WO2002006688A1 - Magnetische lagerung - Google Patents
Magnetische lagerung Download PDFInfo
- Publication number
- WO2002006688A1 WO2002006688A1 PCT/DE2001/002602 DE0102602W WO0206688A1 WO 2002006688 A1 WO2002006688 A1 WO 2002006688A1 DE 0102602 W DE0102602 W DE 0102602W WO 0206688 A1 WO0206688 A1 WO 0206688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radial
- axial
- bearing
- htsl
- excitation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0436—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
- F16C32/0438—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
- F16C37/005—Cooling of bearings of magnetic bearings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/902—Railway, e.g. rapid transit
- Y10S505/903—Suspension, e.g. magnetic, electrodynamic
Definitions
- the invention relates to a magnetic bearing of a rotor in a stator, with at least one magnetic bearing, which has a stator part and a rotor part arranged in a contactless manner in the operating position, the bearing active surface of which is formed by a radial excitation system having permanent magnets, while the stator part is one of the radial excitation system Compliance with an annular air gap concentrically enclosing high-temperature superconductor.
- the invention is therefore based on the object of improving the specific rigidity of superconducting bearings while avoiding the above disadvantages.
- the high-temperature superconductor is divided into at least two circular segment-shaped HTSL partial shells, which come from a position in a warm storage state in which each HTSL partial shell is at a first radial distance from the radial excitation system , after the transition to the superconducting state by means of an actuator in the radial direction into a working position with a second, smaller radial distance (operating gap) from the radial excitation system are displaceable against each other.
- the two half-shells may have a different first radial distance from the radial excitation system in their warm position.
- a magnetic bearing according to the invention can also be characterized by an additional axial bearing, in which two opposing axial excitation systems, which are arranged at an axial distance from one another and each equipped with permanent magnets, each form an axially directed annular disk-shaped bearing active surface of the rotor part, each of which as a stator part has a plane arranged coaxially to the rotor part is assigned an annular disk-shaped HTSL axial bearing washer, which from a position in the warm storage state, in which each HTSL axial bearing washer is at a first axial distance from the associated axial excitation system, after the transition to the superconducting state via an actuator in the axial direction into a working position with a second, smaller axial distance from the axial excitation system can be moved away from each other.
- FIG. 1 shows a longitudinal section through a magnetic radial bearing of a rotor
- FIG. 3 shows a longitudinal section through a magnetic axial bearing of a rotor
- FIG. 4 force-displacement characteristic curves for an upper and a lower bearing half of an embodiment according to FIG. 2.
- FIG. 1 shows a radial magnetic bearing 1, which has a stator part 2 and a rotor part 3, which is arranged in a contactless manner in the operating position and is shown as a shaft, the bearing active surface of which is formed by a permanent magnet 4 with interposed pole pieces 5 having a radial excitation system 6.
- the stator part 2 has a high-temperature superconductor (HTSL) concentrically surrounding the radial excitation system 6 while observing an annular air gap 10, which according to the invention is divided into two circular segment-shaped HTSL half-shells 7, 8 which have thermal insulation on their segment surface facing the radial excitation system 6 9 are covered and in their working position shown in FIG. 1 are at a radial distance 0 from the radial excitation system 6 forming the bearing active surface.
- HTSL high-temperature superconductor
- the two HTSL half-shells 7, 8 assume the positions shown in dashed lines in the warm storage state, in which the upper HTSL half-shell T has a radial distance k1 from the middle parting line 11 and the lower HTSL half-shell 8 'one has a radial distance of k2 , in the exemplary embodiment shown k2 > k ⁇ ' st - the HTSL half-shells 7, 8 are before the transition to the superconducting state with the aid of an actuator 12, which may have a motor spindle 13, in the dashed lines Position moved apart so that there is a radial air gap thickness k > 0 .
- the HTSL half-shells 7, 8 are moved together with the help of the actuators 12 into the working position shown with solid lines until the operating gap 0 shown in FIG. 1 is established.
- the radial gaps k are selected differently for the upper and lower bearing shells 7 ', 8' in order to achieve weight compensation of the rotor weight through this asymmetry, the rotor part 3 remaining almost exactly in the geometric center of the radial magnetic bearing 1. Due to the force-displacement characteristic curve now progressive for the upper HTSL half-shell 7 and lower HTSL half-shell 8, with an appropriate design of the actuators 12, a working point of the bearing can now be set which has a significantly higher rigidity at the working point. For this purpose, reference is made to FIG. 4, where the basic characteristics of the OFCo method for the upper and lower HTSL half-shell 7, 8 are shown. In this diagram, the point m ⁇ g on the F y force axis indicates the weight of the entire rotor.
- Figure 3 shows an axial bearing 14, which can be provided in addition to the radial magnetic bearing 1 described above.
- the axial bearing 14 has two opposing, axially spaced axial excitation systems 16, each equipped with permanent magnets 15, each of which forms an axially directed annular disk-shaped bearing active surface of the rotor part 3.
- These two axial excitation systems 16 are each assigned as a stator part 17, a plane annular disk-shaped HTSL axial bearing disk 18, 19 arranged coaxially to the rotor part 3, which from a position shown in broken lines with a warm bearing condition, in which each HTSL axial bearing disk 18 ', 19' is assigned by the associated one axial excitation system 16 has a first axial distance d k , after the transition to the superconducting state via an actuator 12 in the axial direction in a working position shown in solid lines with a second, smaller axial distance d 0 from the axial excitation system 16 can be moved away from each other ,
- the radially, axially or optionally axially and radially preloaded bearing obtained according to the invention has an anisotropy of rigidity which is dependent on the number of HTSL partial shells of the radial magnetic bearing 1 used. With preferably two HTSL half-shells 7, 8 used, there are different stiffnesses in the normal direction y (see FIG. 1) and in the orthogonal direction x (see FIG. 1). This anisotropy can be used to advantage when driving through critical speeds.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/088,375 US6541885B2 (en) | 2000-07-18 | 2001-07-17 | Magnetic bearing assembly |
| EP01962549A EP1192363B1 (de) | 2000-07-18 | 2001-07-17 | Magnetische lagerung |
| JP2002512558A JP3754671B2 (ja) | 2000-07-18 | 2001-07-17 | 磁気軸受装置 |
| DE50103961T DE50103961D1 (de) | 2000-07-18 | 2001-07-17 | Magnetische lagerung |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10034922A DE10034922C2 (de) | 2000-07-18 | 2000-07-18 | Magnetische Lagerung |
| DE10034922.6 | 2000-07-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002006688A1 true WO2002006688A1 (de) | 2002-01-24 |
Family
ID=7649336
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DE2001/002602 Ceased WO2002006688A1 (de) | 2000-07-18 | 2001-07-17 | Magnetische lagerung |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6541885B2 (enExample) |
| EP (1) | EP1192363B1 (enExample) |
| JP (1) | JP3754671B2 (enExample) |
| DE (2) | DE10034922C2 (enExample) |
| WO (1) | WO2002006688A1 (enExample) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1835188A1 (en) | 2006-03-16 | 2007-09-19 | Nexans | High temperature superconducting magnetic bearing |
| EP2006559A2 (de) | 2007-06-19 | 2008-12-24 | Nexans SuperConductors GmbH | Dämpfersystem für Magnetlager mit Hochtemperatur-Supraleiter |
| DE102007036605A1 (de) | 2007-08-02 | 2009-02-05 | Nexans | Stabilisiertes Hochtemperatur-Supraleiterlager |
| DE102007036603A1 (de) | 2007-08-02 | 2009-02-19 | Nexans | Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung |
| RU2383791C1 (ru) * | 2008-12-09 | 2010-03-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Сверхпроводящий магнитный подшипник и способ его изготовления |
| RU2385424C1 (ru) * | 2008-12-26 | 2010-03-27 | Учреждение Российской Академии Наук Институт Машиноведения Им. А.А. Благонравова Ран | Подшипник скольжения с магнитопорошковой системой смазки |
| RU2413882C1 (ru) * | 2009-12-23 | 2011-03-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") | Магнитный подшипник на высокотемпературных сверхпроводниках (варианты) |
| RU2459190C2 (ru) * | 2007-03-08 | 2012-08-20 | Дженерал Электрик Компани | Способ тестирования роторно-статорного узла (варианты) |
| CN104763746A (zh) * | 2015-04-09 | 2015-07-08 | 浙江东晶电子股份有限公司 | 一种低温超导飞轮用变间隙支承结构 |
| RU2605227C1 (ru) * | 2015-06-22 | 2016-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Подшипниковый узел |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE60222944T2 (de) * | 2002-08-02 | 2008-07-17 | Demachi, Kazuyuki | Supraleitendes magnetisches lager |
| US20040256935A1 (en) * | 2003-06-19 | 2004-12-23 | Andrew Kenny | Magnetic bearing with permanent magnet poles |
| DE10333733A1 (de) * | 2003-07-23 | 2005-02-24 | Forschungszentrum Jülich GmbH | Magnetisches Lagerelement |
| DE102005032673A1 (de) * | 2005-07-13 | 2007-01-18 | Renk Aktiengesellschaft | Geteiltes aktives Magnetlager |
| WO2014052049A2 (en) * | 2012-09-28 | 2014-04-03 | Abb Research Ltd. | Rotors for rotating machines |
| WO2014055221A2 (en) | 2012-10-01 | 2014-04-10 | Abb Research Ltd. | Electrical machine rotors |
| DE102013015487A1 (de) | 2013-09-19 | 2015-03-19 | Volker Dietz | Energieanlage bzw. Kraftwerk mit berührungsarm, berührungslos und/oder magnetisch gelagerten Welle |
| DE102013015489A1 (de) | 2013-09-19 | 2015-03-19 | Imo Holding Gmbh | Energieanlage bzw. Kraftwerk mit berührungsarm, berührungslos und/oder magnetisch gelagerten Welle |
| CN114673728B (zh) * | 2020-12-24 | 2024-01-26 | 迈格钠磁动力股份有限公司 | 一种永磁推力悬浮轴承及其控制方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0526325A1 (en) * | 1991-07-30 | 1993-02-03 | Kabushiki Kaisha Shikoku Sogo Kenkyusho | Superconduction bearing |
| US5710469A (en) * | 1993-12-13 | 1998-01-20 | Siemens Aktiengesellschaft | Magnetic bearing element for a rotor shaft using high-TC superconducting materials |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9403580D0 (en) * | 1994-02-24 | 1994-04-13 | Coombs Timotha A | Bearing stiffener |
| DE19727550C2 (de) * | 1996-08-21 | 2002-05-08 | Canders Wolf R | Magnetische Lagerung eines Rotors in einem Stator |
| JP3348038B2 (ja) * | 1998-04-08 | 2002-11-20 | 韓国電力公社 | 強い浮上力の高温超伝導ベアリング、および、フライホイールエネルギー貯蔵装置 |
-
2000
- 2000-07-18 DE DE10034922A patent/DE10034922C2/de not_active Expired - Fee Related
-
2001
- 2001-07-17 WO PCT/DE2001/002602 patent/WO2002006688A1/de not_active Ceased
- 2001-07-17 US US10/088,375 patent/US6541885B2/en not_active Expired - Lifetime
- 2001-07-17 JP JP2002512558A patent/JP3754671B2/ja not_active Expired - Fee Related
- 2001-07-17 DE DE50103961T patent/DE50103961D1/de not_active Expired - Lifetime
- 2001-07-17 EP EP01962549A patent/EP1192363B1/de not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0526325A1 (en) * | 1991-07-30 | 1993-02-03 | Kabushiki Kaisha Shikoku Sogo Kenkyusho | Superconduction bearing |
| US5710469A (en) * | 1993-12-13 | 1998-01-20 | Siemens Aktiengesellschaft | Magnetic bearing element for a rotor shaft using high-TC superconducting materials |
Non-Patent Citations (1)
| Title |
|---|
| KOMORI M ET AL: "VIBRATION SUPPRESSION OF A DISK-SHAPED SUPERCONDUCTOR WITH PD CONTROL", CRYOGENICS, IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD, GB, vol. 37, no. 4, 1 April 1997 (1997-04-01), pages 195 - 199, XP000690497, ISSN: 0011-2275 * |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1835188A1 (en) | 2006-03-16 | 2007-09-19 | Nexans | High temperature superconducting magnetic bearing |
| RU2459190C2 (ru) * | 2007-03-08 | 2012-08-20 | Дженерал Электрик Компани | Способ тестирования роторно-статорного узла (варианты) |
| EP2006559A2 (de) | 2007-06-19 | 2008-12-24 | Nexans SuperConductors GmbH | Dämpfersystem für Magnetlager mit Hochtemperatur-Supraleiter |
| DE102007028018A1 (de) | 2007-06-19 | 2008-12-24 | Nexans Superconductors Gmbh | Dämpfersystem für Hochtemperatur-Supraleiterlager |
| DE102007036605A1 (de) | 2007-08-02 | 2009-02-05 | Nexans | Stabilisiertes Hochtemperatur-Supraleiterlager |
| DE102007036603A1 (de) | 2007-08-02 | 2009-02-19 | Nexans | Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung |
| DE102007036603B4 (de) * | 2007-08-02 | 2009-12-24 | Nexans | Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung |
| RU2383791C1 (ru) * | 2008-12-09 | 2010-03-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Сверхпроводящий магнитный подшипник и способ его изготовления |
| RU2385424C1 (ru) * | 2008-12-26 | 2010-03-27 | Учреждение Российской Академии Наук Институт Машиноведения Им. А.А. Благонравова Ран | Подшипник скольжения с магнитопорошковой системой смазки |
| RU2413882C1 (ru) * | 2009-12-23 | 2011-03-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") | Магнитный подшипник на высокотемпературных сверхпроводниках (варианты) |
| CN104763746A (zh) * | 2015-04-09 | 2015-07-08 | 浙江东晶电子股份有限公司 | 一种低温超导飞轮用变间隙支承结构 |
| RU2605227C1 (ru) * | 2015-06-22 | 2016-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Подшипниковый узел |
Also Published As
| Publication number | Publication date |
|---|---|
| US20020135249A1 (en) | 2002-09-26 |
| DE10034922C2 (de) | 2003-01-16 |
| DE10034922A1 (de) | 2002-02-07 |
| JP3754671B2 (ja) | 2006-03-15 |
| EP1192363B1 (de) | 2004-10-06 |
| EP1192363A1 (de) | 2002-04-03 |
| JP2004504553A (ja) | 2004-02-12 |
| DE50103961D1 (de) | 2004-11-11 |
| US6541885B2 (en) | 2003-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1192363B1 (de) | Magnetische lagerung | |
| DE69517335T2 (de) | Elektromagnetisch gelenktes ventil mit gelenkter armatur | |
| DE102008010947A1 (de) | Bürstenloser Motor und Verfahren zur Herstellung desselben | |
| DE68920829T2 (de) | Verfahren zur Steuerung der Bewegung der Kugeln in einem oszillierenden Lager. | |
| DE102020107570A1 (de) | Antriebsanordnung für eine elektrische Antriebsachse mit zwei Motoren | |
| EP3337996B1 (de) | Kupplungseinrichtung für hybridantrieb | |
| DE3227810C2 (enExample) | ||
| WO2022089684A1 (de) | Elektrische maschine, verfahren zur herstellung einer elektrischen maschine sowie elektrisch betreibbarer antriebsstrang | |
| EP4205265A1 (de) | Elektrische maschinenanordnung | |
| DE102018204436A1 (de) | Verfahren zur Montage von Lamellen- oder Blechpaketen auf einer Hohlwelle sowie ein auf diese Weise hergestellter Rotor für eine elektrische Maschine | |
| EP3364530B1 (de) | System aus mindestens zwei elektromaschinen | |
| EP1699578A1 (de) | Verfahren zur herstellung eines hülsenförmigen gehäuses aus mehreren flachen blechen | |
| EP2073356B1 (de) | Sanierverfahren fuer den Wickelkopf eines elektrischen Generators | |
| DE102018213128A1 (de) | Gehäuseanordnung eines Elektromotors | |
| DE102023102102A1 (de) | Rotor und elektrische Maschine | |
| DE102021209416A1 (de) | Verfahren zur Herstellung eines Rotors für eine elektrische Maschine, sowie Rotor für eine elektrische Maschine | |
| DE102018104418A1 (de) | Elektromagnetisch betätigter Aktor für elektrische Maschine und elektrische Maschine mit elektromagnetisch betätigtem Aktor | |
| EP2006979B1 (de) | Verfahren zum Herstellen einer Rotorwelle elektrischer Generatoren für die Stromgewinnung in Kraftwerken | |
| DE102021126459A1 (de) | Gehäuse für einen elektrischen Antrieb eines Kraftfahrzeugs, Kraftfahrzeug sowie Verfahren | |
| DE102014210696A1 (de) | Elektrischer Zentralausrücker (EZA) mit Selbsthaltefeder | |
| EP0504766B1 (de) | Vertikale elektrische Synchronmaschine grossen Durchmessers | |
| DE102008058319B4 (de) | Wälzlager | |
| DE102017127109B4 (de) | Kupplungsbaugruppe und Hybridmodul | |
| DE102023108619A1 (de) | Verfahren zur Herstellung einer Rotoranordnung einer elektrischen Maschine sowie Montageanordnung zur Herstellung einer Rotoranordnung | |
| DE102022111155A1 (de) | Schwingungsisolator mit einer Schraubenfeder und einem Aktor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2001962549 Country of ref document: EP |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 512558 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10088375 Country of ref document: US |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWP | Wipo information: published in national office |
Ref document number: 2001962549 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2001962549 Country of ref document: EP |