WO2002003477A1 - Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung - Google Patents

Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2002003477A1
WO2002003477A1 PCT/DE2001/001952 DE0101952W WO0203477A1 WO 2002003477 A1 WO2002003477 A1 WO 2002003477A1 DE 0101952 W DE0101952 W DE 0101952W WO 0203477 A1 WO0203477 A1 WO 0203477A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
substrate
active layer
radiation
emitting semiconductor
Prior art date
Application number
PCT/DE2001/001952
Other languages
English (en)
French (fr)
Inventor
Dominik Eisert
Volker HÄRLE
Frank Kühn
Ulrich Zehnder
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to JP2002507456A priority Critical patent/JP2004503094A/ja
Priority to EP01943138A priority patent/EP1297579A1/de
Publication of WO2002003477A1 publication Critical patent/WO2002003477A1/de
Priority to US10/337,089 priority patent/US6858881B2/en
Priority to US10/949,915 priority patent/US6972212B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the invention relates to a radiation-emitting semiconductor chip having an active layer and a multiplicity of side surfaces which laterally delimit the extension of the active layer.
  • the invention further relates to a method for producing a radiation-emitting semiconductor chip, in which an active layer is first formed above a surface of a substrate and in which the substrate is then separated into semiconductor chips together with the active layer.
  • a radiation-emitting semiconductor chip is known from JP 10-32 69 10 A, which has the shape of a truncated pyramid.
  • the active layer of the known semiconductor chip is located in a central region of the semiconductor chip. Crystalline layers are located above the active layer.
  • the base area running parallel to the active layer is diamond-shaped. The special design of the base area facilitates the light emission from the semiconductor chip. After a few total reflections, the light rays hit an outer surface at an angle that is smaller than the critical angle. Due to the special design of the truncated pyramid-shaped semiconductor chip, the efficiency when decoupling the photons is relatively high.
  • a disadvantage of the known semiconductor chip is that the cross-sectional area varies between the base area used for attaching an electrode and an opposite top side, which is also provided with an electrode. Due to the decreasing cross section of the base Semiconductor chips make it difficult to dissipate heat. In addition, the current flow is hindered by the reduced cross section, so that the ohmic resistance increases locally in the semiconductor chip. Both together lead to a locally different, increased thermal load on the semiconductor chip. The resulting voltages in the semiconductor chip, however, affect the life of the semiconductor chip. In addition, the conversion efficiency of the active layer is reduced by the increased thermal load.
  • the object of the invention is to create a semiconductor chip with good optical coupling and uniform thermal stress.
  • the semiconductor chip has at least two parallelogram-shaped side surfaces provided with an acute angle.
  • the prism-shaped design of the semiconductor chip with two tilted parallelogram-shaped side faces ensures on the one hand that the light emanating from the active layer can leave the semiconductor chip with a small number of reflections.
  • the light rays that leave the active layer in the direction of the base surface largely hit the beveled side surfaces and are reflected on an opposite side surface, where they strike at an angle that is smaller than the critical angle for the total reflection.
  • the semiconductor chip has a uniform cross section, so that the thermal load across the semiconductor chip is homogeneous. This effectively prevents voltages in the semiconductor chip.
  • the semiconductor chip according to the invention therefore has not only good optical coupling but also a homogeneous and low thermal load.
  • the invention is also based on the object of creating a method for producing the semiconductor chip.
  • This object is achieved according to the invention in that the semiconductor chips are separated along a separating surface which runs obliquely to the surface.
  • FIG. 1 shows a perspective view of a semiconductor chip
  • FIG. 2 shows a top view of the semiconductor chip from FIG. 1;
  • FIG. 3 shows a side view of the semiconductor chip from FIG. 1;
  • FIG. 4 shows a cross section with possible light paths in the semiconductor chip from FIG. 1;
  • FIG. 5 is a diagram in which the degree of decoupling as a function of different base angles of the geometric shape of the semiconductor chip
  • FIG. 1 shows a semiconductor chip 1 which has a substrate 2.
  • the substrate 2 is prism-shaped and, in addition to a base area 3 and an upper side 4, has side areas 5, each of which has the shape of a tilted parallelogram.
  • a layer sequence 6 with an active layer, on which a circular electrode 7 is arranged, is applied to the upper side 4 of the substrate 2.
  • Another electrode, which is not shown in FIG. 1, is located on the base 3 of the substrate 2.
  • FIG. 2 shows a cross section through the substrate 2 parallel to the base 3 and to the top 4.
  • the cross section like the base area 3, is designed as a tilted parallelogram with an acute angle ⁇ .
  • the side faces 5 are also formed as tilted parallelograms with an acute angle ⁇ .
  • the formation of the substrate 2 as a parallelepiped with parallelogram-shaped side surfaces which have an acute angle is advantageous for the coupling out of light.
  • This is clear from Figure 4.
  • a point-shaped light source 8 within the substrate 2. If, for example, a light beam 9 occurs at an angle a to the surface normal on the upper side 4, the angle ⁇ being greater than the angle of the total reflection a c , it becomes at the Top 4 reflected.
  • the angle of incidence oi x is also greater than the critical angle for total reflection a c .
  • the light beam 9 is therefore also reflected on the side surface 5.
  • the angle of incidence is smaller than the critical angle o c for total reflection.
  • the influence of the horizontal base angle ⁇ is less than that of the vertical base angle ⁇ .
  • the base area 3 of the substrate 2 was assumed to be 50% absorbent. This is actually the case when the semiconductor chip 1 is mounted with a silver conductive adhesive on a carrier. As a result, the light rays reflected back into the substrate 2 are weakened. It is therefore advantageous if the base area 3 is designed to be reflective.
  • the layer sequence 6 is produced on the basis of AlInGaN or, for example, AlGalnP with transparent window layers made of GaP.
  • Materials such as sapphire, gallium nitride, zinc oxide, diamond or quartz glass can also be used for the substrate 2 instead of silicon carbide.
  • the formation of the substrate as a parallelepiped with tilted parallelograms as side surfaces also has the advantage that the cross section of the substrate 2 remains the same from the base surface 3 to the top 4. As a result, the heat can be dissipated evenly from the layer sequence 6.
  • the ohmic resistance of the substrate 2 is also the same from the top 4 to the base 3. As a result, the voltage drop across the substrate 2 remains low and is evenly distributed. Overall, the semiconductor chip 1 is therefore subjected to uniform thermal stress. There are therefore no voltages in the semiconductor chip 1.
  • the current can flow freely between the active layer and the electrode arranged on the base area 3 owing to the uniform cross section of the substrate 2.
  • the semiconductor chip 1 is therefore also distinguished by a low forward voltage.
  • the substrate 2 is first provided with the layer sequence 6. Subsequently, the substrate 2 can be sawn with the aid of a sawing device with an inclined saw blade. With such a sawing method there is no loss of active area and of the substrate. This is particularly advantageous if the production of the substrate 2 and the growth of the layer sequence 6 are associated with high costs.
  • the semiconductor chips presented here are particularly suitable for producing luminescent diodes in the spectral range mentioned, from the ultraviolet to the infrared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Ein Halbleiterchip (1) verfügt über ein Substrat (2), das die Gestalt eines Parallelepipeds aufweist, dessen Seitenflächen (5) verkippte Parallelogramme sind. Der Halbleiterchip (1) weist einen hohen Auskopplungswirkungsgrad und eine homogene thermische Belastung auf.

Description

Beschreibung
Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
Die Erfindung betrifft einen Strahlung emittierenden Halbleiterchip mit einer aktiven Schicht und einer Vielzahl von die aktive Schicht in ihrer Ausdehnung seitlich begrenzenden Seitenflächen.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines Strahlung emittierenden Halbleiterchips, bei dem zunächst eine aktive Schicht oberhalb einer Oberfläche eines Substrats ausgebildet wird und bei dem anschließend das Sub- strat zusammen mit der aktiven Schicht zu Halbleiterchips vereinzelt wird.
Aus der JP 10-32 69 10 A ist ein Strahlung emittierender Halbleiterchip bekannt, der die Gestalt eines Pyramiden- stumpfs aufweist. Die aktive Schicht des bekannten Halbleiterchips befindet sich in einem mittleren Bereich des Halbleiterchips. Oberhalb der aktiven Schicht befinden sich kristalline Schichten. Die parallel zur aktiven Schicht verlaufende Grundfläche ist rautenförmig ausgebildet. Die besondere Ausgestaltung der Grundfläche erleichtert den Lichtaustritt aus dem Halbleiterchip. Denn die Lichtstrahlen treffen spätestens nach einigen Totalreflexionen auf eine Außenfläche unter einem Winkel, der kleiner als der kritische Winkel ist. Aufgrund der besonderen Ausgestaltung des pyramidenstumpfför- migen Halbleiterchips ist die Effizienz beim Auskoppeln der Photonen verhältnismäßig hoch.
Ein Nachteil des bekannten Halbleiterchips ist, daß die Querschnittsfläche zwischen der für das Anbringen einer Elektrode verwendeten Grundfläche und einer gegenüberliegenden, ebenfalls mit einer Elektrode versehenen Oberseite variiert. Durch den zur Grundfläche hin abnehmenden Querschnitt des Halbleiterchips wird die Ableitung der Wärme erschwert . Außerdem wird der Stromfluß durch den verringerten Querschnitt behindert, so daß sich der ohmsche Widerstand lokal im Halbleiterchip erhöht . Beides zusammen führt zu einer lokal unterschiedlichen, erhöhten thermischen Belastung des Halbleiterchips. Die dadurch entstehenden Spannungen im Halbleiterchip beeinträchtigen jedoch die Lebensdauer des Halbleiterchips. Außerdem wird durch die erhöhte thermische Belastung der Konversionswirkungsgrad der aktiven Schicht verringert .
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Halbleiterchip mit guter optischer Auskopplung und gleichförmiger thermischer Belastung zu schaffen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Halbleiterchip wenigstens zwei mit einem spitzen Winkel versehene parallelogrammförmige Seitenflächen aufweist.
Durch die prismenförmige Ausbildung des Halbleiterchips mit zwei verkippten parallelogrammförmigen Seitenflächen ist zum einen sichergestellt, daß das von der aktiven Schicht ausgehende Licht mit einer geringen Zahl von Reflexionen den Halbleiterchip verlassen kann. Die Lichtstrahlen, die die aktive Schicht in Richtung der Grundfläche verlassen, treffen zu einem Großteil auf die abgeschrägten Seitenflächen und werden auf eine gegenüberliegende Seitenfläche reflektiert, wo sie unter einem Winkel auftreffen, der kleiner als der kritische Winkel für die Totalreflexion ist. Gleichzeitig weist der Halbleiterchip einen gleichförmigen Querschnitt auf, so daß die thermische Belastung über den Halbleiterchip hinweg homogen ist. Spannungen im Halbleiterchip werden dadurch wirksam vermieden. Der Halbleiterchip gemäß der Erfindung weist daher neben der guten optischen Auskopplung auch eine homogene und niedrige thermische Belastung auf. Ferner liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung des Halbleiterchips zu schaffen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Halbleiterchips entlang einer schräg zur Oberfläche verlaufenden Trennfläche vereinzelt werden.
Durch die Trennung des Substrats entlang schräg verlaufender Trennflächen kann nahezu das gesamte Substrat zur Herstellung der Halbleiterchips verwendet werden. Für die Durchführung des Trennverfahrens können herkömmliche Vorrichtungen verwendet werden. Dadurch entsteht kein zusätzlicher Aufwand gegenüber den üblichen Produktionsverfahren. Das Verfahren gemäß der Erfindung läßt sich daher ohne großen Materialverlust auf einfache und kostengünstige Weise durchführen.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche .
Nachfolgend wird die Erfindung anhand der beigefügten Zeichnung im einzelnen erläutert. Es zeigen:
Figur 1 eine perspektivische Ansicht eines Halbleiterchips;
Figur 2 eine Aufsicht auf den Halbleiterchip aus Figur 1;
Figur 3 eine Seitenansicht auf den Halbleiterchip aus Figur 1;
Figur 4 einen Querschnitt mit möglichen Lichtwegen im Halbleiterchip aus Figur 1; und
Figur 5 ein Diagramm, in dem der prozentuale Auskopplungs- grad in Abhängigkeit von verschiedenen Basiswinkeln der geometrischen Gestalt des Halbleiterchips aus
Figur 1 dargestellt ist. Figur 1 zeigt einen Halbleiterchip 1, der ein Substrat 2 aufweist. Das Substrat 2 ist prismenförmig ausgebildet und verfügt neben einer Grundfläche 3 und einer Oberseite 4 Seitenflächen 5, die jeweils die Form eines verkippten Parallelogramms aufweisen. Auf der Oberseite 4 des Substrats 2 ist eine Schichtenfolge 6 mit einer aktiven Schicht aufgebracht, auf der eine kreisförmige Elektrode 7 angeordnet ist. Eine weitere Elektrode, die in Figur 1 nicht dargestellt ist, befindet sich auf der Grundfläche 3 des Substrats 2.
In Figur 2 ist ein Querschnitt durch das Substrat 2 parallel zur Grundfläche 3 und zur Oberseite 4 dargestellt . Der Querschnitt ist ebenso wie die Grundfläche 3 als verkipptes Parallelogramm mit einem spitzen Winkel φ ausgebildet. Wie in Figur 3 erkennbar ist, sind auch die Seitenflächen 5 als verkippte Parallelogramme mit einem spitzen Winkel θ ausgebildet.
Die Ausbildung des Substrats 2 als Parallelepiped mit paral- lelogrammförmigen Seitenflächen, die einen spitzen Winkel aufweisen, ist für die Lichtauskopplung von Vorteil. Dies wird anhand von Figur 4 deutlich. Betrachtet sei eine punkt- fδrmige Lichtquelle 8 innerhalb des Substrats 2. Wenn beispielsweise ein Lichtstrahl 9 unter einem Winkel a zur Flä- chennormale auf die Oberseite 4 auftritt, wobei der Winkel α größer als der Winkel der Totalreflexion ac ist, wird er an der Oberseite 4 reflektiert. Der Lichtstrahl 9 trifft dann auf die Seitenfläche 5 unter einem Winkel a^ = 180° - θ - auf. Auch der Einfallswinkel oix ist größer als der kritische Winkel für die Totalreflexion ac . Der Lichtstrahl 9 wird daher auch an der Seitenfläche 5 reflektiert. Im weiteren Fortgang trifft der Lichtstrahl 9 jedoch auf die Grundfläche 3 unter dem Einfallswinkel 2 = θ - oiχ . In diesem Fall ist der Einfallswinkel kleiner als der kritische Winkel oιc für die Totalreflexion. Der Lichtstrahl 9 kann daher aus dem Substrat 2 austreten. Aus den angegebenen Beziehungen für die Einfallswinkel otχ und α2 ist ersichtlich, daß für θ = 90° kein
Figure imgf000007_0001
t-ti σ Pi p? LQ ^ LQ <! s! 3 ^ P CQ < ≥. to tr < K P) rr P) ö P- t ? T3 ö hfl f f tr1
P> μ- 0 CD H P) ii CD CD μ- μ- PJ 0 Ω φ 0 tr Φ 0 ) ii Φ P; μ- φ Φ Φ J P P= μ- μ- μ-
Φ Ό ) P) P ti CD r H" 3 3" K P CQ J ü P- rr li Ω φ P ü ii ü Ω P Ω
Η CD i rr 3 μ- 0 P; LQ tr μ- Ω tr PJ Ω - φ tr
CD <! CD cπ> P CQ öd μ- ^ p. φ Ω P) o h CQ Φ O LQ tr bd s! P- P> tr td H- μ- et
CD t P) W μ- Φ r P l-r ? *ü CQ J φ φ μ- 3 ii μ- φ P P) C P CQ
Φ ii rr II t_π d Hl CQ PJ LQ 3 Φ r rr M et CQ rr μ- P- ^ μ- tr ü CQ Hi Φ Pi CQ rr li rr
H- i PJ P= μ- ; CQ £, μ- σi μ- μ- Φ rr CQ rt 0= ? ^ μ- μ- i Φ ii
P H- £ ( l o\° CQ H CQ CD H tu rr 0 < 0 H μ- Φ W f <! Φ 0 φ CQ ) Hi P) φ P CD O • μ- s; ii μ- ü ö Φ 3 P μ- P; li (0 H Φ P; P 0 μ- LQ p- P'
P LQ li o CQ P- μ- σi Φ 3 μ- P 3 CQ N rr 3 Ω Ω μ- P LQ P Q H Q μ- Φ
CD Pi ^i $ μ- HS ?d Ω 3 Φ φ K μ- 1-5 f tr P P LQ CQ φ P) Φ P " ü CD ;v P= μ- CD P- μ- tsi l-T C P ω ^ 0 p: μ- μ- μ- ti P) φ LQ P. P 3 CQ s VD ΓT SD
0 P P P) H P CD Ω CD P > td Ω φ Φ 3 CQ rr i C Ω i P. li φ 3 rr φ μ-
CQ P • P ^ f μ- P pf ii Hi s1 rr ii ti P^ Φ PJ H Hl ) ) Φ μ- μ- IQ P P- CD P CQ rr LQ LQ α ü φ μ- LQ Hi P) μ- H LQ ≤ LQ li P. ≤ 0= P ii P rr P) CQ l rt CQ P) φ ^ Ω Φ μ- ü α •> Φ Φ tr1 μ- li rr CQ rr
H- P- CQ pr P - μ- t) H rr 1-r CQ N tr α , μ- P α μ- ii 3 P
< CD CD o tQ P H rr et μ- μ- μ- tr P) CQ P) P; Φ Ω i μ- P Λ i s; φ
Φ CQ ü O ^ N Hi * P, S! 0 φ φ φ P. Φ li φ P; CQ ü p- LQ LQ Φ φ P
P P II ts C P" P= φ Φ μ- P, Φ !- P- P) μ- LQ Φ P? rr α Φ SO 3 H f > tr 1-5 ^ X h H Φ μ- rt 3 CQ CQ φ P 0 Λ φ P i O Pi 33
M O P CQ O P CD & li ^ rr φ μ- Ω * CQ Ö P P Φ o CQ φ μ-
H- H CQ rr O P μ- rr 3 K P 1 Φ • P et t φ φ rr H f Ω CQ Φ CQ CQ P P P
P H- ^ li o CQ P P- ) P μ- μ- 3 Φ 3 φ ? N Φ μ- tr ? l- tsi 0 ) • CD ) CD II LQ μ- rr α ß Φ Ω P Ω p; 0 P μ- CQ CQ CQ ^ φ
M 0 et tr i 3 μ- tr CQ co Φ μ- μ- tr φ P, ^ tr P ^ö Φ li et P rt rr P)
P P Ή CD lfl μ- P H LQ et μ- φ II 3 rr P μ- tϊ μ- P LQ 13 Φ σ HS P tr tTϋ et t\3 rt P= CQ rt CD Φ H φ Φ φ • LQ C 0D i P CQ Pi ) P Φ fl) P H ü rr σi μ- ) s: CQ μ1 3 0 td P; P P) P P Hl et PJ et ^ H αi
SD h-1 P 3 P)= ) CD < rt P φ Φ Ω o Hl ii CD α Ü LQ P; P PJ CQ ti Q Φ
P CD IQ μ- tQ CD μ- CD φ Φ P, μ- pf tö 0 Φ Ω P) CQ LQ P ^ P)= ) t μ- μ-
Hl P CQ r- et μ- ^ P ü μ- ti P, 0 CQ μ- Ω li Ω t CQ ui Hl CQ 0 Ω rr PJ P Ω s; P CD CD ^ P Ω Φ Ω φ Ω 3 Φ LQ F μ- P= P, <l LQ T3 tr CQ tr J tr ü ω μ- CD a CD P μ- LQ l-T ti 1^ Ω φ C Ω 3 μ- >i Φ Φ Φ •ö Φ Φ P Pi
Φ PJ ii μ- CD P <! >τ) φ μ- rr et tr 3 tr 0 CQ 3 l tr P M fi CQ Φ Pi
P 03 pr P li M CD *ü r >ö P) H Φ P; P;
Figure imgf000007_0002
IQ rr P. er Φ tr Φ p: IQ P Φ μ- P CD o l H c Φ P J P ü CQ HI Φ μ- CΛ Φ P P PJ CQ Φ φ t
CQ P 3 c ü p <-r μ- CQ CQ P Hl P. LQ μ- μ- 0 P, P P; CQ P. LQ Pi φ s- P l_l-
P s> LQ P P) 0= μ- LQ rr P ^ CQ O CQ CQ lü P) tr CQ Φ μ- CQ tr 0 φ m μ- CQ <! CQ i=r P Φ O P; Ti Φ μ- rr P- LQ CQ 3 CQ φ P tr Φ M φ P
P IQ CD ; CD p: LQ P. rr Φ T! P p) LQ μ- P φ Φ tr 0 rr li Φ "fl T μ- μ-
0 ? li H 0 H 3 CD Φ μ- TS P. t Φ i P, P) X Φ td P, K rr tr1 μ- φ P) ^ Φ P CQ
»Ö CD P) r Ή (Q H CQ μ- m P Φ
Figure imgf000007_0003
φ φ p: σs CQ ü φ ) • μ- rr μ- ü o φ
Ό Pi μ- Ό 3 P CQ φ ß H P H X Hl 3 Ω LQ rr Ω li P P> tr rr φ P
CQ p μ- Ω, P ω et ti P Ω rr ) tr φ !- tr PJ Φ μ-
P P) P) P rr CD LQ P • LQ l- Φ C p- Φ II P; H tr tsj rr LQ P ^ P m
P -θ- P P CQ σ CQ 3 i μ- Hi Φ 2 & Q Φ Φ Φ Hi μ-
LQ Hl CD LQ CD . CQ φ £. μ- ^! Hi II V to μ- μ- Φ P CQ φ li P) P
CQ !-r P CQ μ- s! CD rt ü Ω 0 PJ φ ^ P- tr CQ CQ P)= φ Pi T3 Φ H P. Hi s- PJ cπ s: 3 μ- OQ H C J-T 3 (TÖ Φ to 3 cπ Φ et φ μ- >Ö Φ P)
H- et o to μ- CD t ) P; Pb et rr rr •^ H φ tu rr tr et μ- P Φ ii P) 3 W <l rr w Φ μ- ) 1 ω P) Φ μ- ) 0= N W J P
^ D o\° CQ Pf P" CD CQ 3 LQ Ps- P- PJ: - p: P: td μ- P Q tr P) Φ Φ W P. CQ
P tr μ- P <1 P H P) Hi et Φ t- tr Hi P) P φ σ μ- rr P P Pi fl) Φ s;
P CD <! CQ P CD tQ rr t Q P;= ΪD tr LQ φ CQ ≤ CQ φ ii Ω ^ 3 • P ti μ-
IQ P CD 3 tQ i CQ μ- CQ li 1-5 Φ Φ μ- et Φ μ- P Φ PJ S! 3 P P
CQ μ- CQ rr μ- Φ LQ P li μ- CQ μ- μ- μ- μ- W 1 P 1 μ- PJ P φ Φ P) CQ Φ P) P P Φ φ 3 et et K CQ i i
P
grad. Der Einfluß des horizontalen Basiswinkels φ ist allerdings geringer als der des vertikalen Basiswinkels θ . Dies ist eine Folge davon, daß die Grundfläche 3 des Substrats 2 als zu 50 % absorbierend angenommen wurde. Dies ist bei der Montage des Halbleiterchips 1 mit einem Silberleitkleber auf einem Träger tatsächlich der Fall . Dadurch werden die in das Substrat 2 zurückreflektierten Lichtstrahlen geschwächt. Es ist daher von Vorteil, wenn die Grundfläche 3 reflektierend ausgeführt wird.
Durch die Verringerung des vertikalen Basiswinkels θ wird dagegen eine direkte Auskopplung durch die Seitenflächen 5 ohne vorherige Abschwächung erleichtert.
Die hier vorgestellten Rechnungen gelten entsprechend, wenn die Schichtenfolge 6 auf der Basis von AlInGaN oder beispielsweise AlGalnP mit transparenten Fensterschichten aus GaP hergestellt wird. Für das Substrat 2 können anstelle von Siliziumkarbid auch Materialien wie Saphir, Galliumnitrid, Zinkoxid, Diamant oder Quarzglas verwendet werden.
Die Ausbildung des Substrats als Parallelepiped mit verkipptem Parallelogrammen als Seitenflächen hat darüber hinaus den Vorteil, daß der Querschnitt des Substrats 2 von der Grund- fläche 3 bis zur Oberseite 4 gleich bleibt. Dadurch kann die Wärme gleichmäßig von der Schichtenfolge 6 abgeführt werden. Auch der ohmsche Widerstand des Substrats 2 ist von der Oberseite 4 aus bis zur Grundfläche 3 hin gleich. Dadurch bleibt der Spannungsabfall am Substrat 2 niedrig und ist gleichmäßig verteilt. Insgesamt ist daher der Halbleiterchip 1 gleichmäßig thermisch belastet. Es treten daher keine Spannungen im Halbleiterchip 1 auf.
Außerdem kann der Strom zwischen der aktiven Schicht und der auf der Grundfläche 3 angeordneten Elektrode aufgrund des gleichförmigen Querschnitts des Substrats 2 ungehindert flie- ßen. Der Halbleiterchip 1 zeichnet sich daher auch durch eine niedrige VorwärtsSpannung aus .
Zur Herstellung des Halbleiterchips 1 wird zunächst das Sub- strat 2 mit der Schichtenfolge 6 versehen. Anschließend kann das Substrat 2 mit Hilfe einer Sägevorrichtung mit schräggestelltem Sägeblatt zersägt werden. Bei einem derartigen Sägeverfahren tritt kein Verlust an aktiver Fläche und am Substrat auf. Das ist insbesondere dann von Vorteil, wenn die Herstellung des Substrats 2 und das Aufwachsen der Schichtenfolge 6 mit hohen Kosten verbunden sind.
Außerdem sind derartige Sägeverfahren bereits im Zusammenhang mit der Herstellung herkömmlicher Leuchtdioden auf Substraten wie SiC oder GaAs bekannt und können im wesentlichen übernommen werden, wobei dem Grunde nach nur die Neigung des Sägeblatts verändert werden muß. Folglich entstehen auch keine zusätzlichen Prozeßkosten.
Die hier vorgestellten Halbleiterchips eignen sich insbesondere zur Herstellung von Lumineszenzdioden im genannten Spektralbereich vom Ultravioletten bis zum Infraroten.

Claims

Patentansprüche
1. Strahlung emittierender Halbleiterchip mit einer aktiven Schicht und einer Vielzahl von die aktive Schicht (6) in ihrer Ausdehnung seitlich begrenzenden Seitenflächen (5) , d a d u r c h g e k e n n z e i c h n e t, daß der Halbleiterchip wenigstens zwei mit einem spitzen Winkel versehene, verkippte parallelogrammförmige Seitenflächen (5) aufweist .
2. Strahlung emittierender Halbleiterchip nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die aktive Schicht (6) auf einem Substrat (2) angeordnet ist.
3. Strahlung emittierender Halbleiterchip nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß ein Teil der Strahlung der aktiven Schicht (6) in Richtung auf das Substrat (2) emittiert wird.
4. Strahlung emittierender Halbleiterchip nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der spitze Winkel θ der parallelogrammförmigen Seitenflächen (5) kleiner 80° ist.
5. Strahlung emittierender Halbleiterchip nach einem der Ansprüche 2 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß das Substrat (2) auf der Basis von Saphir, Galliumnitrid, Si- liziumkarbid, Zinkoxid, Diamant oder Quarzglas hergestellt ist .
6. Verfahren zur Herstellung eines Strahlung emittierenden Halbleiterchips, bei dem zunächst eine aktive Schicht (6) oberhalb einer Oberfläche eines Substrats (2) ausgebildet wird und bei dem anschließend das Substrat (2) zusammen mit der aktiven Schicht (6) zu Halbleiterchips vereinzelt wird, d a d u r c h g e k e n n z e i c h n e t, daß die Halbleiterchips entlang einer schräg zur Oberfläche verlaufenden Trennfläche (5) vereinzelt werden.
7. Verfahren nach Anspruch 6 , d a d u r c h g e k e n n z e i c h n e t, daß zum Vereinzeln der Halbleiterchips eine Sägevorrichtung mit schräggestelltem Sägeblatt verwendet wird.
PCT/DE2001/001952 2000-07-06 2001-05-22 Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung WO2002003477A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002507456A JP2004503094A (ja) 2000-07-06 2001-05-22 ビーム放射性半導体チップおよびその製造方法
EP01943138A EP1297579A1 (de) 2000-07-06 2001-05-22 Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung
US10/337,089 US6858881B2 (en) 2000-07-06 2003-01-06 Radiation-emitting semiconductor chip, and method for producing the semiconductor chip
US10/949,915 US6972212B2 (en) 2000-07-06 2004-09-24 Method for producing a radiation-emitting semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10032838.5A DE10032838B4 (de) 2000-07-06 2000-07-06 Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
DE10032838.5 2000-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/337,089 Continuation US6858881B2 (en) 2000-07-06 2003-01-06 Radiation-emitting semiconductor chip, and method for producing the semiconductor chip

Publications (1)

Publication Number Publication Date
WO2002003477A1 true WO2002003477A1 (de) 2002-01-10

Family

ID=7647987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001952 WO2002003477A1 (de) 2000-07-06 2001-05-22 Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung

Country Status (6)

Country Link
US (2) US6858881B2 (de)
EP (1) EP1297579A1 (de)
JP (1) JP2004503094A (de)
DE (1) DE10032838B4 (de)
TW (1) TWI229459B (de)
WO (1) WO2002003477A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521569A (ja) * 2003-03-28 2006-09-21 アフトン コーポレーション ガストリンホルモン免疫アッセイ
US7196359B2 (en) 2001-08-13 2007-03-27 Osram Opto Semiconductors Gmbh Radiation-emitting chip and radiation-emitting component

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705791B2 (ja) * 2002-03-14 2005-10-12 株式会社東芝 半導体発光素子および半導体発光装置
US7033912B2 (en) 2004-01-22 2006-04-25 Cree, Inc. Silicon carbide on diamond substrates and related devices and methods
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US8294166B2 (en) 2006-12-11 2012-10-23 The Regents Of The University Of California Transparent light emitting diodes
US7294324B2 (en) * 2004-09-21 2007-11-13 Cree, Inc. Low basal plane dislocation bulk grown SiC wafers
US7422634B2 (en) * 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
US7709269B2 (en) 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US20120313213A1 (en) * 2011-06-07 2012-12-13 Raytheon Company Polygon shaped power amplifier chips
KR101189014B1 (ko) 2011-06-14 2012-10-08 서울옵토디바이스주식회사 반도체 발광 소자, 그 제조 방법 및 이를 포함하는 반도체 발광 소자 패키지
JP5995563B2 (ja) * 2012-07-11 2016-09-21 株式会社ディスコ 光デバイスの加工方法
CN103811613A (zh) * 2012-11-15 2014-05-21 展晶科技(深圳)有限公司 发光二极管磊晶结构
TWD161897S (zh) 2013-02-08 2014-07-21 晶元光電股份有限公司 發光二極體之部分
USD847102S1 (en) 2013-02-08 2019-04-30 Epistar Corporation Light emitting diode
US11037911B2 (en) * 2017-12-27 2021-06-15 Nichia Corporation Light emitting device
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478174A (ja) * 1990-07-19 1992-03-12 Nec Corp 半導体発光素子
JPH10326910A (ja) * 1997-05-19 1998-12-08 Song-Jae Lee 発光ダイオードとこれを適用した発光ダイオードアレイランプ
US5990497A (en) * 1996-08-31 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor light emitting element, semiconductor light emitting device using same element
EP0961328A2 (de) * 1998-05-28 1999-12-01 Sumitomo Electric Industries, Ltd. Galliumnitrid Halbleitervorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087949A (en) 1989-06-27 1992-02-11 Hewlett-Packard Company Light-emitting diode with diagonal faces
EP0405757A3 (en) 1989-06-27 1991-01-30 Hewlett-Packard Company High efficiency light-emitting diode
US5340772A (en) * 1992-07-17 1994-08-23 Lsi Logic Corporation Method of increasing the layout efficiency of dies on a wafer and increasing the ratio of I/O area to active area per die
JP3557011B2 (ja) * 1995-03-30 2004-08-25 株式会社東芝 半導体発光素子、及びその製造方法
JP3176856B2 (ja) * 1995-12-14 2001-06-18 沖電気工業株式会社 端面発光型led、端面発光型ledアレイ、光源装置及びそれらの製造方法
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US20030137031A1 (en) * 2002-01-23 2003-07-24 Tai-Fa Young Semiconductor device having a die with a rhombic shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478174A (ja) * 1990-07-19 1992-03-12 Nec Corp 半導体発光素子
US5990497A (en) * 1996-08-31 1999-11-23 Kabushiki Kaisha Toshiba Semiconductor light emitting element, semiconductor light emitting device using same element
JPH10326910A (ja) * 1997-05-19 1998-12-08 Song-Jae Lee 発光ダイオードとこれを適用した発光ダイオードアレイランプ
EP0961328A2 (de) * 1998-05-28 1999-12-01 Sumitomo Electric Industries, Ltd. Galliumnitrid Halbleitervorrichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 294 (E - 1225) 29 June 1992 (1992-06-29) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196359B2 (en) 2001-08-13 2007-03-27 Osram Opto Semiconductors Gmbh Radiation-emitting chip and radiation-emitting component
EP1417720B1 (de) * 2001-08-13 2015-02-11 OSRAM Opto Semiconductors GmbH Strahlungsemittierender chip und strahlungsemittierendes bauelement
JP2006521569A (ja) * 2003-03-28 2006-09-21 アフトン コーポレーション ガストリンホルモン免疫アッセイ
JP4689597B2 (ja) * 2003-03-28 2011-05-25 レセプター バイオロジックス インク. ガストリンホルモン免疫アッセイ

Also Published As

Publication number Publication date
DE10032838A1 (de) 2002-01-24
US6972212B2 (en) 2005-12-06
US20050042843A1 (en) 2005-02-24
TWI229459B (en) 2005-03-11
US20030107045A1 (en) 2003-06-12
EP1297579A1 (de) 2003-04-02
US6858881B2 (en) 2005-02-22
JP2004503094A (ja) 2004-01-29
DE10032838B4 (de) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2002003477A1 (de) Strahlung emittierender halbleiterchip und verfahren zu dessen herstellung
DE102006002683B4 (de) Licht emittierendes Bauteil
EP1307928B1 (de) Lichtemittierender halbleiterchip und verfahren zu dessen herstellung
EP2132791B1 (de) Dünnfilm-leuchtdioden-chip und verfahren zur herstellung eines dünnfilm-leuchtdioden-chips
EP2289113B1 (de) Optoelektronisches bauelement und verfahren zu dessen herstellung
DE102005013894B4 (de) Elektromagnetische Strahlung erzeugender Halbleiterchip und Verfahren zu dessen Herstellung
DE10017757B4 (de) LED auf AlGaInN-Basis mit dicker Epitaxieschicht für eine verbesserte Lichtextraktion und Verfahren zum Herstellen des Bauelements
EP1886360B1 (de) Lumineszenzdiodenchip mit einer kontaktstruktur
DE10111501B4 (de) Strahlungsemittierendes Halbleiterbauelement und Verfahren zu dessen Herstellung
DE10006738C2 (de) Lichtemittierendes Bauelement mit verbesserter Lichtauskopplung und Verfahren zu seiner Herstellung
DE102019121014A1 (de) Lichtemittierender diodenchip vom flip-chip-typ
DE19632626A1 (de) Verfahren zum Herstellen von Halbleiterkörpern mit MOVPE-Schichtenfolge
EP1592072A2 (de) Halbleiterchip für die Optoelektronik und Verfahren zu dessen Herstellung
WO2008131735A1 (de) Optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen
DE19927945A1 (de) Lichtemittierendes Bauelement mit feinstrukturiertem reflektierendem Kontakt
EP1210737A1 (de) Lichtemissionsdiode mit oberflächenstrukturierung
DE202014011201U1 (de) Lichtemittierende Halbleitervorrichtung mit metallisierten Seitenwänden
WO2002015287A1 (de) Strahlungsemittierender halbleiterchip und lumineszenzdiode
DE102013110114A1 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
EP1417720A1 (de) Strahlungsemittierender chip und strahlungsemittierendes bauelement
EP3240048B1 (de) Halbleiterchip für die optoelektronik und verfahren zu dessen herstellung
WO2019020424A1 (de) Optoelektronischer halbleiterchip, hochvolthalbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
WO2013060578A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
DE102011111919B4 (de) Optoelektronischer Halbleiterchip
DE102019131074A1 (de) Lichtemittierende halbleitervorrichtung und herstellungsverfahren für dieselbe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10337089

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001943138

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001943138

Country of ref document: EP