as sulfonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl, or imino may be added to any position. May be included.
  • X represents an oxygen, sulfur or nitrogen atom
  • R 5 is present only when X is a nitrogen atom, and is independently a hydrogen atom or a linear or branched saturated or unsaturated C 1-10 carbon atom.
  • the conductive polymer has the following general formula (3)
  • R 6 and R 7 may be the same or different, and each represents a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or The alkyl groups are bonded to each other at any position to form a substituent forming at least one or more 5- to 7-membered saturated hydrocarbon cyclic structure containing two oxygen atoms.
  • Niobium powder is subjected to surface treatment by at least one method selected from the group consisting of liquid nitriding, ion nitriding, and gas nitriding.
  • a method for producing niobium powder containing niobium is selected from the group consisting of liquid nitriding, ion nitriding, and gas nitriding.
  • Niobium powder is selected from the group consisting of gas boriding and solid phase boriding. 24. The method for producing a niobium powder containing boron according to the item 24, wherein the surface treatment is performed by at least one method.
  • a capacitor having a high capacity and good leakage current characteristics according to the present invention, a niobium powder capable of drawing out its characteristics, and a sintered body thereof will be described in the following groups (1) to (4).
  • the invention of the first group is a niobium powder containing at least one element selected from the group consisting of transition elements belonging to Group 6 of the periodic table, chromium, molybdenum, and tungsten, and a sintered body thereof.
  • chromium, molybdenum, and tungsten are elements that can form an alloy with niobium.
  • tantastein has the effect of minimizing the leakage current value, followed by molybdenum and chromium. Therefore, in the first group of the invention, it is most preferable that the niobium powder contains tungsten.
  • molybdenum or chromium, preferably chromium may be contained in the tungsten-containing niobium powder.
  • the total content of these elements is 10 mol% or less, preferably 0.01 mol% to 10 mol%, more preferably 0.1 mol% to 7 mol% in niobium powder.
  • At least one element selected from the group consisting of chromium, molybdenum, and tungsten is contained in niobium powder in an amount of 10 mol% or less, and more preferably 0.01 mol% to 10 mol%. It is preferable to use the niobium powder contained in the range as a sintered body for the condenser.
  • the content of the element is lower than 0.01 mol%, it is not possible to suppress the property that oxygen in the dielectric film formed in the electrolytic oxidation described later easily diffuses into the niobium metal inside, as a result. It is impossible to maintain the stability of the electrolytic oxide film (dielectric film), and it is difficult to obtain the effect of reducing LC.
  • the content of the element is more than 10 mol%, the content of niobium itself in the niobium powder is reduced. The capacitance decreases as a result.
  • the content of at least one element selected from the group consisting of chromium, molybdenum, and tungsten is particularly preferably 0.01 to 10 mol%.
  • the content of the element in the niobium powder is preferably 3 mol% or less, more preferably 0.05 to 3 mol%.
  • the average particle size of the niobium powder is preferably 5 m or less, more preferably 4 m or less in order to increase the specific surface area of the powder.
  • the average particle size of the niobium powder of the present invention is preferably 0.2 m or more and 5 / m or less for the following reason.
  • the capacitance (C) of a capacitor is generally expressed by the following equation.
  • is the dielectric constant
  • S is the specific surface area
  • d is the distance between the electrodes.
  • niobium powder has a spherical shape
  • using a powder having a small particle diameter can increase the capacitor capacity.
  • niobium powder is not completely spherical, and there is also a flake-like powder form.
  • the characteristics required for the capacitor of the present invention are not only achieved by simply increasing the specific surface area, but also by increasing the capacity and the leakage current characteristics.
  • niobium powder containing at least one element selected from the group consisting of chromium, molybdenum, and tungsten as a niobium raw material for producing a sintered body, both the capacitor characteristics are satisfied. It is possible to provide a capacitor or a niobium sintered body giving the capacitor characteristics.
  • Table 1 shows the particle size and specific surface area of (produced by the pulverization method).
  • the average particle size is a D50 value measured using a particle size distribution analyzer (trade name “Microtrac” manufactured by Microtrac Co., Ltd.).
  • the specific surface area is the value measured by the BET method.
  • the average particle size of the niobium powder containing at least one element selected from the group consisting of chromium, molybdenum, and tungsten is reduced to less than, a fine sintered body is produced from the powder.
  • the pore size is small and the number of closed pores is large, so that impregnation with a cathode agent described later tends to be difficult. As a result, it is difficult to increase the capacitor capacity, and it is not very suitable as a niobium sintered body for a capacitor. If the average particle size exceeds 5 / xm, large capacitor capacity cannot be obtained.
  • a large capacitor capacity can be achieved by using the niobium powder having a size of 0.05 m or more and 5 _im or less.
  • the niobium powder of the present invention is preferably a powder having a BET specific surface area of at least 0.5 m 2 / g, more preferably a powder having a BET specific surface area of at least 1 m 2 / g, and further preferably at least 2 m 2 / g Has a BET specific surface area of Powder is preferred. Further, niobium powder of the present invention is preferably a powder having a BET specific surface area of 0. 5 ⁇ 4 0 m 2 Z g, still preferably powders having 1 ⁇ 2 0 m 2 BET specific surface area of the Z g A powder having a BET specific surface area of 1 to 10 m 2 Zg is particularly preferred.
  • niobium is known to be about twice as large in dielectric constant ( ⁇ ) as tantalum, but it is not known whether chromium, molybdenum, and tungsten are valve metals for capacitor characteristics. Therefore, it is not known whether the inclusion of at least one element selected from the group consisting of chromium, molybdenum and tungsten in niobium increases the ⁇ of the niobium powder containing the element.
  • the present invention even when a high-capacity sintered body is manufactured by reducing the average particle size of the niobium powder, at least one element of chromium, molybdenum, and tungsten is niobium. If it is contained, the LC value did not increase specifically.
  • Niobium has a larger bonding force with oxygen than tantalum, so that oxygen in the electrolytic oxide film (dielectric film) is easily diffused into the niobium metal inside, but the sintered body in the present invention is Because part of niobium is bonded to at least one element of chromium, molybdenum, and tungsten, oxygen in the electrolytic oxide film is less likely to bond to the niobium metal inside, and the diffusion of oxygen to the metal side is suppressed. Is done. As a result, it is presumed that the stability of the electrolytic oxide film can be maintained, and the effect of lowering the LC and reducing the variation can be obtained even with a capacitor having a small particle size and a high capacity.
  • the present invention will be described by taking tungsten as an example of transition elements belonging to Group 6 of the periodic table, but the following description is also applied to chromium and molybdenum.
  • the average particle diameter of the tungsten-containing niobium powder used for producing the sintered body is preferably 0.2 m or more and 5 m or less.
  • Tungsten-containing niobium powder having such an average particle size can be obtained by, for example, a method of pulverizing and dehydrogenating a hydride such as a niobium tungsten alloy ingot, pellets, or powder.
  • a method of mixing tungsten carbide, tungsten oxide, and tungsten powder with niobium powder produced by pulverizing and dehydrogenating hydrides of niobium ingots, pellets, and powders, or pulverizing sodium reduced products of potassium fluoroniobate can also be obtained by a method of reducing a mixture of niobium oxide and tungsten oxide by carbon reduction or the like.
  • a desired average particle diameter can be obtained by adjusting the amount of hydrogenation of the niobium-tungsten alloy, the grinding time, and the grinding device.
  • a tungsten-containing niobium powder can be obtained.
  • niobium powder having an average particle diameter of 0.2 / xm or more and 5 m or less may be mixed with the tungsten-containing niobium powder thus obtained.
  • This niobium powder can be obtained by, for example, a method by pulverizing a sodium reduced product of a niobium fluoride niobate, a method by pulverizing and dehydrogenating a hydride of a niobium ingot, a method by carbon reduction of niobium oxide, and the like.
  • a part of the tungsten-containing niobium powder is bonded to at least one of nitrogen, carbon, boron, and sulfur. It may be.
  • Tungsten-containing niobium nitride, tungsten-containing niobium carbide, tungsten-containing niobium boride, and tungsten-containing niobium sulfide, which are a combination of nitrogen, carbon, boron, and sulfur, may contain any of these. It may be a combination of three, three or four species.
  • the amount of the bond that is, the sum of the contents of nitrogen, carbon, boron, and sulfur varies depending on the shape of the niobium powder containing tungsten, but is 0 ppm for powder having an average particle size of about 0.05 to 5 m. More than 200,000 ppm or less, preferably 50 pp m to 100,000 ppm, more preferably 200 ppm to 20,000 ppm. If it exceeds 200,000 ppm, the capacitance characteristics will deteriorate and it will not be suitable as a capacitor.
  • the nitridation of the tungsten-containing niobium powder can be carried out by any one of liquid nitriding, ionic nitriding, gas nitriding, or a combination thereof.
  • Gas nitriding in a nitrogen gas atmosphere is preferred because the equipment is simple and the operation is easy.
  • the gas nitriding method in a nitrogen gas atmosphere is achieved by leaving the tungsten-containing niobium powder in a nitrogen atmosphere.
  • the temperature of the atmosphere for nitriding is 2,000 ° C or less, and the standing time is within 100 hours, so that a tungsten-containing niobium powder having a desired nitriding amount can be obtained.
  • the processing time can be shortened by processing at a higher temperature.
  • Carbonization of the tungsten-containing niobium powder may be any of gas carbonization, solid phase carbonization, and liquid carbonization.
  • the tungsten-containing niobium powder may be left under a reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours together with a carbon source such as a carbon material or an organic substance having carbon such as methane.
  • Boration of the tungsten-containing niobium powder may be either gas boriding or solid-phase boriding.
  • the tungsten-containing niobium powder may be left under reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours together with a boron source of boron halide such as boron pellets and trifluoroboron.
  • Sulfurization of the tungsten-containing niobium powder may be any of gas sulfide, ion sulfide, and solid phase sulfide.
  • the gas sulfurization method in a sulfur gas atmosphere is achieved by leaving the tungsten-containing niobium powder in a sulfur atmosphere.
  • the temperature of the atmosphere to be sulfurized is 2000 ° C or less, and the standing time is within 100 hours.
  • the tungsten-containing niobium powder having the desired sulfuration amount can be obtained.
  • processing at a higher temperature can reduce the processing time.
  • the tungsten-containing niobium powder for a capacitor of the present invention may be used after granulating the above-mentioned tungsten-containing niobium powder into an appropriate shape, or may be used by mixing an appropriate amount of ungranulated niobium powder after granulation. May be.
  • Granulation methods include, for example, a method in which ungranulated tungsten-containing niobium powder is left under a high vacuum, heated to an appropriate temperature, and then crushed, camphor, polyacrylic acid, polymethyl acrylate, polyvinyl alcohol And a suitable binder such as acetone, alcohols, acetates, water, etc., and a mixture of ungranulated tungsten-containing niobium powder and crushing.
  • the average particle size of the granulated powder is preferably from 10 m to 500 m. If the average particle size of the granulated powder is less than 10 m, blocking occurs partially and the fluidity to the mold is poor. If the thickness is more than 500 im, the molded body after pressure molding tends to chip. Further, the average particle size of the granulated powder is preferably 30/2 m to 250 m from the viewpoint of easiness of impregnation of the cathode agent in producing a capacitor after sintering the pressed compact. , 60 m to 250 m are particularly preferred.
  • the nitriding method, the carbonizing method, the boring method, and the sulfurizing method can be performed not only on niobium powder but also on niobium granulated powder and niobium sintered body.
  • the tungsten-containing niobium sintered body for a capacitor of the present invention is manufactured by sintering the above-mentioned tungsten-containing niobium powder or granulated tungsten-containing niobium powder.
  • An example of a method for manufacturing a sintered body will be described below. Note that the method of manufacturing the sintered body is not limited to this example.
  • niobium powder containing at least one element selected from the group consisting of boron, aluminum, gallium, indium and thallium is used as the niobium powder raw material.
  • Boron, aluminum, gallium, indium, and lithium used here are elements that can form an alloy with niobium.
  • boron and aluminum have the effect of minimizing the leakage current value, and then gallium. , Indium, and thallium. Therefore, it is particularly preferable that the niobium powder contains boron or aluminum.
  • aluminum, gallium, indium and thallium may be contained in the boron-containing niobium powder.
  • the total content of these elements is 10 mol% or less, preferably 0.01 mol% to 10 mol%, more preferably 0.1 mol% to 7 mol% in niobium powder.
  • niobium powder in an amount of 10 mol% or less, and more preferably 0.01 mol% to 10 mol%. It is preferable to use niobium powder contained in the range of 0.1 mol%, particularly 0.1 mol% to 7 mol%, as a sintered body for the capacitor.
  • the content of the element is lower than 0.01 mol%, it is not possible to suppress the property that oxygen in the dielectric film formed in the electrolytic oxidation described later easily diffuses into the niobium metal inside, as a result. It is impossible to maintain the stability of the electrolytic oxide film (dielectric film), and it is difficult to obtain the effect of reducing LC. If the content of the element exceeds 10 mol%, the content of niobium itself in the niobium powder decreases, and as a result, the capacity as a capacitor decreases.
  • the content of at least one element selected from the group consisting of boron, aluminum, gallium, indium and thallium is preferably 0.01 to 10 mol%. Further, in order to further reduce the leakage current value, the element The content is preferably 7 mol% or less, more preferably 0.1 to 7 mol% in the niobium powder.
  • the average particle size of the niobium powder of the present invention is to increase the specific surface area of the powder.
  • the average particle size of the niobium powder of the present invention is preferably 0.051 to 4111. The reason for this is as described above for the niobium powder of the group (1).
  • niobium powder containing at least one element selected from the group consisting of boron, aluminum, gallium, indium and thallium is used as a niobium powder raw material for producing a sintered body. Accordingly, it is possible to provide a capacitor that satisfies both of the above characteristics of the capacitor, or a niobium sintered body that provides the capacitor characteristics.
  • the average particle size (D 50; ⁇ ) and specific surface area (S; mV g) of the boron-containing niobium powder (produced by the pulverization method) produced by the present inventors as an example are shown in the following table.
  • the average particle size (D50; m) in Table 2 above is a value measured using a particle size distribution analyzer (trade name “Microtrac” manufactured by Microtrac).
  • the cumulative mass% represents a particle size value corresponding to 50 mass%.
  • the specific surface area is a value measured by the BET method.
  • the average particle size of the niobium powder containing at least one element selected from the group exceeds 5 m, a large capacitor capacity cannot be achieved.
  • the average particle size is less than 0.05 m, when a sintered body is produced from the powder, the pore diameter is small and the number of closed pores is large, so that the impregnation of a cathode agent described later tends to be difficult. As a result, it is difficult to increase the capacitance of the capacitor, and it is not very suitable as a niobium sintered body for a capacitor.
  • a large capacitor capacity can be obtained by preferably using niobium powder having a particle size of 0.05 xm or more and 4 xm or less.
  • the niobium powder of the present invention is preferably a powder having a BET specific surface area of at least 0.5 m 2 Zg, more preferably a powder having a BET specific surface area of at least lm 2 Zg, and more preferably a BET specific surface area of at least 2 m 2 Zg. Powders having the following are preferred.
  • the niobium powder of the present invention is preferably a powder having a BET specific surface area of 0.5 to 4 On ⁇ Zg, more preferably a powder having a BET specific surface area of 1 to 2 On ⁇ Zg. Powders having a BET specific surface area of On ⁇ Zg are preferred.
  • niobium is known to be about twice as large as tantalum, but it is not known whether boron, gallium, indium, and thallium are valve metals for capacitor characteristics.
  • Aluminum is a valve metal, but its dielectric constant is known to be lower than niobium. Therefore, it is not clear whether the inclusion of at least one element selected from the group consisting of boron, aluminum, gallium, indium and thallium in niobium increases the ⁇ of the element-containing niobium powder.
  • the present inventors have studied that even when a high-capacity sintered body is manufactured by reducing the average particle size of the niobium powder, at least one of boron, aluminum, gallium, indium, and talmium is used. Element contained in niobium LC values did not increase specifically.
  • Niobium has a larger bonding force with the oxygen element than tantalum, so that oxygen in the electrolytic oxide film (dielectric film) is easily diffused into the niobium metal side, but in the sintered body of the present invention, Since part of niobium is bonded to at least one element of boron, aluminum, gallium, indium, and thallium, oxygen in the electrolytic oxide film is less likely to bond with the internal niobium metal, Oxygen diffusion is suppressed. As a result, it is presumed that the stability of the electrolytic oxide film can be maintained, and the effect of reducing the LC and reducing the dispersion can be obtained even with a capacitor having a small particle size and a high capacity.
  • the present invention will be described by taking boron as an example, but the present invention is not limited thereto, and the following description is also applied to the case of aluminum, gallium, indium, and thallium.
  • the boron-containing niobium powder used for producing the binder preferably has an average particle diameter of 0.05 m or more and 4 Hm or less.
  • the boron-containing niobium powder having such an average particle size can be obtained by, for example, a method of pulverizing and dehydrogenating a hydride such as a niobium-boron alloy ingot, pellet, or powder.
  • niobium powder such as boric acid, boron oxide, and boron powder
  • niobium powder produced by a method such as pulverization of a reduced product that has been reduced using a method such as carbon reduction of a mixture of niobium oxide and boron oxide, etc.
  • the amount of hydrogenation of the niobium-boron alloy and the grinding time, a grinding device, etc. By preparing, a boron-containing niobium powder having a desired average particle size can be obtained. Further, the boron content may be adjusted by mixing niobium powder having an average particle diameter of 5 Aim or less with the boron-containing niobium powder thus obtained.
  • This niob powder can be obtained, for example, by a method of pulverizing a sodium reduced product of potassium fluoroniobate, a method of pulverizing and dehydrogenating a hydride of a niobium ingot, hydrogen, carbon, magnesium, and aluminum of a diobium oxide.
  • the method can be obtained by a method using at least one of the following, a method using hydrogen reduction of niobium hydride, and the like.
  • a part of the boron-containing niobium powder may be subjected to surface treatment by nitridation, carbonization, sulfidation, and further boriding.
  • the amount of the bond that is, the sum of the contents of nitrogen, carbon, boron, and sulfur varies depending on the shape of the boron-containing niobium powder, but is a powder having an average particle size of about 0.05 xm to 5 m and O ppm It is more than 200,000 ppm or less, preferably 50 ppm to ⁇ ⁇ , ⁇ ⁇ m, more preferably 200 ppm to 20,000 ppm. If it exceeds 200,000 ppm, the capacitance characteristics will deteriorate and it will not be suitable as a capacitor.
  • the nitriding of the boron-containing niobium powder can be carried out by any one of liquid nitriding, ionic nitriding, gas nitriding, etc., or a combination thereof.
  • Gas nitriding in a nitrogen gas atmosphere is preferable because the apparatus is simple and the operation is easy.
  • the gas nitriding method in a nitrogen gas atmosphere is achieved by leaving the boron-containing niobium powder in a nitrogen atmosphere.
  • the temperature of the nitriding atmosphere is 2000 ° C or less, and the standing time is 100 hours or less. Also, by processing at higher temperature, the processing time can be shortened. Monkey
  • the method of carbonizing the boron-containing niobium powder may be any of gas carbonization, solid phase carbonization, and liquid carbonization.
  • the boron-containing niobium powder may be left under a reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours with a carbon source such as a carbon material or an organic substance having carbon such as methane.
  • the method of sulfurizing the boron-containing niobium powder may be any of gas sulfurization, ion sulfurization, and solid-phase sulfurization.
  • the gas sulfurization method in a sulfur gas atmosphere is achieved by leaving the boron-containing niobium powder in a sulfur atmosphere.
  • the boron-containing niobium powder having the target sulfide content can be obtained in a sulfurizing atmosphere at a temperature of 2000 or less and a standing time of 100 hours or less.
  • the processing time can be reduced by processing at a higher temperature.
  • the method of boring the boron-containing niobium powder may be either gas boring or solid phase boring.
  • the boron-containing niobium powder may be left under a reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours together with a boron source of boron halide such as boron pellets or boron trifluoride.
  • the boron-containing niobium powder for a capacitor of the present invention may be used after granulating the above-described boron-containing niobium powder into an appropriate shape, or may be used by mixing an appropriate amount of ungranulated niobium powder after granulation. Is also good.
  • Examples of granulation methods include a method in which ungranulated boron-containing niobium powder is left under a high vacuum, heated to an appropriate temperature, and then crushed, camphor, polyacrylic acid, poly (methyl acrylate), polyvinyl alcohol And a suitable binder such as acetone, alcohols, acetates, water, etc. and a non-granulated boron-containing niobium powder are mixed and then pulverized.
  • the average particle size of the granulated powder is preferably 10 ⁇ m to 500m.
  • the average particle size of the granulated powder is 10 tm or less, partial blocking occurs Causes fluidity to the mold. If it exceeds 500 m, the molded body after pressure molding tends to chip.
  • the average particle size of the granulated powder is 30 fi n! ⁇ 250 / m is particularly preferred.
  • the boron-containing niobium sintered body for a capacitor of the present invention is manufactured by sintering the boron-containing niobium powder or the granulated boron-containing niobium powder.
  • Method for producing a sintered body is not particularly limited, for example, 1 minute to 1 0 h 1 0- 5 ⁇ 1 0 2 P a boron-containing niobium powder after pressed into a predetermined shape, It is obtained by heating in the range of 50 ° C to 2000 ° (: preferably 90 ° C to 1500 ° C, more preferably 900 ° C to 1300.
  • niobium powder raw materials that can satisfy capacitor characteristics include cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth.
  • Cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth are elements that can form an alloy with niobium, among which rhenium, neodymium, zinc, It is more preferable to use a niob powder containing at least one element selected from the group consisting of arsenic, phosphorus, germanium, and tin. Further, it is more preferable to use niobium powder containing at least one element selected from the group consisting of rhenium, neodymium, and zinc.
  • the rhenium-containing niobium powder contains, for example, at least one element of cerium, neodymium, titanium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth. Contained Niobium powder that has been used.
  • the total content of the above elements in the niobium powder is 10 mol% or less, preferably 0.01 mol% to 10 mol, and more preferably 0.1 mol% to 7 mol%.
  • the total content of the above elements is lower than 0.01 mol%, the property that oxygen in the dielectric film formed in the electrolytic oxidation described later is easily diffused to the niobium metal side cannot be suppressed. As a result, it is impossible to maintain the stability of the electrolytic oxide film (dielectric film), and it is difficult to obtain the effect of lowering the LC.
  • the total content of the elements exceeds 10 mol%, the content of niobium itself in the niobium powder decreases, and as a result, the capacity as a capacitor decreases.
  • the total content of at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth is 0.01 to 10 mol% is preferred.
  • the content of the element in the niobium powder is preferably 7 mol% or less, more preferably 0.1 to 7 mol%.
  • the average particle size of the niobium powder of the present invention is preferably 5 m or less, and more preferably 5 m or less in order to increase the specific surface area of the powder. Further, the average particle size of the niobium powder of the present invention is preferably not less than 0.05 ⁇ 111 and not more than 4 m. The reason for this is as described for the niobium powder of the group (1).
  • a niobium powder raw material for producing a sintered body includes a group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth.
  • Rhenium-containing niobium powder produced by the present inventors as an example
  • the average particle size (D 50; m) and specific surface area (S; m 2 / g) of the obtained product are shown in Table 3 below.
  • the average particle size (D50; ⁇ m) in Table 3 above is a value measured using a particle size distribution analyzer (trade name “Microtrac” manufactured by Microtrac) (D50 value is the cumulative value).
  • The% by mass represents a particle size value corresponding to 50% by mass.
  • the specific surface area is a value measured by the BET method.
  • Niobium powder containing at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth If the average particle size exceeds 5 m, a large capacitor capacity cannot be achieved. When the average particle size is less than 1, when a sintered body is produced from the powder, the pore diameter is small and the number of closed pores is large, so that the impregnation of a cathode agent described later tends to be difficult. As a result, it is difficult to increase the capacitance of the capacitor, and it is not very suitable as a niobium sintered body for a capacitor.
  • a large capacitor capacity can be achieved by preferably using niobium powder having a particle size of 0.05 im or more and 5 m or less.
  • the niobium powder of the present invention has a BET specific surface area of at least 0.5 m 2 Zg. Powders are preferable, and powders having a BET specific surface area of at least lm 2 ng are preferable, and powders having a BET specific surface area of at least Srr ⁇ Zg are more preferable. Further, the niobium powder of the present invention is preferably a powder having a BET specific surface area of 0.5 to 40 m 2 / g, more preferably a powder having a BET specific surface area of 1 to 20 m 2 Zg. In particular, a powder having a BET specific surface area of 1 to 10 m 2 Z g is preferable.
  • niobium is known to be about twice as large in dielectric constant ( ⁇ ) as tantalum, but cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium It is not known whether tin, phosphorus, arsenic, and bismuth are valve metals with capacitor characteristics. Therefore, at least one element selected from the group consisting of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth is converted to niobium. It is not clear whether the addition increases the epsilon of the element-containing niobium powder.
  • the present inventors have studied and found that even when a high-capacity sintered body was produced by reducing the average particle size of the niobium powder, such cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, If niobium contains at least one element of silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth, the LC value has not been specifically increased.
  • Niobium has a larger bonding force with oxygen element than tantalum, so that oxygen in the electrolytic oxide film (dielectric film) is easily diffused into the niobium metal inside, but the sintered body in the present invention is Because part of niobium is combined with at least one element of cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth In addition, the oxygen in the electrolytic oxide film is less likely to bond with the niobium metal inside, The diffusion of oxygen to the genus is suppressed. As a result, it is presumed that the stability of the electrolytic oxide film can be maintained, and the effect of reducing the LC and reducing the variation can be obtained even in a capacitor with a small particle size and high capacity.
  • rhenium As an example, but the present invention is not limited to this.
  • the following contents include cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, and silicon. It also applies to at least one element selected from the group consisting of, germanium, tin, phosphorus, arsenic and bismuth.
  • the rhenium-containing niobium powder used for producing the sintered body preferably has an average particle size of 0.05 am or more and 4 II m or less.
  • the rhenium-containing niobium powder having such an average particle diameter can be obtained by a method of pulverizing and dehydrogenating hydrides such as niobium-rhenium alloy ingots, pellets, and powders.
  • pulverization and dehydrogenation of hydrides of niobium ingots, pellets, and powders, or pulverization of sodium reduced substances of niobium fluoride, or at least one of hydrogen, carbon, magnesium, aluminum, and the like of niobium oxide Rhenium powder, rhenium oxide, sulfide, sulphate, sulfate, halide, nitrate, organic acid salt, complex salt, etc. are mixed with niobium powder produced by a method such as milling of a reduced product reduced by using And a method of reducing a mixture of niobium oxide and rhenium oxide with magnesium.
  • niobium powder containing rhenium, zinc, and germanium can be obtained by a method of pulverizing and dehydrogenating hydrides such as niobium-rhenium-zinc-germanium alloy ingots, pellets, and powders.
  • reduced Rhenium powder, zinc powder, germanium powder and rhenium, zinc, germanium oxides, sulfides, sulfates, octogenates, nitrates, organics It can also be obtained by a method of mixing an acid salt or the like, a method of reducing a mixture of niobium oxide, rhenium oxide, zinc oxide, and germanium oxide by magnesium.
  • a desired average particle diameter can be obtained by adjusting the amount of hydrogenation of the niobium-rhenium alloy, the grinding time, and the crushing apparatus.
  • a rhenium-containing niobium powder can be obtained.
  • the rhenium content may be adjusted by mixing niobium powder having an average particle size of 5 m or less with the rhenium-containing niobium powder thus obtained.
  • the niobium powder may be obtained, for example, by a method of pulverizing sodium reduced niobate fluoride, a method of pulverizing and dehydrogenating a hydride of niobium ingot, at least one of hydrogen, carbon, magnesium, and aluminum of niobium oxide.
  • the method can be obtained by a method using reduction using a method, a method using hydrogen reduction of niobium halide, or the like.
  • a part of the rhenium-containing niobium powder may be subjected to a surface treatment by nitriding, boriding, carbonizing, and sulfurizing.
  • Rhenium-containing niobium nitride, rhenium-containing niobium boride, rhenium-containing niobium carbide, and rhenium-containing niobium sulfide obtained by performing surface treatment by nitridation, boride, carbonization, and sulfurization Or a combination of two, three or four of these.
  • the amount of the bond that is, the sum of the contents of nitrogen, boron, carbon, and sulfur varies depending on the shape of the niobium powder containing renium, but for powders having an average particle size of about 0.05 zm to 5 m, It is more than 200 ppm and less than 200,000 ppm, preferably 50 ppm to 100,000 ppm, and more preferably 200 ppm to 20,000 ppm. If it exceeds 200,000 ppm, the capacity characteristics will be poor and it is not suitable as a capacitor.
  • the method of nitriding the rhenium-containing niobium powder can be carried out by any of liquid nitriding, ion nitriding, gas nitriding, or a combination thereof.
  • Gas nitriding in a nitrogen gas atmosphere is preferred because the equipment is simple and the operation is easy.
  • the method of gas nitriding in a nitrogen gas atmosphere is achieved by leaving the rhenium-containing niobium powder in a nitrogen atmosphere.
  • the temperature of the atmosphere to be nitrided is 2000 ° C or less, and the standing time is within 100 hours.
  • rhenium-containing niobium powder having a desired nitriding amount can be obtained.
  • processing at a higher temperature can shorten the processing time.
  • the method for boring the rhenium-containing niobium powder may be either gas boring or solid phase boring.
  • the boron-containing niobium powder may be left under reduced pressure at 2000 ° C. or lower for 1 minute to 100 hours together with a boron source of boron halide such as boron pellets or trifluoroboron.
  • Carbonization of the rhenium-containing niobium powder may be any of gas carbonization, solid phase carbonization, and liquid carbonization.
  • rhenium-containing niobium powder is mixed with a carbon source such as a carbon material or an organic substance having carbon such as methane under reduced pressure at 2000 ° C or less for 1 minute to 10 minutes.
  • the method of sulfurizing the rhenium-containing niobium powder may be any of gas sulfurization, ion sulfurization, and solid-phase sulfurization.
  • the method of gas sulfurization in a sulfur gas atmosphere is achieved by leaving the rhenium-containing niobium powder in a sulfur atmosphere.
  • the temperature of the atmosphere for sulfidation is 2000 or less, and the desired sulfided amount of rhenium-containing niobium powder can be obtained within 100 hours.
  • processing at a higher temperature can shorten the processing time.
  • the rhenium-containing niobium powder for a capacitor of the present invention may be used after granulating the above-described rhenium-containing niob powder into an appropriate shape, or after mixing the granulated niobium powder in an appropriate amount. You may use it.
  • Granulation methods include, for example, a method in which ungranulated rhenium-containing niobium powder is left under a high vacuum, heated to an appropriate temperature, and then crushed, camphor, polyacrylic acid, polymethyl acrylate, polyvinyl alcohol, etc.
  • a suitable binder and a solvent such as acetone, alcohols, acetates, and water are mixed with ungranulated or granulated rhenium-containing niobium powder, followed by crushing.
  • the average particle size of the granulated powder is preferably 10 x m to 500 m. If the average particle size of the granulated powder is less than 10 im, partial blocking occurs, and the fluidity to the mold becomes poor. If it is 500 m or more, the molded body after pressure molding is easily chipped. Furthermore, the average particle size of the granulated powder is particularly preferably from 30 zm to 250 im because the cathode material is easily impregnated when the capacitor is manufactured after sintering the compact.
  • the rhenium-containing niobium sintered body for a capacitor of the present invention is manufactured by sintering the above-mentioned rhenium-containing niobium powder or granulated rhenium-containing niobium powder.
  • 1 minute 1 0 _ 5 ⁇ 1 0 2 P a Pascal
  • pressure molding rhenium-containing niobium powder into a predetermined shape to 1 0 hour 50 ° C. to 2000 ° C., preferably 900 ° C. (: up to 1500 ° C., more preferably 90 ° C. to 130 ° C. (obtained by heating in the range of TC).
  • niobium powder raw materials that can satisfy capacitor characteristics include rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, and holmium. , Erbium, Allium, Ytterbium, Lutetium, Octadium, Vanadium, Osumi Use niobium powder containing at least one element selected from the group consisting of aluminum, iridium, platinum, gold, cadmium, mercury, lead, selenium, and tellurium.
  • lanthanum-containing niobium powder includes, for example, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, yttrium.
  • the total content of the elements in the niobium powder is 10 mol% or less, preferably 0.01 mol% to 10 mol%, and more preferably 0.1 mol% to 7 mol%.
  • the total content of the above elements is less than 0.01 mol%, the property that oxygen in the dielectric film formed in the electrolytic oxidation described later is easily diffused to the niobium metal side cannot be suppressed. It is impossible to maintain the stability of the film (dielectric film), and it is difficult to obtain the effect of lowering the LC.
  • the total content of the above elements exceeds 10 mol%, the content of niobium itself in the niobium powder decreases. As a result, the capacitance of the capacitor decreases.
  • the total content of at least one element selected from the group consisting of osmium, iridium, platinum, gold, cadmium, mercury, lead, sulfur, selenium, and tellurium is preferably 0.01 to 10 mol%.
  • the content of the element is preferably 7 mol% or less in niobium powder, more preferably 0.1 to 7 mol%.
  • the average particle size of the niobium powder of the present invention is preferably 5 m or less, more preferably 4 ⁇ m or less in order to increase the specific surface area of the powder. More preferably, the niobium powder has an average particle size of 0.05 m or more and 4 m or less. The reason for this is as described for the niobium powder of the group (1).
  • niobium raw materials for producing a sintered body include rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, and thulium.
  • niobium powder containing at least one element selected from the group consisting of,, lithium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium, It is possible to provide a capacitor that satisfies both of the above-mentioned characteristics of the capacitor, or a niob sintered body that provides the capacitor characteristics.
  • the average particle size (D 50; um) and specific surface area (S; m 2 / g) of the lanthanum-containing niobium powder (produced by the pulverization method) prepared by the present inventors as an example are shown in Table 4 below. Shown in Table 4
  • the average particle size (D50; / m) in Table 4 above is a value measured using a particle size distribution analyzer (Microtrac, trade name, manufactured by Microtrack) (D50 value and Represents a particle size value corresponding to a cumulative mass% of 50 mass%.), And the specific surface area is a value measured by a BET method.
  • the average particle size is less than 0.05 ⁇ 1
  • the pore diameter is small and the number of closed pores is large, so that impregnation of a cathode agent described later tends to be difficult. .
  • a large capacitor capacity can be achieved by preferably using niobium powder having a content of not less than 0.05 zm and not more than 5 im.
  • the niobium powder of the present invention has a BET specific surface area of at least 0.5 m 2 Z g Powders are preferred, powders having a BET specific surface area of at least lm 2 Zg are more preferred, and powders having a BET specific surface area of at least 2 m 2 Zg are more preferred.
  • the niobium powder of the present invention is preferably a powder having a BET specific surface area of 0.5 to 4 O rr ⁇ Z g, more preferably a powder having a BET specific surface area of 1 to 20 m 2 / g. In particular, a powder having a BET specific surface area of 1 to 10 m 2 Z g is preferable.
  • niobium is known to be about twice as large in dielectric constant ( ⁇ ) as tantalum, but rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, Europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, octanium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium are capacitor characteristics. It is not known.
  • the niobium powder containing the element has a large ⁇ . It is not known.
  • niobium powder such rubidium, cesium, magnesium, strontium, barium, scandium, Yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, LC values did not increase significantly if niobium contained at least one element of lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium, and tellurium.
  • Niobium has a larger bonding force with oxygen element than tantalum, so that oxygen in the electrolytic oxide film (dielectric film) is easily diffused into the niobium metal inside, but the sintered body in the present invention is Some of niobium are rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, Osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium, and tellurium, which makes it difficult for oxygen in the electrolytic oxide film to bond with the niobium metal inside.
  • the present invention will be described mainly by taking lanthanum as an example, but the present invention is not limited to this, and the following content includes rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, Samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium It also applies for at least one element.
  • the lanthanum-containing niobium powder used for producing the sintered body has an average particle size of 0.05 im or more and 4 xm or less.
  • the lanthanum-containing niobium powder having such an average particle size can be obtained by, for example, a method of pulverizing and dehydrogenating a hydride such as a niobium-lanthanum alloy ingot, pellet, or powder. Also, pulverization and dehydrogenation of hydrides of niobium ingots, pellets, and powders, pulverization of sodium reduced substances of niobium fluoride, or at least one kind of hydrogen, carbon, magnesium, aluminum, and the like of niobium oxide.
  • Niobium powder containing lanthanum, hafnium, and iridium can be obtained by, for example, a method of grinding and dehydrogenating hydrides such as niobium-lanthanum-hafnium-iridium alloy ingots, pellets, and powders.
  • a method of grinding and dehydrogenating a hydride of a niobium-lanthanum alloy ingot a desired average particle size is obtained by preparing a hydrogenation amount of the niobium-lanthanum alloy, a grinding time, a grinding device, and the like.
  • Lanthanum-containing niobium powder can be obtained.
  • Nio which is usually used as a raw material of the lanthanum-containing niobium powder thus obtained
  • the aforementioned elements of the buingot (rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, ruthenium, ruthenium, ruthenium, Vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium) and the content of tantalum is less than l OOO ppm, and the oxygen content is 3000 ⁇ 60, 000 ppm.
  • the lanthanum content may be adjusted by mixing the lanthanum-containing niobium powder thus obtained with a niobium powder having an average particle size of 5 m or less.
  • the niobium powder may be prepared, for example, by a method of pulverizing a sodium reduced product of potassium fluoroniobate, a method of pulverizing and dehydrogenating a hydride of a niobium ingot, or by using at least one of hydrogen, carbon, magnesium, and aluminum of niobium oxide. It can be obtained by a method by reduction used, a method by hydrogen reduction of niobium halide and the like.
  • the lanthanum-containing niobium powder for a capacitor of the present invention may be used after granulating the lanthanum-containing niob powder described above into an appropriate shape, or may be used after granulation to obtain an ungranulated niobium powder. You may mix and use an appropriate amount.
  • Granulation methods include, for example, a method in which ungranulated lanthanum-containing niobium powder is left under high vacuum, heated to an appropriate temperature, and then crushed, and camphor, polyacrylic acid, polymethyl acrylate, polyvinyl alcohol, etc.
  • a suitable binder such as polyvinyl alcohol and a solvent such as acetone, alcohols, acetates, and water are mixed with ungranulated or granulated lanthanum-containing niobium powder, and then sintered under high vacuum, and the added binder is added.
  • the average particle size of the granulated powder is preferably from 10 / im to 500 m. If the average particle size of the granulated powder is 10 zm or less, partial blocking occurs, and the fluidity to the mold becomes poor. If it is 500 m or more, the molded body after pressure molding is easily chipped. Furthermore, the average particle size of the granulated powder is particularly preferably 30 im to 250, because the impregnation of the cathode agent in the production of the capacitor after the sintering of the press-formed body is weak.
  • the lanthanum-containing niobium sintered body for a capacitor of the present invention is manufactured by sintering the above-mentioned lanthanum-containing niobium powder or granulated lanthanum-containing niobium powder.
  • 1 minute after pressure molding lanthanum containing two O Bed powder into a predetermined shape 1 0- 5 ⁇ 1 0 2 P a ( Pascal) 110 hours, 500 ° C. (: 20002000 ° C., preferably 90 ° C. to 1500 ° C., more preferably 90 ° C. to 1300 ° C., obtained by heating.
  • the granulated powder, and the sintered body thus obtained, one of the lanthanum-containing niobium powder, the granulated powder, and the sintered body was used.
  • the part may be nitrided, borated, carbonized, sulfurized, or treated with more than one of these.
  • the obtained nitride of lanthanum-containing niobium, boride of lanthanum-containing niobium, carbide of lanthanum-containing niobium, and sulfide of lanthanum-containing niobium may contain any one of them. There may be.
  • the amount of the bond that is, the sum of the contents of nitrogen, boron, carbon, and sulfur varies depending on the shape of the lanthanum-containing niobium powder, but the average particle size of the powder is about 0.05 to 5 m. It is more than 200 ppm and less than 200,000 ppm, preferably 50 ppm to 100,000 ppm, more preferably 200 ppm to 20,000 ppm. If it exceeds 200,000 ppm, the capacitance characteristics will deteriorate and it will not be suitable as a capacitor.
  • the nitriding method of the lanthanum-containing niobium powder, the granulated powder, and the sintered body can be performed by any one of liquid nitriding, ion nitriding, gas nitriding, and the like, or a combination thereof.
  • Gas nitriding in a nitrogen gas atmosphere is preferable because the apparatus is simple and the operation is easy.
  • the gas nitriding method in a nitrogen gas atmosphere is achieved by leaving the lanthanum-containing niobium powder, granulated powder, and sintered body in a nitrogen atmosphere.
  • the temperature of the nitriding atmosphere is 2000 ° C or less, and the leaving time is 100 hours or less.
  • the desired nitriding amount of lanthanum-containing niobium powder, granulated powder, and sintered body can be obtained. Further, the processing time can be shortened by processing at a higher temperature.
  • the method for boring the lanthanum-containing niobium powder, granulated powder, and sintered body may be any of gas boration and solid phase boring.
  • lanthanum-containing niobium powder, granulated powder, and a sintered body together with a boron source of boron halide such as boron pellets or trifluoroboron under reduced pressure at 2000 ° C. or lower for about 1 minute to 100 hours, Just leave it alone.
  • Carbonization of the lanthanum-containing niobium powder, granulated powder, and sintered body may be any of gas carbonization, solid phase carbonization, and liquid carbonization.
  • lanthanum-containing niobium powders, granulated powders, and sintered bodies are combined with carbon sources such as carbon materials and organic substances having carbon such as methane. It may be left under reduced pressure at 2000 ° C or lower for about 1 minute to 100 hours.
  • the sulfurizing method for the lanthanum-containing niobium powder, granulated powder, and sintered body may be any of gas sulfide, ion sulfide, and solid phase sulfide. This is achieved by leaving the niobium-containing powder, granulated powder, and sintered body in a sulfur atmosphere.
  • the temperature of the sulfurizing atmosphere is 2000 ° C or less, and the leaving time is 100 hours or less.
  • Niobium powder, granulated powder, and sintered body can be obtained, and the processing time can be shortened by processing at a higher temperature.
  • a lead wire made of a valve metal such as niobium or tantalum and having an appropriate shape and length is prepared, and a part of the lead wire is formed into a molded body during the above-described press forming of niobium powder.
  • the lead wire is integrally molded so as to be inserted inside, and the lead wire is assembled and designed so as to be a lead of the sintered body.
  • a capacitor can be manufactured from the above-described sintered body as one electrode and a dielectric interposed between the other electrodes.
  • a dielectric mainly composed of niobium oxide is preferably mentioned.
  • the dielectric mainly composed of niobium oxide can be obtained, for example, by subjecting one of the electrodes, a lanthanum-containing niobium sintered body, to electrolytic oxidation (also referred to as “electrochemical formation” or “chemical formation”) in an electrolytic solution. can get.
  • a lanthanum-containing niobium electrode in an electrolytic solution is generally performed using a protonic acid aqueous solution, for example, a 0.1% phosphoric acid aqueous solution, a sulfuric acid aqueous solution, or a 1% acetic acid aqueous solution, an adipic acid aqueous solution, or the like.
  • a protonic acid aqueous solution for example, a 0.1% phosphoric acid aqueous solution, a sulfuric acid aqueous solution, or a 1% acetic acid aqueous solution, an adipic acid aqueous solution, or the like.
  • the other electrode (counter electrode) of the niobium sintered body is exceptionally
  • the material is not limited, and for example, at least one material selected from the group consisting of an electrolytic solution, an organic semiconductor, and an inorganic semiconductor known in the aluminum electrolytic capacitor industry can be used.
  • the electrolytic solution a mixed solution of dimethylformamide and ethylene glycol in which 5% by mass of isobutyltripropylammoniumporotetrafluoride electrolyte was dissolved, and 7% by mass of tetraethylammoniumporotetrafluoride were dissolved.
  • a mixed solution of propylene nitrate and ethylene glycol may, for example, be mentioned.
  • organic semiconductor examples include an organic semiconductor composed of benzopyrroline tetramer and chloranil, an organic semiconductor composed mainly of tetrathiotetracene, an organic semiconductor composed mainly of tetracyanoquinodimethane, or a compound represented by the following general formula (1). Or a conductive polymer containing a repeating unit represented by the general formula (2).
  • each of shaku 1 to! ⁇ 4 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group, alkoxy group or alkyl ester having 1 to 10 carbon atoms.
  • group or a halogen atom, a nitro group, Shiano group represents a primary, secondary or tertiary Amino group, CF 3 group, a monovalent group selected from the group of phenyl groups and substituted phenyl groups ing.
  • the hydrocarbon chains of R 1 and R 2 and R 3 and R 4 are bonded to each other at any position, and together with the carbon atom substituted by such a group, at least one or more saturated or three- to seven-membered rings.
  • a bivalent chain forming a cyclic structure of unsaturated carbon dioxide may be formed.
  • the cyclic linking chain includes: An ether, ester, amide, sulfide, sulfinyl, sulfonyl, or imino bond may be included at any position.
  • X represents an oxygen, sulfur or nitrogen atom
  • R 5 is present only when X is a nitrogen atom, and is independently hydrogen or a linear or branched saturated or unsaturated alkyl having 1 to 10 carbon atoms. Represents a group.
  • the lengths 1 to R 4 of the general formula (1) or the general formula (2) are preferably each independently a hydrogen atom, a linear or branched saturated group having 1 to 6 carbon atoms. Alternatively, it represents an unsaturated alkyl group or an alkoxy group, and R 1 and R 2 and R 3 and R 4 may be bonded to each other to form a ring.
  • the conductive polymer containing a repeating unit represented by the general formula (1) preferably has a conductive high molecular weight containing a structural unit represented by the following general formula (3) as a repeating unit. Molecules.
  • each of R 6 and R 7 is independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or any of the alkyl groups Represents a substituent which is bonded at a position to form a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon containing two oxygen atoms.
  • the cyclic structures include those having a pinylene bond which may be substituted and those having a phenylene structure which may be substituted.
  • the conductive polymer having such a chemical structure is charged and doped with a dopant.
  • Known dopants can be used without limitation for the dopant.
  • Specific examples of the inorganic semiconductor include an inorganic semiconductor containing lead dioxide or manganese dioxide as a main component, and an inorganic semiconductor containing triiron tetroxide. Such semiconductors may be used alone or in combination of two or more.
  • Examples of the polymer containing a repeating unit represented by the general formula (1) or (2) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrolyl, and polymethylpyrroline. And substituted derivatives and copolymers thereof. Among them, polypyrrole, polythiophene and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene) and the like) are preferable.
  • the impedance value of the capacitor fabricated is further more increase the capacity in smaller becomes the high-frequency be able to.
  • a method for producing the conductive polymer layer for example, a polymerizable compound of aniline, thiophene, furan, pyrrole, methylpyrrole or a substituted derivative thereof is sufficiently subjected to an oxidation reaction of dehydrogenative two-electron oxidation. A method of polymerizing by the action of an oxidizing agent that can be used is adopted.
  • the polymerization reaction from the polymerizable compound (monomer) includes, for example, gas phase polymerization and solution polymerization of the monomer, and is formed on the surface of a niobium sintered body having a dielectric.
  • the conductive polymer is an organic solvent-soluble polymer that can be applied as a solution, a method of forming the polymer by applying it to the surface is adopted.
  • a niob sintered body having a dielectric layer formed thereon is immersed in a solution containing an oxidizing agent (solution 1), and then a solution containing a monomer and a dopant (solution 2) And a method of immersing the polymer in a polymer to form a conductive polymer layer on the surface.
  • the sintered body may be dipped in the solution 1 after being dipped in the solution 2.
  • the solution 2 may be used in the above method as a monomer solution containing no dopant. When a dopant is used, it may be used in the presence of a solution containing an oxidizing agent.
  • the oxidizing agent is an oxidizing agent that can improve the electric power of the conductive polymer by forming a reduced form of the oxidizing agent without adversely affecting the performance of the capacitor.
  • Compounds that are industrially inexpensive and easy to handle in production are preferred.
  • Such oxidizing agents specifically, for example, F e C 1 3 and F e C 1 0 4, F e ( organic acid Anion) F e (III) compounds such as salts or anhydrides ⁇ chloride, Lumidumno cuprous chloride, alkali metal persulfates, ammonium persulfate, peroxides, manganese such as potassium permanganate, 2,3-dichroic-5,6-dishano 1,4-1 Benzoquinone (DDQ), tetrachloro-1,4-benzoquinone, tetracyano-1,4-quinones such as benzoquinone, halogens such as iodine and bromine, peracid, sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid Examples thereof include acids, sulfonic acids such as fluorosulfuric acid and amidosulfuric acid, ozone, and combinations of these oxidizing agents.
  • examples of the basic compound of the organic acid anion that forms the Fe (organic acid anion) salt include organic sulfonic acid or organic carboxylic acid, organic phosphoric acid, and organic boric acid.
  • organic sulfonic acids include benzenesulfonic acid, P-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, sodium sulfonaphthalene, ⁇ -sulfonaphthalene, naphthalenedisulfonic acid, and alkylnaphthalenesulfonic acid (alkyl group).
  • alkyl group alkylnaphthalenesulfonic acid
  • organic carboxylic acid examples include acetic acid, propionic acid, benzoic acid, and oxalic acid.
  • a polymer electrolyte anion such as polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfate poly-methyl sulfonic acid, polyethylene sulfonic acid, and polyphosphoric acid is also used.
  • the examples of these organic sulfonic acids or organic carboxylic acids are merely examples, and the present invention is not limited to these.
  • the counter cation of the anion is an alkali metal ion such as H + , Na +, K +, or an ammonium ion substituted with a hydrogen atom such as a tetramethyl group, a tetraethyl group, a tetrabutyl group, a tetraphenyl group, or the like.
  • oxidizing agents particularly preferred are oxidizing agents containing trivalent Fe-based compounds or cuprous chloride-based compounds, alkali persulfate, ammonium persulfate, and quinones.
  • the anion having dopant ability (anion other than the reductant anion of the oxidizing agent) to be coexisted as required in the method for producing the polymer composition of the conductive polymer is an oxidizing agent produced from the oxidizing agent.
  • Electrolyte anions having a reduced form of the agent) or other electrolyte anions can be used.
  • a halide anion of a group 5B element such as PF 6 —, SbF 6 — and As F 6 —
  • a halide anion of a group 3B element such as BF 4 —, I-I (I 3 —) , B r-, C 1 _-mentioned halogen ⁇ anion, C 10 4 - of such over-Ha androgenic acid anion, a 1 C 1 4 -, F e C 1 4 -, S n C 1 5 - such as such as Lewis acid Anion or N0 3, -, S_ ⁇ 4 2 - of inorganic acids such Anion or p- toluenesulfonic acid or naphthoquinone evening alkylene sulfonate, alkyl-substituted naphthyl having 1 to 5 carbon atoms (C l ⁇ 5 and substantially) Sulfonic acid anions such as urea sulfonic acid,
  • anion of a polymer electrolyte such as polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfuric acid, poly- 10: -methyl sulfonic acid, polyethylene sulfonic acid and polyphosphoric acid.
  • a polymer electrolyte such as polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfuric acid, poly- 10: -methyl sulfonic acid, polyethylene sulfonic acid and polyphosphoric acid.
  • the present invention is not limited to these.
  • high-molecular and low-molecular organic sulfonic acid compounds or anions of polyphosphoric acid compounds are used, and more preferably aromatic sulfonic acid compounds.
  • Sodium zate, sodium naphthene sulfonate, etc. are used as anion
  • organic sulfonic acid Anion more effective as a soil one dopant, and scan Ruhokinon compound having one or more Suruhoa two one group (one S_ ⁇ 3 _) and quinone structure in the molecule, Anion anthracene sulfonic acid Is mentioned.
  • p-benzoquinone As the basic skeleton of the sulfoquinone anion of the sulfoquinone compound, p-benzoquinone, o-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 2,6-naphthoquinone, 9,10-anthroquinone Raquinone, 1,4-anthraquinone, 1,2-anthraquinone, 1,4-chrysenequinone, 5,6-chrysenequinone, 6,12-chrysenequinone, acenaphthoquinone, asenaphthenequinone, camphorquinone, 2,3-polnandione, 9, 10-phenanthrenequinone and 2,7-pyrenequinone.
  • a conductive layer may be provided on the other electrode to improve electrical contact with an external lead (eg, lead frame) used as desired.
  • the conductor layer can be formed by, for example, solidification of a conductive paste, plating, metal deposition, or a heat-resistant conductive resin film.
  • a conductive paste silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable, and these may be used alone or in combination of two or more. When two or more kinds are used, they may be mixed or may be stacked as separate layers. After applying the conductive paste, leave it in the air or heat it to solidify it.
  • the plating includes nickel plating, copper plating, silver plating, aluminum plating, and the like. Examples of the metal to be deposited include aluminum, nickel, copper, and silver.
  • a capacitor is formed by sequentially laminating a carbon paste and a silver paste on the second electrode and sealing with a material such as epoxy resin.
  • the capacitor may have a niobium or tantalum lead sintered integrally with a lanthanum-containing niobium sintered body or welded later.
  • the capacitor of the present invention having the above-described configuration can be used as a capacitor product for various uses by, for example, a resin mold, a resin case, a metal outer case, resin dipping, and an outer casing made of a laminating film.
  • the capacitor composed of the two electrodes and a dielectric is housed in, for example, a can electrically connected to the other electrode to form a capacitor.
  • the electrode side of the lanthanum-containing niobium sintered body is designed so as to be led out to the outside through the above-described niobium or tantalum lead, and to be insulated from the can by an insulating rubber or the like.
  • a sintered body for a capacitor is manufactured using niobium powder manufactured according to the embodiment of the present invention described above, and a capacitor is manufactured from the sintered body. A small and highly reliable capacitor can be obtained.
  • the capacitor of the present invention has a larger capacitance for a volume than a conventional tantalum capacitor, so that a smaller capacitor product can be obtained.
  • the capacitor of the present invention having these characteristics is used, for example, as a bypass capacitor in analog circuits and digital circuits, as a coupling capacitor, as a large-capacity smoothing capacitor used in power supply circuits, and It can also be applied to conventional tantalum capacitor applications.
  • capacitor of the present invention is used, smaller and more reliable electronic devices than before, such as computer peripheral devices such as computers and PC cards, mobile devices such as mobile phones, home appliances, in-vehicle devices, and artificial satellites , Communication equipment, etc. Obtainable. BEST MODE FOR CARRYING OUT THE INVENTION
  • a Hewlett-Packard measuring instrument (Precision LCR meter HP 428A type A) is placed between a niobium sintered body immersed in 30% sulfuric acid and a tantalum material electrode immersed in sulfuric acid solution. ) And measured the capacity at 120 Hz, which was taken as the capacity of the sintered body (unit: ⁇ V / g). Leakage current measurement of sintered body:
  • a voltage of 70% of the formation voltage (DC) during the production of the dielectric was applied between the sintered body immersed in a 20% phosphoric acid aqueous solution and the electrode placed in the phosphoric acid aqueous solution. After continuously applying for 3 minutes, the measured current value was defined as the leakage current value (LC value, unit: / zAZg) of the sintered body. In the present invention, a voltage of 14 V was applied.
  • Capacitor capacitance measurement The capacitance and leakage current value of the chip-processed capacitor in this example were measured as follows. Capacitor capacitance measurement:
  • Example 1 At room temperature, of the rated voltage values (2.5 V, 4 V, 6.3 V, 10 V, 16 V, 25 V, etc.), a DC voltage close to the formation voltage of about 1Z3 to about 1Z4 at the time of manufacturing the dielectric was used. The current measured after 1 minute of continuous application between the terminals was taken as the leakage current of the capacitor fabricated on the chip. In the present invention, a voltage of 6.3V was applied.
  • tungsten-containing niobium ingot (alloy) containing 1 mol% of tungsten was produced by arc melting. 50 g of this ingot was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated tungsten-containing niobium mass was placed in a SUS 304 pot containing a SUS pole and ground for 10 hours.
  • the tungsten-containing niobium granulated powder thus obtained was molded together with a niobium wire having a diameter of 0.3 ⁇ to obtain a molded body (about O.lg) of about 0.3 cm ⁇ 0.18 cm ⁇ 0.45 cm.
  • niobium sintered body containing the aforementioned transition element of the Periodic Table Group 6 (using at least one selected from chromium, molybdenum, and tungsten).
  • a niobium ingot containing transition elements of Group 6 of the Periodic Table was prepared by arc melting.
  • 50 g of the ingot was pulverized by using the same apparatus as in Example 2 while changing the time.
  • a sintered body was prepared, and the capacity and LC were measured. Table 5 shows the results. Comparative Examples 1-4
  • niobium powder containing no transition element of Group 6 of the periodic table was prepared in the same manner as in Example 1. Using this niobium powder, a sintered body was prepared in the same manner as in Example 1, and the capacity and LC were measured. Table 5 shows the results. Table 5
  • the niobium-containing ingot is manufactured by changing the niobium content and the tungsten content to include 0.01 to 10 mol% of tungsten.
  • a sintered body was produced in the same manner as in Example 1, and the capacity and LC were measured. Table 8 shows the results. Comparative Example 5, Example 16
  • tungsten-containing niobium ingots containing 0 mol% and 15.5 mol% of tungsten were produced.
  • a sintered body was prepared by the same operation as in Example 1 for 50 g of a tungsten-containing niobium ingot having each tungsten concentration, and the capacity and LC were measured. Table 6 shows the results. Table 6
  • niobium ingot 100 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated niobium mass was placed in a S US 304 pot containing a S US pole and ground for 10 hours. Next, this hydride was slurried with water at a volume of 20% by volume and zirconia poles were placed in a wet mill (made by S US 304) made of S US 304 and wet milled for 7 hours. The slurry was centrifuged and decanted to obtain a ground product. The pulverized material was vacuum dried under the conditions of 133 Pa and 50 ° C.
  • niobium hydride powder in 1.33X 10_ 2 P a, 400 ° C.
  • the average particle size of the produced niobium powder was 1.3 m.
  • any one kind of tungsten carbide, tantalum oxide or tungsten metal having an average particle size of about 1 / m was mixed at an arbitrary ratio.
  • the tungsten-containing niobium powder thus obtained was granulated at 1150 ° C. under a reduced pressure of 3.99 ⁇ 10 3 Pa. Thereafter, the granulated mass was crushed to obtain granulated powder having an average particle size of 190 m.
  • niob granulated powder containing tungsten was molded together with a niobium wire of 0.3 ⁇ to obtain a molded body (about 0.1 lg) of about 0.3 cm ⁇ 0.18 cm ⁇ 0.45 cm.
  • tungsten-containing niobium nitride 10 g of tungsten-containing niobium powder containing 1.2 mol% of tungsten and having an average particle diameter of 0.9 ⁇ 1 prepared in the same manner as in Example 15 was placed in a SUS 304 reaction vessel, Nitrogen was continuously introduced at 0.5 ° C. for 0.5 to 20 hours to obtain a tungsten-containing niobium nitride. This Calculate the amount of nitrogen from the thermal conductivity of the nitride of L. Using a nitrogen amount measuring device manufactured by L ECO, determine the amount of nitrogen. The ratio to the mass of the powder separately measured is defined as the amount of nitriding. Met.
  • the tungsten-containing niobium nitride obtained in this manner is granulated, molded, and sintered by the same operation as in Example 1, and the obtained sintered body is heated to 80 ° C in a 0.1% phosphoric acid aqueous solution.
  • a dielectric layer was formed on the surface by forming at a temperature of 20 minutes at a voltage of 20 V for 200 minutes. Thereafter, the volume in 30% sulfuric acid and the LC in 20% aqueous phosphoric acid were measured. Table 8 shows the results. Table 8
  • a tungsten-containing niobium powder containing 10 mol% of tungsten and having an average particle diameter of 1.0 m was obtained in the same manner as in Example 1.
  • the pulverized product was mixed with 50% nitric acid and 10% hydrogen peroxide solution in 3: 2 ratio. (Mass ratio) The mixture was immersed and stirred in the liquid mixture. Thereafter, it was sufficiently washed with water until the pH reached 7, to remove impurities, and dried under vacuum.
  • the average particle size of the produced niobium powder was L2iim.
  • the tungsten-containing niobium powder and the niobium powder thus obtained were sufficiently mixed at an arbitrary ratio, and were subjected to granulation, molding, and sintering in the same manner as in Example 15 to obtain a sintered body.
  • the capacity and LC of this sintered body were measured. Table 9 shows the results. Examples 31 to 33
  • a tungsten-containing niobium powder containing 10 mol% of tungsten and having an average particle size of lO xm was obtained in the same manner as in Example 15. I got Separately, 50 g of niobium ingot was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a S US 304 pot containing an iron pole and ground for 10 hours.
  • this ground product was put into the above-mentioned SUS 304 reactor, and hydrogenated again under the above-mentioned conditions.
  • this hydride was slurried with water at 20% by volume and zirconia pores were placed in a SUS 304 wet mill (trade name "Atoliter”) and wet milled for 6 hours.
  • [V] is the value when applied for 1 minute. Examples 36 to 37
  • Example 36 was obtained in Example 8 and Example 37 was obtained in Example 15, and 50 sintered bodies were obtained by the same method. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes, and a dielectric oxide coating was formed on the surface. A film was formed. Next, after immersion in a 1: 1 (volume ratio) mixture of 35% aqueous lead acetate and 35% aqueous ammonium persulfate, the mixture was allowed to react at 40 ° C for 1 hour. Then, a mixed layer of lead dioxide and lead sulfate was formed as the other electrode layer. Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon.
  • the LC value is the value when 6.3 [V] is applied for 1 minute at room temperature. Examples 38-40
  • Example 38 is Example 7
  • Example 39 is Example 12
  • Example 40 is Example 25, and 50 sintered bodies obtained by the same method were prepared. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, an equivalent mixture of a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinone sulfonic acid is brought into contact with the dielectric oxide film, and the operation of contacting with pyrrole vapor is performed at least five times. The other electrode (counter electrode) was formed. Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon.
  • Potassium fluoroniobate thoroughly dried in a nickel crucible at 80 ° C Sodium was added to 20 g, 10 times the molar amount of potassium fluoroniobate, and a reduction reaction was performed at iooo ° c for 20 hours in an argon atmosphere. After the reaction, the reaction mixture was cooled, the reduced product was washed with water, washed sequentially with 95% sulfuric acid and water, and dried in vacuum. Furthermore, the powder was ground for 40 hours using a pole mill made of alumina pots containing silica alumina poles, and the ground material was immersed and stirred in a 3: 2 (mass ratio) mixed solution of 50% nitric acid and 10% hydrogen peroxide. .
  • the average particle size of the produced niobium powder was 1.3 im.
  • 30 g of the niobium powder thus obtained was placed in a reaction vessel made of SUS304, and nitrogen was continuously introduced at 300 ° C. for 0.5 to 4 hours to obtain a niobium nitride.
  • the nitrogen content of this nitride was determined from the thermal conductivity using a nitrogen content measuring device manufactured by LECO, and the ratio of the separately measured mass to the powder was defined as the nitriding content. % By mass.
  • This niobium nitride was subjected to granulation, molding, and sintering in the same manner as in Example 1 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface.
  • immersion in a 60% manganese nitrate aqueous solution and then heating at 220 for 30 minutes were repeated to form a manganese dioxide layer as the other electrode layer on the dielectric oxide film.
  • a carbon layer and a silver paste layer were sequentially laminated thereon.
  • the LC value is a value when 6.3 [V] is applied for 1 minute at room temperature. Comparative Examples 9 to 11
  • niobium ingot 50 g was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a S US 304 pot containing an iron pole and ground for 10 hours. Furthermore, this powder The crushed product was placed in the above-mentioned S US 304 reactor, and hydrogenated again under the above-mentioned conditions. Next, the hydride was slurried with water at a volume of 20% by volume and zirconiapol was placed in a wet crusher made of S US 304 (trade name “Attritor”) and wet crushed for 6 hours. After centrifugal sedimentation of the slurry, the slurry was decanted to obtain a ground product. The pulverized product was vacuum-dried under a reduced pressure of 133 Pa at 50 ° C.
  • niobium hydride powder 1.33X 10- 2 P a 400 ° (:.. Was dehydrogenated by heating for 1 hour at an average particle diameter of the produced niobium powder had a lO m two O Bulk powder 3 Og was placed in a SUS 304 reaction vessel, and nitrogen was continuously introduced at 300 ° C for 0.5 to 3 hours to obtain niobium nitride, which was used to determine the amount of nitrogen from thermal conductivity.
  • the nitrogen content was determined using a nitrogen content meter manufactured by CO, and the ratio to the mass of the powder separately measured was taken as the nitriding content, which was 0.03 to 0.28% by mass.
  • a sintered body was obtained by performing granulation, molding, and sintering in the same manner as described above, and using a 0.1% phosphoric acid aqueous solution at a voltage of 20 V for 50 sintered bodies thus obtained. For 10 minutes to form a dielectric oxide film on the surface, and then put a 10% aqueous solution of ammonium persulfate and anthraquinone sulfo over the dielectric oxide film. The same electrode mixture of 0.5% aqueous solution of acid was brought into contact, and the operation of exposing to the vapor of pyrrole was performed at least 5 times to form the other electrode made of polypyrrole. Silver paste layers were sequentially laminated.
  • Example 41 50 sintered bodies obtained by the same method as in Example 25 were prepared. These sintered bodies were electrolyzed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, this niobium sintered body is immersed in an aqueous solution (solution 1A) containing 25% by weight of ammonium persulfate, pulled up, dried at 80 ° C.
  • solution 1A aqueous solution
  • Oxidative polymerization was carried out by immersing in an isopropanol solution (solution 2) containing 18% by mass of monoethylenedioxythiophene, lifting it up, and leaving it in a 60 atmosphere for 10 minutes.
  • a boron-containing niobium ingot (alloy) containing 2 mol% of boron was produced by arc melting. 50 g of this ingot was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 "0 for 10 hours. After cooling, the hydrogenated boron-containing niobium lump was replaced with a SUS pole in a SUS. The hydride was slurried with water at 20% by volume and zirconia poles were placed in a SUS 304 spike mill, and the mixture was crushed at 10 ° C or lower. This slurry was subjected to centrifugal sedimentation, and then decanted to obtain a ground product The ground material was vacuum-dried at 1.33 ⁇ 10 2 Pa and 50 ° C.
  • the boron-containing niobium granulated powder thus obtained was molded together with a niobium wire having a diameter of 0.3 mm ⁇ i) to produce a compact (about 0.1 g) of about 0.3 cm ⁇ 0.18 cm ⁇ 0.45 cm.
  • Example 4 ⁇ 55 Boron, aluminum, gallium, indium, thallium powder and niobium ingot are used in an arbitrary ratio to produce the above-mentioned niobium sintered body containing boron and aluminum, and boron, aluminum, gallium, and indium are formed by arc melting. A thallium-containing niobium ingot was made. Hereinafter, 50 g of this ingot was ground using the same apparatus as in Example 43 for various times. A sintered body was prepared using the boron and aluminum-containing niobium powder thus obtained, and the capacity and LC were measured. Table 11 shows the results.
  • niobium powders having different average particle diameters without containing boron, aluminum, gallium, indium, and lithium were prepared by the same operation as in Example 1.
  • a sintered body was prepared in the same manner as in Example 43, and the capacity and LC were measured. Table 11 shows the results. Table 11
  • a boron-containing niobium ingot was prepared by treating with arc melting, changing the amount of niobium, and changing the amount of boron to 0.02 to 9.8 mol% of boron.
  • a sintered body was produced in the same manner as in Example 1, and the capacity and LC were measured. Table 12 shows the results.
  • Examples 52 For comparison with 2 to 59, boron-containing niobium ingots containing 0 mol%, 13.3 mol% and .5 mol% of boron were produced.
  • a sintered body was prepared from 50 g of the boron-containing niobium ingot having each boron concentration by the same operation as in Example 43, and the capacity and LC were measured.
  • Table 12 shows the results.
  • Table 12 Boron content Average particle size Sintering temperature Capacity LC
  • niobium ingot 100 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing a SUS pole and ground for 10 hours. Next, a 20 volume% slurry of this hydride and water and zirconiapol were put into a spike mill made of S US 304 and wet-ground for 7 hours. The slurry was centrifuged and decanted to obtain a ground product. The crushed material was vacuum-dried at 1.33 ⁇ 10 2 Pa and 50 ° C.
  • the hydrogenated niobium powder was dehydrogenated by heating 1 hour at 1.33 xl O_ 2 P a, 400 ° C.
  • the average particle size of the produced niobium powder was 1.1 m.
  • This niobium powder was mixed with any one of niobium diboride, boron oxide, and boron having an average particle size of about 1 / xm at an arbitrary ratio. Obtained in this manner, a reduced pressure of 3.99X 10- 3 P a niobium powder containing boron was granulated at 1050 ° C. Thereafter, the granulated mass was crushed to obtain granulated powder having an average particle size of 90 m.
  • the niobium-containing boron-containing powder obtained in this manner was molded together with a niobium wire having a diameter of 0.3 ⁇ to obtain a molded body (approximately O.lg) of about 0.3cm ⁇ 0.18cm ⁇ 0.45cm.
  • these compacts were left under a reduced pressure of 3.99 ⁇ 10 3 Pa at 1200 ° C. for 30 minutes to obtain sintered bodies.
  • the obtained sintered body was formed in a 1% phosphoric acid aqueous solution at a temperature of 80 ° C. for 200 minutes at a voltage of 20 V to form a dielectric layer on the surface. Thereafter, the volume in 30% sulfuric acid and the LC in 20% aqueous phosphoric acid were measured. Table 13 shows the results. Table 13
  • a boron-containing niobium nitride 10 g of a boron-containing niobium powder containing 3.2 mol% of boron and having an average particle diameter of 0.9 m, which was produced in the same manner as in Example 43, was placed in a SUS 304 reaction vessel. Nitrogen was continuously introduced at 0.5 ° C. for 0.5 to 20 hours to obtain a boron-containing niobium nitride. The nitrogen content of this nitride was determined from the thermal conductivity using a nitrogen content meter manufactured by LECO, and the ratio of the separately measured mass to the powder mass was taken as 0.02 to 0.89 % By mass.
  • the boron-containing niobium nitride thus obtained was granulated, molded, and sintered by the same operations as in Example 43, and the obtained sintered body was treated at 80 ° C in a 0.1% phosphoric acid aqueous solution.
  • a dielectric layer was formed on the surface by forming at a temperature of 200 V for 20 minutes at a voltage of 20 V. Thereafter, the volume in 30% sulfuric acid and the LC in 20% aqueous phosphoric acid were measured. Table 14 shows the results.
  • a boron-containing niobium powder containing 6.9 mol% of boron and having an average particle diameter of 1.0 / xm was obtained in the same manner as in Example 43. Obtained.
  • the mixture was further pulverized for 40 hours using a pole mill made of alumina pot containing silica alumina pole, and then the pulverized product was immersed and stirred in a 3: 2 (mass ratio) mixed solution of 50% nitric acid and 10% hydrogen peroxide. . Thereafter, impurities were removed by sufficiently washing with water until the pH became 7, followed by vacuum drying.
  • the average particle size of the produced niobium powder was 1.2 ⁇ m.
  • the boron-containing niobium powder and the niobium powder thus obtained were sufficiently mixed in the proportions shown in Table 15 and granulated, molded and sintered in the same manner as in Example 1 to obtain a sintered body. Obtained. The capacity and LC of this sintered body were measured. The results are shown in Table 15. Examples 77 to 80
  • a boron-containing niobium powder containing 6.9 mol% of boron and having an average particle diameter of 1.0 m was obtained in the same manner as in Example 43. Obtained.
  • 50 g of a niobium ingot was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a S US 304 pot containing an iron pole and ground for 10 hours.
  • this ground product was placed in the above-mentioned S US 304 reactor and hydrogenated again under the above-mentioned conditions.
  • a 20 volume% slurry of this hydride and water and a zirconia pole were put into a SUS 304 spike mill and wet milled for 6 hours.
  • the boron-containing niobium powder and the niobium powder obtained in this manner were sufficiently mixed at an arbitrary ratio to obtain a nitride in the same manner as in Example 68, and then subjected to granulation, molding and sintering. A sintered body was obtained. The capacity and LC of this sintered body were measured. Table 15 shows the results. Table 15 Mixing ratio
  • Niof 'powder type (boron-containing niobium powder
  • Example 83 is Example 53
  • Example 84 is Example 48
  • 50 sintered bodies obtained by the same method were prepared. These sintered bodies were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, after immersing in a 1: 1 (volume ratio) mixture of a 35% aqueous lead acetate solution and a 35% aqueous ammonium persulfate solution, the mixture was allowed to react at 40 ° C. for 1 hour. A mixed layer of lead dioxide and lead sulfate was formed on the oxide film as the other electrode layer. Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon.
  • the LC value is the value when 6.3 V and 1 minute are applied at room temperature.
  • Example 85 is Example 58
  • Example 86 is Example 49
  • Example 87 is Example 67
  • Example 88 is Example 71.
  • 50 obtained sintered bodies were prepared. These sintered bodies were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, the dielectric oxide film is brought into contact with an equal amount of a mixture of a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinonesulfonic acid, and then exposed to at least 5 vapors. This was repeated to form the other electrode (counter electrode) made of polypropylene.
  • Example 89, Example 59, Example 90, Example 50, Example 91, Example 65, Example 92, Example 72, Example 93 50 sintered bodies obtained in the same manner as in Example 76 were prepared. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, this niobium sintered body is immersed in an aqueous solution (solution 1) containing 25% by mass of ammonium persulfate, pulled up, dried at 80 ° C. for 30 minutes, and then a sintered body having a dielectric formed thereon is obtained.
  • solution 1 aqueous solution
  • Oxidative polymerization was carried out by immersing in an isopropanol solution (solution 2) containing 18% by mass of 3,4-ethylenedioxythiophene, and then pulling it up and leaving it to stand at 60 ° C for 10 minutes. This was immersed again in Solution 1 and further treated as described above. Oxidation polymerization after immersion in solution 1 After repeating the procedure up to 8 times, wash with warm water at 50 ° C for 10 minutes, and dry at 100 nC for 30 minutes to obtain conductive poly (3,4-ethylenedioxythiophene). The other electrode (counter electrode) was formed.
  • the average particle size of the prepared niobium powder was 1.3 m.
  • 30 g of the niobium powder thus obtained was placed in a SUS 304 reaction vessel, and nitrogen was continuously introduced at 300 ° C. for 0.5 to 4 hours to obtain a niobium nitride.
  • the nitrogen content of this nitride was determined from the thermal conductivity.
  • the nitrogen content was determined using a nitrogen content analyzer manufactured by LECO, and the ratio to the separately measured mass of the powder was defined as the nitriding content. Met.
  • This niobium nitride was subjected to granulation, molding and sintering in the same manner as in Example 43 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were subjected to electrolytic oxidation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface.
  • 60% manganese nitrate aqueous solution After immersion in the solution, heating at 220 ° C. for 30 minutes was repeated to form a manganese dioxide layer as the other electrode layer on the dielectric oxide film.
  • a carbon layer and a silver best layer were sequentially laminated thereon.
  • niobium ingot 50 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing an iron pole and ground for 10 hours. Further, this ground product was placed in the above-mentioned SUS 304 reactor, and hydrogenated again under the above-mentioned conditions. Next, this hydride was slurried with water at 20% by volume and zirconia pole was placed in a wet mill (trade name: “Atritor”) made of S US 304 and wet milled for 6 hours. After centrifugal sedimentation of this slurry, the slurry was decanted to obtain a ground product.
  • Tritor wet mill
  • niobium hydride powder Under a reduced pressure of a pulverized material 1.33X 10 2 P a, and vacuum dried under the conditions of 50 ° C. Subsequently, under a reduced pressure of 1.33X 10- 2 P a a niobium hydride powder was dehydrogenated by heating 1 hour at 400 ° C. The average particle size of the produced niobium powder was 1.0 m. 30 g of niobium powder was placed in a reaction vessel made of S US 304, and nitrogen was continuously introduced at 300 ° C. for 0.5 to 3 hours to obtain niobium nitride. The amount of nitrogen of this nitride is determined from the thermal conductivity.
  • the amount of nitrogen is determined using a nitrogen amount measuring device manufactured by LECO, and the ratio to the mass of the powder separately measured is defined as the amount of nitriding. there were.
  • This niobium nitride was subjected to granulation, molding and sintering in the same manner as in Example 43 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface.
  • a rhenium-containing niobium ingot (alloy) containing 1 mol% of rhedium was produced by arc melting. 50 g of this ingot was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated rhenium-containing niobium mass was placed in a SUS 304 pot containing a SUS pole and ground for 10 hours. Next, a 20 volume% slurry of this hydride and water and a zirconia pole were put into a SUS 304 spike mill, and wet crushed at 10 or less for 7 hours. After centrifugal sedimentation of this slurry, decantation was performed to obtain a pulverized product. The ground material was vacuum-dried at 1.33 ⁇ 10 2 Pa and 50 ° C.
  • the rhenium-containing niobium granulated powder thus obtained was molded together with a 0.3 mm niobium wire to obtain a molded body (about 0.1 g) of about 0.3 ⁇ 111 ⁇ 0.18 ⁇ 11 ⁇ 0.45 (111).
  • Rhenium has the lowest leakage current, followed by zinc, arsenic, phosphorus, germanium, and tin. Cerium, neodymium, titanium, ruthenium, rhodium, palladium, silver, silicon, and bismuth show almost the same leakage current values and follow tin. Therefore, in the present invention, it is most preferable that rhenium be contained in the niobium powder, and then zinc is preferable. Comparative Example 24 to 27
  • Example 9 For comparison with 4-1117, the average particle size without cerium, neodymium, titanium, renium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, and bismuth
  • niobium powders having different compositions were prepared in the same manner as in Example 94.
  • a sintered body was prepared in the same manner as in Example 94, and the capacity and LC were measured. Table 17 shows the results. Table 17
  • a rhenium-containing niobium ingot was prepared which was treated by arc melting, and where the amount of niobium was changed and the amount of rhenium was changed from 0.01 to 7 mol%.
  • a sintered body was prepared from 50 g of a rhenium-containing niobium ingot having each rhenium concentration in the same manner as in Example 94, and the capacity and LC were measured. The results are shown in Table 18 You. Comparative Examples 28 to 30
  • Example 94 and Example 1 18 to 122 For comparison with Example 94 and Example 1 18 to 122, rhenium-containing niobium ingots containing 0 mol%, 11 mol% and 18 mol% of rhenium were produced.
  • a sintered body was prepared from 50 g of a rhenium-containing niobium ingot having each rhenium concentration in the same manner as in Example 94, and the capacity and LC were measured.
  • Table 18 shows the results. Table 18
  • niobium ingot 100 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing a sus pole and ground for 10 hours. Next, a 20 volume% slurry of the hydride and water and a zirconia pole were put into a spike mill made of S US 304 and wet milled for 7 hours. The slurry was centrifuged and decanted to obtain a ground product. 1.33X crushed material Vacuum drying was performed under the conditions of 10 2 Pa 50 ° C. Subsequently, the hydrogenated niobium powder was dehydrogenated by heating 1 hour at 1.33 X 10- 2 P a 400 ° C. The average particle size of the produced niobium powder was 1.1 m.
  • This niobium powder was mixed with any one of rhenium oxide, rhenium sulfide, and rhenium metal having an average particle size of about 1 m at an arbitrary ratio. Resulting et a in this manner, a reduced pressure of 4 X 10- 3 P a niobium powder containing rhenium, and granulated with 1050. Thereafter, the granulated mass was crushed to obtain granulated powder having an average particle size of 90 im.
  • the niobium granulated powder containing rhenium obtained in this manner is molded together with a 0.3 ⁇ niobium wire to produce a molded body of about 0.3 (: 111 0.18 by 111 0.45 (111) (about 0.1 g) was. then under reduced pressure to obtain a sintered body by standing for 30 minutes at 1200 ° C. the resulting sintered body, a 0.1% phosphoric acid aqueous solution of these molded body 4 X 10 one 3 P a
  • a dielectric layer was formed on the surface by forming at a temperature of 8 Ot for 200 minutes at a voltage of 20 V. After that, a capacity in 30% sulfuric acid and a 20% phosphoric acid aqueous solution LC was measured, and the results are shown in Table 19.
  • rhenium-containing niobium nitride 10 g of rhenium-containing niobium powder containing 0.9 mol% of rhenium and having an average particle diameter of 0.9 m, which was prepared in the same manner as in Example 94, was placed in a SUS 304 reaction vessel. 0.5 to 20 hours at ° C By continuing to introduce nitrogen, a rhenium-containing niobium nitride was obtained. The nitrogen content of this nitride was determined from the thermal conductivity using a nitrogen content measuring device manufactured by LECO, and the nitrogen content was determined as the ratio to the mass of the powder separately measured. 0.79% by mass.
  • the rhenium-containing niobium nitride thus obtained was granulated, molded and sintered in the same manner as in Example 94, and the obtained sintered body was dissolved in a 0.1% phosphoric acid aqueous solution.
  • a dielectric layer was formed on the surface by forming at a temperature of 80 ° C for 200 minutes at a voltage of 20V. Thereafter, the volume in 30% sulfuric acid and the LC in 20% aqueous phosphoric acid were measured. Table 20 shows the results.
  • a rhenium-containing niobium powder containing 10 mol% of rhenium and having an average particle diameter of 1.0 zm was obtained in the same manner as in Example 94.
  • a rhenium-containing niobium powder containing 10 mol% of rhenium and having an average particle size of 1.0 m was prepared in the same manner as in Example 94. Obtained. Separately, 50 g of niobium ingot was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing an iron pole and ground for 10 hours.
  • this ground material was placed in the above-mentioned SUS 304 reactor and hydrogenated again under the above-mentioned conditions.
  • a 20 volume% slurry of this hydride and water and a zirconia pole were put into a SUS 304 spike mill and wet-milled for 6 hours. After centrifugal sedimentation of this slurry, decantation was performed to obtain a ground product.
  • the pulverized material was vacuum-dried under conditions of 1.33 ⁇ 10 2 Pa and 50 ° C. Subsequently, under a reduced pressure of 133X 10- 2 P a a niobium hydride powder was dehydrogenated by heating 1 hour at 400 ° C. The average particle size of the produced niobium powder was 1.1 m.
  • Example 140 is Example 94
  • Example 141 is Example 116
  • 50 sintered bodies obtained by the same method were prepared. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, after immersion in a 60% manganese nitrate aqueous solution,
  • Example 142 was Example 95
  • Example 143 was Example 128, and 50 sintered bodies were obtained by the same method. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, after immersion in a 1: 1 (volume ratio) mixture of a 35% aqueous lead acetate solution and a 35% aqueous ammonium persulfate solution, the mixture was allowed to react at 40 ° C for 1 hour. Lead dioxide and lead sulfate as the other electrode layer was formed. Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon.
  • Example 14 is Example 96
  • Example 1 45 is Example 1 15
  • Example 1 46 is Example 13 2
  • Example 1 47 is Example 97.
  • 50 sintered bodies obtained by the same method were prepared. These sintered bodies were electrolytically formed at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, an equivalent mixture of a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinonesulfonic acid is brought into contact with the dielectric oxide film, and the operation of touching pyrrole vapor is performed at least five times. As a result, the other electrode (counter electrode) made of polypropylene was formed.
  • Example 1 48 is Example 1 14, Example 1 49 is Example 1 2 2, Example 1 50 is Example 1 2 3, Example 1 5 1 is Example 1 2 4
  • Example 15 was prepared in the same manner as in Example 13 and Example 13 and Example 15 was prepared in Example 13 and 50, respectively, and 50 sintered bodies obtained by the same method were prepared. These sintered bodies were treated at a voltage of 20 V with 0.1% phosphoric acid aqueous solution. The solution was subjected to electrolytic formation for 200 minutes to form a dielectric oxide film on the surface. Next, this niobium sintered body is immersed in an aqueous solution (solution 1) containing 25% by mass of ammonium persulfate, pulled up, dried at 80 ° C.
  • solution 1 aqueous solution
  • niobium powder was 1.3 / xm.
  • 30 g of niobium powder obtained in this way was used as a SUS 304 reaction vessel.
  • nitrogen was continuously introduced at 300 for 0.5 to 4 hours to obtain niobium nitride.
  • the nitrogen content of this nitride was determined from the thermal conductivity.
  • the nitrogen content was determined using a nitrogen content measuring device manufactured by LECO, and the ratio to the separately measured mass of the powder was defined as the nitriding content. Met.
  • This niobium nitride was subjected to granulation, molding, and sintering in the same manner as in Example 1 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface.
  • immersion in a 60% manganese nitrate aqueous solution and then heating at 220 ° C for 30 minutes were repeated to form a manganese dioxide layer as the other electrode layer on the dielectric oxide film.
  • a carbon layer and a silver paste layer were sequentially laminated thereon.
  • the whole was sealed with epoxy resin to produce a chip-type capacitor.
  • the LC value is the value when a voltage of 6.3V is applied for 1 minute at room temperature. Comparative Examples 33 to 35
  • niobium ingot 50 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing an iron pole and ground for 10 hours. Further, this ground product was placed in the above-mentioned SUS 304 reactor, and hydrogenated again under the above-mentioned conditions. Next, this hydride was slurried with water at a volume of 20% by volume and zirconia balls were placed in an S US 304 wet mill (trade name “Atrei Yu”) and wet milled for 6 hours. After centrifugal sedimentation of the slurry, the slurry was decanted to obtain a ground product.
  • SUS 304 wet mill trade name “Atrei Yu”
  • niobium hydride powder Under a reduced pressure of a pulverized material 1.33X 10 2 P a, and vacuum dried under the conditions of 50 D C. Subsequently, under a reduced pressure of 1.33X 10- 2 P a a niobium hydride powder was dehydrogenated by heating 1 hour at 400 ° C. The average particle size of the prepared niobium powder is 1.0 m. 30 g of niobium powder was placed in a SUS 304 reaction vessel, and nitrogen was continuously introduced at 300 at 0.5 to 3 hours to obtain niobium nitride. The amount of nitrogen in this nitride was determined from the thermal conductivity.
  • the amount of nitrogen was determined using a nitrogen amount analyzer manufactured by LECO, and the ratio to the mass of the powder separately measured was defined as the amount of nitriding. Met. This niobium nitride was subjected to granulation, molding and sintering in the same manner as in Example 94 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were subjected to electrolytic formation at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface.
  • an equivalent mixture of a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinone sulfonic acid is brought into contact with the dielectric oxide film, and then the operation of contacting with a vapor of pyrrole is performed at least five times.
  • the other electrode made of polypyrrole was formed.
  • a carbon layer and a silver base layer were sequentially laminated thereon.
  • a lanthanum-containing niobium ingot (alloy) containing 1 mol% of lanthanum was produced by arc melting.
  • 50 g of this ingot was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 10 hours.
  • the hydrogenated lanthanum-containing niobium mass was placed in a SUS 304 pot containing a SUS pole and ground for 10 hours.
  • this hydride was added to a SUS 304 spike mill with water at 20% by volume.
  • the slurry and the zirconium alcohol were added and wet-ground for 7 hours. After centrifugal sedimentation of this slurry, decantation was performed to obtain a ground product.
  • the ground product was dried under reduced pressure at 1.33 ⁇ 10 2 Pa and 50 ° C.
  • the prepared lanthanum-containing niobium powder had an average particle size of 1.0 mm and a lanthanum content of 1 mol%. Under a reduced pressure of the lanthanum-containing niobium powder 4X 1 0- 3 P a, and granulated with 1100 ° C. Thereafter, the granulated mass was crushed to obtain granulated powder having an average particle size of 100 m.
  • the granulated lanthanum-containing niobium powder thus obtained was molded together with a niobium wire of 0.3 ⁇ to produce a molded body (about O.lg) of about 0.3 cm ⁇ 0.18 cm ⁇ 0.45 cm.
  • Example 15 For comparison with 4-14-195, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, turium , Ytterbium, Lute
  • niobium powders having different average particle diameters without containing titanium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, sulfur, selenium, and tellurium were prepared in the same manner as in Example 1.
  • a sintered body was prepared in the same manner as in Example 154, and the capacity and LC were measured. The results are shown in Table 23 (No. 1 and No. 2).
  • Table 2 3 No.1)
  • Example 166 Nb Ho 99: 7: 0.3 1.0 106000 44
  • Examples 196 to 202 Lanthanum-containing niobium powder containing 0.01 to 20 mol% of lanthanum, which is treated by arc melting in order to obtain a lanthanum-containing niobium powder having a different lanthanum content. An ingot was made. Hereinafter, a sintered body was prepared from 500 g of a lanthanum-containing niobium ingot having each lanthanum concentration in the same manner as in Example 154, and the capacity and LC were measured. Table 24 shows the results. Table 24
  • Niobium ingot lOOOOg is put into a SUS 304 reaction vessel and 400. The introduction of hydrogen at C was continued for 10 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing a SUS port and ground for 10 hours. Next, the obtained hydride was made into a slurry of 20% by volume with water, put into a SUS304 spike mill together with zirconia pole, and wet-milled for 7 hours. After centrifugal sedimentation of this slurry, decantation was performed to obtain a ground product. The ground material was dried under reduced pressure at 1.3 ⁇ 10 2 Pa and 50 ° C. Subsequently, the hydrogenated niobium powder 1.
  • the average particle size of the produced niobium powder was 1.0 / 2 m.
  • This niobium powder was mixed with any one of lanthanum oxide, lanthanum oxalate, lanthanum hydride, lanthanum nitrate, or lanthanum (metal) having an average particle size of about 1 m at an arbitrary ratio. Obtained in this manner, a reduced pressure of 4 X 10- 3 P a niobium powder containing lanthanum, was granulated at 1050 ° C. Thereafter, the granulated mass was unframed to obtain granulated powder having an average particle size of 90 m.
  • the lanthanum-containing niobium granulated powder obtained in this manner was co-existed with a 0.3 mm ⁇ niobium wire. Then, a molded body (about 0.1 lg) of about 0.3 cmX 0.18 cmX 0.45 cm was produced. Then a reduced pressure of these molded 4X 10- 3 P a, to obtain a sintered body by standing for 30 minutes at 1250 ° C. The obtained sintered body was formed in a 0.1% phosphoric acid aqueous solution at a temperature of 80 ° C. for 200 minutes at a voltage of 20 V to form a dielectric layer on the surface. Thereafter, the volume in 30% sulfuric acid and the LC in 20% aqueous phosphoric acid were measured. Table 25 shows the results. Table 25
  • a lanthanum-containing niobium nitride 10 g of a lanthanum-containing niobium powder having an average particle diameter of 0.9 m containing 0.9 mol% of lanthanum prepared in the same manner as in Example 154 was placed in a SUS 304 reaction vessel. Nitrogen was continuously introduced at 0.5 ° C. for 0.5 to 20 hours to obtain a lanthanum-containing niobium nitride. The amount of nitrogen in this nitride was determined from the thermal conductivity. The amount of nitrogen was determined using a nitrogen amount analyzer manufactured by LECO. Met.
  • the lanthanum-containing niobium nitride obtained in this manner was granulated, molded and sintered by the same operation as in Example 154, and the obtained sintered body was treated at 80 ° C in a 0.1% phosphoric acid aqueous solution. By applying a voltage of 20V for 200 minutes at a temperature of An electric conductor layer was formed. Thereafter, the volume in 30% sulfuric acid and the LC in a 20% aqueous phosphoric acid solution were measured. The results are shown in Table 26. Table 26
  • a lanthanum-containing niobium powder containing 10 mol% of lanthanum and having an average particle size of 1.0 m was obtained in the same manner as in Example 154. Obtained.
  • the lanthanum-containing niobium powder and the niobium powder thus obtained were sufficiently mixed in the proportions shown in Table 27, and granulated, molded, and sintered in the same manner as in Example 154. Thus, a sintered body was obtained. The capacity and LC of this sintered body were measured. Table 27 shows the results. Examples 216 to 218
  • lanthanum was contained in an amount of 10 mol% in the same manner as in Example 1 and had an average particle diameter of lO m.
  • a lanthanum-containing niobium powder was obtained.
  • 50 g of Nyovingot was placed in a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C for 12 hours. After cooling, the hydrogenated niobium mass was placed in a SUS 304 pot containing an iron pole and ground for 10 hours.
  • this ground material was put into the above-mentioned SUS 304 reactor, and hydrogenated again under the above-mentioned conditions.
  • this hydride was slurried with water at 20% by volume in a spike mill made of SUS 304, and zirconia-pol was added thereto and wet-pulverized for 6 hours.
  • the lanthanum-containing niobium powder and the niobium powder thus obtained were sufficiently mixed at an arbitrary ratio to obtain a nitride in the same manner as in Example 210, and then subjected to granulation, molding, and sintering. A sintered body was obtained. The capacity and LC of this sintered body were measured. Table 27 shows the results. Table 27
  • Example 219 is Example 154
  • Example 220 is Example 182
  • Example 221, Example 159, Example 222, Example 204, and 50 sintered bodies obtained by the same method were prepared. These sintered bodies were subjected to electrolytic oxidation for 6 hours using a 0.1% phosphoric acid aqueous solution at a voltage of 20 V to form a dielectric oxide film on the surface. Next, 35% lead acetate aqueous solution and 35% ammonium persulfate After immersing in a 1: 1 (volume ratio) aqueous solution and reacting at 40 ° C for 1 hour, a mixed layer of lead dioxide and lead sulfate is formed on the dielectric oxide film as the other electrode layer did. Subsequently, a carbon layer and a silver paste layer were sequentially laminated thereon.
  • Example 22 3 is Example 16 7 and Example 22 4 is Example 18 9 and Example
  • Example 225 was Example 211, and Example 226 was Example 215.
  • Each 50 sintered bodies were obtained by the same method. These sintered bodies were applied at a voltage of 20 V,
  • Electrolytic oxidation was performed for 6 hours using a 0.1% aqueous phosphoric acid solution to form a dielectric oxide film on the surface.
  • an equivalent mixture of a 10% aqueous solution of ammonium persulfate and a 0.5% aqueous solution of anthraquinonesulfonic acid is brought into contact with the dielectric oxide film, and the operation of touching pyrrole vapor is performed at least five times.
  • the other electrode (counter electrode) made of polypyrrole was formed.
  • the LC value is the value when a voltage of 6.3 V is applied for 1 minute at room temperature.
  • Example 227 is Example 170
  • Example 228 is Example 191
  • Example 229 is Example 205
  • Example 230 is Example 210.
  • Example 2 3 1 Example 218 and 50 sintered bodies obtained by the same method were prepared. These sintered bodies were electrolytically oxidized at a voltage of 20 V using a 0.1% phosphoric acid aqueous solution for 6 hours to form a dielectric oxide film on the surface. Next, this niobium sintered body is immersed in an aqueous solution (solution 1) containing 25% by mass of ammonium persulfate, pulled up, dried at 80 ° C.
  • solution 1 aqueous solution
  • the sintered body having formed the dielectric is obtained by adding It was immersed in an isopropanol solution (solution 2) containing 18% by mass of 4_ethylenedioxythiophene, pulled up, and left standing at 60 ° C for 10 minutes to perform oxidative polymerization. This was immersed in the solution 1 again, and further treated as described above. The procedure from immersion in solution 1 to oxidative polymerization is repeated eight times, followed by washing with warm water at 50 ° C for 10 minutes and drying at 100 ° C for 30 minutes to obtain a conductive poly ( The other electrode (counter electrode) consisting of 3,4-ethylenedioxythiophene) was formed.
  • the average particle size of the niobium powder was 1.3 m. I got it. 30 g of the niobium powder thus obtained was placed in a SUS 304 reaction vessel, and nitrogen was continuously introduced at 300 for 0.5 to 4 hours to obtain a niobium nitride. The nitrogen content of this nitride was determined from the thermal conductivity. The nitrogen content was determined using a nitrogen content measuring device manufactured by LECO, and the ratio to the separately measured mass of the powder was defined as the nitriding content. It was done.
  • This niobium nitride was subjected to granulation, molding, and sintering in the same manner as in Example 154 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were electrolytically oxidized with a 0.1% phosphoric acid aqueous solution at a voltage of 20 V for 6 hours to form a dielectric oxide film on the surface.
  • immersion in a 60% manganese nitrate aqueous solution and heating at 220 ° C. for 30 minutes were repeated to form a manganese dioxide layer as the other electrode layer on the dielectric oxide film.
  • a carbon layer and a silver paste layer were sequentially laminated thereon.
  • niobium ingot 50 g was put into a SUS 304 reaction vessel, and hydrogen was continuously introduced at 400 ° C. for 12 hours. After cooling, the hydrogenated niobium mass was placed in a S US 304 pot containing an iron pole and ground for 10 hours. Further, this ground material was placed in the above-mentioned SUS 304 reactor and hydrogenated again under the above-mentioned conditions.
  • a SUS 304 wet mill (trade name “Atritor”) was slurried with 20% by volume of this hydride with water and zirconia pole, and wet milled for 6 hours. After centrifugal sedimentation of the slurry, the slurry was decanted to obtain a ground product.
  • the ground product was dried under reduced pressure of 1.33 ⁇ 10 2 Pa under reduced pressure of 50. Subsequently, under a reduced pressure of the niobium hydride powder 1.33X 10_ 2 P a, and dehydrogenated by heating 1 hour at 400 ° C.
  • the average particle size of the prepared niobium powder is l.Ow m.
  • Niobium powder (30 g) was placed in a SUS304 reaction vessel, and nitrogen was continuously introduced at 300 ° C. for 0.5 to 3 hours to obtain a niobium nitride.
  • the nitrogen content of this nitride was determined from the thermal conductivity using a nitrogen content measuring device manufactured by LEC ⁇ , and the ratio of the separately measured powder mass to the powder mass was determined as the nitriding content. It was 28% by mass.
  • This niobium nitride was subjected to granulation, molding, and sintering in the same manner as in Example 154 to obtain a sintered body.
  • the 50 sintered bodies thus obtained were electrolytically oxidized at a voltage of 20 V using an aqueous 0.1% phosphoric acid solution for 6 hours to form a dielectric oxide film on the surface.
  • the heat resistance of the capacitor was measured as follows.
  • the capacitor is heated about 230 ° C X 30 seconds X 3 times when passing through the reflow furnace, and a practical heat history (for example, soldering of components mounted on the surface of the board, Evaluation of soldering of mounted components and heat history of soldering three times when soldering of retrofitted components is performed).
  • a practical heat history for example, soldering of components mounted on the surface of the board, Evaluation of soldering of mounted components and heat history of soldering three times when soldering of retrofitted components is performed.
  • a chip-type capacitor was prepared in the same manner as in Example 48, using the sintered body obtained in the same manner as in Example 101.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Description

ニオブ粉、 その焼結体及びそれを用いたコンデンサ 技術分野
本発明は、 単位質量当たりの容量が大きく、 漏れ電流特性の良好なコンデ ンサを製造することができるニオブ粉、 それを用いた焼結体、 及びその焼結 体を用いたコンデンサに関する。 背景技術
携帯電話やパーソナルコンピュータ等の電子機器に使用されるコンデンサ は、 小型で大容量のものが望まれている。 このようなコンデンサの中でもタ ンタルコンデンサは大きさの割には容量が大きく、 しかも性能が良好なため、 好んで使用されている。 このタンタルコンデンサの陽極体として、 一般的に タンタル粉の焼結体が使用されている。 これらタンタルコンデンサの容量を 上げるためには、 焼結体質量を増大させるか、 または、 タンタル粉を微粉ィ匕 して表面積を増加させた焼結体を用いる必要がある。
焼結体質量を増加させる方法では、 コンデンサの形状が必然的に増大して 小型化の要求を満たさない。 一方、 タンタル粉を微粉化して比表面積を増加 させる方法では、 タンタル焼結体の細孔径が小さくなり、 また焼結段階で閉 鎖孔が多くなり、 後工程における陰極剤の含浸が困難になる。
これらの欠点を解決する研究の一つとして、 タンタルより誘電率の大きい 材料を用いた、 粉焼結体のコンデンサが考えられる。 これらの誘電率の大き い材料としてニオブがある。
特開昭 55-157226号公報には、 凝集粉から粒径 2. 0 z m、 あるいはそれ以 下のニオブ微粉末を加圧成形して焼結し、 その成形焼結体を細かく裁断して、 これにリ―ド部を接合した後再び焼結するコンデンサ用焼結素子の製造方法 が開示されている。 しかしながら、 該公報にはコンデンサ特性のについての 詳細は示されてない。
米国特許 4, 084, 965号公報には、 ニオブィンゴットを水素化して微碎し、 5. 1 mのニオブ粉末を得、 これを焼結して用いたコンデンサが開示されて いる。 しかしながら、 開示されているコンデンサは、 漏れ電流値 (以下、 L C値と略記することがある。 ) が大きく実用性に乏しい。
一方、 特開平 10-242004号公報には、 ニオブ粉の一部を窒化すること等に より、 L C値を改善することが開示されている。 しかしながら、 粒径の細か なニオブ粉を用いて、 ニオブ焼結体から高容量なコンデンサを作製した場合、 L C値が特異的に大きなコンデンサが出現する場合があった。
米国特許 6, 051 , 044号公報には、 特定な B E T比表面積を有し、 特定な窒 素含有量を有するニオブ粉が開示され、 漏れ電流の低減方法も開示されてい るが、 本発明のようなニオブと合金を形成し得る他の元素を含むニオブ粉に 関しては、 何ら開示も示唆もない。
また、 コンデンサに必要なハンダ付け等に対する耐熱性 (熱履歴に対する L Cの安定性) に関しても何ら開示も示唆もない。 発明の開示
従って、 本発明の目的は単位質量当たりの容量が大きく、 漏れ電流値が小 さく、 耐熱性の高いコンデンサを提供し得るニオブ粉、 それを用いた焼結体 及びその焼結体を用いたコンデンサを提供することにある。
本発明者らは、 前述の課題を鋭意検討した結果、 ニオブと合金を形成し得 る種々の元素から選択される少なくとも 1種以上の元素をニオブに含ませる ことにより、 粒径が細かく高容量のコンデンサにおいても耐熱性を伴って、 L Cを低く安定できることを見い出し本発明を完成した。 すなわち、 本発明 は、 以下の (1) 〜 (29) のコンデンサ用ニオブ粉、 (30) 〜 (31) のニオブ粉を焼結して得られる焼結体、 (32) 〜 (42) のコンデンサ、 (43) 〜 (46) のニオブ粉の製造方法、 (47) の電子回路及び (4 8) の電子機器を提供する。 なお、 本発明で用いる合金とは、 他方の合金成 分との固溶体を含むものである。 また、 特に断りのない限り、 本発明で用い る 「ppm」 及び 「%」 は、 質量 p pm及び質量%を表す。
(1) クロム、 モリブデン、 タングステン、 ホウ素、 アルミニウム、 ガリウ ム、 インジウム、 タリウム、 セリウム、 ネオジム、 チタン、 レニウム、 ルテ 二ゥム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リ ン、 砒素、 ビスマス、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウ ム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サ マリゥム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホ ルミゥム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニゥ ム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルからなる群から選ばれる少なくとも 1種の元素を含む ことを特徴とするコンデンサ用ニオブ粉。
(2) クロム、 モリブデン、 タングステンからなる群から選ばれた少なくと も 1種の元素を含む前記 1記載のコンデンサ用ニオブ粉。
(3) 少なくとも 1種の元素が、 タングステンである前記 2記載のコンデ ンサ用ニオブ粉。
(4) 少なくとも一種の元素が、 クロム及びタングステンである前記 2記 載のコンデンサ用ニオブ粉。
(5) ホウ素、 アルミニウム、 ガリウム、 インジウム及びタリウムからなる 群から選ばれる少なくとも 1種の元素を含む前記 1記載のコンデンサ用ニォ ブ粉。
(6) 少なくとも 1種の元素が、 ホウ素である前記 5記載のコンデンサ用 ニオブ粉。
( 7) 少なくとも 1種の元素が、 アルミニウムである前記 5記載のコンデ ンサ用ニオブ粉。
(8) セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パ ラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素及びビスマス からなる群から選ばれた少なくとも 1種の元素を含む前記 1記載のコンデン サ用ニオブ粉。
(9) レニウム、 亜鉛、 ヒ素、 リン、 ゲルマニウム、 スズ及びネオジムから なる群から選ばれた少なくとも 1種の元素を含む前記 8記載のコンデンサ用 ニ才ブ粉。
(10) 少なくとも 1種の元素が、 レニウムである前記 9記載のコンデン サ用ニオブ粉。
( 1 1) 少なくとも 1種の元素が、 ネオジムである前記 9記載のコンデン サ用ニオブ粉。
( 12) 少なくとも 1種の元素が、 亜鉛である前記 9記載のコンデンサ用 ニオブ粉。
( 13) ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユー 口ピウム、 ガドリニウム、 テ)レビゥム、 ジスプロシウム、 ホルミウム、 エル ピウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテ ルルからなる群から選ばれた少なくとも 1種の元素を含む前記 1記載のコン デンサ用ニオブ粉。
( 14) ランタン、 イットリウム、 エルビウム、 イッテルビウム及びルテチ ゥムからなる群から選ばれた少なくとも 1種の元素を含む前記 13記載のコ ンデンサ用ニオブ粉。 ( 1 5) 少なくとも 1種の元素が、 ランタンである前記 14記載のコンデ ンサ用ニオブ粉。
( 16) 少なくとも 1種の元素が、 イットリウムである前記 14記載のコ ンデンサ用ニオブ粉。
( 17) 元素が、 ニオブ粉中 10モル%以下の量含まれている前記 1乃至 16のいずれか 1項に記載のニオブ粉。
( 18) 元素が、 ニオブ粉中 0.01〜10モル%の量含まれている前記 17 記載のニオブ粉。
( 19) 元素が、 ニオブ粉中 0.1〜 7モル%の範囲で含まれている前記 18 記載のニオブ粉。
(20) ニオブ粉の平均粒径が、 0.05 zm~5 xmの範囲である前記 1乃 至 16のいずれか 1項に記載のニオブ粉。
(21) ニオブ粉の平均粒径が、 0.2 zm〜4; mの範囲である前記 20記 載のニオブ粉。
(22) ニオブ粉の BET比表面積が、 0.5〜40m2Zgの範囲である前 記 1乃至 16のいずれか 1項に記載のニオブ粉。
(23) ニオブ粉の BET比表面積が、 1〜20m2Zgの範囲である前記 22に記載のニオブ粉。
(24) さらに、 窒素、 炭素、 ホウ素及び硫黄元素からなる群より選ばれる 少なくとも 1種の元素を含む前記 2、 3、 4、 7、 8、 9、 10、 1 1, 1 2、 13、 14、 15及び 16のいずれか 1項に記載のニオブ粉。
(25) さらに、 窒素、 炭素及び硫黄元素からなる群より選ばれる少なくと も 1種の元素を含む前記 5または 6に記載のニオブ粉。
(26) 窒素、 炭素、 ホウ素及び硫黄の元素からなる群より選ばれる少なく とも 1種の元素の含有量が、 200, 000 p pm以下である前記 24または 25 に記載のニオブ粉。 (27) 窒素、 炭素、 ホウ素及び硫黄の元素からなる群より選ばれる少なく とも 1種の元素の含有量が、 50 p pm〜200,000 p pmである前記 26に 記載のニオブ粉。
(28) 前記 1乃至 27のいずれか 1項に記載のニオブ粉を造粒して得ら れる平均粒径が 10 im〜 500 zmのニオブ造粒物。
(29) 平均粒径が 30 m〜250 mである前記 28記載のニオブ造 粒物。
(30) 前記 1乃至 27のいずれか 1項に記載のニオブ粉を焼結して得ら れる焼結体。
(31) 前記 28または 29に記載のニオブ造粒物を焼結して得られる焼 結体。
( 32) 前記 30または 31に記載のニオブ焼結体を一方の電極とし、 前 記焼結体表面上に形成された誘電体と、 前記誘電体上に設けられた他方の電 極とから構成されるコンデンサ。
(33) 誘電体の主成分が酸化ニオブである前記 32に記載のコンデンサ。
(34) 酸化ニオブが、 電解酸化により形成されたものである前記 33に 記載のコンデンサ。
(35) 他方の電極が、 電解液、 有機半導体及び無機半導体からなる群より 選ばれる少なくとも 1種の材料である前記 32に記載のコンデンサ。
( 36) 他方の電極が有機半導体からなり、 該有機半導体がベンゾピロリン 4量体とクロラニルからなる有機半導体、 テトラチォテ卜ラセンを主成分と する有機半導体、 テトラシァノキノジメタンを主成分とする有機半導体及び 導電性高分子からなる群より選ばれる少なくとも 1種の材料である前記 32 に記載のコンデンサ。
( 37 ) 導電性高分子が、 ポリピロール、 ポリチォフェン、 ポリア二リン及 びこれらの置換誘導体から選ばれる少なくとも 1種である前記 36に記載の コンデンサ。
( 3 8 ) 導電性高分子が、 下記一般式 (1 ) または一般式 (2 )
Figure imgf000009_0001
(1) (2)
(式中、 1〜!^ 4は、 互いに同一であっても相違してもよく、 各々水素原子、 炭素数 1〜 1 0の直鎖もしくは分岐状の飽和もしくは不飽和のアルキル基、 アルコキシ基あるいはアルキルエステル基、 ハロゲン原子、 ニトロ基、 シァ ノ基、 1級、 2級もしくは 3級ァミノ基、 C F 3基、 フエニル基及び置換フ ェニル基からなる群から選ばれる一価基を表わす。 R 1と R 2及び R 3と R 4 の炭化水素鎖は互いに任意の位置で結合して、 かかる基により置換を受けて いる炭素原子と共に少なくとも 1つ以上の 3〜 7員環の飽和または不飽和炭 化水素の環状構造を形成する二価鎖を形成してもよい。 前記環状結合鎖には、 力ルポニル、 エーテル、 エステル、 アミド、 スルフイド、 スルフィニル、 ス ルホニル、 ィミノの結合を任意の位置に含んでもよい。 Xは酸素、 硫黄また は窒素原子を表わし、 R 5は Xが窒素原子の時のみ存在して、 独立して水素 原子または炭素数 1〜1 0の直鎖もしくは分岐状の飽和もしくは不飽和のァ ルキル基を表わす。 ) で示される繰り返し単位を含む重合体に、 ド一パント をドープした導電性高分子である前記 3 6に記載のコンデンサ。
( 3 9 ) 導電性高分子が、 下記一般式 (3 )
Figure imgf000010_0001
(式中、 R 6及び R 7は、 互いに同一であっても相違してもよく、 各々水素原 子、 炭素数 1〜 6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル 基、 または該アルキル基が互いに任意の位置で結合して、 2つの酸素原子を 含む少なくとも 1つ以上の 5〜 7員環の飽和炭化水素の環状構造を形成する 置換基を表わす。 また、 前記環状構造には置換されていてもよいビニレン結 合を有するもの、 置換されていてもよいフエ二レン構造のものが含まれ る。 ) で示される繰り返し単位を含む導電性高分子である前記 3 8記載のコ ンデンサ。
( 4 0 ) 前記一般式 (3 ) で示される繰り返し単位を含む導電性高分子が、 ポリ (3, 4一エチレンジォキシチォフェン) である前記 3 9記載のコンデ ンサ。
( 4 1 ) 他方の電極が、 層状構造を有する有機半導電体からなる前記 3 6 記載のコンデンサ。
( 4 2 ) 他方の電極が、 有機スルホン酸ァニオンをドーパントとして含んだ 有機半導体材料である前記 3 6記載のコンデンサ。
( 4 3 ) ニオブ粉を、 液体窒化、 イオン窒化、 及びガス窒化の方法からなる 群より選ばれる少なくとも 1種の方法により表面処理することを特徴とする 前記 2 4または 2 5に記載の窒素を含むニオブ粉の製造方法。
( 4 4 ) ニオブ粉を、 ガス炭化、 固相炭化、 及び液体炭化の方法からなる群 より選ばれる少なくとも 1種の方法により表面処理することを特徴とする前 記 2 4または 2 5に記載の炭素を含むニオブ粉の製造方法。
( 4 5 ) ニオブ粉を、 ガスホウ化、 及び固相ホウ化の方法からなる群より選 ばれる少なくとも 1種の方法により表面処理することを特徵とする前記 2 4 記載のホウ素を含むニオブ粉ので製造方法。
( 4 6 ) ニオブ粉を、 'ガス硫化、 イオン硫化、 及び固相硫化の方法からなる 群より選ばれた少なくとも 1種の方法により表面処理することを特徴とする 前記 2 4または 2 5記載の硫黄を含むニオブ粉の製造方法。
( 4 7 ) 前記 3 2乃至 4 2のいずれか 1項に記載のコンデンサを使用した 電子回路。
( 4 8 ) 前記 3 2乃至 4 2のいずれか 1項に記載のコンデンサを使用した 電子機器。 発明の詳細な説明
本発明により高容量化と共に漏れ電流特性の良好なコンデンサ及びその特 性を引き出せるニオブ粉及びその焼結体を下記 (1 ) 〜 (4 ) のグループに 分けて説明する。
(1)クロム、 モリブデン、 タングステンからなる群から選ばれた少なくとも 1種の元素を含むコンデンサ用ニオブ粉及びその焼結体 (第 1群の発明) 、
(2)ホウ素、 アルミニウム、 ガリウム、 ィンジゥム及びタリゥムからなる群 から選ばれる少なくとも 1種の元素を含むコンデンサ用ニオブ粉及びその焼 結体 (第 2群の発明) 、
(3)セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラ ジゥム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素及びビスマスか らなる群から選ばれた少なくとも 1種の元素を含むコンデンサ用ニオブ粉及 びその焼結体 (第 3群の発明) 、 及び
(4)ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 ス カンジゥム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロ ピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 ェルビ ゥム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニゥム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテ ルルからなる群から選ばれた少なくとも 1種の元素を含むコンデンサ用ニォ ブ粉及びその焼結体 (第 4群の発明) 。
(1)第 1群のニオブ粉及び焼結体の発明
第 1群の発明は、 周期律表第 6属遷移元素のクロム、 モリブデン、 タンダ ステンからなる群から選ばれた少なくとも 1種の元素を含んだニオブ粉及び その焼結体である。
ここで、 クロム、 モリブデン、 タングステンはニオブと合金を形成し得る 元素であり、 このうち漏れ電流値を最も低くする効果をもつのはタンダステ ンであり、 次にモリブデン、 クロムの順となる。 したがって、 第 1群の発明 ではニオブ粉にタングステンを含有させることが最も好ましい。 また、 タン ダステン含有ニオブ粉にモリプデンまたはクロム、 好ましくはクロムが含有 されていても良い。 これら元素の含有量の総和は、 ニオブ粉中 1 0モル%以 下、 好ましくは 0. 01 モル%〜 1 0モル%、 さらに好ましくは 0. 1 モル%〜 7モル%がよい。
すなわち、 本発明においては、 クロム、 モリブデン、 タングステンからな る群から選ばれた少なくとも 1種の元素を、 ニオブ粉中 1 0モル%以下、 さ らには 0. 01 モル%〜1 0モル%の範囲に含ませたニオブ粉を焼結体として コンデンザに使用することが好ましい。
前記元素の含有量が 0. 01 モル%より低いと、 後述の電解酸化において形 成する誘電体皮膜中の酸素が内部のニオブ金属側に拡散しやすい性質を抑制 することができず、 結果として電解酸化皮膜 (誘電体皮膜) の安定性を保つ ことが不可能となり、 L Cを低下させる効果が得られにくい。 また、 前記元 素の含有量が 1 0モル%より多いと、 該ニオブ粉中のニオブ自身の含有量が 減少し、 結果的にコンデンサとしての容量が低下する。
従って、 前記クロム、 モリブデン、 タングステンからなる群から選ばれた 少なくとも 1種の元素の含有量は、 0.01〜10モル%が特に好ましい。 また、 漏れ電流値をより小さくする為には、 前記元素含有量をニオブ粉中 3モル% 以下、 さらには 0.05〜3モル%が特に好ましい。
前記ニオブ粉の平均粒径は、 粉体の比表面積を大きくする為に 5 m以下、 さらには 4 m以下であることが好ましい。 また、 本発明の前記ニオブ粉の 平均粒径は、 以下の理由により、 前記ニオブ粉の平均粒径が 0.2 m以上で 5 /m以下のものがよい。
すなわち、 コンデンサの容量 (C) は一般に次式で示される。
C= ε X (SZd)
式中、 εは誘電率、 Sは比表面積、 dは電極間距離である。
ここで、 d = kXV (k :定数、 V:化成電圧) であることから、 C = ε X (SZ (k XV) ) となり、 さらに CXV= (ε/k) X Sとなる。
この関係から、 単純には比表面積を大きくすればコンデンサ容量を大きく することができる。 すなわち、 ニオブ粉を球形状と仮定した場合、 粒子径の 小さな粉体を用いた方がコンデンサ容量を大きくすることができる。 しかし ながら、 実際ニオブ粉は完全な球形とは言えず、 フレーク状の粉形態もある。 前述したように、 本発明のコンデンサにおいて求められている特性は高容 量化だけでなく漏れ電流特性の良好なものが希求されているので、 単純に比 表面積を大きくするだけでは達成できない。
本発明においては、 焼結体を作製するニオブ原料に、 クロム、 モリブデン、 タングステンからなる群から選ばれた少なくとも 1種の元素を含んだニオブ 粉を使用することで、 前記両コンデンサ特性を満足するコンデンサ、 あるい は該コンデンサ特性を与えるニオブ焼結体を提供することができる。
たとえば、 本発明者らがー例として作製したタングステン含有ニオブ粉 (粉砕法で製造したもの) の粒径と比表面積を以下の表 1に示す。 表 1
Figure imgf000014_0001
ここで、 平均粒径は粒度分布測定器 (マイクロトラック社製、 商品名 「マ イクロトラック」 ) を用いて測定した D 50値 (D 50値とは、 累積質量% が 50質量%に相当する粒径値を表す。 ) であり、 比表面積は BET法で測 定した値である。
ニオブ粉中に、 クロム、 モリブデン、 タングステンからなる群から選ばれ た少なくとも 1種の元素を含有したものを平均粒径として 未満にす ると、 該粉体から焼結体を作製した場合、 細孔径が小さく、 また閉鎖孔が多 くなり、 後述する陰極剤の含浸が難しい傾向がある。 そのため、 結果として コンデンサ容量を大きくすることが難しく、 コンデンサ用ニオブ焼結体とし て余り適さない。 また、 平均粒径が 5 /xmを超えると大きなコンデンサ容量 が得られない。
以上の点から、 本発明においては、 好ましくは前記ニオブ粉を 0.05 m以 上で 5 _im以下のものを使用することで大きなコンデンサ容量を達成するこ とができる。
本発明のニオブ粉は、 少なくとも 0.5m2/gの BET比表面積を有する 粉体が好ましく、 さらに少なくとも 1 m2 / gの B E T比表面積を有する粉 体が好ましく、 さらにまた、 少なくとも 2m2/gの BET比表面積を有す る粉体が好ましい。 また、 本発明のニオブ粉は、 0. 5〜4 0 m2Z gの B E T 比表面積を有する粉体が好ましく、 さらに 1 ~ 2 0 m 2Z gの B E T比表面 積を有する粉体が好ましく、 1〜1 0 m2Z gの B E T比表面積を有する粉 体が特に好ましい。
一方、 誘電率 (ε ) に関しては、 ニオブはタンタルに比べて約 2倍大きい ことが知られているが、 クロム、 モリブデン、 タングステンがコンデンサ特 性の弁金属であるかは知られておらず、 従って前記クロム、 モリブデン及び タングステンからなる群より選ばれた少なくとも 1種の元素をニオブに含有 させることにより、 該元素含有ニオブ粉の εが大きくなるかは知られていな い。
本発明においては、 前述したように前記ニオブ粉の平均粒径を細かくして、 高容量の焼結体を作製した時でも、 このようなクロム、 モリブデン、 タンダ ステンの少なくとも 1種の元素がニオブに含有されていれば L C値が特異的 に大きくなることはなかつた。
この作用は次のように推定される。 ニオブは、 タンタルと比較して、 酸素 元素との結合力が大きいため、 電解酸化皮膜 (誘電体皮膜) 中の酸素が内部 のニオブ金属側に拡散しやすいが、 本発明における焼結体は、 ニオブの一部 がクロム、 モリブデン、 タングステンの少なくとも 1種の元素と結合してい るために、 電解酸化皮膜中の酸素が内部のニオブ金属と結合しにくくなり、 金属側への酸素の拡散が抑制される。 その結果、 電解酸化皮膜の安定性を保 つことが可能となり、 粒径が細かく高容量のコンデンサにおいても L Cを低 下させ、 ばらつきを小さくする効果が得られるものと推定される。
以下、 周期律表第 6属遷移元素のうちタングステンを一例にとつて本発明 を説明するが、 以下の内容はクロム、 モリブデンの場合にも適用される。 焼結体を作製するために用いられるタングステン含有ニオブ粉は、 前述し たように平均粒径が 0. 2 m以上で 5 m以下が好ましい。 このような平均粒径を有するタングステン含有ニオブ粉は、 たとえばニォ ブータングステン合金インゴット、 ペレット、 粉などの水素化物の粉碎及び 脱水素による方法によって得ることができる。 また、 ニオブインゴット、 ぺ レット、 粉の水素化物の粉碎及び脱水素、 あるいはフッ化ニオブ酸カリウム のナトリウム還元物の粉砕によって造られたニオブ粉に炭化タングステン、 酸化タングステン、 タングステン粉体を混合する方法、 酸化ニオブと酸化夕 ングステンの混合物の炭素還元による方法等によっても得ることができる。 たとえば、 ニオブ一タングステン合金インゴッ卜の水素化物の粉砕及び脱 水素から得る方法の場合、 ニオブ一タングステン合金の水素化量と粉碎時間、 粉碎装置などを調整することにより、 所望の平均粒径を有するタングステン 含有ニオブ粉を得ることができる。
また、 このように得られたタングステン含有ニオブ粉に平均粒径 0. 2 /x m 以上で 5 m以下のニオブ粉を混合してもよい。 このニオブ粉は、 たとえば、 フッ化ニオブ酸力リゥムのナトリゥム還元物の粉碎による方法、 ニオブィン ゴットの水素化物の粉砕及び脱水素による方法、 酸化ニオブの炭素還元によ る方法等によって得ることができる。
このようにして得られたタンダステン含有ニオブ粉の燒結体における漏れ 電流値を更に改善するために、 タングステン含有ニオブ粉の一部が窒素、 炭 素、 ホウ素、 硫黄の少なくとも一つと結合しているものであってもよい。 窒 素、 炭素、 ホウ素、 硫黄の結合物であるタングステン含有ニオブ窒化物、 夕 ングステン含有ニオブ炭化物、 タングステン含有ニオブホウ化物、 タンダス テン含有ニオブ硫化物はいずれを含有しても良く、 また、 これらの 2種、 3 種、 4種の組み合わせであってもよい。
その結合量、 すなわち、 窒素、 炭素、 ホウ素、 硫黄の含有量の総和は、 夕 ングステン含有ニオブ粉の形状にもよつて変わるが、 平均粒径 0. 05 m〜5 m程度の粉で 0 p p mより多く 200,000 p p m以下、 好ましくは 5 0 p p m〜100,000 p p m、 さらに好ましくは、 2 0 0 p p m〜20, 000 p p mであ る。 200, 000 p p mを超えると容量特性が悪化し、 コンデンサとして適さな い。
タングステン含有ニオブ粉の窒化は、 液体窒化、 イオン窒化、 ガス窒化な どのうち、 いずれかあるいはそれらを組み合わせた方法で実施することがで きる。 窒素ガス雰囲気によるガス窒化は、 装置が簡便で操作が容易なため好 ましい。
たとえば、 窒素ガス雰囲気によるガス窒化の方法は、 前記タングステン含 有ニオブ粉を窒素雰囲気中に放置することにより達成される。 窒化する雰囲 気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で目的とする窒化量の タングステン含有ニオブ粉が得られる。 また、 より高温で処理することによ り処理時間を短縮できる。
タングステン含有ニオブ粉の炭化は、 ガス炭化、 固相炭化、 液体炭化いず れであってもよい。 たとえば、 タングステン含有ニオブ粉を炭素材やメタン などの炭素を有する有機物などの炭素源とともに、 減圧下、 2000°C以下で 1 分〜 1 0 0時間放置しておけばよい。
タングステン含有ニオブ粉のホウ化は、 ガスホウ化、 固相ホウ化いずれで あってもよい。 たとえば、 タングステン含有ニオブ粉をホウ素ペレットゃト リフルォロホウ素などのハロゲン化ホウ素のホウ素源とともに、 減圧下、 2000°C以下で 1分〜 1 0 0時間放置しておけばよい。
タングステン含有ニオブ粉の硫化は、 ガス硫化、 イオン硫化、 固相硫化い ずれであってもよい。 たとえば、 硫黄ガス雰囲気によるガス硫化の方法は、 前記タングステン含有ニオブ粉を硫黄雰囲気中に放置することにより達成さ れる。 硫化する雰囲気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で 目的とする硫化量のタングステン含有ニオブ粉が得られる。 また、 より高温 で処理することにより処理時間を短縮できる。 本発明のコンデンサ用タングステン含有ニオブ粉は、 前述したタンダステ ン含有ニオブ粉を適当な形状に造粒した後、 使用してもよいし、 造粒後に未 造粒のニオブ粉を適量混合して使用してもよい。
造粒の方法として、 例えば、 未造粒のタングステン含有ニオブ粉を高真空 下に放置し適当な温度に加熱した後解砕する方法、 樟脳、 ポリアクリル酸、 ポリメチルァクリル酸エステル、 ポリビニルアルコールなどの適当なバイン ダ一とアセトン、 アルコール類、 酢酸エステル類、 水などの溶媒と未造粒の タングステン含有ニオブ粉を混合した後解碎する方法等があげられる。
このようにして造粒したタングステン含有ニオブ粉は、 焼結体を製造する 際に用いる加圧成形性を向上させる。 この場合、 造粒粉の平均粒径は、 1 0 m〜 5 0 0 mが好ましい。 造粒粉の平均粒径が 1 0 m以下では部分的 にブロッキングを起こし、 金型への流動性が悪い。 5 0 0 i m以上では加圧 成形後の成形体が欠けやすい。 さらに、 加圧成形体を焼結した後、 コンデン サを製造する際の陰極剤の含浸のし易さから、 造粒粉の平均粒径は、 3 0 /2 m〜2 5 0 mが好ましく、 6 0 m〜 2 5 0 mが特に好ましい。
前記窒化方法、 炭化方法、 ホウ化方法及び硫化方法は、 ニオブ粉に対して 行うだけでなく、 ニオブ造粒粉やニオブ燒結体に対しても実施することがで さる。
本発明のコンデンサ用タングステン含有ニオブ焼結体は、 前述したタンダ ステン含有ニオブ粉あるいは造粒したタングステン含有ニオブ粉を焼結して 製造する。 焼結体の製造方法の一例を以下に示す。 尚、 焼結体の製造方法は この例に限定されるものではない。 たとえば、 タングステン含有ニオブ粉を 所定の形状に加圧成形した後に 1 0 _ 5〜1 0 2 P a (パスカル) で 1分〜 1 0時間、 5 0 0 〜 2000°C、 好ましくは 9 0 0 T:〜 1500°C、 さらに好ましく は 9 0 0 ° (:〜 1300°Cの範囲で加熱して得られる。 (2)第 2群のニオブ粉及び焼結体の発明
第 2群の発明では、 ニオブ粉原料として、 ホウ素、 アルミニウム、 ガリウ ム、 インジウム及びタリウムからなる群から選ばれる少なくとも 1種の元素 を含むニオブ粉を使用する。
ここで使用するホウ素、 アルミニウム、 ガリウム、 インジウム及び夕リウ ムはニオブと合金を形成し得る元素であり、 このうち漏れ電流値を最も低く する効果をもつのはホウ素及びアルミニウムであり、 次にガリウム、 インジ ゥム、 タリウムの順となる。 したがって、 特にニオブ粉にホウ素またはアル ミニゥムを含有させることが好ましい。 また、 ホウ素含有ニオブ粉にアルミ 二ゥム、 ガリウム、 インジウム及びタリウムが含有されていても良い。 これ ら元素の含有量の総和は、 ニオブ粉中 1 0モル%以下、 好ましくは 0. 01 モ ル%〜1 0モル%、 さらに好ましくは 0. 1モル%〜7モル%がよい。 すなわ ち、 本発明においては、 ホウ素、 アルミニウム、 ガリウム、 インジウム及び タリウムからなる群から選ばれる少なくとも 1種の元素を、 ニオブ粉中 1 0 モル%以下、 さらには 0. 01 モル%〜1 0モル%、 特に 0. 1 モル%〜7モル %の範囲に含ませたニオブ粉を焼結体としてコンデンサに使用することが好 ましい。
前記元素の含有量が 0. 01 モル%より低いと、 後述の電解酸化において形 成する誘電体皮膜中の酸素が内部のニオブ金属側に拡散しやすい性質を抑制 することができず、 結果として電解酸化皮膜 (誘電体皮膜) の安定性を保つ ことが不可能となり、 L Cを低下させる効果が得られにくい。 また、 前記元 素の含有量が 1 0モル%を超えると、 ニオブ粉中のニオブ自身の含有量が減 少し、 結果的にコンデンサとしての容量が低下する。
したがって、 前記ホウ素、 アルミニウム、 ガリウム、 インジウム及びタリ ゥムからなる群から選ばれる少なくとも 1種の元素の含有量は、 0. 01〜1 0 モル%が好ましい。 また、 漏れ電流値をより小さくするためには、 前記元素 含有量をニオブ粉中 7モル%以下、 さらには 0. 1〜 7モル%が特に好ましい。 本発明の前記ニオブ粉の平均粒径は、 粉体の比表面積を大きくするために
5 x m以下、 さらには 4 m以下であることが好ましい。 また、 本発明の前 記ニオブ粉の平均粒径は 0. 05 11〜4 111がよい。 この理由は前記(1)群の ニオブ粉について説明した通りである。
本発明においては、 焼結体を作製するニオブ粉原料に、 ホウ素、 アルミ二 ゥム、 ガリウム、 インジウム及びタリウムからなる群から選ばれる少なくと も 1種の元素を含んだニオブ粉を使用することにより、 コンデンサの前記両 特性を満足するコンデンサ、 あるいは該コンデンサ特性を与えるニオブ焼結 体を提供することができる。
本発明者らがー例として作製したホウ素含有ニオブ粉 (粉碎法で製造した もの) の平均粒径 (D 5 0 ; ίΐ πι) と比表面積 (S ; mV g ) を以下の表
2に示す。
Figure imgf000020_0001
上記表 2の平均粒径 (D 5 0 ; m) は、 粒度分布測定器 (マイクロトラ ック社製、 商品名 「マイクロトラック」 ) を用いて測定した値であり (D 5 0値は、 累積質量%が 5 0質量%に相当する粒径値を表わす。 ) 、 比表面積 は B E T法で測定した値である。
ホウ素、 アルミニウム、 ガリウム、 インジウム及びタリウムからなる群か ら選ばれる少なくとも 1種の元素を含有したニオブ粉の平均粒径が 5 mを 超えると大きなコンデンサ容量を達成できない。 また、 平均粒径を 0.05 m 未満にすると、 該粉体から焼結体を作製した場合、 細孔径が小さく、 また閉 鎖孔が多くなり、 後述する陰極剤の含浸が難しくなる傾向にある。 そのため、 結果としてコンデンサ容量を大きくすることが難しく、 コンデンサ用ニオブ 焼結体として余り適さない。
以上の点から、 本発明においては、 好ましくはニオブ粉として 0.05 xm以 上で 4 xm以下のものを使用することにより大きなコンデンサ容量を得るこ とができる。
本発明のニオブ粉は、 少なくとも 0.5m2Zgの BET比表面積を有する 粉体が好ましく、 さらに少なくとも lm2Zgの B E T比表面積を有する粉 体が好ましく、 さらにまた、 少なくとも 2m2Zgの BET比表面積を有す る粉体が好ましい。 また、 本発明のニオブ粉は、 0.5〜4 On^Zgの BET 比表面積を有する粉体が好ましく、 さらに 1〜2 On^Zgの BET比表面 積を有する粉体が好ましく、 特に、 1〜1 On^Zgの BET比表面積を有 する粉体が好ましい。
誘電率 (ε) に関しては、 ニオブはタンタルに比べて約 2倍大きいことが 知られているが、 ホウ素、 ガリウム、 インジウム及びタリウムがコンデンサ 特性の弁金属であるか否かは知られていない。 アルミニウムは弁作用金属で あるが、 その誘電率はニオブより小さいことが知られている。 従って、 前記 ホウ素、 アルミニウム、 ガリウム、 インジウム及びタリウムからなる群より 選ばれる少なくとも 1種の元素をニオブに含有させることにより、 該元素含 有ニオブ粉の εが大きくなるかは定かではない。
本発明者らが検討したところ、 前記ニオブ粉の平均粒径を細かくして、 高 容量の焼結体を作製した時でも、 このようなホウ素、 アルミニウム、 ガリウ ム、 インジウム及びタリゥムの少なくとも 1種の元素がニオブに含有されて いれば L C値が特異的に大きくなることはなかった。
このような結果が得られる理由は次のように推定される。
ニオブは、 タンタルと比較して、 酸素元素との結合力が大きいため、 電解 酸化皮膜 (誘電体皮膜) 中の酸素が内部のニオブ金属側に拡散しやすいが、 本発明における焼結体では、 ニオブの一部がホウ素、 アルミニウム、 ガリウ ム、 インジウム、 タリウムの少なくとも 1種の元素と結合しているために、 電解酸化皮膜中の酸素が内部のニオブ金属と結合しにくくなり、 金属側への 酸素の拡散が抑制される。 その結果、 電解酸化皮膜の安定性を保つことが可 能となり、 粒径が細かく高容量のコンデンサにおいても L Cを低下させ、 ば らっきを小さくする効果が得られるものと推定される。
以下、 ホウ素を例に挙げて本発明を説明するが、 本発明はこれに限定され ず、 以下の内容はアルミニウム、 ガリウム、 インジウム及びタリウムの場合 にも適用される。
^結体を作製するために用いられるホウ素含有ニオブ粉は、 前述したよう に平均粒径が 0. 05 m以上で 4 H m以下のものが特に好ましい。
このような平均粒径を有するホウ素含有ニオブ粉は、 例えばニオブ一ホウ 素合金インゴット、 ペレット、 粉などの水素化物の粉碎及び脱水素による方 法によって得ることができる。
また、 ニオブインゴット、 ペレット、 粉の水素化物の粉碎及び脱水素、 あ るいはフッ化ニオブ酸カリウムのナトリウム還元物の粉碎、 あるいは酸化二 ォブの水素、 炭素、 マグネシウム、 アルミニウム等の少なくとも 1種を使用 して還元した還元物の粉碎などの方法によって造られたニオブ粉にホウ酸、 酸化ホウ素、 ホウ素粉体などを混合する方法、 酸化ニオブと酸化ホウ素の混 合物の炭素還元による方法等によっても得ることができる。
例えば、 ニオブ一ホウ素合金インゴットの水素化物の粉碎及び脱水素から 得る方法の場合、 ニオブ一ホウ素合金の水素化量と粉碎時間、 粉碎装置など を調製することにより、 所望の平均粒径を有するホウ素含有ニオブ粉を得る ことができる。 また、 このようにして得られたホウ素含有ニオブ粉に平均粒 径 5 Ai m以下のニオブ粉を混合してホウ素含有量を調整してもよい。 この二 ォブ粉は、 例えば、 フッ化ニオブ酸カリウムのナトリウム還元物の粉碎によ る方法、 ニオブインゴットの水素化物の粉砕及び脱水素による方法、 酸化二 ォブの水素、 炭素、 マグネシウム、 アルミニウムの少なくとも 1種を使用し た還元による方法、 ハ口ゲン化ニオブの水素還元による方法等によって得る ことができる。
このようにして得られたホウ素含有ニオブ粉の漏れ電流値を更に改善する ために、 ホウ素含有ニオブ粉の一部を窒化、 炭化、 硫化、 及び更なるホウ化 により表面処理をしてもよい。 窒化、 炭化、 硫化、 ホウ化による表面処理を 行って得られた、 ホウ素含有ニオブの窒化物、 ホウ素含有ニオブの炭化物、 ホウ素含有ニオブの硫化物、 ホウ素含有ニオブのホウ化物はいずれを含有し ても良く、 また、 これらの 2種、 3種、 4種の組み合わせであってもよい。 その結合量、 すなわち窒素、 炭素、 ホウ素、 硫黄の含有量の総和は、 ホウ 素含有ニオブ粉の形状にもよつて変わるが、 平均粒径 0. 05 x m〜 5 m程度 の粉で、 O p p mより多く 200, 000 p p m以下、 好ましくは 5 0 p p m〜 Ι ΟΟ, ΟΟΟ ρ m, さらに好ましくは、 2 0 0 p p m〜20, 000 p p mである。 200, 000 p p mを超えると容量特性が悪化し、 コンデンサとして適さない。 ホウ素含有ニオブ粉の窒化は、 液体窒化、 イオン窒化、 ガス窒化などのう ちの何れか、 あるいはそれらを組み合わせた方法で実施することができる。 窒素ガス雰囲気によるガス窒化は、 装置が簡便で操作が容易なため好ましい。 例えば、 窒素ガス雰囲気によるガス窒化の方法は、 前記ホウ素含有ニオブ粉 を窒素雰囲気中に放置することにより達成される。 窒化する雰囲気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で目的とする窒化量のホウ素含有二 ォブ粉が得られる。 また、 より高温で処理することにより処理時間を短縮で さる。
ホウ素含有ニオブ粉の炭化の方法は、 ガス炭化、 固相炭化、 液体炭化のい ずれであってもよい。 例えば、 ホウ素含有ニオブ粉を炭素材やメタンなどの 炭素を有する有機物などの炭素源とともに、 減圧下、 2000°C以下で 1分〜 1 0 0時間放置しておけばよい。
ホウ素含有ニオブ粉の硫化の方法は、 ガス硫化、 イオン硫化、 固相硫化い ずれであってもよい。 例えば、 硫黄ガス雰囲気によるガス硫化の方法は、 前 記ホウ素含有ニオブ粉を硫黄雰囲気中に放置することにより達成される。 硫 化する雰囲気の温度は、 2000 以下、 放置時間は 1 0 0時間以内で目的とす る硫化量のホウ素含有ニオブ粉が得られる。 また、 より高温で処理すること により処理時間を短縮できる。
ホウ素含有ニオブ粉のホウ化の方法は、 ガスホウ化、 固相ホウ化いずれで あってもよい。 例えば、 ホウ素含有ニオブ粉をホウ素ペレットやトリフルォ 口ホウ素などのハロゲン化ホウ素のホウ素源とともに、 減圧下、 2000°C以下 で 1分〜 1 0 0時間放置しておけばよい。
本発明のコンデンサ用ホウ素含有ニオブ粉は、 前述したホウ素含有ニオブ 粉を適当な形状に造粒した後使用してもよいし、 造粒後に未造粒のニオブ粉 を適量混合して使用してもよい。
造粒の方法として、 例えば、 未造粒のホウ素含有ニオブ粉を高真空下に放 置し適当な温度に加熱した後解砕する方法、 樟脳、 ポリアクリル酸、 ポリメ チルアクリル酸エステル、 ポリビニルアルコールなどの適当なバインダーと アセトン、 アルコール類、 酢酸エステル類、 水などの溶媒と未造粒のホウ素 含有ニオブ粉を混合した後解碎する方法等があげられる。
このようにして造粒したホウ素含有ニオブ粉は、 焼結体を製造する際の加 圧成形性を向上させる。 この場合の造粒粉の平均粒径は、 1 0 ^ m〜5 0 0 mが好ましい。 造粒粉の平均粒径が 1 0 t m以下では部分的にブロッキン グを起こし、 金型への流動性が悪くなる。 5 0 0 mを超えると加圧成形後 の成形体が欠けやすい。 さらに、 加圧成形体を焼結した後、 コンデンサを製 造する際の陰極剤の含浸がし易いことから、 造粒粉の平均粒径は 3 0 fi n!〜 2 5 0 / mが特に好ましい。
本発明のコンデンサ用ホウ素含有ニオブ焼結体は、 前述したホウ素含有二 ォブ粉あるいは造粒したホウ素含有ニオブ粉を焼結して製造する。 焼結体の 製造方法は特に限定されるものではないが、 例えば、 ホウ素含有ニオブ粉を 所定の形状に加圧成形した後に 1 0— 5〜1 0 2 P aで 1分〜 1 0時間、 5 0 O °C〜2000° (:、 好ましくは 9 0 O °C〜1500 、 さらに好ましくは 9 0 0 °C〜 1300 の範囲で加熱して得られる。
(3)第 3群のニオブ粉及び焼結体の発明
第 3群の発明では、 コンデンサ特性を満足し得るニオブ粉原料として、 セ リウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスからなる群か ら選ばれた少なくとも 1種の元素を含むニオブ粉を使用する。 セリゥム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜 鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスは、 ニオブと合金を 形成し得る元素であり、 中でもレニウム、 ネオジム、 亜鉛、 砒素、 リン、 ゲ ルマニウム、 スズからなる群より選ばれた少なくとも 1種の元素を含むニォ ブ紛を用いるとさらに好ましい。 また、 レニウム、 ネオジム、 亜鉛、 からな る群より選ばれた少なくとも 1種の元素を含むニオブ粉を用いることがさら に好ましい。
本発明の 1つの形態として、 レニウム含有ニオブ粉に、 例えば、 セリウム、 ネオジム、 チタン、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスの少なくとも 1種の元素が含有 されているニオブ紛を挙げることができる。 本発明において、 前記元素の総 含有量は、 ニオブ粉中 1 0モル%以下、 好ましくは 0. 01 モル%〜1 0モル さらに好ましくは 0. 1モル%〜7モル%がよい。
前記元素の総含有量が 0. 01 モル%より低すぎると、 後述の電解酸化にお いて形成する誘電体皮膜中の酸素がニオブ金属側に拡散しやすい性質を抑制 することができず、 結果として電解酸化皮膜 (誘電体皮膜) の安定性を保つ ことが不可能となり、 L Cを低下させる効果が得られにくい。 また、 前記元 素の総含有量が 1 0モル%を超えると、 ニオブ粉中のニオブ自身の含有量が 減少し、 結果的にコンデンサとしての容量が低下する。
したがって、 前記セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスからなる群から選ばれた少なくとも 1種の元素の総含有量は、 0. 01 〜 1 0モル%が好ましい。
また、 漏れ電流値をより小さくする為には、 前記元素含有量をニオブ粉中 7モル%以下、 さらには 0. 1〜7モル%が特に好ましい。
本発明の前記ニオブ粉の平均粒径は、 粉体の比表面積を大きくする為に 5 m以下、 さらには 以下であることが好ましい。 また、 本発明の前記 ニオブ粉の平均粒径は、 0. 05 ^ 111以上で 4 m以下がよい。 この理由は前記 (1)群のニオブ粉について説明した通りである。
本発明においては、 焼結体を作製するニオブ粉原料に、 セリウム、 ネオジ ム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪 素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスからなる群から選ばれた少 なくとも 1種の元素を含んだニオブ粉を使用することにより、 コンデンサの 前記両特性を満足するコンデンサ、 あるいは該コンデンサ特性を与えるニォ プ焼結体を提供することができる。
本発明者らがー例として作製したレニウム含有ニオブ粉 (粉碎法で製造し たもの) の平均粒径 (D 50 ; m) と比表面積 (S ; m2/g) を以下の 表 3に示す。 表 3
Figure imgf000027_0001
上記表 3の平均粒径 (D50 ; ^ m) は、 粒度分布測定器 (マイクロトラ ック社製、 商品名 「マイクロトラック」 ) を用いて測定した値であり (D5 0値とは、 累積質量%が 50質量%に相当する粒径値を表す。 ) 、 比表面積 は B E T法で測定した値である。
セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジ ゥム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスからな る群から選ばれた少なくとも 1種の元素を含有したニオブ粉の平均粒径が 5 mを超えると大きなコンデンサ容量を達成できない。 また、 平均粒径を 未満にすると、 該粉体から焼結体を作製した場合、 細孔径が小さく、 また閉鎖孔が多くなり、 後述する陰極剤の含浸が難しくなる傾向にある。 そ のため、 結果としてコンデンサ容量を大きくすることが難しく、 コンデンサ 用ニオブ焼結体として余り適さない。
以上の点から、 本発明においては、 好ましくはニオブ粉として 0.05 im以 上で 5 ^ m以下のものを使用することで大きなコンデンサ容量を達成するこ とができる。
本発明のニオブ粉は、 少なくとも 0.5m2Zgの BET比表面積を有する 粉体が好ましく、 さらに少なくとも l m2ノ gの B E T比表面積を有する粉 体が好ましく、 さらにまた、 少なくとも S rr^Z gの B E T比表面積を有す る粉体が好ましい。 また、 本発明のニオブ粉は、 0. 5〜4 0 m2/ gの B E T 比表面積を有する粉体が好ましく、 さらに 1〜2 0 m2Z gの B E T比表面 積を有する粉体が好ましく、 特に 1〜1 0 m2Z gの B E T比表面積を有す る粉体が好ましい。
一方、 誘電率 (ε ) に関しては、 ニオブはタンタルに比べて約 2倍大きい ことが知られているが、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニゥ ム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスがコンデンサ特性の弁金属であるかは知られていない。 従つ て、 前記、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマス からなる群より選ばれた少なくとも 1種の元素をニオブに含有させることに より、 該元素含有ニオブ粉の εが大きくなるかは定かではない。
本発明者らが検討したところ、 前記ニオブ粉の平均粒径を細かくして、 高 容量の焼結体を作製した時でも、 このようなセリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマ二 ゥム、 スズ、 リン、 砒素、 ビスマスの少なくとも 1種の元素がニオブに含有 されていれば L C値が特異的に大きくなることはなかつた。
このような結果が得られる理由は次のように推定される。
ニオブは、 タンタルと比較して、 酸素元素との結合力が大きいため、 電解 酸化皮膜 (誘電体皮膜) 中の酸素が内部のニオブ金属側に拡散しやすいが、 本発明における焼結体は、 ニオブの一部が、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマ二 ゥム、 スズ、 リン、 砒素、 ビスマスの少なくとも 1種の元素と結合している ために、 電解酸化皮膜中の酸素が内部のニオブ金属と結合しにくくなり、 金 属側への酸素の拡散が抑制される。 その結果、 電解酸化皮膜の安定性を保つ ことが可能となり、 粒径が細かく高容量のコンデンサにおいても L Cを低下 させ、 ばらつきを小さくする効果が得られるものと推定される。
以下、 主としてレニウムを例に挙げて本発明を説明するが、 本発明はこれ に限定されず、 以下の内容は、 セリウム、 ネオジム、 チタン、 レニウム、 ル テニゥム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素及びビスマスからなる群から選ばれた少なくとも 1種の元素の場 合にも適用される。
焼結体を作製するために用いられるレニウム含有ニオブ粉は、 前述したよ うに平均粒径が 0. 05 a m以上で 4 II m以下が特に好ましい。
このような平均粒径を有するレニウム含有ニオブ粉は、 たとえばニオブ一 レニウム合金インゴット、 ペレット、 粉などの水素化物の粉砕及び脱水素に よる方法によって得ることができる。 また、 ニオブインゴット、 ペレット、 粉の水素化物の粉砕及び脱水素、 あるいはフッ化ニオブ酸力リゥムのナトリ ゥム還元物の粉碎、 あるいは酸化ニオブの水素、 炭素、 マグネシウム、 アル ミニゥム等の少なくとも 1種を使用して還元した還元物の粉碎などの方法に よって造られたニオブ粉にレニウム粉体、 レニウムの酸化物、 硫化物、 硫酸 塩、 ハロゲン化塩、 硝酸塩、 有機酸塩、 錯塩などを混合する方法、 酸化ニォ ブと酸化レニウムの混合物のマグネシウム還元による方法等によっても得る ことができる。
また、 レニウム、 亜鉛、 ゲルマニウムを含むニオブ粉は、 たとえばニオブ 一レニウム一亜鉛一ゲルマニウム合金インゴット、 ペレット、 粉末などの水 素化物の粉砕及び脱水素による方法によって得ることができる。 また、 ニォ ブインゴット、 ペレット、 粉の氷素化物の粉砕及び脱水素、 あるいはフッ化 ニオブ酸カリウムのナトリウム還元物の粉砕、 あるいは酸化ニオブの水素、 炭素、 マグネシウム、 アルミニウム等の少なくとも 1種を使用して還元した 還元物の粉砕などの方法によって造られたニオブ粉にレニウム粉体、 亜鉛粉 体、.ゲルマニウム粉体やレニウム、 亜鉛、 ゲルマニウムの酸化物、 硫化物、 硫酸塩、 八ロゲン化塩、 硝酸塩、 有機酸塩などを混合する方法、 酸化ニオブ、 酸化レニウム、 酸化亜鉛、 酸化ゲルマニウムの混合物のマグネシウム還元に よる方法等によっても得ることができる。
たとえば、 ニオブ一レニウム合金ィンゴットの水素化物の粉碎及び脱水素 から得る方法の場合、 ニオブ一レニウム合金の水素化量と粉碎時間、 粉砕装 置などを調製することにより、 所望の平均粒径を有するレニウム含有ニオブ 粉を得ることができる。
また、 このようにして得られたレニウム含有ニオブ粉に平均粒径 5 m以 下のニオブ粉を混合してレニウム含有量を調整してもよい。 このニオブ粉は、 たとえば、 フッ化ニオブ酸力リウムのナトリゥム還元物の粉碎による方法、 ニオブインゴッ卜の水素化物の粉砕及び脱水素による方法、 酸化ニオブの水 素、 炭素、 マグネシウム、 アルミニウムの少なくとも 1種を使用した還元に よる方法、 ハロゲン化ニオブの水素還元による方法等によって得ることがで きる。 このようにして得られたレニウム含有ニオブ粉の漏れ電流値を更に改 善するために、 レニウム含有ニオブ粉の一部を窒化、 ホウ化、 炭化、 および 硫化による表面処理をしてもよい。 窒化、 ホウ化、 炭化、 硫化による表面処 理を行って得られた、 レニウム含有ニオブの窒化物、 レニウム含有ニオブの ホウ化物、 レニウム含有ニオブの炭化物、 レニウム含有ニオブの硫化物、 は いずれを含有しても良く、 また、 これらの 2種、 3種、 4種の組み合わせで あってもよい。
その結合量、 すなわち、 窒素、 ホウ素、 炭素、 硫黄の含有量の総和は、 レ ニゥム含有ニオブ粉の形状にもよつて変わるが、 平均粒径 0. 05 z m〜5 m 程度の粉で、 0 p p mより多く 200,000 p p m以下、 好ましくは 5 0 p p m 〜100,000 p p m、 さらに好ましくは、 2 0 0 p p m~20,000 p p mである。 200, 000 p p mを超えると容量特性が悪ィ匕し、 コンデンサとして適さない。 レニウム含有ニオブ粉の窒化方法は、 液体窒化、 イオン窒化、 ガス窒化な どのうち、 何れかあるいは、 それらの組み合わせた方法で実施することがで きる。 窒素ガス雰囲気によるガス窒化は、 装置が簡便で操作が容易なため好 ましい。 たとえば、 窒素ガス雰囲気によるガス窒化の方法は、 前記レニウム 含有ニオブ粉を窒素雰囲気中に放置することにより達成される。 窒化する雰 囲気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で目的とする窒化量 のレニウム含有ニオブ粉が得られる。 また、 より高温で処理することにより 処理時間を短縮できる。
レニウム含有ニオブ粉のホウ化方法は、 ガスホウ化、 固相ホウ化いずれで あってもよい。 たとえば、 ホウ素含有ニオブ粉をホウ素ペレットやトリフル ォロホウ素などのハロゲン化ホウ素のホウ素源とともに、 減圧下、 2000°C以 下で 1分〜 1 0 0時間放置しておけばよい。
レニウム含有ニオブ粉の炭化は、 ガス炭化、 固相炭化、 液体炭化いずれで あってもよい。 たとえば、 レニウム含有ニオブ粉を炭素材やメタンなどの炭 素を有する有機物などの炭素源とともに、 減圧下、 2000°C以下で 1分〜 1 0
0時間放置しておけばよい。
レニウム含有ニオブ粉の硫化方法は、 ガス硫化、 イオン硫化、 固相硫化い ずれであってもよい。 たとえば、 硫黄ガス雰囲気によるガス硫化の方法は、 前記レニウム含有ニオブ粉を硫黄雰囲気中に放置することにより達成される。 硫化する雰囲気の温度は、 2000で以下、 放置時間は 1 0 0時間以内で目的と する硫化量のレニウム含有ニオブ粉が得られる。 また、 より高温で処理する ことにより処理時間を短縮できる。
本発明のコンデンサ用レニウム含有ニオブ粉は、 前述したレニウム含有二 ォブ粉を適当な形状に造粒した後、 使用してもよいし、 造粒後に未造粒の二 ォブ粉を適量混合して使用してもよい。 造粒の方法として、 例えば、 未造粒のレニウム含有ニオブ粉を高真空下に 放置し適当な温度に加熱した後解砕する方法、 樟脳、 ポリアクリル酸、 ポリ メチルアクリル酸エステル、 ポリビニルアルコールなどの適当なバインダー とアセトン、 アルコール類、 酢酸エステル類、 水などの溶媒と未造粒、 ある いは造粒したレニウム含有ニオブ粉を混合した後解砕する方法等があげられ る。
このようにして造粒したレニウム含有ニオブ粉は、 焼結体を製造する際の 加圧成形性を向上させる。 この場合、 造粒粉の平均粒径は、 1 0 x m〜5 0 0 mが好ましい。 造粒粉の平均粒径が 1 0 i m以下では部分的にブロッキ ングを起こし、 金型への流動性が悪くなる。 5 0 0 m以上では加圧成形後 の成形体が欠けやすい。 さらに、 加圧成形体を焼結した後、 コンデンサを製 造する際の陰極剤の含浸がし易いことから、 造粒粉の平均粒径は、 3 0 z m 〜2 5 0 i mが特に好ましい。
本発明のコンデンサ用レニウム含有ニオブ焼結体は、 前述したレニウム含 有ニオブ粉あるいは造粒したレニウム含有ニオブ粉を焼結して製造する。 焼 結体の製造方法は特に限定されるものではないが、 たとえば、 レニウム含有 ニオブ粉を所定の形状に加圧成形した後に 1 0 _ 5〜1 0 2 P a (パスカル) で 1分〜 1 0時間、 5 0 O °C〜2000°C、 好ましくは 9 0 0 ° (:〜 1500°C、 さら に好ましくは 9 0 O °C〜130(TCの範囲で加熱して得られる。
(4)第 4群のニオブ粉及び焼結体の発明
第 4群の発明では、 コンデンサ特性を満足し得るニオブ粉原料として、 ル ビジゥム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジ ゥム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ッ リウム、 イッテルビウム、 ルテチウム、 八フニゥム、 バナジウム、 ォスミゥ ム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルから なる群から選ばれた少なくとも 1種の元素を含むニオブ粉を使用する。
ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 ノ リウム、 スカ ンジゥム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピ ゥム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルピウ ム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 ォ スミゥム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテル ルは、 ニオブと合金を形成し得る元素であり、 中でもランタン、 イットリウ ム、 エルビウム、 イッテルビウム及びルテチウムからなる群より選ばれた少 なくとも 1種の元素を含むニオブ紛を用いるとさらに好ましい。 また、 ラン 夕ン及びィットリゥムからなる群より選ばれた少なくとも 1種の元素を含む ニオブ紛を用いることがさらに望ましい。
本発明の 1つの形態として、 ランタン含有ニオブ粉に、 例えば、 ルビジゥ ム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イツテ ルビゥム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン及びテルルの少なくとも 1 種の元素が含有されているニオブ紛を挙げることができる。 本発明において、 前記元素の総含有量は、 ニオブ粉中 1 0モル%以下、 好ましくは 0. 01 モル %〜1 0モル%、 さらに好ましくは 0. 1モル%〜7モル%がよい。
前記元素の総含有量が 0. 01 モル%より低いと、 後述の電解酸化において 形成する誘電体皮膜中の酸素がニオブ金属側に拡散しやすい性質を抑制する ことができず、 結果として電解酸化皮膜 (誘電体皮膜) の安定性を保つこと が不可能となり、 L Cを低下させる効果が得られにくい。 また、 前記元素の 総含有量が 1 0モル%を超えると、 ニオブ粉中のニオブ自身の含有量が減少 し、 結果的にコンデンサとしての容量が低下する。
したがって、 前記、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウ ム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サ マリゥム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホ ルミゥム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニゥ ム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン及びテルルからなる群から選ばれた少なくとも 1種の元素 の総含有量は、 0. 01〜 1 0モル%が好ましい。
また、 漏れ電流値をより小さくするためには、 前記元素含有量をニオブ粉 中 7モル%以下、 さらには 0. 1〜 7モル%が特に好ましい。
本発明のニオブ粉の平均粒径は、 粉体の比表面積を大きくするために 5 m以下が好ましく、 4 ^ m以下がより好ましい。 さらには、 前記ニオブ粉は 平均粒径 0. 05 m以上で 4 m以下のものが特に好ましい。 この理由は前記 (1)群のニオブ粉について説明した通りである。
本発明においては、 焼結体を作製するニオブ原料に、 ルビジウム、 セシゥ ム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウ ム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イツテ ルビゥム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルからなる群から選ばれ た少なくとも 1種の元素を含んだニオブ粉を使用することにより、 コンデン ザの前記両特性を満足するコンデンサ、 あるいは該コンデンサ特性を与える 二ォブ焼結体を提供することができる。
本発明者らがー例として作製したランタン含有ニオブ粉 (粉碎法で製造し たもの) の平均粒径 (D 5 0 ; u m) と比表面積 (S ; m2 / g ) を以下の 表 4に示す。 表 4
Figure imgf000035_0001
上記表 4の平均粒径 (D 5 0 ; /m) は、 粒度分布測定器 (マイクロトラ ック社製、 商品名 「マイクロトラック」 ) を用いて測定した値であり (D 5 0値とは、 累積質量%が 5 0質量%に相当する粒径値を表す。 ) 、 比表面積 は B E T法で測定した値である。
ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカ ンジゥム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ュ一ロピ ゥム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルピウ ム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 ォ スミゥム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテル ルからなる群から選ばれた少なくとも 1種の元素を含有したニオブ粉の平均 粒径が 5 を超えると大きなコンデンサ容量を達成できない。 また、 平均 粒径を 0. 05 Π1未満にすると、 該粉体から焼結体を作製した場合、 細孔径が 小さく、 また閉鎖孔が多くなり、 後述する陰極剤の含浸が難しくなる傾向に ある。 そのため、 結果としてコンデンサ容量を大きくすることが難しく、 コ ンデンサ用ニオブ焼結体として余り適さない。
以上の点から、 本発明においては、 好ましくはニオブ粉として 0. 05 zm以 上で 5 i m以下のものを使用することで大きなコンデンサ容量を達成するこ とができる。
本発明のニオブ粉は、 少なくとも 0. 5m2Z gの B E T比表面積を有する 粉体が好ましく、 さらに少なくとも l m2Z gの B E T比表面積を有する粉 体が好ましく、 さらにまた、 少なくとも 2 m2Z gの B E T比表面積を有す る粉体が好ましい。 また、 本発明のニオブ粉は、 0. 5〜4 O rr^Z gの B E T 比表面積を有する粉体が好ましく、 さらに 1〜2 0 m2/ gの B E T比表面 積を有する粉体が好ましく、 特に 1〜1 0 m2Z gの B E T比表面積を有す る粉体が好ましい。
一方、 誘電率 (ε ) に関しては、 ニオブはタンタルに比べて約 2倍大きい ことが知られているが、 ルビジウム、 セシウム、 マグネシウム、 ストロンチ ゥム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニ ゥム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルがコンデンサ特性の弁金属であるかは知られていない。 したがって、 前記、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリ ゥム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミ ゥム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン及びテルルからなる群より選ばれた少なくとも 1種の元素を二 ォブに含有させることにより、 該元素含有ニオブ粉の εが大きくなるかは知 られていない。
本発明者らが検討したところ、 前記ニオブ粉の平均粒径を細かくして、 高 容量の焼結体を作製した時でも、 このような、 ルビジウム、 セシウム、 マグ ネシゥム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ラン タン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビゥ ム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルの少なくとも 1種の元素がニオブ に含有されていれば L C値が特異的に大きくなることはなかった。
このような結果が得られる理由は次のように推定される。
ニオブは、 タンタルと比較して、 酸素元素との結合力が大きいため、 電解 酸化皮膜 (誘電体皮膜) 中の酸素が内部のニオブ金属側に拡散しやすいが、 本発明における焼結体は、 ニオブの一部が、 ルビジウム、 セシウム、 マグネ シゥム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタ ン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ル テチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルの少なくとも 1種の元素と結合し ているために、 電解酸化皮膜中の酸素が内部のニオブ金属と結合しにくくな り、 金属側への酸素の拡散が抑制される。 その結果、 電解酸化皮膜の安定性 を保つことが可能となり、 粒径が細かく高容量のコンデンサにおいても L C を低下させ、 ばらつきを小さくする効果が得られるものと推定される。
以下、 主としてランタンを例に挙げて本発明を説明するが、 本発明はこれ に限定されず、 以下の内容は、 ルビジウム、 セシウム、 マグネシウム、 スト ロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセォ ジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシ ゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルからなる群から選ばれた少なくとも 1種の元素 の場合にも適用される。
焼結体を作製するために用いられるランタン含有ニオブ粉は、 前述したよ うに平均粒径が 0. 05 i m以上で 4 x m以下が特に好ましい。 このような平均粒径を有するラン夕ン含有ニオブ粉は、 例えばニオブ—ラ ンタン合金インゴット、 ペレット、 粉などの水素化物の粉砕及び脱水素によ る方法によって得ることができる。 また、 ニオブインゴット、 ペレット、 粉 の水素化物の粉碎及び脱水素、 あるいはフッ化ニオブ酸力リゥムのナトリウ ム還元物の粉碎、 あるいは酸化ニオブの水素、 炭素、 マグネシウム、 アルミ ニゥム等の少なくとも 1種を使用して還元した還元物の粉砕などの方法によ つて造られたニオブ粉にランタン粉体、 ランタンの水素化物、 酸化物、 硫化 物、 硫酸塩、 ハロゲン化塩、 硝酸塩、 有機酸塩、 錯塩などを混合する方法、 酸化ニオブと酸化ランタンの混合物のマグネシウム還元による方法等によつ ても得ることができる。
また、 ランタン、 ハフニウム、 イリジウムを含むニオブ粉は、 例えばニォ ブ一ランタン一ハフニウム一ィリジゥム合金インゴット、 ペレット、 粉末な どの水素化物の粉碎及び脱水素による方法によって得ることができる。 また、 ニオブインゴット、 ペレット、 粉の水素化物の粉砕及び脱水素、 あるいはフ ッ化ニオブ酸カリウムのナトリウム還元物の粉碎、 あるいは酸化ニオブの水 素、 炭素、 マグネシウム、 アルミニウム等の少なくとも 1種を使用して還元 した還元物の粉砕などの方法によって造られたニオブ粉にランタン粉体、 ハ フニゥム粉体、 イリジウム粉体やランタン、 ハフニウム、 イリジウムの水素 化物、 酸化物、 硫化物、 硫酸塩、 ハロゲン化塩、 硝酸塩、 有機酸塩などを混 合する方法、 酸化ニオブ、 酸化ランタン、 酸化ハフニウム、 酸化イリジウム の混合物のマグネシウム還元による方法等によっても得ることができる。 例えば、 ニオブ一ランタン合金インゴットの水素化物の粉碎及び脱水素か ら得る方法の場合、 ニオブ一ランタン合金の水素化量と粉砕時間、 粉砕装置 などを調製することにより、 所望の平均粒径を有するランタン含有ニオブ粉 を得ることができる。
この様にして得たランタン含有ニオブ粉の原料として通常用いられるニォ ブインゴットの、 前述した元素 (ルビジウム、 セシウム、 マグネシウム、 ス トロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセ オジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロ シゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルル) 以外の金属元素及びタンタルの含有量は、 l OOO p p m以下であり、 また、 酸素の含有量は 3000~60,000 p p mであった。 このことは、 前述した元素 (ルビジウム、 セシウム、 マグネシウム、 スト ロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセォ ジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシ ゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルからなる群から選ばれた少なくとも 1種の元 素) を含むニオブ粉でも同様な値となった。
また、 このようにして得られたランタン含有ニオブ粉に平均粒径 5 m以 下のニオブ粉を混合してランタン含有量を調整してもよい。 このニオブ粉は、 例えば、 フッ化ニオブ酸カリウムのナトリウム還元物の粉砕による方法、 二 ォブインゴッ卜の水素化物の粉碎及び脱水素による方法、 酸化ニオブの水素、 炭素、 マグネシウム、 アルミニウムの少なくとも 1種を使用した還元による 方法、 ハロゲン化ニオブの水素還元による方法等によって得ることができる。 本発明のコンデンサ用ラン夕ン含有ニオブ粉は、 前述したランタン含有二 ォブ粉を適当な形状に造粒した後、 使用してもよいし、 造粒後に未造粒の二 ォブ粉を適量混合して使用してもよい。
造粒の方法として、 例えば、 未造粒のランタン含有ニオブ粉を高減圧下に 放置し適当な温度に加熱した後解碎する方法、 樟脳、 ポリアクリル酸、 ポリ メチルァクリル酸エステル、 ポリビニルアルコールなどの適当なバインダ一 とアセトン、 アルコール類、 酢酸エステル類、 水などの溶媒と未造粒、 ある いは造粒したランタン含有ニオブ粉を混合した後解碎する方法、 樟脳、 ポリ アクリル酸、 ポリメチルアクリル酸エステル、 ポリビニルアルコールなどの 適当なバインダーとアセトン、 アルコール類、 酢酸エステル類、 水などの溶 媒と未造粒、 あるいは造粒したランタン含有ニオブ粉を混合したのち高減圧 下焼結し、 添加したバインダーと溶媒を蒸発、 昇華または熱分解し気体にす ることにより除去したのち焼結したランタン含有ニオブ塊を解砕する方法、 酸化バリウム、 酸化マグネシウムなどとアセトン、 アルコール類、 酢酸エス テル類、 水などの溶媒と未造粒、 あるいは造粒したランタン含有ニオブ粉を 混合したのち高減圧下焼結し、 解碎した後、 硝酸、 塩酸などの酸溶液ゃキレ 一ト剤を含む溶液で溶解することにより除去する方法等が挙げられる。
このようにして造粒したランタン含有ニオブ粉は、 焼結体を製造する際の 加圧成形性を向上させる。 この場合、 造粒粉の平均粒径は、 1 0 /i m〜5 0 0 mが好ましい。 造粒粉の平均粒径が 1 0 z m以下では部分的にブロッキ ングを起こし、 金型への流動性が悪くなる。 5 0 0 m以上では加圧成形後 の成形体が欠けやすい。 さらに、 加圧成形体を焼結した後、 コンデンサを製 造する際の陰極剤の含浸がしゃすいことから、 造粒粉の平均粒径は、 3 0 i m〜2 5 0 が特に好ましい。
本発明のコンデンサ用ランタン含有ニオブ焼結体は、 前述したランタン含 有ニオブ粉あるいは造粒したランタン含有ニオブ粉を焼結して製造する。 焼 結体の製造方法は特に限定されるものではないが、 例えば、 ランタン含有二 ォブ粉を所定の形状に加圧成形した後に 1 0— 5〜1 0 2 P a (パスカル) で 1分〜 1 0時間、 5 0 0 ° (:〜 2000°C、 好ましくは 9 0 O °C〜1500°C、 さらに 好ましくは 9 0 O °C〜1300°Cの範囲で加熱して得られる。
このようにして得られたランタン含有ニオブ粉、 造粒粉、 焼結体の漏れ電 流値をさらに改善するために、 ランタン含有ニオブ粉、 造粒粉、 焼結体の一 部を窒化、 ホウ化、 炭化、 硫化、 または複数のこれらによる処理をしてもよ い。
得られたランタン含有ニオブの窒化物、 ランタン含有ニオブのホウ化物、 ランタン含有ニオブの炭化物、 ランタン含有ニオブの硫化物、 はいずれを含 有してもよく、 また、 これらの 2種以上の組み合わせであってもよい。
その結合量、 すなわち、 窒素、 ホウ素、 炭素、 硫黄の含有量の総和は、 ラ ンタン含有ニオブ粉の形状にもよつて変わるが、 平均粒径 0. 05 m〜 5 m 程度の粉で、 O p p mより多く 200,000 p p m以下、 好ましくは 5 O p p m 〜100,000 p p m、 さらに好ましくは、 2 0 0 p p m〜20,000 p p mである。 200, 000 p p mを超えると容量特性が悪化し、 コンデンサとして適さない。 ランタン含有ニオブ粉、 造粒粉、 焼結体の窒化方法は、 液体窒化、 イオン 窒化、 ガス窒化などのうち、 何れかあるいは、 それらの組み合わせた方法で 実施することができる。 窒素ガス雰囲気によるガス窒化は、 装置が簡便で操 作が容易なため好ましい。 例えば、 窒素ガス雰囲気によるガス窒化の方法は、 前記ランタン含有ニオブ粉、 造粒粉、 焼結体を窒素雰囲気中に放置すること により達成される。 窒化する雰囲気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で目的とする窒化量のランタン含有ニオブ粉、 造粒粉、 焼結体が 得られる。 また、 より高温で処理することにより処理時間を短縮できる。 ランタン含有ニオブ粉、 造粒粉、 焼結体のホウ化方法は、 ガスホウ化、 固 相ホウ化いずれであってもよい。 例えば、 ランタン含有ニオブ粉、 造粒粉、 焼結体をホウ素ペレツ卜やトリフルォロホウ素などのハロゲン化ホウ素のホ ゥ素源と共に、 減圧下、 2000°C以下で 1分〜 1 0 0時間程度、 放置しておけ ばよい。
ランタン含有ニオブ粉、 造粒粉、 焼結体の炭化は、 ガス炭化、 固相炭化、 液体炭化いずれであってもよい。 例えば、 ランタン含有ニオブ粉、 造粒粉、 焼結体を炭素材やメタンなどの炭素を有する有機物などの炭素源とともに、 減圧下、 2000°C以下で 1分〜 1 0 0時間程度放置しておけばよい。
ランタン含有ニオブ粉、 造粒粉、 焼結体の硫化方法は、 ガス硫化、 イオン 硫化、 固相硫^ (匕いずれであってもよい。 例えば、 硫黄ガス雰囲気によるガス 硫化の方法は、 前記ランタン含有ニオブ粉、 造粒粉、 焼結体を硫黄雰囲気中 に放置することにより達成される。 硫化する雰囲気の温度は、 2000°C以下、 放置時間は 1 0 0時間以内で目的とする硫化量のニオブ粉、 造粒粉、 焼結体 が得られる。 また、 より高温で処理することにより処理時間を短縮できる。
(5)コンデンサ素子
次に、 コンデンサ素子の製造について説明する。
例えば、 ニオブまたはタンタルなどの弁作用金属からなる、 適当な形状及 び長さを有するリードワイヤーを用意し、 これを前述したニオブ粉の加圧成 形時にリ一ドワイヤーの一部が成形体の内部に挿入させるように一体成形し て、 リ一ドワイヤーを前記焼結体の引き出しリードとなるように組み立て設 計する。
前述した焼結体を一方の電極とし、 他方の電極の間に介在した誘電体とか らコンデンサを製造することができる。 ここでコンデンザの誘電体として、 酸化ニオブを主体とする誘電体が好ましく挙げられる。 酸化ニオブを主体と する誘電体は、 例えば、 一方の電極であるランタン含有ニオブ焼結体を電解 液中で電解酸化 ( 「電解化成」 あるいは 「化成」 と記載することもある) す ることによって得られる。 ランタン含有ニオブ電極を電解液中で化成するに は、 通常プロトン酸水溶液、 例えば、 0. 1 %リン酸水溶液、 硫酸水溶液また は 1 %の酢酸水溶液、 アジピン酸水溶液等を用いて行われる。 ランタン含有 ニオブ電極を電解液中で化成して酸化ニオブ誘電体を得る場合、 本発明のコ ンデンサは、 電解コンデンサとなりランタン含有ニオブ電極が陽極となる。 本発明のコンデンサにおいて、 ニオブ焼結体の他方の電極 (対極) は格別 限定されるものではなく、 例えば、 アルミ電解コンデンサ業界で公知である 電解液、 有機半導体及び無機半導体から選ばれた少なくとも 1種の材料 (ィ匕 合物) が使用できる。
電解液の具体例としては、 ィソブチルトリプロピルアンモニゥムポロテト ラフルォライド電解質を 5質量%溶解したジメチルホルムアミドとエチレン グリコールの混合溶液、 テトラエチルアンモニゥムポロテトラフルォライド を 7質量%溶解したプロピレン力一ポネートとエチレングリコールの混合溶 液などが挙げられる。
有機半導体の具体例としては、 ベンゾピロリン 4量体とクロラニルからな る有機半導体、 テトラチォテトラセンを主成分とする有機半導体、 テトラシ ァノキノジメタンを主成分とする有機半導体、 あるいは下記一般式 (1 ) ま たは一般式 (2 ) で表される繰り返し単位を含む導電性高分子が挙げられる。
Figure imgf000043_0001
(1) (2) 式中、 尺1〜!^ 4はそれぞれ独立して水素原子、 炭素数 1乃至 1 0の直鎖上 もしくは分岐状の飽和もしくは不飽和のアルキル基、 アルコキシ基あるいは アルキルエステル基、 またはハロゲン原子、 ニトロ基、 シァノ基、 1級、 2 級もしくは 3級ァミノ基、 C F 3基、 フエニル基及び置換フエニル基からな る群から選ばれた一価基を表わす。 R 1と R 2及び R 3と R 4の炭化水素鎖は 互いに任意の位置で結合して、 かかる基により置換を受けている炭素原子と 共に少なくとも 1つ以上の 3〜 7員環の飽和または不飽和炭ィ匕水素の環状構 造を形成する二価鎖を形成してもよい。 前記環状結合鎖には、 力ルポニル、 エーテル、 エステル、 アミド、 スルフイド、 スルフィニル、 スルホニル、 ィ ミノの結合を任意の位置に含んでもよい。 Xは酸素、 硫黄または窒素原子を 表し、 R 5は Xが窒素原子の時のみ存在して、 独立して水素または炭素数 1 乃至 1 0の直鎖上もしくは分岐状の飽和もしくは不飽和のアルキル基を表す。 さらに、 本発明においては前記一般式 (1 ) または一般式 (2 ) の尺1〜 R 4は、 好ましくは、 それぞれ独立して水素原子、 炭素数 1乃至 6の直鎖上 もしくは分岐状の飽和もしくは不飽和のアルキル基またはアルコキシ基を表 し、 R 1と R 2及び R 3と R 4は互いに結合して環状になっていてもよい。
さらに、 本発明においては、 前記一般式 (1 ) で表される繰り返し単位を 含む導電性高分子は、 好ましくは下記一般式 (3 ) で示される構造単位を繰 り返し単位として含む導電性高分子が挙げられる。
Figure imgf000044_0001
式中、 R 6及び R 7は、 各々独立して水素原子、 炭素数 1乃至 6の直鎖状も しくは分岐状の飽和もしくは不飽和のアルキル基、 または該アルキル基が互 いに任意の位置で結合して、 2つの酸素原子を含む少なくとも 1つ以上の 5 〜 7員環の飽和炭化水素の環状構造を形成する置換基を表わす。 また、 前記 環状構造には置換されていてもよいピニレン結合を有するもの、 置換されて いてもよいフエ二レン構造のものが含まれる。
このような化学構造を含む導電性高分子は、 荷電されており、 ドーパント がドープされる。 ド一パントには公知のドーパントが制限なく使用できる。 無機半導体の具体例としては、 二酸化鉛または二酸化マンガンを主成分と する無機半導体、 四三酸化鉄からなる無機半導体などが挙げられる。 このよ うな半導体は単独でも、 または 2種以上組み合わせて使用してもよい。 一般式 (1 ) または一般式 (2 ) で表される繰り返し単位を含む重合体と しては、 例えば、 ポリア二リン、 ポリオキシフエ二レン、 ポリフエ二レンサ ルファイド、 ポリチォフェン、 ポリフラン、 ポリピロ一ル、 ポリメチルピロ ール、 及びこれらの置換誘導体や共重合体などが挙げられる。 中でもポリピ ロール、 ポリチォフェン及びこれらの置換誘導体 (例えばポリ (3 , 4—ェ チレンジォキシチォフェン) 等) が好ましい。
上記有機半導体及び無機半導体として、 電導度 1 0— 2 S / c m〜l 0 3 S Z c mの範囲のものを使用すると、 作製したコンデンサのインピーダンス値 がより小さくなり高周波での容量をさらに一層大きくすることができる。 前記導電性高分子層を製造する方法としては、 例えばァニリン、 チォフエ ン、 フラン、 ピロ一ル、 メチルピロールまたはこれらの置換誘導体の重合性 化合物を、 脱水素的 2電子酸化の酸化反応を充分行わせ得る酸化剤の作用で 重合する方法が採用される。 重合性化合物 (モノマー) からの重合反応は、 例えばモノマーの気相重合、 溶液重合等があり、 誘電体を有するニオブ焼結 体の表面に形成される。 導電性高分子が溶液塗布可能な有機溶媒可溶性のポ リマーの場合には、 表面に塗布して形成する方法が採用される。
溶液重合による好ましい製造方法の 1つとして、 誘電体層を形成したニォ ブ焼結体を、 酸化剤を含む溶液 (溶液 1 ) に浸漬し、 次いでモノマー及びド —パントを含む溶液 (溶液 2 ) に浸漬して重合し、 該表面に導電性高分子層 を形成得する方法が例示される。 また、 前記焼結体を、 溶液 2に浸漬した後 で溶液 1に浸漬してもよい。 また、 前記溶液 2においては、 ド一パントを含 まないモノマ一溶液として前記方法に使用してもい。 また、 ドーパントを使 用する場合、 酸化剤を含む溶液に共存させて使用してもよい。
このような重合工程操作を、 誘電体を有する前記ニオブ焼結体に対して 1 回以上、 好ましくは 3〜2 0回繰り返すことによって緻密で層状の導電性高 分子層を容易に形成することができる。 本発明めコンデンサの製造方法においては、 酸化剤はコンデンサ性能に悪 影響を及ぼすことなく、 その酸化剤の還元体がド一パントになつて導電性高 分子の電動度を向上させ得る酸化剤であればよく、 工業的に安価で製造上取 り扱いの容易な化合物が好まれる。
このような酸化剤としては、 具体的には、 例えば F e C 1 3や F e C 1 04、 F e (有機酸ァニオン) 塩等の F e (I I I) 系化合物類、 または無水塩化ァ ルミ二ゥムノ塩化第一銅、 アルカリ金属過硫酸塩類、 過硫酸アンモニゥム塩 類、 過酸化物類、 過マンガン酸カリウム等のマンガン類、 2 , 3—ジクロ口 - 5 , 6—ジシァノー 1, 4一べンゾキノン (D D Q) 、 テトラクロロー 1, 4—ベンゾキノン、 テトラシァノ _ 1, 4一べンゾキノン等のキノン類、 よ う素、 臭素等のハロゲン類、 過酸、 硫酸、 発煙硫酸、 三酸化硫黄、 クロロ硫 酸、 フルォロ硫酸、 アミド硫酸等のスルホン酸、 オゾン等及びこれら複数の 酸化剤の組み合わせが挙げられる。
これらの中で、 前記 F e (有機酸ァニオン) 塩を形成する有機酸ァニオン の基本化合物としては、 有機スルホン酸または有機カルボン酸、 有機リン酸、 有機ホウ酸等が挙げられる。 有機スルホン酸の具体例としては、 ベンゼンス ルホン酸や P—トルエンスルホン酸、 メタンスルホン酸、 エタンスルホン酸、 ひ一スルホーナフタレン、 β—スルホーナフタレン、 ナフタレンジスルホン 酸、 アルキルナフタレンスルホン酸 (アルキル基としてはプチル、 トリイソ プロピル、 ジ— t一ブチル等) 等が使用される。
一方、 有機カルボン酸の具体例としては、 酢酸、 プロピオン酸、 安息香酸、 シユウ酸等が挙げられる。 さらに本発明においては、 ポリアクリル酸、 ポリ メタクリル酸、 ポリスチレンスルホン酸、 ポリビニルスルホン酸、 ポリビニ ル硫酸ポリ一 —メチルスルホン酸、 ポリエチレンスルホン酸、 ポリリン酸 等の高分子電解質ァニオンも使用される。 なお、 これら有機スルホン酸また は有機カルボン酸の例は単なる例示であり、 これらに限定されるものではな レ^ また、 前記ァニオンの対カチオンは、 H+、 Na+、 K+等のアルカリ金 属イオン、 または水素原子ゃテトラメチル基、 テトラエチル基、 テトラプチ ル基、 テトラフエニル基等で置換されたアンモニゥムイオン等が例示される が、 これらに限定されるものではない。 前記の酸化剤のうち、 特に好ましい のは、 3価の F e系化合物類、 または塩化第一銅系、 過硫酸アルカリ塩類、 過硫酸アンモニゥム塩類酸類、 キノン類を含む酸化剤である。
導電性高分子の重合体組成物の製造方法において必要に応じて共存させる ドーパント能を有するァニオン (酸化剤の還元体ァニオン以外のァニオン) は、 前述の酸化剤から産生される酸化剤ァニオン (酸化剤の還元体) を対ィ オンに持つ電解質ァニオンまたは他の電解質ァニオンを使用することができ る。 具体的には例えば、 PF6—、 SbF6—、 As F6—の如き 5 B族元素の ハロゲン化物ァニオン、 BF4—の如き 3 B族元素のハロゲン化物ァニオン、 I一 (I 3— ) 、 B r―、 C 1 _の如きハロゲンァニオン、 C 104—の如き過ハ ロゲン酸ァニオン、 A 1 C 14—、 F e C 14—、 S n C 15—等の如きルイス 酸ァニオン、 あるいは N03—、 S〇4 2—の如き無機酸ァニオン、 または p— トルエンスルホン酸やナフ夕レンスルホン酸、 炭素数 1乃至 5 (C l〜5と 略する) のアルキル置換ナフ夕レンスルホン酸等のスルホン酸ァニオン、 C F3S〇3— , CH3S〇3—の如き有機スルホン酸ァニオン、 または CH3CO 0一、 C6H5COO—のごとき力ルポン酸ァ二オン等のプロトン酸ァニオン を挙げることができる。
また、 同じく、 ポリアクリル酸、 ポリメタクリル酸、 ポリスチレンスルホ ン酸、 ポリビニルスルホン酸、 ポリビニル硫酸、 ポリ一 0:—メチルスルホン 酸、 ポリエチレンスルホン酸、 ポリリン酸等の高分子電解質のァニオン等を 挙げることができるが、 これらに限定されるものではない。 しかしながら、 好ましくは、 高分子系及び低分子系の有機スルホン酸化合物あるいはポリリ ン酸化合物のァニオンが挙げられ、 望ましくは芳香族系のスルホン酸化合物 z酸ナトリウム、 ナフ夕レンスルホン酸ナトリウ ム等) がァニオン供出化合物として用いられる。
また、 有機スルホン酸ァニオンのうち、 さらに有効なド一パントとしては、 分子内に 1つ以上のスルホア二オン基 (一 s〇3 _) とキノン構造を有するス ルホキノン化合物や、 アントラセンスルホン酸ァニオンが挙げられる。
前記スルホキノン化合物のスルホキノンァニオンの基本骨格として、 p— ベンゾキノン、 o—ベンゾキノン、 1, 2—ナフトキノン、 1 , 4—ナフ卜 キノン、 2, 6—ナフ卜キノン、 9, 1 0—アン卜ラキノン、 1 , 4一アン トラキノン、 1, 2 _アントラキノン、 1, 4ークリセンキノン、 5, 6 - クリセンキノン、 6, 1 2—クリセンキノン、 ァセナフトキノン、 ァセナフ テンキノン、 カンホルキノン、 2, 3—ポルナンジオン、 9, 1 0—フエナ ントレンキノン、 2 , 7—ピレンキノンが挙げられる。
他方の電極 (対極) が固体の場合には、 所望により用いられる外部引き出 しリード (例えば、 リードフレームなど) との電気的接触をよくするため、 その上に導電体層を設けてもよい。
導電体層としては、 例えば、 導電べ一ストの固化、 メツキ、 金属蒸着、 耐 熱性の導電樹脂フィルムなどにより形成することができる。 導電ペーストと しては、 銀ぺ一スト、 銅ペースト、 アルミべ一スト、 カーボンペースト、 二 ッケルペーストなどが好ましいが、 これらは、 1種を用いても 2種以上を用 いてもよい。 2種以上を用いる場合、 混合してもよく、 または別々の層とし て重ねてもよい。 導電ペースト適用した後、 空気中に放置するか、 または加 熱して固化せしめる。 メツキとしては、 ニッケルメツキ、 銅メツキ、 銀メッ キ、 アルミメツキなどが挙げられる。 また、 蒸着金属としては、 アルミニゥ ム、 ニッケル、 銅、 銀などが挙げられる。
具体的には、 例えば第二の電極上にカーボンペースト、 銀ペーストを順次 積層し、 エポキシ樹脂のような材料で封止してコンデンサが構成される。 こ のコンデンサは、 ランタン含有ニオブ焼結体と一体に焼結成形された、 また は、 後で溶接されたニオブまたは、 タンタルリードを有していてもよい。 以上のような構成の本発明のコンデンサは、 例えば、 樹脂モールド、 樹脂 ケース、 金属性の外装ケース、 樹脂のデイツピング、 ラミネ一トフイルムに よる外装により各種用途のコンデンサ製品とすることができる。
また、 他方の電極が液体の場合には、 前記両極と誘電体から構成されたコ ンデンサを、 例えば、 他方の電極と電気的に接続した缶に収納してコンデン サが形成される。 この場合、 ランタン含有ニオブ焼結体の電極側は、 前記し たニオブまたはタンタルリードを介して外部に導出すると同時に、 絶縁性ゴ ムなどにより、 缶との絶縁がはかられるように設計される。
以上、 説明した本発明の実施態様にしたがって製造したニオブ粉を用いて コンデンサ用焼結体を作製し、 該焼結体からコンデンサを製造することによ り、 耐熱性を伴った漏れ電流値の小さい信頼性の良好なコンデンサを得るこ とができる。
また、 本発明のコンデンサは、 従来のタンタルコンデンサよりも容積の割 に静電容量が大きく、 より小型のコンデンサ製品を得ることができる。 こ れらの特性を持つ本発明のコンデンサは、 例えば、 アナログ回路及びデジタ ル回路中のバイパスコンデンサ、 カップリングコンデンサとしての用途、 電 源回路で使用される大容量の平滑コンデンサとしての用途、 及び従来のタン タルコンデンサの用途にも適用できる。
一般に、 このようなコンデンサは電子回路中で多用されるので、 本発明の コンデンサを用いれば、 電子部品の配置ゃ排熱の制約が緩和され、 信頼性の 高い電子回路を従来より狭い空間に収めることができる。
さらに、 本発明のコンデンサを用いれば、 従来より小型で信頼性の高い電 子機器、 例えば、 コンピュータ、 P Cカード等のコンピュータ周辺機器、 携 帯電話などのモパイル機器、 家電製品、 車載機器、 人口衛星、 通信機器等を 得ることができる。 発明を実施するための最良の形態
以下、 本発明の実施例について具体的に説明するが、 本発明はこれらの実 施例に限定されるものではない。
本実施例において、 クロム、 モリブデン、 タングステン、 ホウ素、 アルミ 二ゥム、 ガリウム、 インジウム、 タリウム、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマ二 ゥム、 スズ、 リン、 砒素、 ビスマス、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラ セオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプ ロシゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウ ム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミ ゥム、 水銀、 鉛、 硫黄、 セレン、 テルルからなる群から選ばれた少なくとも 1種の元素を含むニオブ粉の焼結体 (以下 「ニオブ焼結体」 又は単に 「焼結 体」 と略する。 ) の容量及び漏れ電流値は、 以下の方法により測定した。 焼結体の容量測定:
室温において、 3 0 %硫酸中に浸漬させたニオブ焼結体と硫酸液中に入れ たタンタル材の電極との間にヒューレットパッカード社製の測定器 (プレシ ジョン L C Rメーター H P 4 2 8 4 A型) に接続して 1 2 0 H zでの容量を 測定、 これを焼結体の容量 (単位は · V/ g ) とした。 焼結体の漏れ電流測定:
室温において、 2 0 %リン酸水溶液中に浸漬させた焼結体とリン酸水溶液 中に入れた電極との間に、 誘電体作製時の化成電圧 (直流) の 7 0 %の電圧 を 3分間印加し続けた後に、 測定された電流値を焼結体の漏れ電流値 (LC 値、 単位は/ zAZg) とした。 本発明では 14 Vの電圧を印加した。
本実施例におけるチップ加工したコンデンサの容量、 漏れ電流値は以下の ように測定した。 コンデンサの容量測定:
室温において、 作製したチップの端子間にヒユーレツトパッカ一ド社製 L CR測定器を接続し、 120Hzでの容量をチップ加工したコンデンサの容 量とした。 コンデンサの漏れ電流測定:
室温において、 定格電圧値 (2.5V、 4V、 6.3V、 10V、 16 V、 25 V等) のうち、 誘電体作製時の化成電圧の約 1Z3〜約 1Z4に近い直流電 圧を、 作製したチップの端子間に 1分間印加し続けた後に測定された電流値 をチップに加工したコンデンサの漏れ電流値とした。 本発明では、 6.3Vの 電圧を印加した。 実施例 1
ニオブインゴット 92 gとタングステンの粉末 1.8gを用い、 アーク溶解で タングステンを 1モル%含むタングステン含有ニオブインゴット (合金) を 作製した。 このインゴット 50 gを SUS 304製の反応容器に入れ、 40 0 °Cで 10時間水素を導入し続けた。 冷却後、 水素化されたタングステン含 有ニオブ塊を、 S US製ポールを入れた S US 304製のポッ卜に入れ 10 時間粉砕した。
次に、 SUS 304製の湿式粉碎機 (アトランタ社製、 商品名 「アトライ 夕」 ) に、 この水素化物を水で 20体積%のスラリーにしたもの及びジルコ ニァポールを入れ、 7時間湿式粉碎した。 このスラリーを遠心沈降の後、 デ カンテ一シヨンして粉碎物を取得した。 粉砕物を 1 X 133 P a、 50°Cの 条件で真空乾燥した。
続いて、 水素化タングステン含有ニオブ粉を 1.33X 10_2P a、 400 °Cで 1時間加熱し脱水素した。 作製したタングステン含有ニオブ粉の平均粒 径は 1 mであり、 タングステン含有量を原子吸光分析により測定したとこ ろ、 1モル%であった。 このようにして得られた、 タングステン含有ニオブ 粉を 3.99X 10_3P aの減圧下、 1150°Cで造粒した。 その後、 造粒塊を解 砕し、 平均粒径 150 / mの造粒粉を得た。
このようにして得られた、 タングステン含有ニオブ造粒粉を 0.3πΐΓηφの ニオブ線と共に成型し、 およそ 0.3cmX0.18cmX0.45cmの成型体 (約 O.lg) を作製した。
次にこれらの成型体を 3.99X 10_3P aの減圧下、 1200°Cで 30分放置 することにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 8 O :の温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での漏れ電流 (以下 「LC」 と略す) を各々測定した。 その結果を表 5に 示す。 実施例 2〜 9
前述の周期律表第 6属遷移元素 (クロム、 モリブデン、 タングステンから 選択される少なくとも 1種を使用) を含むニオブ焼結体を作製するために、 該周期律表第 6属遷移元素の粉末とニオブィンゴットを任意の割合で用い、 アーク溶解で周期律表第 6属遷移元素含有ニオブインゴットを作成した。 以 下、 このインゴット 50 gについて実施例 2と同様な装置を用いて時間を変 化させて粉砕した。 この様にして得られた周期律表第 6属遷移元素含有ニォ ブ粉を用い、 焼結体を作成し、 容量と LCを各々測定した。 その結果を表 5 に示す。 比較例 1〜 4
実施例 1〜9と比較するため、 周期律表第 6属遷移元素を含まないニオブ 粉を実施例 1と同様な操作で作成した。 このニオブ粉を用いて実施例 1と同 様な操作で焼結体を作成して容量と L Cを測定した。 その結果を表 5に示す。 表 5
Figure imgf000053_0001
実施例 1 0〜 1 5
タングステン含有ニオブ粉のタングステン含有量を変化させるために、 ァ ーク溶解で処理する、 ニオブ量、 タングステン量を変化させてタングステン を 0. 01〜1 0モル%含む、 タングステン含有ニオブインゴットを作製した。 以下、 各タングステン濃度を有するタングステン含有ニオブインゴット 5 0 gについて、 実施例 1と同様な操作で焼結体を作製し、 容量と L Cを各々測 定した。 その結果を表 8に示す。 比較例 5、 実施例 16
実施例 10〜 15と比較するため、 タングステンを 0モル%、 及び 15. 5モル%含むタングステン含有ニオブインゴットを作製した。 以下、 各タン ダステン濃度を有するタングステン含有ニオブインゴット 50 gについて、 実施例 1と同様な操作で焼結体を作製し、 容量と LCを各々測定した。 その 結果を表 6に示す。 表 6
Figure imgf000054_0001
実施例 17〜 22
ニオブインゴット 100 gを SUS 304製の反応容器に入れ、 400°C で 10時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を S US製 ポールを入れた S US 304製のポットに入れ 10時間粉碎した。 次に、 S US 304製の湿式粉砕機 (商品名 「アトライタ」 ) に、 この水素化物を水 で 20体積%のスラリーにしたもの及びジルコニァポールを入れ 7時間湿式 粉砕した。 このスラリーを遠心沈降の後、 デカンテーシヨンして粉砕物を取 得した。 粉碎物を 133P a、 50°Cの条件で真空乾燥した。 続いて、 水素 化ニオブ粉を 1.33X 10_2P a、 400 °Cで 1時間加熱し脱水素した。 作 製したニオブ粉の平均粒径は 1.3 mであった。 このニオブ粉に、 平均粒径が約 1 / mの炭化タングステン、 酸化タンダス テン、 又はタングステン金属のいずれか一種を任意の割合で混合した。 この 様にして得られた、 タングステンを含有するニオブ粉を 3.99X 10_3P a の減圧下、 1150°Cで造粒した。 その後、 造粒塊を解碎し、 平均粒径 190 mの造粒粉を得た。 このようにして得られた、 タングステンを含有するニォ ブ造粒粉を 0.3ηιπιφのニオブ線と共に成型し、 およそ 0.3cmX0.18cm X 0.45 cmの成型体 (約 0. lg) を作製した。
次にこれらの成型体を 3.99X 10_3P aの減圧下、 1230°Cで 30分放置 することにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での LCを各々測定した。 その結果を表 7に示す。 表 7
Figure imgf000055_0001
実施例 23〜 27
タングステン含有ニオブ窒化物を得るために、 実施例 15と同様な方法で 作製したタングステンを 1.2モル%含む平均粒径 0.9 Π1のタングステン含 有ニオブ粉 10 gを SUS 304製の反応容器に入れ、 300°Cで 0.5時間 〜 20時間窒素を導入し続けて、 タングステン含有ニオブ窒化物を得た。 こ の窒化物を熱電導度から窒素量を求める L ECO社製窒素量測定器を用いて 窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.02 〜0.89質量%であった。
このようにして得られた、 タングステン含有ニオブ窒化物を実施例 1と同 様な操作で造粒、 成型、 焼結し、 得られた焼結体を 0.1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での LCを各々測定した。 その結果を表 8に示す。 表 8
Figure imgf000056_0001
実施例 28〜 30
タングステン含有ニオブ粉とニオブ粉の混合物からなる焼結体を得るため に実施例 1と同様な方法でタングステンを 10モル%含む、 平均粒径 1.0 mのタングステン含有ニオブ粉を得た。 これとは別に、 ニッケル製坩堝中、
80°Cで充分に真空乾燥したフッ化ニオブ酸カリウム 20 gにナトリウムを フッ化ニオブ酸カリウムの 10倍モル量を投入し、 アルゴン雰囲気下 100 0°Cで 20時間還元反応を行った。 反応後冷却させ、 還元物を水洗した後に、
95%硫酸、 水で順次洗浄した後に真空乾燥した。
さらにシリカアルミナポ一ル入りのアルミナポットのポールミルを用いて 40時間粉砕した後、 粉砕物を 50 %硝酸と 10 %過酸化水素水の 3 : 2 (質量比) 混合液中に浸漬撹拌した。 その後、 pHが 7になるまで充分水洗 して不純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は L2ii mであった。
このようにして得られた、 タングステン含有ニオブ粉とニオブ粉を任意の 割合で充分に混合し、 実施例 15と同様な方法で造粒、 成型、 焼結を行って 焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結果を 表 9に示す。 実施例 31〜 33
タングステン含有ニオブ粉とニオブ粉の混合物からなるタングステン含有 ニオブ窒化物の焼結体を得るために実施例 1 5と同様な方法でタングステン を 10モル%含む、 平均粒径 l.O xmのタングステン含有ニオブ粉を得た。 これとは別に、 ニオブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 1 2時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を、 鉄製ポールを入れた S US 304製のポットに入れ 10時間粉碎した。
さらに、 この粉碎物を前述した SUS 304製反応器に入れ、 再度、 前述 した条件で水素化した。 次に、 SUS 304製の湿式粉碎機 (商品名 「アト ライタ」 ) に、 この水素化物を水で 20体積%のスラリーにしたもの及びジ ルコニアポ一ルを入れ 6時間湿式粉碎した。
このスラリーを遠心沈降の後、 デカンテ一シヨンして粉碎物を取得した。 粉碎物を 13 3 P a、 50°Cの条件で真空乾燥した。 続いて、 水素化ニオブ 粉を 1.33X 1 0_2P aの減圧下、 400 で 1時間加熱し脱水素した。 作 製したニオブ粉の平均粒径は 1.3 mであった。
このようにして得られた、 タングステン含有ニオブ粉とニオブ粉を任意の 割合で充分に混合し、 実施例 25と同様な方法で窒化物を得た後、 造粒、 成 型、 焼結を行って焼結体を得た。 この焼結体について容量、 LCを各々測定 した。 その結果を表 9に示す。 表 9
Figure imgf000058_0001
実施例 3 4〜3 5
実施例 3 4は実施例 1と、 実施例 3 5は実施例 1 1と、 それぞれ同様な方 法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮 膜を形成した。 次に、 6 0 %硝酸マンガン水溶液に浸漬後 2 2 0 °Cで 3 0分 加熱することを繰り返して、 誘電体酸化皮膜上に他方の電極層として二酸化 マンガン層を形成した。 引き続き、 その上に、 力一ボン層、 銀べ一スト層を 順次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止 して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n =各 5 0個) を表 1 0に示す。 尚、 L C値は室温で 6. 3
[V] 、 1分間印加した時の値である。 実施例 3 6〜 3 7
実施例 3 6は実施例 8と、 実施例 3 7は実施例 1 5と、 それぞれ同様な方 法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮 膜を形成した。 次に、 35%酢酸鉛水溶液と 35%過硫酸アンモニゥム水溶 液の 1 : 1 (容量比) 混合液に浸漬後、 40°Cで 1時間反応させることを繰 り返して、 誘電体酸化皮膜上に他方の電極層として二酸化鉛と硫酸鉛の混合 層を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層 した。
次にリードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ 型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n=各 50個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 、 1分間 印加した時の値である。 実施例 38〜 40
実施例 38は実施例 7と、 実施例 39は実施例 12と、 実施例 40は実施 例 25と、 それぞれ同様な方法で得た焼結体を各 50個用意した。 これらの 焼結体を 20 Vの電圧で、 0.1%リン酸水溶液を用い、 200分間電解化成 して、 表面に誘電体酸化皮膜を形成した。 次に、 誘電体酸化被膜の上に、 過 硫酸アンモニゥム 10%水溶液とアントラキノンスルホン酸 0.5%水溶液の 等量混合液を接触させた後、 ピロール蒸気を触れさせる操作を少なくとも 5 回行うことによりポリピロ一ルからなる他方の電極 (対極) を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=各 5 0個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 、 1分間印加した時 の値である。 比較例 6〜 8
ニッケル製坩堝中、 80°Cで充分に真空乾燥したフッ化ニオブ酸カリウム 20 gにナトリウムをフッ化ニオブ酸カリウムの 10倍モル量を投入し、 ァ ルゴン雰囲気下 iooo°cで 20時間還元反応を行った。 反応後冷却させ、 還元 物を水洗した後に、 95%硫酸、 水で順次洗浄した後に真空乾燥した。 さら にシリカアルミナポール入りのアルミナポッ卜のポールミルを用いて 40時 間粉枠した後、 粉碎物を 50%硝酸と 10%過酸化水素水の 3 : 2 (質量 比) 混合液中に浸漬撹拌した。 その後、 pHが 7になるまで充分水洗して不 純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は 1.3 imであ つた。 この様にして得られた、 ニオブ粉 30 gを S US 304製の反応容器 に入れ、 300°Cで 0.5〜4時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱電導度から窒素量を求める LE CO社製窒素量測定器を用 いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0,02〜0.30質量%でぁった。 このニオブ窒化物を実施例 1と同様の操作で造 粒、 成型、 焼結を行って焼結体を得た。 この様にして得た、 焼結体 50個に ついて、 20Vの電圧で、 0.1%リン酸水溶液を用い、 200分間電解化成 して、 表面に誘電体酸化皮膜を形成した。 次に、 60%硝酸マンガン水溶液 に浸漬後 220 で 30分加熱することを繰り返して、 誘電体酸化皮膜上に 他方の電極層として二酸化マンガン層を形成した。 引き続き、 その上に、 力 一ボン層、 銀ペースト層を順次積層した。 次にリ一ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチッ プ型コンデンサの容量と LC値の平均 (n=各 50個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 、 1分間印加した時の値である。 比較例 9〜 11
ニオブィンゴット 50 gを SUS 304製の反応容器に入れ、 400 °Cで 12時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を鉄製ポール を入れた S US 304製のポットに入れ 10時間粉砕した。 さらに、 この粉 碎物を前述した S US 304製反応器に入れ、 再度、 前述した条件で水素化 した。 次に、 S US 304製の湿式粉砕機 (商品名 「アトライタ」 ) に、 こ の水素化物を水で 20体積%のスラリーにしたもの及びジルコニァポールを 入れ 6時間湿式粉砕した。 このスラリーを遠心沈降の後、 デカンテ一シヨン して粉砕物を取得した。 粉砕物を 133 P aの減圧下、 50°Cの条件で真空 乾燥した。
続いて、 水素化ニオブ粉を 1.33X 10— 2P aの減圧下、 400°(:で1時 間加熱し脱水素した。 作製したニオブ粉の平均粒径は l.O mであった。 二 ォブ粉 3 O gを SUS 304製の反応容器に入れ、 300°Cで 0.5〜3時間 窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱電導度から窒素 量を求める LE CO社製窒素量測定器を用いて窒素量を求め、 別途測定した 粉体の質量との比を窒化量としたところ、 0.03〜0.28質量%でぁった。 この ニオブ窒化物を実施例 1と同様の操作で造粒、 成型、 焼結を行って焼結体を 得た。 この様にして得た、 焼結体 50個について、 20Vの電圧で、 0.1% リン酸水溶液を用い、 200分間電解化成して、 表面に誘電体酸化皮膜を形 成した。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 10%水溶液と アントラキノンスルホン酸 0.5%水溶液の等量混合液を接触させた後、 ピロ ール蒸気を触れさせる操作を少なくとも 5回行うことによりポリピロールか らなる他方の電極を形成した。 引き続き、 その上に、 カーボン層、 銀ペース ト層を順次積層した。
次にリ一ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ 型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平均
(n=各 50個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 、 1分間 印加した時の値である。 実施例 41 実施例 41は実施例 25と同様な方法で得た焼結体を 50個用意した。 こ れらの焼結体を 20Vの電圧で、 0.1%リン酸水溶液を用い、 200分間電 解化成して、 表面に誘電体酸化皮膜を形成した。 次に、 このニオブ燒結体を、 過硫酸アンモニゥム 25質量%を含む水溶液 (溶液 1A) に浸漬した後引き 上げ、 80°Cで 30分乾燥させ、 次いで誘電体を形成した燒結体を、 3, 4 一エチレンジォキシチォフェン 18質量%を含むイソプロパノ一ル溶液 (溶 液 2) に浸漬した後引き上げ、 60 の雰囲気に 10分放置することで酸化 重合を行った。
これを再び溶液 1 Aに浸漬し、 さらに前記と同様に処理した。 溶液 1Aに 浸漬してから酸化重合を行うまでの操作を 8回繰り返した後、 50°Cの温水 で 10分洗浄を行い、 100 °Cで 30分乾燥を行うことにより、 導電性のポ リ (3, 4 _エチレンジォキシチォフェン) からなる他方の電極 (対極) を 形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=50 個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 、 1分間印加した時の 値である。 実施例 42
実施例 12と同様な方法で得た焼結体を 50個用意した。 これらの焼結体 を 20Vの電圧で、 0.1%リン酸水溶液を用い、 200分間電解化成して、 表面に誘電体酸化皮膜を形成した。 次に、 このニオブ燒結体を、 過硫酸アン モニゥム 25質量%とアントラキノンー 2—スルホン酸ナトリウムを 3質量 %含む水溶液 (溶液 1B) に浸漬した後、 これを引き上げ、 80°Cで 30分 乾燥させ、 次いで誘電体を形成した燒結体を、 3, 4—エチレンジォキシチ ォフェン 18質量%を含むイソプロパノール溶液 (溶液 2) に浸漬した後引 き上げ、 60°Cの雰囲気に 10分放置することで酸化重合を行った。
これを再び溶液 1 Bに浸漬し、 さらに前記と同様に処理した。 溶液 1 Bに 浸漬してから酸化重合を行うまでの操作を 8回繰り返した後、 50°Cの温水 で 10分洗浄を行い、 100 で 30分乾燥を行うことにより、 導電性のポ リ (3 4一エチレンジォキシチォフェン) からなる他方の電極 (対極) を 形成した。
引き続き、 その上に、 力一ボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=50 個) を表 10に示す。 尚、 LC値は室温で 6.3 [V] 1分間印加した時の 値である。 表 1 0
Figure imgf000063_0001
実施例 43
ニオブインゴット 93 gとホウ素の粉末 0.25 gを用い、 アーク溶解でホウ 素を 2モル%含むホウ素含有ニオブインゴット (合金) を作製した。 このィ ンゴット 50 gを SUS 304製の反応容器に入れ、 400"0で10時間水 素を導入し続けた。 冷却後、 水素化されたホウ素含有ニオブ塊を、 SUS製 ポールを入れた S US 304製のポットに入れ 10時間粉砕した。 次に、 S US 304製のスパイクミルに、 この水素化物を水で 20体積%のスラリー にしたもの及びジルコニァポールを入れ、 10°C以下で 7時間湿式粉碎した。 このスラリーを遠心沈降の後、 デカンテーシヨンして粉碎物を取得した。 粉 碎物を 1.33X 102 P a、 50 °Cの条件で真空乾燥した。
続いて、 水素化ホウ素含有ニオブ粉を 1.33X 10_2P a、 400°Cで 1 時間加熱し脱水素した。 作製したホウ素含有ニオブ粉の平均粒径は 1.0 im であり、 ホウ素含有量を原子吸光分析により測定したところ、 2モル%であ つた。 このようにして得られた、 ホウ素含有ニオブ粉を 3.99X 10— 3P a の減圧下、 1000°Cで造粒した。 その後、 造粒塊を解砕し、 平均粒径 100 mの造粒粉を得た。
このようにして得られた、 ホウ素含有ニオブ造粒粉を 0.3 mm<i)のニオブ 線と共に成形し、 およそ 0.3cmX0.18cmX0.45cmの成形体 (約 0.1 g) を作製した。
次にこれらの成形体を 3.99X 10— 3P aの減圧下、 1200 で 30分放置 することにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での漏れ電流 (LC) を各々測定した。 その結果を表 11に示す。 実施例 4 :〜 55 前述のホウ素、 アルミニウムを含むニオブ焼結体を作製するために、 ホウ 素、 アルミニウム、 ガリウム、 インジウム、 タリウムの粉末とニオブインゴ ットを任意の割合で用い、 アーク溶解でホウ素、 アルミニウム、 ガリウム、 インジウム、 タリウム含有ニオブインゴットを作成した。 以下、 このインゴ ット 50 gについて実施例 43と同様な装置を用いて時間を変化させて粉砕 した。 この様にして得られたホウ素、 アルミニウム含有ニオブ粉を用い、 焼 結体を作成し、 容量と LCを各々測定した。 その結果を表 1 1に示す。
比較例 12〜 15
実施例 43〜 55と比較するため、 ホウ素、 アルミニウム、 ガリウム、 ィ ンジゥム及び夕リゥムを含まない平均粒径の異なるニオブ粉 4種を実施例 1 と同様な操作で作成した。 このニオブ粉を用いて実施例 43と同様な操作で 焼結体を作成して容量と LCを測定した。 その結果を表 11に示す。 表 11
組成 (モル比) 平均粒径 LC
Nb B A1 Ga In Tl ( tm) ( iF-V/g) (i /g)
43 98 2.0 1.0 115000 28
44 99 1.0 1.0 114000 33
45 99 1.0 1.0 115000 37
46 99 1.0 1.0 116000 39
47 99 1.0 1.0 114000 39
48 98 1.0 1.0 1.0 115000 32 施 49 98 0.5 1.5 1.0 114000 33 例 50 98 1.5 0.5 1.0 116000 30
51 98 2.0 0.1 540000 344
52 98 2.0 0.5 240000 153
53 98 2.0 0.7 155000 75
54 98 2.0 1.3 95000 18
55 98 2.0 3.2 35000 2
12 100 0.5 182000 2120 比 13 100 0.7 120000 1074
14 100 1.0 87000 424 例
15 100 1.3 74000 233 実施例 56〜 6 3
ホウ素含有ニオブ粉のホウ素含有量を変化させるために、 アーク溶解で処 理する、 ニオブ量、 ホウ素量を変化させてホウ素を 0.02〜9.8 モル%含む、 ホウ素含有ニオブインゴットを作製した。 以下、 各ホウ素濃度を有するホウ 素含有ニオブィンゴット 5 0 gについて、 実施例 1と同様な操作で焼結体を 作製し、 容量と LCを各々測定した。 その結果を表 1 2に示す。
比較例 1 6〜: I 8
実施例 5 2〜 5 9と比較するため、 ホウ素を 0モル%、 13.3 モル%及び Π.5モル%含むホウ素含有ニオブインゴットを作製した。 以下、 各ホウ素濃 度を有するホウ素含有ニオブインゴッ卜 5 0 gについて、 実施例 4 3と同様 な操作で焼結体を作製し、 容量と LCを各々測定した。 その結果を表 1 2に 示す。 表 12 ホウ素含有量 平均粒径 焼結温度 容量 LC
(モル%) (^m) (V) ( F-V/g) ( Α/g)
56 0.02 1.0 1200 105000 52
57 0.10 1.0 1200 112000 43
58 1.1 1.0 1200 113000 36
43 2.0 1.0 1200 115000 28 施 59 3.0 1.0 1200 117000 28 例 60 4.1 1.0 1200 116000 29
61 5.2 1.0 1200 112000 32
62 7.5 1.0 1200 105000 38
63 9.8 1.0 1200 98000 43 比 16 0.0 1.0 1200 88000 420 較 17 13.3 1.0 1200 85000 49 例 18 17.5 1.0 1200 79000 52 実施例 64〜 69
ニオブインゴット 100 gを SUS 304製の反応容器に入れ、 400°C で 10時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を S US製 ポールを入れた S US 304製のポットに入れ 10時間粉砕した。 次に、 S US 304製のスパイクミルに、 この水素化物を水で 20体積%のスラリー にしたもの及ぴジルコニァポールを入れ 7時間湿式粉砕した。 このスラリー を遠心沈降の後、 デカンテーシヨンして粉碎物を取得した。 粉碎物を 1.33X 102P a、 50°Cの条件で真空乾燥した。 続いて、 水素化ニオブ粉を 1.33 x l O_2P a、 400°Cで 1時間加熱し脱水素した。 作製したニオブ粉の平 均粒径は 1.1 mであった。 このニオブ粉に、 平均粒径が約 1 /xmの 2ホウ 化ニオブ、 酸化ホウ素、 またはホウ素のいずれか一種を任意の割合で混合し た。 この様にして得られた、 ホウ素を含有するニオブ粉を 3.99X 10— 3P aの減圧下、 1050°Cで造粒した。 その後、 造粒塊を解碎し、 平均粒径 90 mの造粒粉を得た。 このようにして得られた、 ホウ素を含有するニオブ造粒 粉を 0·3πιπιφのニオブ線と共に成形し、 およそ 0.3cmX0.18cmX0.45 cmの成形体 (約 O.lg) を作製した。 次にこれらの成形体を 3.99X 10一3 P aの減圧下、 1200°Cで 30分放置することにより焼結体を得た。 得られた 焼結体を、 1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの 電圧で化成することにより、 表面に誘電体層を形成した。 この後、 30%硫 酸中での容量と、 20%リン酸水溶液中での LCを各々測定した。 その結果 を表 13に示す。 表 13
Figure imgf000068_0001
実施例 70〜 74
ホウ素含有ニオブ窒化物を得るために、 実施例 43と同様な方法で作製し たホウ素を 3.2モル%含む平均粒径 0.9 mのホウ素含有ニオブ粉 10 gを SUS 304製の反応容器に入れ、 300 °Cで 0.5時間〜 20時間窒素を導 入し続けて、 ホウ素含有ニオブ窒化物を得た。 この窒化物を熱電導度から窒 素量を求める LE CO社製窒素量測定器を用いて窒素量を求め、 別途測定し た粉体の質量との比を窒化量としたところ、 0.02〜0.89質量%でぁった。 このようにして得られた、 ホウ素含有ニオブ窒化物を実施例 43と同様な 操作で造粒、 成形、 焼結し、 得られた焼結体を 0.1%リン酸水溶液中で、 8 0°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘電 体層を形成した。 この後、 30 %硫酸中での容量と、 20 %リン酸水溶液中 での LCを各々測定した。 その結果を表 14に示す。
表 1 4
Figure imgf000069_0001
実施例 7 5〜 7 6
ホウ素含有ニオブ粉とニオブ粉の混合物からなる焼結体を得るために実施 例 4 3と同様な方法でホウ素を 6. 9モル%含む、 平均粒径 1. 0 /x mのホウ素 含有ニオブ粉を得た。
これとは別に、 ニッケル製坩堝中、 8 0 °Cで充分に真空乾燥したフッ化二 ォブ酸カリウム 2 0 gにナトリウムをフッ化ニオブ酸カリウムの 1 0倍モル 量を投入し、 アルゴン雰囲気下 1000 Cで 2 0時間還元反応を行った。 反応後 冷却させ、 還元物を水洗した後に、 9 5 %硫酸、 水で順次洗浄した後に真空 乾燥した。 さらにシリカアルミナポール入りのアルミナポッ卜のポールミル を用いて 4 0時間粉碎した後、 粉碎物を 5 0 %硝酸と 1 0 %過酸化水素水の 3 : 2 (質量比) 混合液中に浸漬撹拌した。 その後、 p Hが 7になるまで充 分水洗して不純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は 1. 2 x mであった。
このようにして得られた、 ホウ素含有ニオブ粉とニオブ粉を表 1 5に示す 割合で充分に混合し、 実施例 1と同様な方法で造粒、 成形、 焼結を行って焼 結体を得た。 この焼結体について容量、 L Cを各々測定した。 その結果を表 1 5に示す。 実施例 77〜 80
ホウ素含有ニオブ粉とニオブ粉の混合物からなるホウ素含有ニオブ窒化物 の焼結体を得るために実施例 43と同様な方法でホウ素を 6.9モル%含む、 平均粒径 1.0 mのホウ素含有ニオブ粉を得た。 これとは別に、 ニオブイン ゴット 50 gを S U S 304製の反応容器に入れ、 400 °Cで 12時間水素 を導入し続けた。 冷却後、 水素化されたニオブ塊を、 鉄製ポールを入れた S US 304製のポットに入れ 10時間粉砕した。 さらに、 この粉碎物を前述 した S US 304製反応器に入れ、 再度、 前述した条件で水素化した。 次に、 SUS 304製のスパイクミルに、 この水素化物を水で 20体積%のスラリ —にしたもの及びジルコニァポールを入れ 6時間湿式粉碎した。
このスラリ一を遠心沈降の後、 デカンテーションして粉砕物を取得した。 粉砕物を 1.33X 102 Pa、 50 °Cの条件で真空乾燥した。 続いて、 水素化 ニオブ粉を 1.33X 10— 2P aの減圧下、 400°Cで 1時間加熱し脱水素し た。 作製したニオブ粉の平均粒径は 1.1 ^ mであった。
このようにして得られた、 ホウ素含有ニオブ粉とニオブ粉を任意の割合で 充分に混合し、 実施例 68と同様な方法で窒化物を得た後、 造粒、 成形、 焼 結を行って焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結果を表 15に示す。 表 15 混合比
容量 LC
二オフ'粉種 (ホウ素含有ニオブ粉
:ニ
Figure imgf000070_0001
オフ'粉)
75 還元粉 90:10 109000 36
76 還元粉 50:50 117000 28
77 還元粉 10:90 111000 41 施
78 粉砕粉 80:20 ' 113000 33 例
79 粉碎粉 40:60 116000 27
80 粉砕粉 20:80 114000 36 実施例 8 1〜 8 2
実施例 8 1は実施例 4 3と、 実施例 8 2は実施例 4 4と、 それぞれ同様な 方法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮 膜を形成した。 次に、 6 0 %硝酸マンガン水溶液に浸漬後 2 2 0 °Cで 3 0分 加熱することを繰り返して、 誘電体酸化皮膜上に他方の電極層として二酸化 マンガン層を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を 順次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止 して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n =各 5 0個) を表 1 6に示す。 なお、 L C値は室温で 6. 3V、 1分間印加した時の値である。 実施例 8 3〜 8 4
実施例 8 3は実施例 5 3と、 実施例 8 4は実施例 4 8と、 それぞれ同様な 方法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮 膜を形成した。 次に、 3 5 %酢酸鉛水溶液と 3 5 %過硫酸アンモニゥム水溶 液の 1 : 1 (容量比) 混合液に浸漬後、 4 0 °Cで 1時間反応させることを繰 り返して、 誘電体酸化皮膜上に他方の電極層として二酸化鉛と硫酸鉛の混合 層を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層 した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チ ップ型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平 均 (n =各 5 0個) を表 1 6に示す。 尚、 L C値は室温で 6. 3V、 1分間印 加した時の値である。 実施例 8 5〜 8 8
実施例 8 5は実施例 5 8と、 実施例 8 6は実施例 4 9と、 実施例 8 7は実 施例 6 7と、 実施例 8 8は実施例 7 1と、 それぞれ同様な方法で得た焼結体 を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶 液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮膜を形成した。 次 に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 1 0 %水溶液とアントラキ ノンスルホン酸 0. 5 %水溶液の等量混合液を接触させた後、 ピロ一ル蒸気を 触れさせる操作を少なくとも 5回行うことによりポリピロ一ルからなる他方 の電極 (対極) を形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ —ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n =各 5 0個) を表 1 6に示す。 なお、 L C値は室温で 6. 3V、 1分間印加した時の 値である。 実施例 8 9〜 9 3
実施例 8 9は実施例 5 9と、 実施例 9 0は実施例 5 0と、 実施例 9 1は実 施例 6 5と、 実施例 9 2は実施例 7 2と、 実施例 9 3は実施例 7 6と、 同様 な方法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮 膜を形成した。 次に、 このニオブ燒結体を、 過硫酸アンモニゥム 2 5質量% を含む水溶液 (溶液 1 ) に浸漬した後引き上げ、 8 0 °Cで 3 0分乾燥させ、 次いで誘電体を形成した燒結体を、 3, 4一エチレンジォキシチォフェン 1 8質量%を含むイソプロパノール溶液 (溶液 2 ) に浸漬した後引き上げ、 6 0 °Cの雰囲気に 1 0分放置することで酸化重合を行った。 これを再び溶液 1 に浸漬し、 さらに前記と同様に処理した。 溶液 1に浸漬してから酸化重合を 行うまでの操作を 8回繰り返した後、 50°Cの温水で 10分洗浄を行い、 1 00nCで 30分乾燥を行うことにより、 導電性のポリ (3, 4—エチレンジ ォキシチォフェン) からなる他方の電極 (対極) を形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ —ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=各 5 0個) を表 16に示す。 尚、 LC値は室温で 6.3V、 1分間印加した時の値 である。 比較例 18〜20
ニッケル製坩堝中、 80 で充分に真空乾燥したフッ化ニオブ酸カリウム 20 gにナトリウムをフッ化ニオブ酸カリウムの 10倍モル量を投入し、 ァ ルゴン雰囲気下 1000°Cで 20時間還元反応を行った。 反応後冷却させ、 還元 物を水洗した後に、 95%硫酸、 水で順次洗浄した後に真空乾燥した。 さら にシリカアルミナポール入りのアルミナポットのポールミルを用いて 40時 間粉碎した後、 粉砕物を 50%硝酸と 10%過酸化水素水の 3 : 2 (質量 比) 混合液中に浸漬撹拌した。 その後、 pHが 7になるまで充分水洗して不 純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は 1.3 mであ つた。 この様にして得られた、 ニオブ粉 30 gを SUS 304製の反応容器 に入れ、 300°Cで 0.5〜4時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱電導度から窒素量を求める LEC O社製窒素量測定器を用い て窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.02~0.30質量%であった。 このニオブ窒化物を実施例 43と同様の操作で 造粒、 成形、 焼結を行って焼結体を得た。 この様にして得た、 焼結体 50個 について、 20Vの電圧で、 0.1%リン酸水溶液を用い、 200分間電解化 成して、 表面に誘電体酸化皮膜を形成した。 次に、 60%硝酸マンガン水溶 液に浸漬後 220°Cで 30分加熱することを繰り返して、 誘電体酸化皮膜上 に他方の電極層として二酸化マンガン層を形成した。 引き続き、 その上に、 カーボン層、 銀べ一スト層を順次積層した。 次にリ一ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチッ プ型コンデンサの容量と LC値の平均 (n=各 50個) を表 16に示す。 尚、 L C値は室温で 6.3V、 1分間印加した時の値である。 比較例 21〜 23
ニオブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 12時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を鉄製ポール を入れた SUS 304製のポットに入れ 10時間粉砕した。 さらに、 この粉 砕物を前述した S US 304製反応器に入れ、 再度、 前述した条件で水素化 した。 次に、 S US 304製の湿式粉碎機 (商品名 「アトライタ」 ) に、 こ の水素化物を水で 20体積%のスラリーにしたもの及びジルコニァポールを 入れ 6時間湿式粉枠した。 このスラリ一を遠心沈降の後、 デカンテ一シヨン して粉碎物を取得した。 粉砕物を 1.33X 102P aの減圧下、 50°Cの条件 で真空乾燥した。 続いて、 水素化ニオブ粉を 1.33X 10— 2P aの減圧下、 400°Cで 1時間加熱し脱水素した。 作製したニオブ粉の平均粒径は 1.0 mであった。 ニオブ粉 30 gを S US 304製の反応容器に入れ、 300 °C で 0.5〜 3時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱 電導度から窒素量を求める L E C O社製窒素量測定器を用いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.03〜0.28質量%で あった。 このニオブ窒化物を実施例 43と同様の操作で造粒、 成形、 焼結を 行って焼結体を得た。 この様にして得た、 焼結体 50個について、 20Vの 電圧で、 0.1%リン酸水溶液を用い、 200分間電解化成して、 表面に誘電 体酸化皮膜を形成した。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 10%水溶液とアントラキノンスルホン酸 0.5%水溶液の等量混合液を接触 させた後、 ピロール蒸気を触れさせる操作を少なくとも 5回行うことにより ポリピロ一ルからなる他方の電極を形成した。 引き続き、 その上に、 力一ポ ン層、 銀ペースト層を順次積層した。 次にリードフレームを載せた後、 全体 をエポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチップ型 コンデンサの容量と LC値の平均 (n=各 50個) を表 16に示す。 尚、 L C値は室温で 6.3V、 1分間印加した時の値である。 表 16
Figure imgf000075_0001
実施例 94
ニオブインゴット 92 gとレニウムの粉末 1.9gを用い、 アーク溶解でレ 二ゥムを 1モル%含むレニウム含有ニオブインゴット (合金) を作製した。 このインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 10 時間水素を導入し続けた。 冷却後、 水素化されたレニウム含有ニオブ塊を、 S US製ポールを入れた S US 304製のポットに入れ 10時間粉砕した。 次に、 SUS 304製のスパイクミルに、 この水素化物を水で 20体積%の スラリーにしたもの及びジルコニァポールを入れ、 10 以下で 7時間湿式 粉砕した。 このスラリーを遠心沈降の後、 デカンテ一シヨンして粉砕物を取 得した。 粉碎物を 1.33X 102 P a、 50 °Cの条件で真空乾燥した。
続いて、 水素化レニウム含有ニオブ粉を 1.33X 10— 2 P a、 400°Cで 1時間加熱し脱水素した。 作製したレニウム含有ニオブ粉の平均粒径は 1 mであり、 レニウム含有量を原子吸光分析により測定したところ、 1モル% であった。 このようにして得られた、 レニウム含有ニオブ粉を 4X 10-3P aの減圧下、 1000°Cで造粒した。 その後、 造粒塊を解砕し、 平均粒径 100 mの造粒粉を得た。
このようにして得られた、 レニウム含有ニオブ造粒粉を 0.3mm のニォ ブ線と共に成型し、 およそ 0.3じ111ズ0.18じ]11ズ0.45( 111の成型体 (約 0.1 g) を作製した。
次にこれらの成型体を 4 X 10— 3 P aの減圧下、 1200°Cで 30分放置する ことにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 8 0°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘電 体層を形成した。 この後、 30 %硫酸中での容量と、 20 %リン酸水溶液中 での漏れ電流 (以下 「LC」 と略す) を各々測定した。 その結果を表 17に 示す。 実施例 95〜: L 17
前述のセリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマス の少なくとも 1種の元素を含むニオブ焼結体を作製するために、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜 鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスの粉末とニオブイン ゴットを任意の割合で用い、 アーク溶解でセリウム、 ネオジム、 チタン、 レ 二ゥム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウ ム、 スズ、 リン、 砒素、 ビスマスの少なくとも 1種の元素含有ニオブインゴ ットを作成した。 以下、 このインゴット 5 0 gについて実施例 1と同様な装 置を用いて時間を変化させて粉砕した。 この様にして得られたセリウム、 ネ オジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマス含有ニオブ粉を用い、 焼 結体を作成し、 容量と L Cを各々測定した。 その結果を表 1 7に示す。
漏れ電流値を最も低くする効果をもつのはレニウムであり、 次に亜鉛、 砒 素、 リン、 ゲルマニウム、 スズの順となる。 セリウム、 ネオジム、 チタン、 ルテニウム、 ロジウム、 パラジウム、 銀、 珪素、 ビスマスは、 ほぼ同じ漏れ 電流値を示し、 スズに続く。 したがって、 本発明ではニオブ粉にレニウムを 含有させることが最も好ましく、 次に、 亜鉛が好ましい。 比較例 2 4〜 2 7
実施例 9 4〜1 1 7と比較するため、 セリウム、 ネオジム、 チタン、 レニ ゥム、 ルテニウム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマスを含まない平均粒径の異なるニオブ粉 4種を実 施例 9 4と同様な操作で作成した。 このニオブ粉を用いて実施例 9 4と同様 な操作で焼結体を作成して容量と L Cを測定した。 その結果を表 1 7に示す。 表 1 7
Figure imgf000078_0001
実施例 1 1 8〜 1 2 2
レニウム含有ニオブ粉のレニウム含有量を変化させるために、 アーク溶解 で処理する、 ニオブ量、 レニウム量を変化させてレニウムを 0. 01〜 7モル% 含む、 レニウム含有ニオブインゴットを作製した。 以下、 各レニウム濃度を 有するレニウム含有ニオブインゴット 5 0 gについて、 実施例 9 4と同様な 操作で焼結体を作製し、 容量と L Cを各々測定した。 その結果を表 1 8に示 す。 比較例 28 ~ 30
実施例 94および実施例 1 18〜122と比較するため、 レニウムを 0モ ル%、 11モル%及び 18モル%含むレニウム含有ニオブインゴットを作製 した。 以下、 各レニウム濃度を有するレニウム含有ニオブインゴット 50 g について、 実施例 94と同様な操作で焼結体を作製し、 容量と LCを各々測 定した。 その結果を表 18に示す。 表 18
Figure imgf000079_0001
実施例 123〜 128
ニオブインゴット 100 gを SUS 304製の反応容器に入れ、 400°C で 10時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を s us製 ポールを入れた S US 304製のポッ卜に入れ 10時間粉砕した。 次に、 S US 304製のスパイクミルに、 この水素化物を水で 20体積%のスラリー にしたもの及びジルコニァポールを入れ 7時間湿式粉碎した。 このスラリー を遠心沈降の後、 デカンテーシヨンして粉碎物を取得した。 粉碎物を 1.33X 102P a 50°Cの条件で真空乾燥した。 続いて、 水素化ニオブ粉を 1.33 X 10— 2P a 400°Cで 1時間加熱し脱水素した。 作製したニオブ粉の平 均粒径は 1.1 mであった。
このニオブ粉に、 平均粒径が約 1 mの酸化レニウム、 硫化レニウム、 又 はレニウム金属のいずれか一種を任意の割合で混合した。 この様にして得ら れた、 レニウムを含有するニオブ粉を 4 X 10—3P aの減圧下、 1050 で造 粒した。 その後、 造粒塊を解碎し、 平均粒径 90 imの造粒粉を得た。 この ようにして得られた、 レニウムを含有するニオブ造粒粉を 0.3πιπιφのニォ プ線と共に成型し、 およそ 0.3(:111 0.18じ111 0.45( 111の成型体 (約 0. 1 g) を作製した。 次にこれらの成型体を 4 X 10一3 P aの減圧下、 1200°C で 30分放置することにより焼結体を得た。 得られた焼結体を、 0.1%リン 酸水溶液中で、 8 Otの温度で 200分間、 20Vの電圧で化成することに より、 表面に誘電体層を形成した。 この後、 30%硫酸中での容量と、 20 %リン酸水溶液中での L Cを各々測定した。 その結果を表 19に示す。 表 19
Figure imgf000080_0001
実施例 129 133
レニウム含有ニオブ窒化物を得るために、 実施例 94と同様な方法で作製 したレニウムを 0.9モル%含む平均粒径 0.9 mのレニウム含有ニオブ粉 1 0 gを SUS 304製の反応容器に入れ、 300 °Cで 0.5時間〜 20時間窒 素を導入し続けて、 レニウム含有ニオブ窒化物を得た。 この窒化物を熱電導 度から窒素量を求める LE CO社製窒素量測定器を用いて窒素量を求め、 別 途測定した粉体の質量との比を窒ィ匕量としたところ、 0.02〜0.79質量%でぁ つた。
このようにして得られた、 レニウム含有ニオブ窒化物を実施例 94と同様 な操作で造粒、 成型、 焼結し、 得られた焼結体を 0.1%リン酸水溶液中で、
80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での LCを各々測定した。 その結果を表 20に示す。
表 20
Figure imgf000081_0001
実施例 134〜 136
レニウム含有ニオブ粉とニオブ粉の混合物からなる焼結体を得るために実 施例 94と同様な方法でレニウムを 10モル%含む、 平均粒径 1.0 zmのレ ニゥム含有ニオブ粉を得た。
これとは別に、 ニッケル製坩堝中、 80°Cで充分に真空乾燥したフッ化二 ォブ酸カリウム 2000 gにナトリウムをフッ化ニオブ酸カリウムの 10倍モル 量を投入し、 アルゴン雰囲気下 1000°Cで 20時間還元反応を行った。 反応後 冷却させ、 還元物を水洗した後に、 95%硫酸、 水で順次洗浄した後に真空 乾燥した。 さらにシリカアルミナポール入りのアルミナポットのポールミル を用いて 40時間粉碎した後、 粉碎物を 50 %硝酸と 10 %過酸化水素水の 3 : 2 (¾量比) 混合液中に浸漬撹拌した。 その後、 PHが 7になるまで充 分水洗して不純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は
1.2/xmであった。
このようにして得られた、 レニウム含有ニオブ粉とニオブ粉を表 21に示 す割合で充分に混合し、 実施例 94と同様な方法で造粒、 成型、 焼結を行つ て焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結果 を表 21に示す。 実施例 137〜 139
レニウム含有ニオブ粉とニオブ粉の混合物からなるレニウム含有ニオブ 窒化物の焼結体を得るために実施例 94と同様な方法でレニウムを 10モル %含む、 平均粒径 1.0 mのレニウム含有ニオブ粉を得た。 これとは別に、 ニオブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 1 2時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を、 鉄製ポール を入れた SUS 304製のポットに入れ 10時間粉碎した。 さらに、 この粉 砕物を前述した SUS 304製反応器に入れ、 再度、 前述した条件で水素化 した。 次に、 SUS 304製のスパイクミルに、 この水素化物を水で 20体 積%のスラリーにしたもの及びジルコニァポールを入れ 6時間湿式粉碎した。 このスラリーを遠心沈降の後、 デカンテ一ションして粉碎物を取得した。 粉砕物を 1.33X 102P a、 50°Cの条件で真空乾燥した。 続いて、 水素化 ニオブ粉を 133X 10— 2P aの減圧下、 400 °Cで 1時間加熱し脱水素し た。 作製したニオブ粉の平均粒径は 1.1 mであった。
このようにして得られた、 レニウム含有ニオブ粉とニオブ粉を任意の割合 で充分に混合し、 実施例 131と同様な方法で窒化物を得た後、 造粒、 成型、 焼結を行って焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結果を表 21に示す。 表 2
Figure imgf000083_0001
実施例 140〜 141
実施例 140は実施例 94と、 実施例 141は実施例 1 16と、 それぞれ 同様な方法で得た焼結体を各 50個用意した。 これらの焼結体を 20 Vの電 圧で、 0.1%リン酸水溶液を用い、 200分間電解化成して、 表面に誘電体 酸化皮膜を形成した。 次に、 60%硝酸マンガン水溶液に浸漬後 220でで
30分加熱することを繰り返して、 誘電体酸化皮膜上に他方の電極層として 二酸化マンガン層を形成した。 引き続き、 その上に、 カーボン層、 銀ペース ト層を順次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂 で封止して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容 量と LC値の平均 (n 各 50個) を表 22に示す。 尚、 LC値は室温で 6.3V, 1分間印加した時の値である。 実施例 142〜143
実施例 142は実施例 95と、 実施例 143は実施例 128と、 それぞれ 同様な方法で得た焼結体を各 50個用意した。 これらの焼結体を 20 Vの電 圧で、 0.1%リン酸水溶液を用い、 200分間電解化成して、 表面に誘電体 酸化皮膜を形成した。 次に、 35%酢酸鉛水溶液と 35%過硫酸アンモニゥ ム水溶液の 1 : 1 (容量比) 混合液に浸漬後、 40°Cで 1時間反応させるこ とを繰り返して、 誘電体酸化皮膜上に他方の電極層として二酸化鉛と硫酸鉛 の混合層を形成した。 引き続き、 その上に、 力一ボン層、 銀ペースト層を順 次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止し て、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量と L C 値の平均 (n =各 5 0個) を表 2 2に示す。 尚、 L C値は室温で 6. 3V、 1 分間印加した時の値である。 実施例 1 4 4〜 1 4 7
実施例 1 4 は実施例 9 6と、 実施例 1 4 5は実施例 1 1 5と、 実施例 1 4 6は実施例 1 3 2と、 実施例 1 4 7は実施例 9 7と、 それぞれ同様な方法 で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶液を用い、 2 0 0分間電解化成して、 表面に誘電体酸化皮膜を 形成した。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 1 0 %水溶液 とアントラキノンスルホン酸 0. 5%水溶液の等量混合液を接触させた後、 ピ ロール蒸気を触れさせる操作を少なくとも 5回行うことによりポリピロ一ル からなる他方の電極 (対極) を形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ —ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n =各 5 0個) を表 2 2に示す。 尚、 L C値は室温で 6. 3V、 1分間印加した時の値 である。 実施例 1 4 8〜 1 5 3
実施例 1 4 8は実施例 1 1 4と、 実施例 1 4 9は実施例 1 2 2と、 実施例 1 5 0は実施例 1 2 3と、 実施例 1 5 1は実施例 1 2 4と、 実施例 1 5 2は 実施例 1 3 1と、 実施例 1 5 3は実施例 1 3 6と、 同様な方法で得た焼結体 を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、 0. 1 %リン酸水溶 液を用い、 200分間電解化成して、 表面に誘電体酸化皮膜を形成した。 次 に、 このニオブ燒結体を、 過硫酸アンモニゥム 25質量%を含む水溶液 (溶 液 1) に浸漬した後引き上げ、 80°Cで 30分乾燥させ、 次いで誘電体を形 成した燒結体を、 3, 4—エチレンジォキシチォフェン 18質量%を含むィ ソプロパノール溶液 (溶液 2) に浸潰した後引き上げ、 60°Cの雰囲気に 1 0分放置することで酸化重合を行った。 これを再び溶液 1に浸漬し、 さらに 前記と同様に処理した。 溶液 1に浸漬してから酸化重合を行うまでの操作を 8回繰り返した後、 50°Cの温水で 10分洗浄を行い、 100°Cで 30分乾 燥を行うことにより、 導電性のポリ (3, 4—エチレンジォキシチォフエ ン) からなる他方の電極 (対極) を形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=各 5 0個) を表 22に示す。 尚、 LC値は室温で 6.3V、 1分間印加した時の値 である。 比較例 30 ~ 32
ニッケル製坩堝中、 80°Cで充分に真空乾燥したフッ化ニオブ酸カリウム 2000gにナトリウムをフッ化ニオブ酸カリウムの 10倍モル量を投入し、 ァ ルゴン雰囲気下 1000°Cで 20時間還元反応を行った。 反応後冷却させ、 還元 物を水洗した後に、 95%硫酸、 水で順次洗浄した後に真空乾燥した。 さら にシリカアルミナボール入りのアルミナポットのポールミルを用いて 40時 間粉碎した後、 粉碎物を 50%硝酸と 10%過酸化水素水の 3 : 2 (質量 比) 混合液中に浸漬撹拌した。 その後、 pHが 7になるまで充分水洗して不 純物を除去し、 真空乾燥した。 作製したニオブ粉の平均粒径は 1.3/xmであ つた。 この様にして得られた、 ニオブ粉 30 gを SUS 304製の反応容器 に入れ、 300 で 0.5〜4時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱電導度から窒素量を求める LE CO社製窒素量測定器を用い て窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.02〜0.30質量%であった。 このニオブ窒化物を実施例 1と同様の操作で造 粒、 成型、 焼結を行って焼結体を得た。
この様にして得た、 焼結体 50個について、 20Vの電圧で、 0.1%リン 酸水溶液を用い、 200分間電解化成して、 表面に誘電体酸化皮膜を形成し た。 次に、 60 %硝酸マンガン水溶液に浸漬後 220°Cで 30分加熱するこ とを繰り返して、 誘電体酸化皮膜上に他方の電極層として二酸化マンガン層 を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層し た。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チッ プ型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n=各 50個) を表 22に示す。 尚、 LC値は室温で 6.3V、 1分間印加 した時の値である。 比較例 33 ~ 35
ニオブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 12時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を鉄製ポール を入れた SUS 304製のポットに入れ 10時間粉碎した。 さらに、 この粉 砕物を前述した S US 304製反応器に入れ、 再度、 前述した条件で水素化 した。 次に、 S US 304製の湿式粉碎機 (商品名 「アトライ夕」 ) に、 こ の水素化物を水で 20体積%のスラリーにしたもの及びジルコニァボールを 入れ 6時間湿式粉砕した。 このスラリーを遠心沈降の後、 デカンテ一シヨン して粉碎物を取得した。 粉砕物を 1.33X 102 P aの減圧下、 50DCの条件 で真空乾燥した。 続いて、 水素化ニオブ粉を 1.33X 10— 2P aの減圧下、 400°Cで 1時間加熱し脱水素した。 作製したニオブ粉の平均粒径は 1.0 mであった。 ニオブ粉 30 gを SUS 304製の反応容器に入れ、 300 で 0.5〜 3時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱 電導度から窒素量を求める LE CO社製窒素量測定器を用いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.03〜0.28質量%で あった。 このニオブ窒化物を実施例 94と同様の操作で造粒、 成型、 焼結を 行って焼結体を得た。
この様にして得た、 焼結体 50個について、 20Vの電圧で、 0.1%リン 酸水溶液を用い、 200分間電解化成して、 表面に誘電体酸化皮膜を形成し た。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 10%水溶液とアン トラキノンスルホン酸 0.5%水溶液の等量混合液を接触させた後、 ピロ一ル 蒸気を触れさせる操作を少なくとも 5回行うことによりポリピロールからな る他方の電極を形成した。 引き続き、 その上に、 力一ボン層、 銀べ一スト層 を順次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封 止して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=各 50個) を表 22に示す。 尚、 < 値は室温で6.3¥、 1分間印加した時の値である。
表 22
Figure imgf000088_0001
実施例 154
ニオブインゴット 184 gとランタンの粉末 2.8gを用い、 ァ一ク溶解で ランタンを 1モル%含むランタン含有ニオブインゴット (合金) を作製した。 このインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 10 時間水素を導入し続けた。 冷却後、 水素化されたランタン含有ニオブ塊を、 S US製ポールを入れた S US 304製のポットに入れ 10時間粉砕した。 次に、 SUS 304製のスパイクミルに、 この水素化物を水で 20体積%の スラリーにしたもの及びジルコ二アポ一ルを入れ、 7時間湿式粉砕した。 こ のスラリーを遠心沈降の後、 デカンテーシヨンして粉砕物を取得した。 粉碎 物を 1.33X 1 02 P a、 5 0°Cの条件で減圧乾燥した。
続いて、 水素化ランタン含有ニオブ粉を 1.33X 1 0_2P a、 400 で1 時間加熱し脱水素した。 作製したランタン含有ニオブ粉の平均粒径は 1.0M mであり、 ランタン含有量は 1モル%であった。 このランタン含有ニオブ粉 を 4X 1 0— 3P aの減圧下、 1100°Cで造粒した。 その後、 造粒塊を解碎し、 平均粒径 1 0 0 mの造粒粉を得た。
このようにして得られた、 ランタン含有ニオブ造粒粉を 0.3πΐΓηφの二 ォブ線と共に成型し、 およそ 0.3cmX0.18cmX0.45cmの成型体 (約 O.lg) を作製した。
次にこれらの成型体を 4 X 1 0— 3P aの減圧下、 1200 で 3 0分放置する ことにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 8 0°Cの温度で 2 00分間、 20Vの電圧で化成することにより、 表面に誘電 体層を形成した。 この後、 30 %硫酸中での容量と、 2 0 %リン酸水溶液中 での漏れ電流 (以下 「LC」 と略す) を各々測定した。 その結果を表 2 3 (No. 1及び No. 2) に示す。 実施例 155〜 195
前述のルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユー 口ピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エル ピウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 プラチナ、 金、 カドミウム、 水銀、 鉛、 硫黄、 セ レン、 テルルの少なくとも 1種の元素を含むニオブ焼結体を作製するために、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカン ジゥム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウ ム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニゥム、 バナジウム、 ォスミ ゥム、 イリジウム、 プラチナ、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン、 テルルの粉末とニオブ粉末を任意の割合で用い、 アーク溶解でルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イツ トリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニ ゥム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニゥム、 バナジウム、 オスミウム、 イリ ジゥム、 プラチナ、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン、 テルルの少 なくとも 1種の元素を含有するニオブインゴットを作成した。 以下、 このィ ンゴット 5 0 0 gについて実施例 1 5 4と同様な装置を用いて時間を変化さ せて粉碎した。 この様にして得られたルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 ブラ セオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプ ロシゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウ ム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 プラチナ、 金、 力 ドミゥム、 水銀、 鉛、 硫黄、 セレン及びテルルからなる群から選ばれる少な くとも 1種を含有するニオブ粉を用い、 焼結体を作成し、 容量と L Cを各々 測定した。 その結果を表 2 3 (N o . 1及び N o . 2 ) に示す。 比較例 3 6〜 3 9
実施例 1 5 4〜1 9 5と比較するため、 ルビジウム、 セシウム、 マグネシ ゥム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジ スプロシゥム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 ルテ チウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 プラチナ、 金、 カドミウム、 水銀、 鉛、 硫黄、 セレン、 テルルを含まない平均粒径の異なる ニオブ粉 4種を実施例 1と同様な操作で作成した。 このニオブ粉を用いて実 施例 1 5 4と同様な操作で焼結体を作成して容量と L Cを測定した。 その結 果を表 2 3 (N o . 1及び N o . 2 ) に示す。 表 2 3 (N o . 1 ) 沮成 平均粒径
元素 モノレ比 ( μ τη)
実施例 154 Nb:La 99:1 1.0 108000 21 実施例 155 Nb:La 99:1 0.5 228000 125 実施例 156 Nb:La 99:1 0.7 151000 55 実施例 157 Nb:La 99:1 1.3 92000 11 実施例 158 Nb:Sc 99.9:0.1 1.0 106000 36 実施例 159 Nb:Y 97:3 1.0 106000 23 実施例 160 Nb:Pr 99: 1 1.0 105000 32 実施例 161 Nb:Sm 99:1 1.0 107000 37 実施例 162 Nb:Eu 99.5:0.5 1.0 104000 39 実施例 163 Nb:Gd 98.5:1.5 1.0 103000 40 実施例 164 Nb:Tb 99.8:0.2 丄.0 105000 41 実施例 165 Nb:Dy 99:1 1.0 107000 39 実施例 166 Nb:Ho 99:7:0.3 1.0 106000 44 実施例 167 Nb:Er 99.5:0.5 1.0 106000 25 実施例 168 Nb:Tm 99.8:0.2 1.0 103000 37 実施例 169 Nb:Yb 97:3 1.0 105000 26 実施例 170 Nb:Lu 95:5 1.0 104000 27 実施例 171 Nb:Hf 93:7 1.0 105000 35 実施例 172 Nb:V 99.9:0.1 1.0 109000 48 実施例 173 Nb:Os 99.9:0.1 1.0 107000 43 実施例 174 Nb:Ir 99.9:0.1 1.0 107000 44 実施例 175 Nb:Pt 99.8:0.2 1.0 102000 37 実施例 176 Nb:Au 99.8:0.2 1.0 101000 41 実施例 177 Nb:Cd 99.7:0.3 1.0 109000 35 実施例 178 Nb:Hg 99.9:0.1 1.0 101000 43 実施例 179 Nb:Pb 99.9:0.1 1.0 102000 36 実施例 180 Nb:S 95:5 1.0 108000 35 ( o. 2)
Figure imgf000092_0001
実施例 196〜 202 ラン夕ン含有量の異なるラン夕ン含有ニオブ粉を得るために、 アーク溶解 で処理する、 ニオブ量、 ランタン量を変えて、 ランタンを 0.01〜20モル% 含む、 ランタン含有ニオブインゴットを作製した。 以下、 各ランタン濃度を 有するランタン含有ニオブインゴット 500 gについて、 実施例 154と同 様な操作で焼結体を作製し、 容量と LCを各々測定した。 その結果を表 24 に示す。 表 24
Figure imgf000093_0001
実施例 203〜 207
ニオブインゴット lOOOgを SUS 304製の反応容器に入れ、 400。Cで 10時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を SUS製ポ —ルを入れた SUS 304製のポットに入れ 10時間粉碎した。 次に、 得ら れた水素化物を水で 20体積%のスラリーとし、 ジルコニァポールと共に、 SUS 304製のスパイクミルに入れ、 7時間湿式粉砕した。 このスラリー を遠心沈降の後、 デカンテ一シヨンして粉碎物を取得した。 粉碎物を 1.3X 102P a、 50°Cの条件で減圧乾燥した。 続いて、 水素化ニオブ粉を 1. 3X 10— 2 P a、 400 °Cで 1時間加熱し脱水素した。 作製したニオブ粉の 平均粒径は 1.0/2 mであった。 このニオブ粉に、 平均粒径が約 1 mの酸化 ランタン、 蓚酸ランタン、 水素化ランタン、 硝酸ランタン、 またはランタン (金属) のいずれか 1種を任意の割合で混合した。 この様にして得られた、 ランタンを含有するニオブ粉を 4 X 10— 3 P aの減圧下、 1050°Cで造粒した。 その後、 造粒塊を解枠し、 平均粒径 90 mの造粒粉を得た。 このようにし て得られた、 ランタンを含有するニオブ造粒粉を 0 · 3mm φのニオブ線と共 に成型し、 およそ 0.3 c mX 0.18 c mX 0.45 cmの成型体 (約 0. lg) を作製 した。 次にこれらの成型体を 4X 10— 3P aの減圧下、 1250°Cで 30分放置 することにより焼結体を得た。 得られた焼結体を、 0.1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 30%硫酸中での容量と、 20%リン酸水溶液 中での LCを各々測定した。 その結果を表 25に示す。 表 25
Figure imgf000094_0001
実施例 208〜 212
ランタン含有ニオブ窒化物を得るために、 実施例 154と同様な方法で作 製したランタンを 0.9モル%含む平均粒径 0.9 mのランタン含有ニオブ粉 10 gを SUS 304製の反応容器に入れ、 300°Cで 0.5時間〜 20時間 窒素を導入し続けて、 ランタン含有ニオブ窒化物を得た。 この窒化物を熱電 導度から窒素量を求める LE CO社製窒素量測定器を用いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.02〜0.81質量%で あった。
このようにして得られた、 ランタン含有ニオブ窒化物を実施例 154と同 様な操作で造粒、 成型、 焼結し、 得られた焼結体を 0.1%リン酸水溶液中で、 80°Cの温度で 200分間、 20Vの電圧で化成することにより、 表面に誘 電体層を形成した。 この後、 3 0 %硫酸中での容量と、 2 0 %リン酸水溶液 中での L Cを各々測定した。 その結果を表 2 6に示す。 表 2 6
Figure imgf000095_0001
実施例 2 1 3〜 2 1 5
ランタン含有ニオブ粉とニオブ粉の混合物からなる焼結体を得るために実 施例 1 5 4と同様な方法でランタンを 1 0モル%含む、 平均粒径 1. 0 mの ランタン含有ニオブ粉を得た。
これとは別に、 ニッケル製坩堝中、 8 0 °Cで充分に減圧乾燥したフッ化二 ォブ酸カリウム 2000 gにナトリウムをフッ化ニオブ酸カリウムの 1 0倍モル 量を投入し、 アルゴン雰囲気下 1000°Cで 2 0時間還元反応を行った。 反応後 冷却させ、 還元物を水洗した後に、 9 5 %硫酸、 水で順次洗浄した後に減圧 乾燥した。 さらにシリカアルミナボール入りのアルミナポットのポールミル を用いて 4 0時間粉碎した後、 粉碎物を 5 0 %硝酸と 1 0 %過酸化水素水の 3 : 2 (質量比) 混合液中に浸漬撹拌した。 その後、 p Hが 7になるまで充 分水洗して不純物を除去し、 減圧乾燥した。 作製したニオブ粉の平均粒径は 1. 2 mであった。
このようにして得られた、 ランタン含有ニオブ粉とニオブ粉を表 2 7に示 す割合で充分に混合し、 実施例 1 5 4と同様な方法で造粒、 成型、 焼結を行 つて焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結 果を表 27に示す。 実施例 216〜 218
ラン夕ン含有ニオブ粉とニオブ粉の混合物からなるラン夕ン含有ニオブ窒 化物の焼結体を得るために実施例 1と同様な方法でランタンを 10モル%含 む、 平均粒径 l.O mのランタン含有ニオブ粉を得た。 これとは別に、 ニォ ブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 12時 間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を、 鉄製ポールを入 れた SUS 304製のポットに入れ 10時間粉碎した。 さらに、 この粉碎物 を前述した SUS 304製反応器に入れ、 再度、 前述した条件で水素化した。 次に、 SUS 304製のスパイクミルに、 この水素化物を水で 20体積%の スラリーにしたもの及びジルコ二アポ一ルを入れ 6時間湿式粉砕した。
このスラリーを遠心沈降の後、 デカンテーシヨンして粉砕物を取得した。 粉砕物を 1.3X 102P a、 50°Cの条件で減圧乾燥した。 続いて、 水素化 ニオブ粉を 1.33X 10一2 P aの減圧下、 400 °Cで 1時間加熱し脱水素し た。 作製したニオブ粉の平均粒径は 1.1 であった。
このようにして得られた、 ランタン含有ニオブ粉とニオブ粉を任意の割合 で充分に混合し、 実施例 210と同様な方法で窒化物を得た後、 造粒、 成型、 焼結を行って焼結体を得た。 この焼結体について容量、 LCを各々測定した。 その結果を表 27に示す。 表 27
Figure imgf000097_0001
実施例 219〜 220
実施例 219は実施例 154と、 実施例 220は実施例 182と、 それぞ れ同様な方法で得た焼結体を各 50個用意した。 これらの焼結体を 20Vの 電圧で、 0.1%リン酸水溶液を用い、 6時間電解酸化して、 表面に誘電体酸 化皮膜を形成した。 次に、 60 %硝酸マンガン水溶液に浸漬後 22 で 3 0分加熱することを繰り返して、 誘電体酸化皮膜上に他方の電極層として二 酸化マンガン層を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト 層を順次積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で 封止して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量 と LC値の平均 (n=各 50個) を表 28に示す。 なお、 LC値は室温で 6.3V、 1分間印加した時の値である。 実施例 221〜実施例 222
実施例 221は実施例 159と、 実施例 222は実施例 204と、 それぞ れ同様な方法で得た焼結体を各 50個用意した。 これらの焼結体を 20Vの 電圧で、 0.1%リン酸水溶液を用い、 6時間電解酸化して、 表面に誘電体酸 化皮膜を形成した。 次に、 35%酢酸鉛水溶液と 35%過硫酸アンモニゥム 水溶液の 1 : 1 (容量比) 混合液に浸漬後、 4 0 °Cで 1時間反応させること を繰り返して、 誘電体酸化皮膜上に他方の電極層として二酸化鉛と硫酸鉛の 混合層を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次 積層した。 次にリードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチップ型コンデンサの容量と L C値の 平均 (n =各 5 0個) を表 2 8に示す。 なお、 L C値は室温で 6. 3V、 1分 間印加した時の値である。 実施例 2 2 3〜2 2 6
実施例 2 2 3は実施例 1 6 7と、 実施例 2 2 4は実施例 1 8 9と、 実施例
2 2 5は実施例 2 1 1と、 実施例 2 2 6は実施例 2 1 5と、 それぞれ同様な 方法で得た焼結体を各 5 0個用意した。 これらの焼結体を 2 0 Vの電圧で、
0, 1 %リン酸水溶液を用い、 6時間電解酸化して、 表面に誘電体酸化皮膜を 形成した。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 1 0 %水溶液 とアントラキノンスルホン酸 0. 5%水溶液の等量混合液を接触させた後、 ピ ロール蒸気を触れさせる操作を少なくとも 5回行うことによりポリピロール からなる他方の電極 (対極) を形成した。
引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と L C値の平均 (n =各 5
0個) を表 2 8に示す。 なお、 L C値は室温で 6. 3V、 1分間印加した時の 値である。 実施例 2 2 7〜 2 3 1
実施例 2 2 7は実施例 1 7 0と、 実施例 2 2 8は実施例 1 9 1と、 実施例 2 2 9は実施例 2 0 5と、 実施例 2 3 0は実施例 2 1 0と、 実施例 2 3 1は 実施例 218と、 同様な方法で得た焼結体を各 50個用意した。 これらの焼 結体を 20Vの電圧で、 0.1%リン酸水溶液を用い、 6時間電解酸化して、 表面に誘電体酸化皮膜を形成した。 次に、 このニオブ燒結体を、 過硫酸アン モニゥム 25質量%を含む水溶液 (溶液 1) に浸漬した後引き上げ、 80°C で 30分乾燥させ、 次いで誘電体を形成した燒結体を、 3, 4_エチレンジ ォキシチォフェン 18質量%を含むイソプロパノール溶液 (溶液 2) に浸漬 した後引き上げ、 60°Cの雰囲気に 10分放置することで酸化重合を行った。 これを再び溶液 1に浸漬し、 さらに前記と同様に処理した。 溶液 1に浸漬し てから酸化重合を行うまでの操作を 8回繰り返した後、 50°Cの温水で 10 分洗浄を行い、 100°Cで 30分乾燥を行うことにより、 導電性のポリ (3, 4一エチレンジォキシチォフェン) からなる他方の電極 (対極) を形成した。 引き続き、 その上に、 カーボン層、 銀ペースト層を順次積層した。 次にリ ードフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデ ンサを作製した。 このチップ型コンデンサの容量と LC値の平均 (n=各 5 0個) を表 28に示す。 なお、 LC値は室温で 6.3V、 1分間印加した時の 値である。 比較例 40〜 42
ニッケル製坩堝中、 80°Cで充分に減圧乾燥したフッ化ニオブ酸カリウム 2000gにナトリウムをフッ化ニオブ酸カリウムの 10倍モル量を投入し、 ァ ルゴン雰囲気下 1000°Cで 20時間還元反応を行った。 反応後冷却させ、 還元 物を水洗した後に、 95%硫酸、 水で順次洗浄した後に減圧乾燥した。 さら にシリカアルミナボール入りのアルミナポットのポールミルを用いて 40時 間粉砕した後、 粉碎物を 50%硝酸と 10%過酸化水素水の 3 : 2 (質量 比) 混合液中に浸漬撹拌した。 その後、 pHが 7になるまで充分水洗して不 純物を除去し、 減圧乾燥した。 作製したニオブ粉の平均粒径は 1.3 mであ つた。 この様にして得られた、 ニオブ粉 30 gを SUS 304製の反応容器 に入れ、 300でで0. 5〜4時間窒素を導入し続けて、 ニオブ窒化物を得 た。 この窒化物を熱電導度から窒素量を求める L E CO社製窒素量測定器を 用いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0.02〜0.30質量%でぁった。 このニオブ窒化物を実施例 154と同様の操作 で造粒、 成型、 焼結を行って焼結体を得た。 この様にして得た、 焼結体 50 個について、 20Vの電圧で、 0.1%リン酸水溶液を用い、 6時間電解酸化 して、 表面に誘電体酸化皮膜を形成した。 次に、 60%硝酸マンガン水溶液 に浸漬後 220°Cで 30分加熱することを繰り返して、 誘電体酸化皮膜上に 他方の電極層として二酸化マンガン層を形成した。 引き続き、 その上に、 力 —ボン層、 銀ペースト層を順次積層した。 次にリ一ドフレームを載せた後、 全体をエポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチッ プ型コンデンサの容量と LC値の平均 (n=各 50個) を表 28に示す。 な お、 じ値は室温で6.3¥、 1分間印加した時の値である。 比較例 43〜 45
ニオブインゴット 50 gを SUS 304製の反応容器に入れ、 400°Cで 12時間水素を導入し続けた。 冷却後、 水素化されたニオブ塊を鉄製ポール を入れた S US 304製のポットに入れ 10時間粉碎した。 さらに、 この粉 碎物を前述した SUS 304製反応器に入れ、 再度、 前述した条件で水素化 した。 次に、 SUS 304製の湿式粉碎機 (商品名 「アトライタ」 ) に、 こ の水素化物を水で 20体積%のスラリーにしたもの及びジルコニァポールを 入れ 6時間湿式粉碎した。 このスラリーを遠心沈降の後、 デカンテーシヨン して粉砕物を取得した。 粉碎物を 1.33X 102 P aの減圧下、 50 の条件 で減圧乾燥した。 続いて、 水素化ニオブ粉を 1.33X 10_2P aの減圧下、 400°Cで 1時間加熱し脱水素した。 作製したニオブ粉の平均粒径は l.Ow mであった。 ニオブ粉 3 0 gを S U S 3 0 4製の反応容器に入れ、 3 0 0 °C で 0. 5〜 3時間窒素を導入し続けて、 ニオブ窒化物を得た。 この窒化物を熱 電導度から窒素量を求める L E C〇社製窒素量測定器を用いて窒素量を求め、 別途測定した粉体の質量との比を窒化量としたところ、 0. 03〜0. 28質量%で あった。 このニオブ窒化物を実施例 1 5 4と同様の操作で造粒、 成型、 焼結 を行って焼結体を得た。 この様にして得た、 焼結体 5 0個について、 2 0 V の電圧で、 0. 1 %リン酸水溶液を用い、 6時間電解酸化して、 表面に誘電体 酸化皮膜を形成した。 次に、 誘電体酸化被膜の上に、 過硫酸アンモニゥム 1 0 %水溶液とアントラキノンスルホン酸 0. 5%水溶液の等量混合液を接触さ せた後、 ピロ一ル蒸気を触れさせる操作を少なくとも 5回行うことによりポ リピロ一ルからなる他方の電極を形成した。 引き続き、 その上に、 力一ボン 層、 銀べ一スト層を順次積層した。 次にリードフレームを載せた後、 全体を エポキシ樹脂で封止して、 チップ型コンデンサを作製した。 このチップ型コ ンデンサの容量と L C値の平均 (n =各 5 0個) を表 2 8に示す。 なお、 L C値は室温で 6. 3V、 1分間印加した時の値である。
表 2 8
Figure imgf000102_0001
実施例 2 3 2 2 3 8、 比較例 4 6 4 8
コンデンサの耐熱性を以下のように測定した。
表 2 9に示した各実施例または各比較例で作成したコンデンサをそれぞれ 5 0個を用意し、 厚さ 1. 5mmの積層基板にハンダとともに搭載して 2 3 0 °Cのリフロー炉を 3 0秒かけて通過させ、 これを 3回繰り返した。
ここで、 コンデンサは、 リフロー炉通過時に約 2 3 0 °C X 3 0秒 X 3回加 熱され、 実用的な熱履歴 (例えば、 基板の表面に実装した部品の八ンダ付け、 基板の裏面に実装した部品の八ンダ付け、 後付部品の八ンダ付けを実施した 場合の 3回のハンダ付け熱履歴など) に対しての評価がなされる。
リフロー炉を通過させる前と 3回通過した後の L C値を測定し、 その平均 値及びその増加率 (リフロー後の LC値/リフロー前の LC値) を表 29に 示した。 本発明のコンデンサは、 LC増加率が 5倍以下、 好ましくは 3倍以 下であり、 リフロー後の LC値も 100 Aを越すものは無かった。 表 29
Figure imgf000103_0001
* 1 実施例 10 1と同様な方法で得た焼結体を用い、 実施例 48と同 様にチップ型コンデンサを作成した。

Claims

請求の範囲
1 . クロム、 モリブデン、 タングステン、 ホウ素、 アルミニウム、 ガリウム、 インジウム、 タリウム、 セリウム、 ネオジム、 チタン、 レニウム、 ルテニゥ ム、 ロジウム、 パラジウム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素、 ビスマス、 ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリ ゥム、 ユーロピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミ ゥム、 エルビウム、 ツリウム、 イッテルビウム、 ルテチウム、 ハフニウム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテルルからなる群から選ばれる少なくとも 1種の元素を含むこと を特徴とするコンデンサ用ニオブ粉。
2 . クロム、 モリブデン、 タングステンからなる群から選ばれた少なくとも 1種の元素を含む請求の範囲 1記載のコンデンサ用ニオブ粉。
3 . 少なくとも 1種の元素が、 タングステンである請求の範囲 2記載のコン デンサ用ニオブ粉。
4 . 少なくとも一種の元素が、 クロム及びタングステンである請求の範囲 2 記載のコンデンサ用ニオブ粉。
5 . ホウ素、 アルミニウム、 ガリウム、 インジウム及びタリウムからなる群 から選ばれる少なくとも 1種の元素を含む請求の範囲 1記載のコンデンサ用 ニ才ブ粉。
6. 少なくとも 1種の元素が、 ホウ素である請求の範囲 5記載のコンデンサ 用ニオブ粉。
7. 少なくとも 1種の元素が、 アルミニウムである請求の範囲 5記載のコン デンサ用ニオブ粉。
8. セリウム、 ネオジム、 チタン、 レニウム、 ルテニウム、 ロジウム、 パラ ジゥム、 銀、 亜鉛、 珪素、 ゲルマニウム、 スズ、 リン、 砒素及びビスマスか らなる群から選ばれた少なくとも 1種の元素を含む請求の範囲 1記載のコン デンサ用ニオブ粉。
9. レニウム、 亜鉛、 ヒ素、 リン、 ゲルマニウム、 スズ及びネオジムからな る群から選ばれた少なくとも 1種の元素を含む請求の範囲 8記載のコンデン サ用ニオブ粉。
10. 少なくとも 1種の元素が、 レニウムである請求の範囲 9記載のコンデ ンサ用ニオブ粉。
11. 少なくとも 1種の元素が、 ネオジムである請求の範囲 9記載のコンデ ンサ用ニオブ粉。
12. 少なくとも 1種の元素が、 亜鉛である請求の範囲 9記載のコンデンサ 用ニオブ粉。
13. ルビジウム、 セシウム、 マグネシウム、 ストロンチウム、 バリウム、 スカンジウム、 イットリウム、 ランタン、 プラセオジム、 サマリウム、 ユー 口ピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エル ピウム、 ツリウム、 イッテルビウム、 ルテチウム、 八フニゥム、 バナジウム、 オスミウム、 イリジウム、 白金、 金、 カドミウム、 水銀、 鉛、 セレン及びテ ルルからなる群から選ばれた少なくとも 1種の元素を含む請求の範囲 1記載 のコンデンサ用ニオブ粉。
14. ランタン、 イットリウム、 エルビウム、 イッテルビウム及びルテチウ ムからなる群から選ばれた少なくとも 1種の元素を含む請求の範囲 13記載 のコンデンサ用ニオブ粉。
15. 少なくとも 1種の元素が、 ランタンである請求の範囲 14記載のコン デンサ用ニオブ粉。
16. 少なくとも 1種の元素が、 イットリウムである請求の範囲 14記載の コンデンサ用ニオブ粉。
17. 元素が、 ニオブ粉中 10モル%以下の量含まれている請求の範囲 1乃 至 16のいずれか 1項に記載のニオブ粉。
18. 元素が、 ニオブ粉中 0.01〜10モル%の量含まれている請求の範囲 1 7記載のニオブ粉。
19. 元素が、 ニオブ粉中 0.1〜 7モル%の範囲で含まれている請求の範囲 18記載のニオブ粉。
20. ニオブ粉の平均粒径が、 0.05^m〜5 mの範囲である請求の範囲 1 乃至 16のいずれか 1項に記載のニオブ粉。
21. ニオブ粉の平均粒径が、 0.2 ΠΙ〜4 の範囲である請求の範囲 2 0記載のニオブ粉。
22. ニオブ粉の BET比表面積が、 0.5〜40m2/gの範囲である請求の 範囲 1乃至 16のいずれか 1項に記載のニオブ粉。
23. ニオブ粉の BET比表面積が、 1〜2 Orr^Zgの範囲である請求の 範囲 22に記載のニオブ粉。
24. さらに、 窒素、 炭素、 ホウ素及び硫黄元素からなる群より選ばれる少 なくとも 1種の元素を含む請求の範囲 2、 3、 4、 7、 8、 9、 10、 11, 12、 13、 14、 15及び 16のいずれか 1項に記載のニオブ粉。
25. さらに、 窒素、 炭素及び硫黄元素からなる群より選ばれる少なくとも 1種の元素を含む請求の範囲 5または 6に記載のニオブ粉。
26. 窒素、 炭素、 ホウ素及び硫黄の元素からなる群より選ばれる少なくと も 1種の元素の含有量が、 200, 000 p pm以下である請求の範囲 24または 25に記載のニオブ粉。
27. 窒素、 炭素、 ホウ素及び硫黄の元素からなる群より選ばれる少なくと も 1種の元素の含有量が、 50 p p m〜200, 000 p p mである請求の範囲 2 6に記載のニオブ粉。
2 8 . 請求の範囲 1乃至 2 7のいずれか 1項に記載のニオブ粉を造粒して得 られる平均粒径が 1 0 111〜 5 0 0 mのニオブ造粒物。
2 9 . 平均粒径が 3 0 m〜2 5 0 mである請求の範囲 2 8記載のニオブ 造粒物。
3 0 . 請求の範囲 1乃至 2 7のいずれか 1項に記載のニオブ粉を焼結して得 られる焼結体。
3 1 . 請求の範囲 2 8または 2 9に記載のニオブ造粒物を焼結して得られる 焼結体。
3 2 . 請求の範囲 3 0または 3 1に記載のニオブ焼結体を一方の電極とし、 前記焼結体表面上に形成された誘電体と、 前記誘電体上に設けられた他方の 電極とから構成されるコンデンサ。
3 3 . 誘電体の主成分が酸化ニオブである請求の範囲 3 2に記載のコンデン サ。
3 4 . 酸化ニオブが、 電解酸化により形成されたものである請求の範囲 3 3 に記載(
3 5 . 他方の電極が、 電解液、 有機半導体及び無機半導体からなる群より選 ばれる少なくとも 1種の材料である請求の範囲 3 2に記載のコンデンサ。
3 6 . 他方の電極が有機半導体からなり、 該有機半導体がベンゾピロリン 4 量体とクロラニルからなる有機半導体、 テトラチォテトラセンを主成分とす る有機半導体、 テトラシァノキノジメタンを主成分とする有機半導体及び導 電性高分子からなる群より選ばれる少なくとも 1種の材料である請求の範囲 3 2に記載のコンデンサ。
3 7 . 導電性高分子が、 ポリピロール、 ポリチォフェン、 ポリア二リン及び これらの置換誘導体から選ばれる少なくとも 1種である請求の範囲 3 6に記 載のコンデンサ。
3 8 . 導電性高分子が、 下記一般式 (1 ) または一般式 (2 )
Figure imgf000109_0001
(1) (2)
(式中、 !^〜尺4は、 互いに同一であっても相違してもよく、 各々水素原子、 炭素数 1〜 1 0の直鎖もしくは分岐状の飽和もしくは不飽和のアルキル基、 アルコキシ基あるいはアルキルエステル基、 ハロゲン原子、 ニトロ基、 シァ ノ基、 1級、 2級もしくは 3級ァミノ基、 C F 3基、 フエニル基及び置換フ ェニル基からなる群から選ばれる一価基を表わす。 R 1と R 2及び R 3と R 4 の炭化水素鎖は互いに任意の位置で結合して、 かかる基により置換を受けて いる炭素原子と共に少なくとも 1つ以上の 3〜 7員環の飽和または不飽和炭 化水素の環状構造を形成する二価鎖を形成してもよい。 前記環状結合鎖には、 カルボニル、 ェ一テル、 エステル、 アミド、 スルフイド、 スルフィニル、 ス ルホニル、 ィミノの結合を任意の位置に含んでもよい。 Xは酸素、 硫黄また は窒素原子を表わし、 R 5は Xが窒素原子の時のみ存在して、 独立して水素 原子または炭素数 1〜 1 0の直鎖もしくは分岐状の飽和もしくは不飽和のァ ルキル基を表わす。 ) で示される繰り返し単位を含む重合体に、 ド一パント をドープした導電性高分子である請求の範囲 3 6に記載(
3 9 . 導電性高分子が、 下記一般式 (3 )
Figure imgf000110_0001
(式中、 R 6及び R 7は、 互いに同一であっても相違してもよく、 各々水素原 子、 炭素数 1〜 6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル 基、 または該アルキル基が互いに任意の位置で結合して、 2つの酸素原子を 含む少なくとも 1つ以上の 5〜 7員環の飽和炭化水素の環状構造を形成する 置換基を表わす。 また、 前記環状構造には置換されていてもよいビニレン結 合を有するもの、 置換されていてもよいフエ二レン構造のものが含まれ る。 ) で示される繰り返し単位を含む導電性高分子である請求の範囲 3 8記 載のコンデンサ。
4 0 . 前記一般式 (3 ) で示される繰り返し単位を含む導電性高分子が、 ポ リ (3 , 4—エチレンジォキシチォフェン) である請求の範囲 3 9記載のコ ンデンサ。
4 1 . 他方の電極が、 層状構造を有する有機半導電体からなる請求の範囲 3 6記載のコンデンサ。
4 2 . 他方の電極が、 有機スルホン酸ァニオンをドーパントとして含んだ有 機半導体材料である請求の範囲 3 6記載のコンデンサ。
4 3 . ニオブ粉を、 液体窒化、 イオン窒化、 及びガス窒化の方法からなる群 より選ばれる少なくとも 1種の方法により表面処理することを特徴とする請 求の範囲 2 4または 2 5に記載の窒素を含むニオブ粉の製造方法。
4 4 . ニオブ粉を、 ガス炭化、 固相炭化、 及び液体炭化の方法からなる群よ り選ばれる少なくとも 1種の方法により表面処理することを特徴とする請求 の範囲 2 4または 2 5に記載の炭素を含むニオブ粉の製造方法。
4 5 . ニオブ粉を、 ガスホウ化、 及び固相ホウ化の方法からなる群より選ば れる少なくとも 1種の方法により表面処理することを特徴とする請求の範囲 2 4記載のホウ素を含むニオブ粉ので製造方法。
4 6 . ニオブ粉を、 ガス硫化、 イオン硫化、 及び固相硫化の方法からなる群 より選ばれた少なくとも 1種の方法により表面処理することを特徴とする請 求の範囲 2 4または 2 5記載の硫黄を含むニオブ粉の製造方法。
4 7 . 請求の範囲 3 2乃至 4 2のいずれか 1項に記載のコンデンサを使用し た電子回路。
4 8 . 請求の範囲 3 2乃至 4 2のいずれか 1項に記載のコンデンサを使用し た電子機器。
PCT/JP2001/006857 2000-08-10 2001-08-09 Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci WO2002015208A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR0113215-6A BR0113215A (pt) 2000-08-10 2001-08-09 Pó de nióbio, corpo sinterizado e capacitor usando o corpo
JP2002520249A JP4562986B2 (ja) 2000-08-10 2001-08-09 ニオブ粉、その焼結体及びそれを用いたコンデンサ
AU7773401A AU7773401A (en) 2000-08-10 2001-08-09 Niobium powder, sinter thereof, and capacitor employing the same
CNB018139752A CN100477040C (zh) 2000-08-10 2001-08-09 铌粉、铌烧结体以及使用该烧结体的电容器
AU2001277734A AU2001277734B2 (en) 2000-08-10 2001-08-09 Niobium powder, sinter thereof, and capacitor using the body
EP01955623.2A EP1324359B2 (en) 2000-08-10 2001-08-09 Niobium powder, sinter thereof, and capacitor employing the same
KR10-2003-7001280A KR20030020420A (ko) 2000-08-10 2001-08-09 니오브분말, 그 소결체 및 그것을 사용한 콘덴서
CA002418865A CA2418865A1 (en) 2000-08-10 2001-08-09 Niobium powder, sinter thereof, and capacitor employing the same
KR1020067021463A KR100758945B1 (ko) 2000-08-10 2001-08-09 니오브합금분
BR122015027076A BR122015027076B1 (pt) 2000-08-10 2001-08-09 pó de nióbio para capacitores e produto de nióbio granulado
KR1020057023858A KR100759290B1 (ko) 2000-08-10 2001-08-09 니오브합금분, 그 소결체 및 그것을 사용한 콘덴서
AU2007200912A AU2007200912B2 (en) 2000-08-10 2007-03-01 Niobium powder, sintered body and capacitor using the body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-243486 2000-08-10
JP2000243486 2000-08-10
JP2000-384720 2000-12-19
JP2000384720 2000-12-19
JP2001-65852 2001-03-09
JP2001065852 2001-03-09
JP2001-174018 2001-06-08
JP2001174018 2001-06-08

Publications (1)

Publication Number Publication Date
WO2002015208A1 true WO2002015208A1 (fr) 2002-02-21

Family

ID=27481524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006857 WO2002015208A1 (fr) 2000-08-10 2001-08-09 Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci

Country Status (8)

Country Link
EP (4) EP2224462B1 (ja)
JP (1) JP4562986B2 (ja)
KR (3) KR20030020420A (ja)
CN (1) CN100477040C (ja)
AU (3) AU2001277734B2 (ja)
BR (2) BR0113215A (ja)
CA (1) CA2418865A1 (ja)
WO (1) WO2002015208A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016374A1 (ja) * 2002-08-13 2004-02-26 Jfe Mineral Company, Ltd. ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
WO2004097870A1 (en) * 2003-04-28 2004-11-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2004349683A (ja) * 2003-04-28 2004-12-09 Showa Denko Kk 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
US7038903B2 (en) * 2003-03-28 2006-05-02 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP2008010747A (ja) * 2006-06-30 2008-01-17 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
JP2008022041A (ja) * 2002-07-26 2008-01-31 Sanyo Electric Co Ltd 電解コンデンサ
US7609505B2 (en) 2003-08-13 2009-10-27 Showa Denko K.K. Chip solid electrolyte capacitor and production method of the same
WO2010050558A1 (ja) 2008-10-29 2010-05-06 昭和電工株式会社 コンデンサ素子の製造方法
US7811355B2 (en) 2003-11-10 2010-10-12 Showa Denko K.K. Niobium powder for capacitor, niobium sintered body and capacitor
WO2014104177A1 (ja) * 2012-12-27 2014-07-03 昭和電工株式会社 ニオブコンデンサ陽極用化成体及びその製造方法
WO2014104178A1 (ja) 2012-12-27 2014-07-03 昭和電工株式会社 ニオブコンデンサ陽極用化成体及びその製造方法
WO2015053239A1 (ja) 2013-10-08 2015-04-16 昭和電工株式会社 ニオブ造粒粉末の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004011120D1 (de) * 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
KR100651948B1 (ko) * 2004-10-01 2006-12-06 엘지전자 주식회사 양극용 전극재료 구조 및 이를 이용한 에너지 저장형캐패시터
US20150340159A1 (en) * 2012-06-22 2015-11-26 Showa Denko K.K. Anode body for capacitor
JP5613861B2 (ja) * 2012-06-22 2014-10-29 昭和電工株式会社 固体電解コンデンサの陽極体
CN110116992A (zh) * 2019-05-08 2019-08-13 上海电力学院 一种钠离子电池电极材料二硒化铌的制备方法和应用
CN110767465B (zh) * 2019-09-25 2021-05-28 洛阳师范学院 一种基于二维碳化铌纳米复合材料超级电容器的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825859A (ja) * 1971-08-09 1973-04-04
JPS5645015A (en) * 1979-09-21 1981-04-24 Fujitsu Ltd Producing solid electrolytic capacitor
JPS60152016A (ja) * 1983-10-06 1985-08-10 ヘルマン・ツエ−・スタルク・ベルリン バルブ金属表面をカルコ−ゲン類で処理する方法
JPS63216901A (ja) * 1987-02-27 1988-09-09 キヤボツト コーポレーシヨン タンタル材料の脱酸方法
JPH10242004A (ja) 1997-02-28 1998-09-11 Showa Denko Kk コンデンサ
JPH10340831A (ja) * 1997-06-06 1998-12-22 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2000012394A (ja) * 1997-11-28 2000-01-14 Showa Denko Kk 固体電解コンデンサ及びその製造方法
JP2000091165A (ja) * 1998-09-03 2000-03-31 Vishay Sprague Inc 焼結タンタルペレットおよび焼結ニオブペレットの窒素ド―ピング方法
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
JP2000188243A (ja) * 1998-12-22 2000-07-04 Showa Denko Kk コンデンサ
WO2000056486A1 (en) 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320500A (en) 1965-12-27 1967-05-16 Bell Telephone Labor Inc Tantalum alloy capacitor
GB1283689A (en) 1970-10-30 1972-08-02 Hermsdorf Keramik Veb Improvements in or relating to thin film circuit elements
US3867129A (en) * 1974-02-05 1975-02-18 Metallurgie Hoboken Anodically oxidizable metal powder
US4084965A (en) * 1977-01-05 1978-04-18 Fansteel Inc. Columbium powder and method of making the same
DE3140248C2 (de) * 1981-10-09 1986-06-19 Hermann C. Starck Berlin, 1000 Berlin Verwendung von dotiertem Ventilmetallpulver für die Herstellung von Elektrolytkondensatoranoden
US4957541A (en) * 1988-11-01 1990-09-18 Nrc, Inc. Capacitor grade tantalum powder
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6051326A (en) 1997-04-26 2000-04-18 Cabot Corporation Valve metal compositions and method
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
DE19831280A1 (de) 1998-07-13 2000-01-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Erdsäuremetallpulvern, insbesondere Niobpulvern
BRPI9917635B1 (pt) * 1998-05-06 2017-06-06 Starck H C Gmbh Co Kg pó de nióbio na forma de partículas aglomeradas primárias e método para a obtenção de um anodo de capacitor
DE19847012A1 (de) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
WO2000049633A1 (fr) * 1999-02-16 2000-08-24 Showa Denko K.K. Poudre de niobium, element fritte a base de niobium, condensateur renfermant cet element et procede de fabrication de ce condensateur
JP2000243486A (ja) 1999-02-17 2000-09-08 Jsr Corp 異方導電性シート
TW479262B (en) 1999-06-09 2002-03-11 Showa Denko Kk Electrode material for capacitor and capacitor using the same
JP4527332B2 (ja) 1999-07-15 2010-08-18 昭和電工株式会社 ニオブ粉、その焼結体およびそれを使用したコンデンサ
IL132291A0 (en) 1999-10-08 2001-03-19 Advanced Alloys Technologies L A method for production of tantalum powder with highly developed surface
DE19953946A1 (de) 1999-11-09 2001-05-10 Starck H C Gmbh Co Kg Kondensatorpulver
DE10030387A1 (de) * 2000-06-21 2002-01-03 Starck H C Gmbh Co Kg Kondensatorpulver

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825859A (ja) * 1971-08-09 1973-04-04
JPS5645015A (en) * 1979-09-21 1981-04-24 Fujitsu Ltd Producing solid electrolytic capacitor
JPS60152016A (ja) * 1983-10-06 1985-08-10 ヘルマン・ツエ−・スタルク・ベルリン バルブ金属表面をカルコ−ゲン類で処理する方法
JPS63216901A (ja) * 1987-02-27 1988-09-09 キヤボツト コーポレーシヨン タンタル材料の脱酸方法
JPH10242004A (ja) 1997-02-28 1998-09-11 Showa Denko Kk コンデンサ
JPH10340831A (ja) * 1997-06-06 1998-12-22 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2000012394A (ja) * 1997-11-28 2000-01-14 Showa Denko Kk 固体電解コンデンサ及びその製造方法
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
JP2000091165A (ja) * 1998-09-03 2000-03-31 Vishay Sprague Inc 焼結タンタルペレットおよび焼結ニオブペレットの窒素ド―ピング方法
JP2000188243A (ja) * 1998-12-22 2000-07-04 Showa Denko Kk コンデンサ
WO2000056486A1 (en) 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1324359A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022041A (ja) * 2002-07-26 2008-01-31 Sanyo Electric Co Ltd 電解コンデンサ
US7054142B2 (en) 2002-08-13 2006-05-30 Jfe Mineral Company, Ltd. Niobium alloy powder, anode for solid electrolytic capacitor and solid electrolytic capacitor
WO2004016374A1 (ja) * 2002-08-13 2004-02-26 Jfe Mineral Company, Ltd. ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
US7038903B2 (en) * 2003-03-28 2006-05-02 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and manufacturing method thereof
JP2010034589A (ja) * 2003-04-28 2010-02-12 Showa Denko Kk 造粒紛、固体電解コンデンサ陽極用焼結体及び固体電解コンデンサ
JP2004349683A (ja) * 2003-04-28 2004-12-09 Showa Denko Kk 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
WO2004097870A1 (en) * 2003-04-28 2004-11-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP4727160B2 (ja) * 2003-04-28 2011-07-20 昭和電工株式会社 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
US7609505B2 (en) 2003-08-13 2009-10-27 Showa Denko K.K. Chip solid electrolyte capacitor and production method of the same
US7811355B2 (en) 2003-11-10 2010-10-12 Showa Denko K.K. Niobium powder for capacitor, niobium sintered body and capacitor
JP2008010747A (ja) * 2006-06-30 2008-01-17 Sanyo Electric Co Ltd 電解コンデンサおよびその製造方法
WO2010050558A1 (ja) 2008-10-29 2010-05-06 昭和電工株式会社 コンデンサ素子の製造方法
WO2014104177A1 (ja) * 2012-12-27 2014-07-03 昭和電工株式会社 ニオブコンデンサ陽極用化成体及びその製造方法
WO2014104178A1 (ja) 2012-12-27 2014-07-03 昭和電工株式会社 ニオブコンデンサ陽極用化成体及びその製造方法
JPWO2014104177A1 (ja) * 2012-12-27 2017-01-12 昭和電工株式会社 ニオブコンデンサ陽極用化成体及びその製造方法
WO2015053239A1 (ja) 2013-10-08 2015-04-16 昭和電工株式会社 ニオブ造粒粉末の製造方法

Also Published As

Publication number Publication date
EP2224462A3 (en) 2011-03-09
EP2221840A2 (en) 2010-08-25
JP4562986B2 (ja) 2010-10-13
BR0113215A (pt) 2005-02-01
EP2221839A2 (en) 2010-08-25
EP1324359A4 (en) 2008-04-23
KR100759290B1 (ko) 2007-09-17
CA2418865A1 (en) 2002-02-21
KR100758945B1 (ko) 2007-09-14
EP1324359B1 (en) 2013-01-02
EP2221840A3 (en) 2011-03-02
AU2007200912A1 (en) 2007-03-22
KR20060114391A (ko) 2006-11-06
EP2224462B1 (en) 2012-10-31
AU2001277734B2 (en) 2007-01-04
KR20060006104A (ko) 2006-01-18
AU2007200912B2 (en) 2009-01-22
JPWO2002015208A1 (ja) 2004-01-15
EP2221839B2 (en) 2017-05-24
EP2221839B1 (en) 2013-10-09
EP1324359B2 (en) 2017-10-04
EP2221839A3 (en) 2011-03-09
EP1324359A1 (en) 2003-07-02
KR20030020420A (ko) 2003-03-08
EP2224462A2 (en) 2010-09-01
CN1446364A (zh) 2003-10-01
EP2221840B1 (en) 2013-10-09
BR122015027076B1 (pt) 2017-02-21
AU7773401A (en) 2002-02-25
CN100477040C (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
US6934146B2 (en) Niobium powder, niobium sintered body and capacitor using the sintered body
US7594947B2 (en) Niobium powder, sintered body thereof, and capacitor using the same
AU2007200912B2 (en) Niobium powder, sintered body and capacitor using the body
US7986508B2 (en) Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
JP4712883B2 (ja) コンデンサ用ニオブ粉、ニオブ焼結体及びコンデンサ
US9336955B2 (en) Niobium alloy, sintered body thereof, and capacitor using the same
JP4360680B2 (ja) コンデンサ用ニオブ粉、ニオブ焼結体及びコンデンサ
RU2267182C2 (ru) Ниобиевый порошок, спеченный ниобиевый материал и конденсатор, выполненный с использованием спеченного материала
JP4367827B2 (ja) ニオブ合金、その焼結体及びそれを用いたコンデンサ
JP4371323B2 (ja) ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037001280

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2418865

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018139752

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001277734

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001955623

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001280

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2003105884

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001955623

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020037001280

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020037001280

Country of ref document: KR