WO2002006688A1 - Magnetische lagerung - Google Patents

Magnetische lagerung Download PDF

Info

Publication number
WO2002006688A1
WO2002006688A1 PCT/DE2001/002602 DE0102602W WO0206688A1 WO 2002006688 A1 WO2002006688 A1 WO 2002006688A1 DE 0102602 W DE0102602 W DE 0102602W WO 0206688 A1 WO0206688 A1 WO 0206688A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial
axial
bearing
htsl
excitation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2001/002602
Other languages
German (de)
English (en)
French (fr)
Inventor
Hardo May
Wolf-Rüdiger Canders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Copco Energas GmbH
Original Assignee
Atlas Copco Energas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Copco Energas GmbH filed Critical Atlas Copco Energas GmbH
Priority to US10/088,375 priority Critical patent/US6541885B2/en
Priority to EP01962549A priority patent/EP1192363B1/de
Priority to JP2002512558A priority patent/JP3754671B2/ja
Priority to DE50103961T priority patent/DE50103961D1/de
Publication of WO2002006688A1 publication Critical patent/WO2002006688A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/902Railway, e.g. rapid transit
    • Y10S505/903Suspension, e.g. magnetic, electrodynamic

Definitions

  • the invention relates to a magnetic bearing of a rotor in a stator, with at least one magnetic bearing, which has a stator part and a rotor part arranged in a contactless manner in the operating position, the bearing active surface of which is formed by a radial excitation system having permanent magnets, while the stator part is one of the radial excitation system Compliance with an annular air gap concentrically enclosing high-temperature superconductor.
  • the invention is therefore based on the object of improving the specific rigidity of superconducting bearings while avoiding the above disadvantages.
  • the high-temperature superconductor is divided into at least two circular segment-shaped HTSL partial shells, which come from a position in a warm storage state in which each HTSL partial shell is at a first radial distance from the radial excitation system , after the transition to the superconducting state by means of an actuator in the radial direction into a working position with a second, smaller radial distance (operating gap) from the radial excitation system are displaceable against each other.
  • the two half-shells may have a different first radial distance from the radial excitation system in their warm position.
  • a magnetic bearing according to the invention can also be characterized by an additional axial bearing, in which two opposing axial excitation systems, which are arranged at an axial distance from one another and each equipped with permanent magnets, each form an axially directed annular disk-shaped bearing active surface of the rotor part, each of which as a stator part has a plane arranged coaxially to the rotor part is assigned an annular disk-shaped HTSL axial bearing washer, which from a position in the warm storage state, in which each HTSL axial bearing washer is at a first axial distance from the associated axial excitation system, after the transition to the superconducting state via an actuator in the axial direction into a working position with a second, smaller axial distance from the axial excitation system can be moved away from each other.
  • FIG. 1 shows a longitudinal section through a magnetic radial bearing of a rotor
  • FIG. 3 shows a longitudinal section through a magnetic axial bearing of a rotor
  • FIG. 4 force-displacement characteristic curves for an upper and a lower bearing half of an embodiment according to FIG. 2.
  • FIG. 1 shows a radial magnetic bearing 1, which has a stator part 2 and a rotor part 3, which is arranged in a contactless manner in the operating position and is shown as a shaft, the bearing active surface of which is formed by a permanent magnet 4 with interposed pole pieces 5 having a radial excitation system 6.
  • the stator part 2 has a high-temperature superconductor (HTSL) concentrically surrounding the radial excitation system 6 while observing an annular air gap 10, which according to the invention is divided into two circular segment-shaped HTSL half-shells 7, 8 which have thermal insulation on their segment surface facing the radial excitation system 6 9 are covered and in their working position shown in FIG. 1 are at a radial distance 0 from the radial excitation system 6 forming the bearing active surface.
  • HTSL high-temperature superconductor
  • the two HTSL half-shells 7, 8 assume the positions shown in dashed lines in the warm storage state, in which the upper HTSL half-shell T has a radial distance k1 from the middle parting line 11 and the lower HTSL half-shell 8 'one has a radial distance of k2 , in the exemplary embodiment shown k2 > k ⁇ ' st - the HTSL half-shells 7, 8 are before the transition to the superconducting state with the aid of an actuator 12, which may have a motor spindle 13, in the dashed lines Position moved apart so that there is a radial air gap thickness k > 0 .
  • the HTSL half-shells 7, 8 are moved together with the help of the actuators 12 into the working position shown with solid lines until the operating gap 0 shown in FIG. 1 is established.
  • the radial gaps k are selected differently for the upper and lower bearing shells 7 ', 8' in order to achieve weight compensation of the rotor weight through this asymmetry, the rotor part 3 remaining almost exactly in the geometric center of the radial magnetic bearing 1. Due to the force-displacement characteristic curve now progressive for the upper HTSL half-shell 7 and lower HTSL half-shell 8, with an appropriate design of the actuators 12, a working point of the bearing can now be set which has a significantly higher rigidity at the working point. For this purpose, reference is made to FIG. 4, where the basic characteristics of the OFCo method for the upper and lower HTSL half-shell 7, 8 are shown. In this diagram, the point m ⁇ g on the F y force axis indicates the weight of the entire rotor.
  • Figure 3 shows an axial bearing 14, which can be provided in addition to the radial magnetic bearing 1 described above.
  • the axial bearing 14 has two opposing, axially spaced axial excitation systems 16, each equipped with permanent magnets 15, each of which forms an axially directed annular disk-shaped bearing active surface of the rotor part 3.
  • These two axial excitation systems 16 are each assigned as a stator part 17, a plane annular disk-shaped HTSL axial bearing disk 18, 19 arranged coaxially to the rotor part 3, which from a position shown in broken lines with a warm bearing condition, in which each HTSL axial bearing disk 18 ', 19' is assigned by the associated one axial excitation system 16 has a first axial distance d k , after the transition to the superconducting state via an actuator 12 in the axial direction in a working position shown in solid lines with a second, smaller axial distance d 0 from the axial excitation system 16 can be moved away from each other ,
  • the radially, axially or optionally axially and radially preloaded bearing obtained according to the invention has an anisotropy of rigidity which is dependent on the number of HTSL partial shells of the radial magnetic bearing 1 used. With preferably two HTSL half-shells 7, 8 used, there are different stiffnesses in the normal direction y (see FIG. 1) and in the orthogonal direction x (see FIG. 1). This anisotropy can be used to advantage when driving through critical speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
PCT/DE2001/002602 2000-07-18 2001-07-17 Magnetische lagerung Ceased WO2002006688A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/088,375 US6541885B2 (en) 2000-07-18 2001-07-17 Magnetic bearing assembly
EP01962549A EP1192363B1 (de) 2000-07-18 2001-07-17 Magnetische lagerung
JP2002512558A JP3754671B2 (ja) 2000-07-18 2001-07-17 磁気軸受装置
DE50103961T DE50103961D1 (de) 2000-07-18 2001-07-17 Magnetische lagerung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10034922A DE10034922C2 (de) 2000-07-18 2000-07-18 Magnetische Lagerung
DE10034922.6 2000-07-18

Publications (1)

Publication Number Publication Date
WO2002006688A1 true WO2002006688A1 (de) 2002-01-24

Family

ID=7649336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002602 Ceased WO2002006688A1 (de) 2000-07-18 2001-07-17 Magnetische lagerung

Country Status (5)

Country Link
US (1) US6541885B2 (enExample)
EP (1) EP1192363B1 (enExample)
JP (1) JP3754671B2 (enExample)
DE (2) DE10034922C2 (enExample)
WO (1) WO2002006688A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835188A1 (en) 2006-03-16 2007-09-19 Nexans High temperature superconducting magnetic bearing
EP2006559A2 (de) 2007-06-19 2008-12-24 Nexans SuperConductors GmbH Dämpfersystem für Magnetlager mit Hochtemperatur-Supraleiter
DE102007036605A1 (de) 2007-08-02 2009-02-05 Nexans Stabilisiertes Hochtemperatur-Supraleiterlager
DE102007036603A1 (de) 2007-08-02 2009-02-19 Nexans Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung
RU2383791C1 (ru) * 2008-12-09 2010-03-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Сверхпроводящий магнитный подшипник и способ его изготовления
RU2385424C1 (ru) * 2008-12-26 2010-03-27 Учреждение Российской Академии Наук Институт Машиноведения Им. А.А. Благонравова Ран Подшипник скольжения с магнитопорошковой системой смазки
RU2413882C1 (ru) * 2009-12-23 2011-03-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Магнитный подшипник на высокотемпературных сверхпроводниках (варианты)
RU2459190C2 (ru) * 2007-03-08 2012-08-20 Дженерал Электрик Компани Способ тестирования роторно-статорного узла (варианты)
CN104763746A (zh) * 2015-04-09 2015-07-08 浙江东晶电子股份有限公司 一种低温超导飞轮用变间隙支承结构
RU2605227C1 (ru) * 2015-06-22 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Подшипниковый узел

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60222944T2 (de) * 2002-08-02 2008-07-17 Demachi, Kazuyuki Supraleitendes magnetisches lager
US20040256935A1 (en) * 2003-06-19 2004-12-23 Andrew Kenny Magnetic bearing with permanent magnet poles
DE10333733A1 (de) * 2003-07-23 2005-02-24 Forschungszentrum Jülich GmbH Magnetisches Lagerelement
DE102005032673A1 (de) * 2005-07-13 2007-01-18 Renk Aktiengesellschaft Geteiltes aktives Magnetlager
WO2014052049A2 (en) * 2012-09-28 2014-04-03 Abb Research Ltd. Rotors for rotating machines
WO2014055221A2 (en) 2012-10-01 2014-04-10 Abb Research Ltd. Electrical machine rotors
DE102013015487A1 (de) 2013-09-19 2015-03-19 Volker Dietz Energieanlage bzw. Kraftwerk mit berührungsarm, berührungslos und/oder magnetisch gelagerten Welle
DE102013015489A1 (de) 2013-09-19 2015-03-19 Imo Holding Gmbh Energieanlage bzw. Kraftwerk mit berührungsarm, berührungslos und/oder magnetisch gelagerten Welle
CN114673728B (zh) * 2020-12-24 2024-01-26 迈格钠磁动力股份有限公司 一种永磁推力悬浮轴承及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526325A1 (en) * 1991-07-30 1993-02-03 Kabushiki Kaisha Shikoku Sogo Kenkyusho Superconduction bearing
US5710469A (en) * 1993-12-13 1998-01-20 Siemens Aktiengesellschaft Magnetic bearing element for a rotor shaft using high-TC superconducting materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403580D0 (en) * 1994-02-24 1994-04-13 Coombs Timotha A Bearing stiffener
DE19727550C2 (de) * 1996-08-21 2002-05-08 Canders Wolf R Magnetische Lagerung eines Rotors in einem Stator
JP3348038B2 (ja) * 1998-04-08 2002-11-20 韓国電力公社 強い浮上力の高温超伝導ベアリング、および、フライホイールエネルギー貯蔵装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526325A1 (en) * 1991-07-30 1993-02-03 Kabushiki Kaisha Shikoku Sogo Kenkyusho Superconduction bearing
US5710469A (en) * 1993-12-13 1998-01-20 Siemens Aktiengesellschaft Magnetic bearing element for a rotor shaft using high-TC superconducting materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOMORI M ET AL: "VIBRATION SUPPRESSION OF A DISK-SHAPED SUPERCONDUCTOR WITH PD CONTROL", CRYOGENICS, IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD, GB, vol. 37, no. 4, 1 April 1997 (1997-04-01), pages 195 - 199, XP000690497, ISSN: 0011-2275 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835188A1 (en) 2006-03-16 2007-09-19 Nexans High temperature superconducting magnetic bearing
RU2459190C2 (ru) * 2007-03-08 2012-08-20 Дженерал Электрик Компани Способ тестирования роторно-статорного узла (варианты)
EP2006559A2 (de) 2007-06-19 2008-12-24 Nexans SuperConductors GmbH Dämpfersystem für Magnetlager mit Hochtemperatur-Supraleiter
DE102007028018A1 (de) 2007-06-19 2008-12-24 Nexans Superconductors Gmbh Dämpfersystem für Hochtemperatur-Supraleiterlager
DE102007036605A1 (de) 2007-08-02 2009-02-05 Nexans Stabilisiertes Hochtemperatur-Supraleiterlager
DE102007036603A1 (de) 2007-08-02 2009-02-19 Nexans Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung
DE102007036603B4 (de) * 2007-08-02 2009-12-24 Nexans Hochtemperatur-Supraleiterlager mit verbesserter Lagernachführung
RU2383791C1 (ru) * 2008-12-09 2010-03-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Сверхпроводящий магнитный подшипник и способ его изготовления
RU2385424C1 (ru) * 2008-12-26 2010-03-27 Учреждение Российской Академии Наук Институт Машиноведения Им. А.А. Благонравова Ран Подшипник скольжения с магнитопорошковой системой смазки
RU2413882C1 (ru) * 2009-12-23 2011-03-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Магнитный подшипник на высокотемпературных сверхпроводниках (варианты)
CN104763746A (zh) * 2015-04-09 2015-07-08 浙江东晶电子股份有限公司 一种低温超导飞轮用变间隙支承结构
RU2605227C1 (ru) * 2015-06-22 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Подшипниковый узел

Also Published As

Publication number Publication date
US20020135249A1 (en) 2002-09-26
DE10034922C2 (de) 2003-01-16
DE10034922A1 (de) 2002-02-07
JP3754671B2 (ja) 2006-03-15
EP1192363B1 (de) 2004-10-06
EP1192363A1 (de) 2002-04-03
JP2004504553A (ja) 2004-02-12
DE50103961D1 (de) 2004-11-11
US6541885B2 (en) 2003-04-01

Similar Documents

Publication Publication Date Title
EP1192363B1 (de) Magnetische lagerung
DE69517335T2 (de) Elektromagnetisch gelenktes ventil mit gelenkter armatur
DE102008010947A1 (de) Bürstenloser Motor und Verfahren zur Herstellung desselben
DE68920829T2 (de) Verfahren zur Steuerung der Bewegung der Kugeln in einem oszillierenden Lager.
DE102020107570A1 (de) Antriebsanordnung für eine elektrische Antriebsachse mit zwei Motoren
EP3337996B1 (de) Kupplungseinrichtung für hybridantrieb
DE3227810C2 (enExample)
WO2022089684A1 (de) Elektrische maschine, verfahren zur herstellung einer elektrischen maschine sowie elektrisch betreibbarer antriebsstrang
EP4205265A1 (de) Elektrische maschinenanordnung
DE102018204436A1 (de) Verfahren zur Montage von Lamellen- oder Blechpaketen auf einer Hohlwelle sowie ein auf diese Weise hergestellter Rotor für eine elektrische Maschine
EP3364530B1 (de) System aus mindestens zwei elektromaschinen
EP1699578A1 (de) Verfahren zur herstellung eines hülsenförmigen gehäuses aus mehreren flachen blechen
EP2073356B1 (de) Sanierverfahren fuer den Wickelkopf eines elektrischen Generators
DE102018213128A1 (de) Gehäuseanordnung eines Elektromotors
DE102023102102A1 (de) Rotor und elektrische Maschine
DE102021209416A1 (de) Verfahren zur Herstellung eines Rotors für eine elektrische Maschine, sowie Rotor für eine elektrische Maschine
DE102018104418A1 (de) Elektromagnetisch betätigter Aktor für elektrische Maschine und elektrische Maschine mit elektromagnetisch betätigtem Aktor
EP2006979B1 (de) Verfahren zum Herstellen einer Rotorwelle elektrischer Generatoren für die Stromgewinnung in Kraftwerken
DE102021126459A1 (de) Gehäuse für einen elektrischen Antrieb eines Kraftfahrzeugs, Kraftfahrzeug sowie Verfahren
DE102014210696A1 (de) Elektrischer Zentralausrücker (EZA) mit Selbsthaltefeder
EP0504766B1 (de) Vertikale elektrische Synchronmaschine grossen Durchmessers
DE102008058319B4 (de) Wälzlager
DE102017127109B4 (de) Kupplungsbaugruppe und Hybridmodul
DE102023108619A1 (de) Verfahren zur Herstellung einer Rotoranordnung einer elektrischen Maschine sowie Montageanordnung zur Herstellung einer Rotoranordnung
DE102022111155A1 (de) Schwingungsisolator mit einer Schraubenfeder und einem Aktor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2001962549

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 512558

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10088375

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001962549

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001962549

Country of ref document: EP