WO2002008477A1 - Récupération du nickel et du cobalt dans les minerais latéritiques - Google Patents

Récupération du nickel et du cobalt dans les minerais latéritiques Download PDF

Info

Publication number
WO2002008477A1
WO2002008477A1 PCT/CA2000/000858 CA0000858W WO0208477A1 WO 2002008477 A1 WO2002008477 A1 WO 2002008477A1 CA 0000858 W CA0000858 W CA 0000858W WO 0208477 A1 WO0208477 A1 WO 0208477A1
Authority
WO
WIPO (PCT)
Prior art keywords
lixiviate
residue
cobalt
nickel
mgci
Prior art date
Application number
PCT/CA2000/000858
Other languages
English (en)
Inventor
Jean-Marc Lalancette
Original Assignee
Nichromet Extraction Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichromet Extraction Inc. filed Critical Nichromet Extraction Inc.
Priority to AU2000262567A priority Critical patent/AU2000262567A1/en
Priority to PCT/CA2000/000858 priority patent/WO2002008477A1/fr
Publication of WO2002008477A1 publication Critical patent/WO2002008477A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0423Halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention pertains to a method for the recovery of nickel and cobalt from laterite ores containing nickel, cobalt as well as iron, chromium and magnesium. It also relates to a method to recover most of these values in useful forms.
  • Laterites are porous clay-like rocks largely impregnated with ferric hydroxide. It is a residual weathering product of such rocks as basalts, granites and shales. Laterites occur widely in India, East Indies, Australia, in the equatorial regions of Africa and in various parts of South America and Cuba and contain more than 50% of hydrated ferruginous matters and some alumina, magnesium oxide, silica and many other elements such as chromium, cobalt, nickel and manganese. It may incorporate traces of platinum and other metals of the platinum group along with gold. For that reason, several techniques have been developed in order to extract the valuable species from the laterites.
  • Gandon et al. in US Patent 3,661 , 564,issued on February 5, 1980, describe a method of recovery of nickel and cobalt from laterite with the elimination of iron, a minor portion of the ore being treated by HCI and then slurried with the major portion of the ore to give chlorides of cobalt and nickel by heating, said chlorides being leached while ferric chloride remains in the residue.
  • the chlorides of nickel and cobalt are then separated by ion exchange resins.
  • Nickel and magnesia can be recovered from laterite ores, according to US Patent 4,125,588 issued to Hansen et al. on November 14, 1978, by grinding the ore and preparing a slurry with concentrated sulfuric acid, the heat produced by further addition of water giving a solution of magnesium and nickel sulfates.
  • nickel can be recovered from a reduced ore at 750- 900 °C by acid leaching.
  • Nickeliferous laterite ores are best treated by high pressure sulfuric acid by first scalping the ore so as to obtain a nickel-rich fraction according to US Patent 4,044,096 issued to Queneau on August 23, 1977.
  • magnesium oxychloride prevents the efficient neutralization of the excess acid in the lixiviate, prior to contacting with ion exchange resins, since Fe 2 0 3 alone has a low basicity and a small specific area when calcinated at the temperature required to hydrolyze MgCI 2 .
  • heap leaching with hydrochloric acid is not compatible with environmental regulations since even at low concentration, where the leaching capabilities of the acid is much reduced, hydrochloric acid liberates acidic vapors. Heap leaching is only possible with a non volatile acid, such as sulfuric acid and then, it is not possible to recycle the acid by a simple method such as spray roasting (US Patent 5,911 ,967) used with chlorides.
  • This is achieved by a method which consists of a series of steps including:
  • the ore is ground and digested in hot hydrochloric acid.
  • the insoluble fraction about 30% or less of the weight of the starting ore, is a chromium enriched solid amendable to chromate production.
  • the soluble fraction contains at least 90% of the cobalt and nickel along with 85% of the magnesium, 85% of the iron and 25% of the chromium, initially present in the starting ore, as chlorides. This solution is evaporated and treated by heat in the presence of oxygen and steam, at
  • the values of iron and chromium are first extracted as their respective oxides (Fe 2 O 3 and Cr 2 0 3 ) from the head solution composed of the chloride salts of nickel, cobalt, iron, chromium and magnesium by a thermal treatment at a temperature range of 100-200 °C, followed by the extraction of the values of nickel and cobalt and then finally by the isolation of the magnesium values as basic magnesium carbonate.
  • Figure 1 is a block diagram illustrating the various steps of one embodiment of the method according to the present invention.
  • Figure 2 is a block diagram illustrating the various steps of a second embodiment of the method according to the present invention.
  • Cobalt, nickel, magnesium and chromium exist in laterites as oxides combined with silica, alumina or alumino silicates. Weathering and metamorphic changes render this material very complex.
  • the time required to leach out the base metals with hydrochloric acid was of the order of 15 minutes at 100 °C.
  • a longer time of digestion is required, of the order of one to three hours; but then, the only required conditioning of the ore prior to lixiviation is size reduction to particles of one millimeter in diameter or less, thus avoiding the elaborate operation of reductive roasting. Therefore, in the present technology, the conditioning of the ore consists in grinding and screening operations that bring the size of the particles to one millimeter or less.
  • the acid selected for leaching is hydrochloric acid.
  • chlorides With chlorides, the selective decomposition of the corresponding salts is possible under appropriate conditions and permits separation of the four metals sought into two distinct categories namely cobalt-nickel and iron-chromium- magnesium respectively; and, most of the acid can be recycled after the extraction of Ni, Co and Mg.
  • the hydrochloric acid used is in the form of gaseous HCI, obtained from the roasting of the chlorides.
  • This HCI stream which contains some water vapor and air from the operation of the roaster is directed to a rotary tubular reactor and the starting ore is circulated countercurrent to the stream of HCI.
  • the ore containing a moisture content of 30-70% is circulated through the reactor, this moisture acting as a captor of HCI.
  • the acid solution generated in situ, at the surface of the particles is very concentrated and continually refurbished in HCI as the formation of chlorides proceeds.
  • As the HCI stream leaves the reactor a significant amount of the HCI has been adsorbed by the starting ore.
  • HCI in gaseous state is then scrubbed with water in a countercurrent fashion so as to obtain an acid with a concentration of 20 to 25% HCI.
  • heat is evolved from the adsorption of HCI by water and the reaction of hydrochloric acid with the ore. These reactions liberate enough heat to raise the temperature of the partly chlorinated ore at the exit of the reactor to 50-70 °C.
  • the acid saturated and partly reacted ore is then transferred to a second rotary tubular reactor for the purpose of completing the reaction.
  • This is achieved by heating at around 90-100 °C the partly reacted mass and by adding to said mass the concentrated hydrochloric acid (20-25%) stripped from the first reactor at the outlet of the gas stream.
  • the duration of this contact is adjusted so as to complete the extraction of the values to more than 90% for nickel and cobalt and around 80% of iron and magnesium.
  • the amount of HCI required to achieve such yields is 125% of the theoretical amount required to convert the iron to FeCI 2 ,the magnesium to MgCI 2 , the nickel to NiCI 2 , the cobalt to CoCI 2 .
  • Chromium reacts only to an extent of about 35 to 45% and is found as CrCI 3 . It is complexed and solubilized in the presence of the large amount of chloride ions in the reacted mass. The duration of contact can vary from 15 minutes to three hours, pending on materials.
  • the reacted material After contacting for an appropriate duration at around 100 °C, the reacted material is slurried with enough water to insure the solubilization of the chlorides and the phases are separated by an appropriate means, such as a belt filter or a centrifuge. Three displacements of the retained volume of liquid are made with water in order to reclaim all soluble material from the cake. The filtrate and washings are combined so as to produce the head solution.
  • the insoluble fraction which may represent from 20 to 40% of the weight of the starting ore contains about 66% of the chromium initially present in the starting ore. This chromium is highly insoluble and cannot leach out of the residual solid by action of atmospheric agents. Since its content of chromium is about twice the content of chromium in the starting ore, it could be used as a starting material for the production of chromates or bichromates.
  • the nickel and cobalt in the head solution can be recovered by a variety of means such as electrowinning, solvent extraction, specific ion exchange resins, sulfide precipitation and other processes known to those familiar in the art. It could be advantageous at this stage to isolate in a complete or partial fashion the nickel and the cobalt so as to have a simplified road for the production of pure metals further on.
  • the solution contains iron (FeCI 2 ), magnesium (MgCI 2 ) and chromium (CrCI 3 ) along with the excess acid used for digestion.
  • iron chlorides can be decomposed by heat, in the presence of steam and oxygen to give the corresponding ferric oxide and hydrochloric acid (for example US Patent 3,658,483).
  • This decomposition is currently practiced by spray roasting at 700-800 °C and leads to a ferric oxide.
  • Such a spray roasting or pyro-hydrolysis has the disadvantage of transforming the magnesium chloride into magnesium oxychloride in the presence of large amounts of FeCI 2 if appropriate conditions are not used.
  • Iron chloride presents a substantial vapor pressure at 450-475 °C and this volatility has to be depressed in order to prevent sublimation rather than decomposition.
  • This control of the volatility of iron chloride is achieved by the addition of potassium chloride to the acid solution prior to thermal treatment.
  • the amount to be added is from 10 to 30% of the weight of the starting ore, prior to acid lixiviation.
  • This potassium chloride is added in the form of a saturated solution of about 20% by weight of KCI.
  • the residual solution resulting from the collection of cobalt and nickel is enriched by the addition of KCI in the form of a 20% aqueous solution so as to have enough KCI present to depress the vapor pressure of FeCI 2 during pyrolysis.
  • This KCI enriched solution is evaporated and the hydrochloric acid thus reclaimed is directed to the recycling circuit.
  • the solid, a mixture of FeCI 2 , MgCI 2 and CoCI 3 is then heated at 450-475 °C in the presence of water vapors and air in order to oxidize the iron and liberate the hydrochloric acid according to the following equation:
  • the chromium follows the iron to give an iron oxide of high purity containing about one percent of chromium oxide which is about 30% of the chromium present in the starting ore.
  • This ferric oxide enriched with chromium oxide would be an interesting product for the production of ferrochrome.
  • both ferrous chloride and magnesium oxide at 500 to 600 °C can be decomposed to liberate a mixture of ferric oxide along with KCI. Then, by lixiviation of MgO by CO 2 leaching, one obtains precipitated magnesium carbonate and the solution of potassium chloride.
  • the following equation describes this preferred option:
  • the values in the starting laterite namely Ni, Co, Mg and Cr are recovered in the following forms:
  • the head solution can be thermally treated, with exposure to air, at temperatures ranging from 130 to 180 °C, without the addition of potassium chloride. Under such conditions, the free hydrochloric acid is carried out of the system and scrubbed. In this process, the ferrous chloride is selectively oxidized to ferric chloride and is then subsequently hydrolyzed to ferric oxide. This hydrolysis is facilitated by the continuous removal of HCI from the system. The ferric oxide obtained is insoluble under neutral or basic conditions.
  • NiCI 2 , CoCI 2( and MgCI 2 are not subject to this hydrolysis and can be obtained as soluble entities that can be separated by standard approaches.
  • ferric hydroxide has strong adsorptive properties and it is well known that salts of nickel are adsorbed upon precipitated iron. From this it would not be obvious to hold low concentrations of nickel and cobalt in solution while relatively large amounts of iron are removed.
  • NiCI 2 , CoCI 2 , and MgCI 2 are essentially quantitative if the decomposition of FeCI 2 is done in the temperature range indicated above, that is below 200 °C.
  • the chromium chloride also subject to the above hydrolysis forms Cr 2 O 3 and is entirely contained in the Fe 2 0 3 .
  • the so obtained head solution is then heated in the presence of air at a temperature range of 100-200 °C to selectively oxidize FeCI 2 into Fe 2 O 3 and decompose CrCI 3 into Cr 2 O 3 while not affecting the chloride salts of nickel (NiCI 2 ), cobalt (CoCI 2 ) and magnesium (MgCI 2 ). It is essential that the heating is done in the temperature range indicated above, that is below 200 °C, to avoid decomposition of NiCI 2 , CoCI 2 and MgCI 2 . This in turn allows for an essentially quantitative recovery of the chloride salts of nickel, cobalt and magnesium.
  • Heating the head solution in the presence of air at the desired temperature range leads to the formation of a residue that is composed of Fe 2 0 3 , Cr 2 O 3 , NiCI 2 , CoCI 2 and MgCI 2 and to the evaporation of HCI which is reclaimed and redirected to the recycling circuit.
  • Lixiviation of the residue with water leads to the extraction of the soluble chloride salts of nickel, cobalt and magnesium and to the isolation by filtration of an insoluble residue composed of Fe 2 O 3 and Cr 2 O 3 .
  • EXAMPLE II A 25g sample of raw laterite containing 12.88g of Fe; 0.027g of Co; 0.275g of Ni; 0.530g of Cr, and 0.08g of Mg was treated with 120ml of 20% HCI at reflux temperature for one hour. The reaction mixture was then filtered and the insoluble cake was rinsed with water (3 displacements). The dry cake weighed 2.3g after drying at 100 °C for 16 hrs and contained 0.58 g of Fe, 0.0017g of Co; 0.007g of Ni; 0.326g of Cr and 0.062g of Mg. The acid solution contained 12.3g of Fe (95%); 0.0253g of Co (93%); 0.268g of Ni (97%); 0.204g of Cr (38%) and 0.02g of Mg (24%).
  • the precipitated ferric oxide and chromium oxide was rinsed with water.
  • the solution extracted, essentially on a quantitative basis, the values of nickel and cobalt initially present in the head solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La présente invention concerne un procédé de récupération du nickel, du cobalt, du fer, du chrome et du magnésium dans les minerais latéritiques par une série d'opérations dont la première est le broyage du minerai en granulés. On chlore ensuite le minerai en le soumettant d'abord à l'action d'acide chlorhydrique gazeux, puis en le faisant durcir avec du HCl concentré de façon à former des sels hydrosolubles de nickel, de cobalt, de fer, de chrome et de magnésium, et en filtrant la solution. Pour récupérer de façon sélective le nickel et le cobalt, on a recours à différents procédés dont notamment l'électro-obtention, l'extraction au solvant, des résines d'échanges d'ions spécifiques et la précipitation des sulfures. Selon un mode de réalisation préféré, on commence par isoler les valeurs nickel et cobalt d'une solution de tête composée de chlorures de nickel, de cobalt, de fer, de chrome et de magnésium, puis on isole les valeurs fer et chrome sous leurs formes oxydes respectives (Fe2O3 et Cr2O3), à la suite de quoi on isole enfin les valeurs magnésium sous forme de carbonate de magnésium basique. Selon un deuxième mode de réalisation préféré, on commence par extraire les valeurs fer et chrome sous leurs formes oxydes respectives (Fe2O3 et Cr2O3) d'une solution de tête composée de chlorures de nickel, de cobalt, de fer, de chrome et de magnésium par traitement thermique dans une plage de températures de 100-200°C, à la suite de quoi on extrait les valeurs nickel et cobalt. Il ne reste plus qu'à isoler les valeurs magnésium sous forme de carbonate de magnésium basique.
PCT/CA2000/000858 2000-07-21 2000-07-21 Récupération du nickel et du cobalt dans les minerais latéritiques WO2002008477A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2000262567A AU2000262567A1 (en) 2000-07-21 2000-07-21 Method for recovering nickel and cobalt from laterite ores
PCT/CA2000/000858 WO2002008477A1 (fr) 2000-07-21 2000-07-21 Récupération du nickel et du cobalt dans les minerais latéritiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2000/000858 WO2002008477A1 (fr) 2000-07-21 2000-07-21 Récupération du nickel et du cobalt dans les minerais latéritiques

Publications (1)

Publication Number Publication Date
WO2002008477A1 true WO2002008477A1 (fr) 2002-01-31

Family

ID=4143072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2000/000858 WO2002008477A1 (fr) 2000-07-21 2000-07-21 Récupération du nickel et du cobalt dans les minerais latéritiques

Country Status (2)

Country Link
AU (1) AU2000262567A1 (fr)
WO (1) WO2002008477A1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101833A1 (fr) * 2003-05-16 2004-11-25 Jaguar Nickel Inc. Procede de recuperation de metaux de valeur a partir de matieres contenant des oxydes de metaux communs
WO2006029443A1 (fr) * 2004-09-17 2006-03-23 Bhp Billiton Ssm Technology Pty Ltd Production de mattes de ferronickel ou de nickel au moyen d'un procede combine d'hydrometallurgie et de pyrometallurgie
WO2007071020A1 (fr) * 2005-12-23 2007-06-28 Harris G Bryn Procédé d'extraction de fer sous forme d'hématite d'un minerai contenant des métaux de base
WO2007087698A1 (fr) * 2006-02-02 2007-08-09 Companhia Vale Do Rio Doce Traitement hybride utilisant des résines échangeuses d'ions dans la récupération sélective de nickel et de cobalt issus d'effluents de lixiviation
WO2007106969A1 (fr) * 2006-03-17 2007-09-27 Nichromet Extraction Inc. Processus de récupération de d'espèces métalliques de valeur dans des minerais latéritiques
WO2008022381A1 (fr) * 2006-08-23 2008-02-28 Bhp Billiton Ssm Development Pty Ltd Production de nickel métallique à faible contenu en fer
WO2008055335A1 (fr) * 2006-11-10 2008-05-15 Companhia Vale Do Rio Doce Procédé de récupération de nickel et de cobalt à partir de minerais de latérite en utilisant une résine échangeuse d'ions
WO2009026694A1 (fr) * 2007-08-29 2009-03-05 Vale Inco Limited Système et procédé pour extraire des valeurs en métaux communs à partir de minerais d'oxydes
AU2005284665B2 (en) * 2004-09-17 2009-09-03 Bhp Billiton Ssm Development Pty Ltd Production of ferro-nickel or nickel matte by a combined hydrometallurgical and pyrometallurgical process
WO2011100820A1 (fr) * 2010-02-18 2011-08-25 Neomet Technologies Inc. Procédé pour la récupération de métaux et d'acide chlorhydrique
WO2013086555A1 (fr) * 2011-12-16 2013-06-20 Sms Siemag Process Technologies Gmbh Procédé pour concentrer et séparer des chlorures métalliques dans/depuis une solution chlorhydrique contenant du chlorure de fer(iii)
CN103526015A (zh) * 2013-09-30 2014-01-22 中国恩菲工程技术有限公司 含镍褐铁矿的浸出方法
US8894740B2 (en) 2010-02-18 2014-11-25 Neomet Technologies Inc. Process for the recovery of gold from an ore in chloride medium with a nitrogen species
CN104263909A (zh) * 2014-09-28 2015-01-07 毛黎生 从氧化镍矿中焙烧水浸回收镍钴铁的工艺
AU2013211472B2 (en) * 2007-08-29 2016-03-17 Vale Inco Limited System and method for extracting base metal values from oxide ores
CN106088694A (zh) * 2016-06-08 2016-11-09 中冶南方工程技术有限公司 红土镍矿原料库及红土镍矿原料制备系统
CN110484732A (zh) * 2019-08-28 2019-11-22 江门市长优实业有限公司 一种含镍的冶金废渣无害化及资源化处理的方法
CN111330354A (zh) * 2020-03-09 2020-06-26 青海盐湖工业股份有限公司 一种老卤溶液净化处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071159A5 (en) * 1969-12-19 1971-09-17 Nickel Le Recovery of nickel and cobalt from later- - ite
FR2218390A1 (en) * 1973-02-15 1974-09-13 Cofremmi Extracting pure nickel and other metals - from e.g. laterite and garnierite
FR2270334A1 (fr) * 1974-05-10 1975-12-05 Int Nickel Canada
FR2287516A1 (fr) * 1974-10-10 1976-05-07 Int Nickel Canada Lessivage de minerais silicates nickeliferes par l'acide chlorhydrique
US5571308A (en) * 1995-07-17 1996-11-05 Bhp Minerals International Inc. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071159A5 (en) * 1969-12-19 1971-09-17 Nickel Le Recovery of nickel and cobalt from later- - ite
FR2218390A1 (en) * 1973-02-15 1974-09-13 Cofremmi Extracting pure nickel and other metals - from e.g. laterite and garnierite
FR2270334A1 (fr) * 1974-05-10 1975-12-05 Int Nickel Canada
FR2287516A1 (fr) * 1974-10-10 1976-05-07 Int Nickel Canada Lessivage de minerais silicates nickeliferes par l'acide chlorhydrique
US5571308A (en) * 1995-07-17 1996-11-05 Bhp Minerals International Inc. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329396B2 (en) 2003-05-16 2008-02-12 Jaguar Nickel Inc. Process for the recovery of value metals from material containing base metal oxides
WO2004101833A1 (fr) * 2003-05-16 2004-11-25 Jaguar Nickel Inc. Procede de recuperation de metaux de valeur a partir de matieres contenant des oxydes de metaux communs
EA009841B1 (ru) * 2003-05-16 2008-04-28 Ягуар Никель Инк. Способ восстановления металлов из материала, содержащего оксиды неблагородных металлов
EP1900831A1 (fr) * 2003-05-16 2008-03-19 Jaguar Nickel Inc. Procédé de récupération de metaux de valeur à partir de matières contenant des oxydes de métaux communs
US7597738B2 (en) 2004-09-17 2009-10-06 Bhp Billiton Ssm Technology Pty Ltd. Production of ferro-nickel or nickel matte by a combined hydrometallurgical and pyrometallurgical process
WO2006029443A1 (fr) * 2004-09-17 2006-03-23 Bhp Billiton Ssm Technology Pty Ltd Production de mattes de ferronickel ou de nickel au moyen d'un procede combine d'hydrometallurgie et de pyrometallurgie
AU2005284665B2 (en) * 2004-09-17 2009-09-03 Bhp Billiton Ssm Development Pty Ltd Production of ferro-nickel or nickel matte by a combined hydrometallurgical and pyrometallurgical process
EA012644B1 (ru) * 2004-09-17 2009-12-30 БиЭйчПи БИЛЛИТОН ЭсЭсЭм ТЕКНОЛОДЖИ ПТИ ЛТД. Получение ферроникелевого или никелевого штейна совмещённым гидрометаллургическим и пирометаллургическим способом
WO2007071020A1 (fr) * 2005-12-23 2007-06-28 Harris G Bryn Procédé d'extraction de fer sous forme d'hématite d'un minerai contenant des métaux de base
WO2007087698A1 (fr) * 2006-02-02 2007-08-09 Companhia Vale Do Rio Doce Traitement hybride utilisant des résines échangeuses d'ions dans la récupération sélective de nickel et de cobalt issus d'effluents de lixiviation
US9034283B2 (en) 2006-02-02 2015-05-19 Vale S.A. Hybrid process using ion exchange resins in the selective recovery of nickel and cobalt from leaching effluents
AU2007211854B2 (en) * 2006-02-02 2012-07-12 Vale S.A. Hybrid process using ion exchange resins in the selective recovery of nickel and cobalt from leaching effluents
WO2007106969A1 (fr) * 2006-03-17 2007-09-27 Nichromet Extraction Inc. Processus de récupération de d'espèces métalliques de valeur dans des minerais latéritiques
AU2006203772B2 (en) * 2006-03-17 2010-08-26 Dundee Sustainable Technologies Inc. Process for Recovering Value Metal Species from Laterite-Type Feedstock
WO2008022381A1 (fr) * 2006-08-23 2008-02-28 Bhp Billiton Ssm Development Pty Ltd Production de nickel métallique à faible contenu en fer
US7935171B2 (en) 2006-08-23 2011-05-03 Bhp Billiton Ssm Development Pty Ltd. Production of metallic nickel with low iron content
AU2007317141B2 (en) * 2006-11-10 2012-08-02 Vale S.A. Process for recovery of nickel and cobalt from laterite ores using ion exchange resin
WO2008055335A1 (fr) * 2006-11-10 2008-05-15 Companhia Vale Do Rio Doce Procédé de récupération de nickel et de cobalt à partir de minerais de latérite en utilisant une résine échangeuse d'ions
US8430946B2 (en) 2006-11-10 2013-04-30 Flavia Dutra Mendes Process for recovery of nickel and cobalt from laterite ores using ion exchange resin
AP2601A (en) * 2006-11-10 2013-02-25 Vale Do Rio Doce Co Process for recovery of nickel and cobalt from laterite ores using ion exchange resin
WO2009026694A1 (fr) * 2007-08-29 2009-03-05 Vale Inco Limited Système et procédé pour extraire des valeurs en métaux communs à partir de minerais d'oxydes
US8961649B2 (en) 2007-08-29 2015-02-24 Vale Canada Limited System and method for extracting base metal values from oxide ores
AU2013211472B2 (en) * 2007-08-29 2016-03-17 Vale Inco Limited System and method for extracting base metal values from oxide ores
WO2011100820A1 (fr) * 2010-02-18 2011-08-25 Neomet Technologies Inc. Procédé pour la récupération de métaux et d'acide chlorhydrique
US8894740B2 (en) 2010-02-18 2014-11-25 Neomet Technologies Inc. Process for the recovery of gold from an ore in chloride medium with a nitrogen species
EA032086B1 (ru) * 2010-02-18 2019-04-30 Неомет Текнолоджиз Инк. Процесс рекуперации металлов и соляной кислоты
US9889421B2 (en) 2010-02-18 2018-02-13 Brav Metal Technologies Inc. Process for the recovery of metals and hydrochloric acid
WO2013086555A1 (fr) * 2011-12-16 2013-06-20 Sms Siemag Process Technologies Gmbh Procédé pour concentrer et séparer des chlorures métalliques dans/depuis une solution chlorhydrique contenant du chlorure de fer(iii)
RU2615527C2 (ru) * 2011-12-16 2017-04-05 Смс Симаг Проусесс Текнолоджиз Гмбх Способ концентрирования и отделения хлоридов металлов в/из содержащего хлорид железа (iii) раствора соляной кислоты
AU2012350389B2 (en) * 2011-12-16 2016-03-17 Sms Siemag Process Technologies Gmbh Method for concentrating metal chlorides in and separating same from an iron(III) chloride-containing hydrochloric acid solution
CN103526015A (zh) * 2013-09-30 2014-01-22 中国恩菲工程技术有限公司 含镍褐铁矿的浸出方法
CN104263909A (zh) * 2014-09-28 2015-01-07 毛黎生 从氧化镍矿中焙烧水浸回收镍钴铁的工艺
CN106088694A (zh) * 2016-06-08 2016-11-09 中冶南方工程技术有限公司 红土镍矿原料库及红土镍矿原料制备系统
CN106088694B (zh) * 2016-06-08 2018-05-08 中冶南方工程技术有限公司 红土镍矿原料库及红土镍矿原料制备系统
CN110484732A (zh) * 2019-08-28 2019-11-22 江门市长优实业有限公司 一种含镍的冶金废渣无害化及资源化处理的方法
CN110484732B (zh) * 2019-08-28 2021-07-06 江门市长优实业有限公司 一种含镍的冶金废渣无害化及资源化处理的方法
CN111330354A (zh) * 2020-03-09 2020-06-26 青海盐湖工业股份有限公司 一种老卤溶液净化处理方法
CN111330354B (zh) * 2020-03-09 2021-09-17 青海盐湖工业股份有限公司 一种老卤溶液净化处理方法

Also Published As

Publication number Publication date
AU2000262567A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
WO2002008477A1 (fr) Récupération du nickel et du cobalt dans les minerais latéritiques
US8961649B2 (en) System and method for extracting base metal values from oxide ores
AU705253B2 (en) Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore
CA2467288C (fr) Un procede de recuperation de metaux precieux dans des materiaux a base d'oxydes de metaux communs
JP3609422B2 (ja) 塩化物で補助される硫化物鉱石からのニッケル及びコバルトの湿式冶金的抽出方法
AU2006203772B2 (en) Process for Recovering Value Metal Species from Laterite-Type Feedstock
AU2008248199B2 (en) Nickel-laterite process
KR20070041770A (ko) 대기 및 중간압 침출의 조합에 의해 라테라이트광석으로부터 니켈 및 코발트를 회수하는 방법
US20060002835A1 (en) Method for nickel and cobalt recovery from laterite ores by reaction with concentrated acid and water leaching
JP2004509232A (ja) 硫酸中の塩化物補助酸化加圧浸出による硫化浮選精鉱からの有価ニッケルおよび有価コバルトの回収
AU2006326812A1 (en) Process for recovering iron as hematite from a base metal containing ore material
EA010771B1 (ru) Извлечение никеля и кобальта из смоляного потока элюата
JP2007530778A (ja) 酸化金属材料からの金属の回収
EP2454389B1 (fr) Procédé de récupération de métaux de base présents dans des minerais oxydés
US4065542A (en) Two stage leaching of limonitic ore and sea nodules
AU2013211472B2 (en) System and method for extracting base metal values from oxide ores
KR101746979B1 (ko) 니켈 습식제련 공정의 중화제 재생 방법
US4069294A (en) Hydrometallurgical recovery of metal values
AU2021463314A1 (en) Method for mineralizing co2 gas and recovering valuable metals, co2 mineralizing device, and co2 mineralization and valuable-metal recovery device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 12.06.03).

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP