WO2001092475A2 - Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats - Google Patents

Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats Download PDF

Info

Publication number
WO2001092475A2
WO2001092475A2 PCT/DE2001/001984 DE0101984W WO0192475A2 WO 2001092475 A2 WO2001092475 A2 WO 2001092475A2 DE 0101984 W DE0101984 W DE 0101984W WO 0192475 A2 WO0192475 A2 WO 0192475A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
recipient
tissue
mediators
factors
Prior art date
Application number
PCT/DE2001/001984
Other languages
English (en)
French (fr)
Other versions
WO2001092475A3 (de
Inventor
Augustinus Bader
Original Assignee
Augustinus Bader
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Augustinus Bader filed Critical Augustinus Bader
Priority to CA2410670A priority Critical patent/CA2410670C/en
Priority to US10/296,672 priority patent/US7915038B2/en
Priority to EP01943147A priority patent/EP1287118B1/de
Priority to DK01943147T priority patent/DK1287118T3/da
Priority to DE50113506T priority patent/DE50113506D1/de
Priority to JP2002500669A priority patent/JP4898068B2/ja
Publication of WO2001092475A2 publication Critical patent/WO2001092475A2/de
Publication of WO2001092475A3 publication Critical patent/WO2001092475A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/383Nerve cells, e.g. dendritic cells, Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture

Definitions

  • the invention relates to a method for producing a recipient-specific tissue transplant or tissue implant from a tissue matrix and recipient-compatible cells located thereon.
  • transplant medicine there is a great need for suitable transplants that trigger the least possible adverse reactions of the transplant recipient. Only in certain cases is it possible to remove the transplant from the recipient's body and transplant it. From an immunological point of view, these transplants are the most harmless, but this possibility does not exist for certain vessels or organs, as well as for larger areas of skin to be replaced.
  • allogeneic transplants from other donors or - often in the orthopedic field - synthetic implants made of plastics, metals, ceramics etc. or various composites come into consideration.
  • Donor organs need constant immunosuppression that is stressful for the recipient's organism. However, rejection reactions often occur as serious complications. Artificial materials can also lead to rejection reactions and inflammatory processes that destroy the result of the operation.
  • xenogenic material animal origin
  • the main advantage here is the better availability of this material compared to allogeneic (donor) materials.
  • Such a "biological material” is also more flexible than an artificial material and in some places adapts better to the recipient body.
  • the xenogeneic transplant material is problematic because it is highly antigenic. It has therefore been attempted for a long time to make xenogeneic allogeneic or synthetic transplant materials, ie different types of tissue intended for transplantation, compatible with the recipient.
  • DE 19828726 A1 describes a method for producing a bioartificial graft, in which native cells are first removed from the interstitial connective tissue of the graft. The matrix is then repopulated with cells that are compatible with the recipient, preferably autologous, so that a recipient-specific biograft is obtained.
  • the culture is supplied with certain cellular mediators or also factors which stimulate the growing cells to certain processes.
  • the applied recipient-specific cells include fibroblasts, it is possible, for example, with the help of suitable mediators / factors, to stimulate the formation of new collagen and thus to support the transformation of the tissue matrix into an autologous one for the recipient.
  • Numerous factors have a chemotactic or growth-accelerating effect, and the effects of the individual factors are known to the person skilled in the art as far as has been investigated. By adding the factors, the mentioned pro processes triggered, accelerated and controlled by the type and function of the factors.
  • the object of the invention is therefore to simplify, to reduce the cost and to simplify the supply of mediators, factors, co-factors to the tissue culture in a method for producing a recipient-specific tissue transplant or tissue implant from a tissue matrix and recipient-compatible cells to control better.
  • the method is intended to enable the recipient-specific transplant or implant to be designed in an even more natural manner.
  • the invention provides that in a method for producing a recipient-specific tissue transplant or tissue implant from a tissue matrix and recipient-compatible cells located thereon, the tissue matrix is populated with the recipient-compatible cells with the participation of additional cells, the mediators, Produce factors or co-factors and release them into the environment that a tissue regeneration promote one
  • mediators or factors of additional cells that are to be donated should be understood here to mean that, in addition to the recipient-compatible cells used for the colonization, these are either introduced directly into the tissue culture within the colonization process and through interaction with the recipient-specific cells for the delivery of the mediators and factors are stimulated (so that they intervene directly in the settlement process, i.e. are involved) or, parallel to the culture of the tissue transplant or implant, are cultivated simultaneously in the same cultivation device (bioreactor) or in a separate apparatus (co-culture), the products secreted by the cells used according to the invention into the parallel culture (mediators, factors, co-factors) are fed directly to the tissue culture.
  • Mediators also include inflammatory mediators.
  • mediators or factor-releasing cells are understood to mean those that can be activated, ie stimulated, comparatively well to deliver mediators, factors or co-factors that promote tissue regeneration. These include macrophages, certain immune-competent cells and others.
  • the activation can preferably be carried out by a stimulus emanating from the colonization cells (eg cell detritus), alternatively also by adding chemical substances or small foreign particles. Repair processes as well as
  • Autologous cells of the transplant recipient can be used as mediators or factor-releasing cells.
  • leukocytes such as lymphocytes, macrophages, granulocytes, dendritic cells, stem cells, in particular pluripotent stem cells or somatic stem cells or mixtures of these cells.
  • macrophages is currently considered to be particularly advantageous.
  • these cells can be added by adding suitable substances for the production of certain mediators, factors or co-factors or for increased production. cell products are stimulated.
  • the method is preferably carried out in such a way that the mediators or factor-releasing cells are at least temporarily fed directly into a culture medium used for the colonization and / or the tissue matrix during the colonization.
  • tissue support or tissue matrix - for example a natural or synthetic, acellularized or native collagen matrix or a synthetic tissue, such as a biopolymer fiber or network structure - is is generally found in a culture medium to which various additives can be added (also called conditioning medium, which means the conditioning of the tissue for colonization).
  • the culture medium can, for example, be moved over the tissue or circulated over the tissue in a cycle.
  • the culture medium can also be added at intervals and then left standing for a time above the culture; the optimal conditions depend, among other things, on the type of tissue to be populated.
  • a common nutrient medium can be used as the culture medium or conditioning medium, which can optionally be provided with various additives.
  • Nutrient media suitable for this are known to the person skilled in the art.
  • Recipient-specific cells are introduced into the medium, either at the start of colonization, continuously or in several batches.
  • Recipient-specific cells are understood to mean autologous allogeneic or genetically modified allogeneic or xenogeneic cells which are selected as compatible (compatible) for the recipient as compatible with the recipient.
  • Cells can be regarded as immunologically compatible if they have been classified as recipient-like by tests or if they have been adapted to the recipient by genetic modification in particular.
  • Different types of cells can also be abandoned at different times of colonization or treatment, so that different cell layers of different types of cells can build up on the tissue.
  • locally different cells can be applied, for example different cells on the top and bottom of a skin graft or different on the inside and the outside of a tubular vessel. before cells.
  • all types of body cells come into question as recipient-compatible cells, for example:
  • Connective tissue cells including fibroblasts, fibrocytes), muscle cells (myocytes), endothelial cells, skin cells (including keratinocytes), cells differentiated into organ cells (cardiac cells, kidney cells, etc.), preferably for structured organs with a collagen structure, generally all cells that are necessary for the conversion of a certain tissue intended for the implantation can be offered
  • the tissue graft can in principle be any transplantable tissue.
  • these include: general vessels, such as aortics and veins, aortic valves, heart valves, organ parts and whole organs, skin pieces, tendons, cornea, cartilage, bones, larynx, heart, trachea, nerves, miniscus, intervertebral disk, ureters, urethra, Bladder, etc.
  • Implants based on synthetic matrices or scaffolds offer many other options for veins, heart valves, cornea, bladder and skin.
  • the mediators or factor-releasing cells can, as described above, be at least temporarily supplied to the tissue culture medium and / or the tissue matrix during the colonization. For this purpose, it is possible to apply mediators or factor-emitting cells directly to the tissue matrix once at the beginning of the colonization or together with the recipient-compatible cells.
  • Cells can also be fed in batches or continuously with the culture medium, it also being possible to switch between culture mediums without and with cells that deliver mediators or factors.
  • blood is used for supplying the mediators or factor-releasing cells, which naturally contains the desired mediators or factor-releasing cells, preferably autologous blood of the transplant or implant recipient. This blood can be concentrated with respect to the desired components or blood components can be separated and used here.
  • the cells which can be activated for the delivery of mediators or factors can be kept in a culture which is connected to the tissue during the colonization in such a way that mediators / factors released from the cell culture are supplied to the tissue during the colonization.
  • this co-culture mediator or factor of donor cells is possible as a parallel culture outside or inside the device for tissue culture.
  • the culture of mediators or factors giving off cells can take place in a bioreactor which is connected in a suitable manner to the reactor in which the recipient-specific transplant or implant is grown and treated.
  • Factors removed from the bioreactor can be added to the circulating or batchwise conditioning culture medium in a suitable amount.
  • the macrophage culture or the culture of other mediators or factors that give off cells, or mixture of mediators or factors that give off cells, can be covered during the steps of treatment with recipient-compatible cells by a film, membrane or that is permeable to the cellular mediators and / or factors Partition from the conditioning medium are kept separate so that the formed mediators and / or factors can be continuously released into the conditioning medium.
  • the treatment of the tissue intended for the transplantation will generally take place in a bioreactor in which the culture medium is kept within a certain space and, if necessary, circulated.
  • a culture space for the culture of the cells or macrophages used according to the invention can be formed within this space with a meable partition wall, so that the cellular mediators and / or factors formed can constantly migrate into the conditioning medium.
  • Cells which release mediators or factors can be used in particular: cells from the leukocyte family, but also peripheral or central stem cells (from blood, adipose tissue, organs and bone marrow), preferably pluripotent stem cells, e.g. all forms of white blood cells, granulocytes, lymphocytes, macrophages, monocytes, bone marrow cells, spleen cells, memory cells, thymus cells.
  • peripheral or central stem cells from blood, adipose tissue, organs and bone marrow
  • pluripotent stem cells e.g. all forms of white blood cells, granulocytes, lymphocytes, macrophages, monocytes, bone marrow cells, spleen cells, memory cells, thymus cells.
  • the recipient-compatible, preferably autologous or genetically modified and thereby recipient-specific made allogeneic or xenogeneic cells include those cells which are suitable for the construction of the desired tissue and optionally additionally those which stimulate and / or control the tissue remodeling can, such as cellular factor-producing cells and / or chemotactically influencing cells, including the above-mentioned mediators or factor-releasing cells.
  • mediators, factors, and co-factors are particularly suitable for the respective purpose are also produced during a culture step that is required anyway can, so that the use of additional expensive and less specific factors can be dispensed with.
  • the delivery of the mediators / factors can be influenced and the tissue structure can thus be controlled and accelerated.
  • tissue matrix can, for example, be used as a tissue matrix, e.g. may include one or more of the following materials: polyglactide, polydioxanone, biodegradable polyesters, polyurethanes, polyacrylics, collagen, fibrinogen.
  • tissue matrix e.g. may include one or more of the following materials: polyglactide, polydioxanone, biodegradable polyesters, polyurethanes, polyacrylics, collagen, fibrinogen.
  • native or acellularized xenogeneic or allogeneic tissue matrices can also be used.
  • Biodegradable polymers are used as synthetic matrix materials.
  • the synthetic materials can also be purified biological materials Act of origin. These materials become “synthetic"
  • the polymer degradation can take place hydrolytically or also enzymatically.
  • Biodegradable polymers such as polyglacide, polydioxanone, polyester, polyurethane, polyacrylic, special biological polymers and (bio) macromolecules such as collagen or fibrinogen, the classic components of extracellular matrix, can be used.
  • a synthetic tissue support for example a synthetic heart valve
  • the culture takes place in a medium customary for this (e.g. DMBM; WE).
  • DMBM fetal bovine serum
  • the tissue implant is occasionally flushed at intervals with the implant recipient's own blood, concentrated autologous blood or with culture medium mixed with blood components.
  • macrophages selectively adhere to the exposed matrix. Lymphocytes and macrophages receive immunostimulatory stimuli through the cleavage products of the polymers and are activated to stimulate the autologous myofibroblasts to stimulate the matrix via endogenous activators. This is particularly important because then e.g.
  • Hydrolytic degradation of the polymers can be accelerated, so that this is considerably shorter than was previously possible. This in turn enables the implantation of a finished product in vivo without existing residual polymers, which can trigger undesired instabilities in vivo in the event of sudden accelerated decay or else foreign body reactions.
  • preparations of platelets can be co-cultivated separately in different areas of the bioreactor or synchronously in a separate apparatus. In the latter case, the culture products obtained in this way are fed to the tissue culture in the actual tissue bioreactor.
  • the pre-expansion phase of the recipient's vascular cells takes about 10 days in conventional methods.
  • Heart valves are then placed in a bioreactor and colonized as usual using the pre-expanded fibroblasts, smooth muscle cells (SMC) and endothelials.
  • SMC smooth muscle cells
  • endothelials freshly obtained bone marrow stem cells are applied as a total pool to and into the matrix using a syringe.
  • a differentiation control of the stem cells takes place under the local microenvironmental pressure of the spatial position of the extracellular matrix.
  • the activation state of the stem cells is additionally stimulated by matrix and local cell decay products.
  • the tissue-specific cells are generated on site. This means that due to the biopsy, for example when creating heart valves, the aorta tissue must be used that cannot be obtained directly from the target tissue. This includes, for example, vein material that has a different molecular and phenotypic differentiation than arterial cells from the aortic valve. Furthermore, various cell types are missing, such as those found only in the valve leaflet, such as neuronal cell systems. Under the local microenvironmental pressure, the stem cells differentiate the matrix parameters present in the valve (ideally, for example, an allogeneic aortic valve matrix) into site-specific cell types, including neuronal cell systems, which are responsible for local innervation processes.
  • the stem cells differentiate the matrix parameters present in the valve (ideally, for example, an allogeneic aortic valve matrix) into site-specific cell types, including neuronal cell systems, which are responsible for local innervation processes.
  • the stem cells can also enable repopulation with the arterial cells.
  • EC are important because thrombogenicity is reduced in the vascular system.
  • the FB and SMC themselves of venous origin, at least initiate the. Remodeling process in recipient-specific matrix achieved, which is continued, corrected and completed by the cell pools recruited from the stem cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Prostheses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Das Verfahren ist eine Weiterentwicklung eines Zellbesiedlungsverfahrens, bei dem auf einer synthetischen oder natürlichen Gewebematrix biologische Zellen angesiedelt werden, um ein Gewebe-Implantat oder -Transplantat zu erhalten. Das Anwachsen der i.a. vom vorgesehenen Transplantat- oder Implantat-Empfänger stammenden Zellen wird häufig durch Zugabe von Mediatoren, Faktoren oder Co-Faktoren gefördert. Bei dem erfindungsgemäßen Verfahren werden die Faktoren oder Mediatoren zugeführt, indem Zellen, die zur Produktion dieser Faktoren besonders geeignet sind, mit dem Gewebe co-kultiviert werden.

Description

Verfahren zur Herstellung eines empfängerspezifischen Gewebe- Transplantats oder -Implantats
Die Erfindung betrifft ein Verfahren zur Herstellung eines empfängerspezifischen Gewebe-Transplantats oder Gewebe- Implantats aus einer Gewebematrix und darauf angesiedelten empfängerverträglichen Zellen.
In der Transplantationsmedizin besteht ein großes Bedürfnis nach geeigneten, in möglichst geringem Maße adverse Reaktionen des Transplantat-Empfängers auslösenden Transplantaten. Nur in bestimmten Fällen ist es möglich, das Transplantat aus dem Körper des Empfängers selbst zu entnehmen und zu verpflanzen. Aus immunologischer Sicht, sind diese Transplantationen am unbedenklichsten, bei bestimmten Gefäßen oder Organen sowie bei größeren zu ersetzenden Hautbereichen besteht diese Möglichkeit jedoch nicht. Für bestimmte Organe kommen heute praktisch nur allogene Transplantate fremder Spender oder - vielfach im orthopädischen Bereich - synthetische Implantate aus Kunststoffen, Metallen, Keramik usw. bzw. verschiedenen Verbundstoffen in Betracht. Bei der Verwendung allogener Materialien, wie z.B. Spenderorganen ist eine ständige für den Organismus des Empfängers belastende Immunsuppression nötig. Dennoch kommt es häufig zu Abstoßungsreaktionen als ernsten Komplikationen. Auch künstliche Materialien können zu Abstoßungsreaktionen und entzündlichen Prozessen führen, die das Operationsergebnis zunichte machen.
Aus verschiedenen Gründen wird heute oft versucht, xenogenes Material (tierischen Ursprungs) zu verwenden. Vorteilhaft ist hierbei vor allem die bessere Verfügbarkeit dieses Materials gegenüber allogenen (Spender-) Materialien. Auch ist ein sol- ches "biologisches Material" flexibler als ein künstliches Material und paßt sich an manchen Stellen dem Empfängerkörper besser an. Das xenogene Transplantationsmaterial ist jedoch deshalb problematisch, da es stark antigen ist. Es wird daher seit längerer Zeit versucht, xenogene allogene oder synthetische Transplantationsmaterialien, d.h. verschiedenartige für eine Transplantation vorgesehene Gewebe, empfängerverträglich zu machen. Hierzu wird häufig versucht, durch Azellularisierung immunologisch für den Empfänger weitgehend neutralisierte xenogene oder allogene Gewebe oder synthetische Matrix-Materialien (beispielsweise aus biologisch abbaubaren Biopolymeren) mit empfängerverträglichen Zellen zu besiedeln, um so zu einem Transplantat oder Implantat zu kommen, das vom Empfänger möglichst nicht als körperfremd erkannt oder zumindest wegen der vorhandenen autologen, körpereigenen Zellen besser toleriert wird.
In der DE 19828726 AI wird beispielsweise ein Verfahren zur Herstellung eines bioartifiziellen Transplantats beschrieben, bei dem zunächst native Zellen von dem interstitiellen Bindegewebe des Transplantats entfernt werden. Die Matrix wird danach mit für den Empfänger verträglichen, vorzugsweise autologen Zellen neu besiedelt, so dass ein empfängerspezifisches Biotransplantat erhalten wird.
Um das naturähnliche Anwachsen der für die Neu-Besiedlung verwendeten Zellen und die anhaltende ständige Zellerneuerung zu fördern, ist es vorteilhaft, wenn der Kultur bestimmte zellu- läre Mediatoren oder auch Faktoren zugeführt werden, die die anwachsenden Zellen zu bestimmten Prozessen stimulieren. Umfassen die aufgebrachten empfängerspezifischen Zellen Fibro- blasten, so ist es z.B. mit Hilfe geeigneter Mediatoren/Faktoren möglich, die Kollagenneubildung anzuregen und so die Umbildung der Gewebematrix in eine für den Empfänger auto- loge zu unterstützen. Zahlreiche Faktoren wirken chemotaktisch oder wachstumsbeschleunigend, wobei dem Fachmann die Wirkungen der einzelnen Faktoren grundsätzlich soweit untersucht bekannt sind. Durch die Zugabe der Faktoren werden die genannten Pro- zesse ausgelöst, beschleunigt und durch die Art und Funktion der Faktoren gesteuert .
Bei der im Stand der Technik bekannten Vorgehensweise besteht der Nachteil, dass die verwendbaren Faktoren sehr teuer sind. Dies beschränkt die Einsatzbreite der vorgenannten Verfahren, da die Herstellung empfängerspezifischer Transplantate oder Implantate durch Besiedeln bestimmter Transplantat-Grundkörper mit empfängerverträglichen Zellen bereits sehr teuer ist und sich das Verfahren durch den Einsatz natürlicher isolierter oder synthetisierter Mediatoren noch weiter verteuert.
Ein weiteres Problem besteht in der genauen Dosierung der Mediatoren/Faktoren und Co-Faktoren und der Steuerung ihres zeitlich wie örtlich optimalen Einsatzes
Die Aufgabe der Erfindung besteht daher darin, bei einem Verfahren zur Herstellung eines empf ngerspezifischen Gewebe- Transplantats oder Gewebe-Implantats aus einer Gewebematrix und darauf angesiedelten empfängerverträglichen Zellen die Zuführung von Mediatoren, Faktoren, Co-Faktoren zu der Gewebekultur zu vereinfachen, zu verbilligen und besser zu steuern. Gleichzeitig soll das Verfahren eine noch natürlichere Ausbildung des erhaltenen empfängerspezifischen Transplantats oder Implantats ermöglichen.
Zur Lösung dieses Problems ist erfindungsgemäß vorgesehen, dass bei einem Verfahren zur Herstellung eines empfängerspezifischen Gewebe-Transplantats oder Gewebe-Implantats aus einer Gewebematrix und darauf angesiedelten empfängerverträglichen Zellen, die Besiedlung der Gewebematrix mit den empfängerverträglichen Zellen unter Beteiligung zusätzlicher Zellen durchgeführt wird, die Mediatoren, Faktoren oder Co-Faktoren produzieren und in die Umgebung abgeben, die eine Geweberegenerati- on fördern
Unter einer "Beteiligung" Mediatoren oder Faktoren abgebender zusätzlicher Zellen soll hier verstanden werden, dass diese zusätzlich zu den für die Besiedlung verwendeten empfängerverträglichen Zellen innerhalb des Besiedlungsverfahrens entweder in die Gewebekultur direkt eingebracht werden und durch Wechselwirkung mit den empfängerspezifischen Zellen zur Abgabe der Mediatoren und Faktoren angeregt werden (so dass sie in den Besiedlungsvorgang direkt eingreifen, also beteiligt sind) oder parallel zur Kultur des Gewebe-Transplantats oder - Implantats innerhalb der selben Kultivierungsvorrichtung (Bioreaktor) oder in einer gesonderten Apparatur gleichzeitig kultiviert werden (Co-Kultur) , wobei die von den erfindungsgemäß verwendeten Zellen in die Parallelkultur ausgeschiedenen Produkte (Mediatoren, Faktoren, Co-Faktoren) der Gewebekultur unmittelbar zugeführt werden. Zu den Mediatoren gehören auch entzündungsauslösende Mediatore .
Bei einer Parallelkultur der Mediatoren oder Faktoren abgebenden Zellen kann dies in einem üblichen für die Kultur der jeweiligen Zellart geeigneten Kulturmedium geschehen.
Unter "Mediatoren oder Faktoren abgebenden Zellen" werden im Rahmen dieser Erfindung solche verstanden, die vergleichsweise gut zur Abgabe von Mediatoren, Faktoren oder Co-Faktoren, die eine Geweberegeneration fördern, aktiviert, d.h. angeregt werden können. Hierzu zählen u.a. Makrophagen, bestimmte immunkompetente Zellen und andere. Die Aktivierung kann vorzugswei- se durch einen von den Besiedlungszellen ausgehenden Stimulus (z.B. Zelldetritus) erfolgen, alternativ auch durch Zugabe chemischer Stoffe oder kleiner Fremdpartikel . Unter einer Geweberegeneration werden Reparaturprozesse sowie
Ab- und Umbauprozesse des Gewebes verstanden. Die Mediatoren abgebenden Zellen stimulieren umgebende Zellen zu jeweils phä- notypischen Umbildungen, fördern neosynthetische Prozesse und Gewebeerneuerung .
Als Mediatoren oder Faktoren abgebende Zellen können autologe Zellen des Transplantatempfängers verwendet werden. Insbesondere sind vorgesehen: Leukozyten, wie Ly phozyten, Makropha- gen, Granulozyten, dendritische Zellen, Stammzellen, insbesondere pluripotente Stammzellen bzw. somatische Stammzellen oder Mischungen dieser Zellen. Die Verwendung von Makrophagen wird derzeit als besonders vorteilhaft betrachtet.
Insbesondere bei einer Co-Kultur der Mediatoren oder Faktoren abgebenden Zellen, jedoch auch bei direkter Zugabe in die Transplantat-Gewebekul-tur, können diese Zellen durch Zugabe geeigneter Stoffe zur Produktion bestimmter Mediatoren, Faktoren oder Co-Faktoren oder zu einer verstärkten Produktion die- ser Zellprodukte angeregt werden. Zur Anregung der Zellen kann u.a. Zelldetritus aus der Gewebekultur dienen.
Vorzugsweise wird das Verfahren so geführt, dass die Mediatoren oder Faktoren abgebenden Zellen während der Besiedlung we- nigstens zeitweilig einem für die Besiedlung verwendeten Kulturmedium und/oder der Gewebematrix direkt zugeführt werden.
Die Besiedlung der Gewebeunterlage mit empfängerverträglichen Zellen zu einem Gewebe-Transplantat oder -Implantat kann in an sich bekannter Weise erfolgen, z.B. wie in der DE 198 28 726 im einzelnen angegeben. Die Gewebe-Unterlage oder Gewebematrix - beispielsweise eine natürliche oder synthetische, azellula- risierte oder native Kollagen-Matrix oder ein synthetisches Gewebe, wie eine Biopolymer-Faser- oder -netzstruktur - befin- det sich hierbei im allgemeinen in einem Kulturmedium, dem verschiedene Zusätze beigegeben sein können (auch konditionie- rendes Medium genannt, gemeint ist die Konditionierung des Gewebes für die Besiedlung) . Das Kulturmedium kann beispielsweise über dem Gewebe bewegt oder in einem Kreislauf über dem Gewebe umgewälzt werden. Das Kulturmedium kann auch in Intervallen zugegeben und dann eine Zeit stehend über der Kultur belassen werden; die optimalen Bedingungen richten sich u.a. nach der zu besiedelnden Gewebeart.
Als Kulturmedium bzw. konditionierendes Medium kann ein übliches Nährmedium verwendet werden, das ggf. mit verschiedenen Zusätzen versehen sein kann. Hierfür geeignete Nährmedien sind dem Fachmann bekannt .
In das Medium werden empfängerspezifische Zellen eingebracht, entweder zu Beginn der Besiedlung, kontinuierlich oder in mehreren Schüben. Unter empfängerspezifischen Zellen werden für den Empfänger autologe, für den Empfänger als immunologisch möglichst verträglich ausgewählte (kompatible) allogene oder genetisch veränderte allogene oder xenogene Zellen verstanden. Als immunologisch kompatibel können Zellen dann angesehen werden, wenn sie durch Tests als empfänger-ähnlich klassifiziert wurden oder wenn sie insbesondere durch genetische Veränderung an den Empfänger angepasst wurden.
Es können auch zu unterschiedlichen Besiedlungs- bzw. Behandlungszeitpunkten verschiedene Arten von Zellen aufgegeben werden, so dass sich auf dem Gewebe unterschiedliche Zellschich- ten aus verschiedenartigen Zellen aufbauen können. Weiterhin können örtlich verschiedene Zellen aufgebracht werden, beispielsweise auf der Oberseite und der Unterseite eines Hauttransplantats unterschiedliche Zellen oder auf der Innenseite und der Außenseite eines röhrenförmigen Gefäßes unterschiedli- ehe Zellen. Als empfängerverträgliche Zellen kommen grundsätzlich alle Arten von Körperzellen in Frage, beispielsweise:
Bindegewebszellen (u.a.Fibroblasten, Fibrozyten) , Muskelzellen (Myozyten) , Endothelzellen, Hautzellen (u.a. Keratinozyten) , zu Organzellen differenzierte Zellen (Herzzellen, Nierenzellen, usw.), vorzugsweise bei strukturierten Organen mit Kollagengerüst, allgemein alle Zellen, die für den Umbau eines bestimmten, für die Implantation vorgesehenen Gewebes sinnvol- lerweise angeboten werden können
Bei dem Gewebe-Transplantat kann es sich grundsätzlich um jedes transplantierbare Gewebe handeln. Insbesondere zählen hierzu: allgemein Gefäße, wie Aorten und Venen, Aortenklappen, Herzklappen, Organteile und ganze Organe, Hautstücke, Sehnen, Cornea, Knorpel, Knochen, Larynx, Herz, Trachea, Nerven, Mi- niskus, Diskus intervertebralis, Ureteren, Urethra, Blase, u.a.m
Implantate auf Basis synthetischer Matrizes oder Gerüste bieten sich unter vielen anderen Möglichkeiten für Venen, Herzklappen, Cornea, Blase und Haut an.
Die Mediatoren oder Faktoren abgebenden Zellen können nun, wie oben beschrieben, während der Besiedlung wenigstens zeitweilig dem Gewebe-Kulturmedium und/oder der Gewebematrix zugeführt werden. Hierfür ist es möglich, Mediatoren oder Faktoren abgebende Zellen zu Beginn der Besiedlung einmalig oder gemeinsam mit den empfängerverträglichen Zellen auf die Gewebematrix di- rekt aufzubringen. Die Mediatoren oder Faktoren abgebenden
Zellen können auch mit dem Kulturmedium schubweise oder kontinuierlich zugeführt werden, wobei auch ein Wechsel zwischen Kulturmedium ohne und mit Mediatoren oder Faktoren abgebenden Zellen erfolgen kann. In Weiterbildung der Erfindung ist auch vorgesehen, dass für die Zuführung der Mediatoren oder Faktoren abgebenden Zellen Blut verwendet wird, das die gewünschten Mediatoren oder Faktoren abgebenden Zellen von Natur aus enthält, vorzugsweise Eigenblut des Transplantat- oder Implantatempfängers. Dieses Blut kann bezüglich der gewünschten Bestandteile aufkonzentriert werden oder es können Blutbestandteile separiert und hier verwendet werden.
Weiter vorzugsweise können die für die Abgabe von Mediatoren oder Faktoren aktivierbaren Zellen in einer Kultur gehalten werden, die mit dem Gewebe während der Besiedlung so in Verbindung steht, dass aus der Zellkultur abgegebene Mediatoren/Faktoren dem Gewebe während der Besiedlung zugeführt wer- den. Wie oben beschrieben ist diese Co-Kultur Mediatoren oder Faktoren abgebender Zellen als Parallelkultur außerhalb oder innerhalb der Vorrichtung für die Gewebekultur möglich.
Die Kultur Mediatoren oder Faktoren abgebender Zellen, bei- spielsweise eine Makrophagen-Kultur, kann in einem Bioreaktor erfolgen, der mit dem Reaktor, in dem das empfängerspezifische Transplantat oder Implantat gezüchtet und behandelt wird, in geeigneter Weise verbunden ist. Aus dem Bioreaktor abgenommene Faktoren können dem umlaufenden oder schubweise zugeführten konditionierenden Kulturmedium in geeigneter Menge zugeführt werden.
Alternativ kann die Makrophagen-Kultur, bzw. die Kultur sonstiger Mediatoren oder Faktoren abgebender Zellen oder Mi- schung Mediatoren oder Faktoren abgebender Zellen, während der Schritte der Behandlung mit empfängerverträglichen Zellen durch ein für die zellulären Mediatoren und/oder Faktoren durchlässige Folie, Membran oder Trennwand von dem konditionierenden Medium getrennt gehalten werden, sodass die gebilde- ten Mediatoren und/oder Faktoren kontinuierlich in das kondi- tionierende Medium abgegeben werden können.
Die Behandlung des für die Transplantation vorgesehenen Gewe- bes wird im allgemeinen in einem Bioreaktor erfolgen, in dem das Kulturmedium innerhalb eines bestimmten Raumes vorgehalten und ggf. umgewälzt wird. Innerhalb dieses Raumes kann mit einer meablen Trennwand ein Kulturraum für die Kultur der erfindungsgemäß verwendeten Zellen oder Makrophagen ausgebildet werden, so dass die gebildeten zellulären Mediatoren und/oder Faktoren ständig in das konditionierende Medium auswandern können.
Als Mediatoren oder Faktoren abgebende Zellen können insbeson- dere verwendet werden: Zellen aus der Familie der Leukozyten , jedoch auch periphere oder zentrale Stammzellen (aus Blut, Fettgewebe, Organen und Knochenmark) , vorzugsweise pluripoten- te Stammzellen, so z.B. alle Formen der weißen Blutkörperchen, Granulozyten, Lymphozyten, Makrophagen, Monozyten, Knochen- markszellen, Milzzellen, Memory-Zellen, Thymuszellen.
Für die Besiedlung mit Hilfe von empfängerverträglichen Zellen werden jeweils Zellen oder Gemische von Zellen ausgewählt, die zu dem jeweiligen Gewebetyp passen. Die empfängerverträgli- chen, vorzugsweise autologen oder genetisch modifizierten und hierdurch empfängerspezifisch gemachten allogenen oder xenoge- nen Zellen umfassen solche Zellen, die für den Aufbau des gewünschten Gewebes geeignet sind, und wahlweise zusätzlich solche, die die Gewebeumbildung mit stimulieren und/oder kontro- lieren können, wie z.B. zelluläre Faktoren produzierende Zellen und/oder chemotaktisch beeinflussende Zellen, hierunter die oben genannten Mediatoren oder Faktoren abgebenden Zellen. Ein Vorteil der Erfindung, d.h. der Beteiligungvon Zellen, die
Mediatoren, Faktoren, Co-Faktoren prodzuzieren und an das kon- ditionierende Kultur-Medium abgeben, bei der Kultur eines mit empfängerverträglichen Zellen besiedelten Transplantats oder Implantats liegt darin, dass für den jeweiligen Zweck besonders geeignete Mediatoren/Faktoren während eines ohnehin erforderlichen Kulturschritts mitproduziert werden können, so dass auf die Verwendung zusätzlicher teurer und weniger spezifischer Faktoren verzichtet werden kann.
Durch die Vorgabe bestimmter zur Abgabe von Mediatoren oder Faktoren aktivierbarer Zellen und ggf. geeignete Anregung dieser Zellen kann die Abgabe der Mediatoren/Faktoren beeinflusst und so der Gewebeaufbau gesteuert sowie beschleunigt werden.
Als Gewebematrix kann - je nach Anwendungsfall - beispielsweise eine synthetische Gewebematrix verwendet werden, die z.B. eines oder mehrere der folgenden Materialien umfassen kann: Polyglactid, Polydioxanon, biologisch abbaubare Polyester, Po- lyurethane, Polyacryle, Kollagen, Fibrinogen. Alternativ können, wie oben bereits beschrieben, auch native oder azellula- risierte xenogene oder allogene Gewebematrices verwendet werden.
Im folgenden wird die Erfindung anhand von Beispielen beschrieben:
Beschleunigter Umbau von technischen und biologischen Polymeren als Trägersubstanzen (Gewebe-Matrix) für neue bioartifizi- eile Gewebe.
Es werden biologisch abbaubare Polymere als synthetische Matrixmaterialien verwendet. Bei den synthetischen Materialien kann es sich auch um aufgereinigte Materialien biologischen Ursprungs handeln. Diese Materialien werden zu "synthetischen"
Matrizen (im Vergleich zu azellularisierten biologischen Geweben) geformt.
Der Polymerabbau kann hydrolytisch oder auch enzymatisch er- folgen.
Eingesetzt werden können biodegradable Polymere wie Polyglac- tid, Polydioxanon, Polyester, Polyurethane, Polyacryle, spezielle biologische Polymere und (Bio) -Makromeleküle, wie Kolla- gen oder Fibrinogen, die klassischen Bestandteile extrazellulärer Matrix.
Entsprechend einem üblichen Verfahren wird eine synthetische Gewebeunterlage (beispielsweise eine synthetische Herzklappe) mit den ausgewählten empfängerspezifischen Zellen besiedelt. Die Kultur erfolgt in einem hierfür üblichen Medium (z.B. DMBM; WE) . Während der Besiedlung wird das Gewebe-Implantat zeitweise in Intervallen mit Eigenblut des Implantat- Empfängers, aufkonzentriertem Eigenblut oder mit Blutbestand- teilen versetztem Kulturmedium durchspült. In dieser Phase ad- härieren Makrophagen selektiv an der exponierten Matrix. Lym- phozyten und Makrophagen erhalten immunstimulatorische Reize durch die Spaltprodukte der Polymere und werden aktiviert, die autologen Myofibroblasten über endogene Aktivatoren anzuregen Matrix zu synthetisieren. Dies ist besonders wichtig, da dann der z.B. hydrolytische Abbau der Polymere beschleunigt erfolgen kann, sodass dieser erheblich kürzer ist als bisher möglich. Dies ermöglicht wiederum die Implantation eines fertigeren Produkts in vivo ohne vorhandene Restpolymere, die in vivo ungewünschte Instabilitäten bei plötzlichem akzelerierten Zerfall oder auch Fremdkörpereaktionen auslösen können.
Alternativ zu einer Kultur in Blut können Präparationen von Blutplättchen (Gewinnung bei ca. 3000 g und weiße Blutkörper- chen 1800 g) separat in unterschiedlichen Bereichen des Bioreaktors oder synchron in einer gesonderten Apparatur kokulti- viert werden. In letzterem Falle werden die so erhaltenen Kulturprodukte der Gewebekultur in dem eigentlichen Gewebe- Bioreaktor zugeführt .
Induktion eines Remodelling in Herzklappen zu einem normalen zellphysiologischen Profil:
Die Vorexpansionsphase der vaskulären Zellen des Empfängers benötigt bei herkömmlichen Verfahren circa 10 Tage. Herzklappen werden danach in einem Bioreaktor eingebracht und unter Verwendung der vorexpandierten Fibroblasten, glatten Muskel- zellen (SMC) und Endothelialen wie üblich luminal besiedelt. Parallel dazu werden frisch gewonnene Knochenmarksstammzellen als Gesamtpool auf und in die Matrix mittels einer Spritze aufgebracht. Dort findet unter dem lokalen Mikroumgebungsdruck der räumlichen Position extrazellulärer Matrix eine Differenzierungssteuerung der Stammzellen statt. Der Aktivierungszu- stand der Stammzellen wird zusätzlich durch Matrix- und lokale Zellzerfallsprodukte angeregt. Durch die Verwendung vaskulärer Endothelzellen und glatter Muskelzellen des Empfängers findet eine wechselseitige Beeinflussung mit den Stammzellen statt. Weiterhin werden die gewebespezifischen Zellen vor Ort dadurch generiert. Dies bedeutet, dass auf Grund der Biopsieentnahmen zum Beispiel bei der Erstellung von Herzklappen der Aorta Gewebe verwendet werden muss, das nicht direkt aus dem Zielgewebe gewinnbar ist. Dies beinhaltet zum Beispiel Venenmaterial, das eine andere molekulare und phänotypische Differenzierung als arterielle Zellen aus der Aortaklappe besitzt. Weiterhin fehlen verschiedene Zelltypen, die zum Beispiel nur im Klappensegel vorkommen, wie zum Beispiel neuronale Zellsysteme. Die Stammzellen differenzieren unter dem lokalen Mikroumge- bungsdruck den in der Klappe vorhandenen Matrixparameter (idealerweise einer zum Beispiel allogenen Aortenklappenmatrix) in ortsspezifische Zelltypen einschließlich neuronaler Zellsysteme, die für lokale Innervationsprozesse verantwortlich sind. Nach der in vivo Implantation können die Stammzellen auch noch die Repopulation mit den arteriellen Zellen ermöglichen. Die EC sind aber dennoch wichtig, da im Gefäßsystem die Thrombogenizität reduziert wird. Durch die FB und SMC, selbst venösen Ursprungs, wird zumindest eine Initiation des . Remodellingprozesses in empfängerspezifische Matrix erreicht, die durch die aus den Stammzellen rekrutierten Zellpools weitergeführt, korrigiert und zu Ende geführt wird.

Claims

Patentansprüch :
1. Verfahren zur Herstellung eines empfängerspezifischen Gewebe-Transplantats oder Gewebe-Implantats aus einer Gewebematrix und darauf angesiedelten empfängerverträglichen Zellen, d a d u r c h g e k e n n z e i c h n e t , dass die Besiedlung der Gewebematrix mit den empfängerverträglichen Zellen unter Beteiligung zusätzlicher Zellen durchgeführt wird, die Mediatoren, Faktoren oder Co-Faktoren produ- zieren und in die Umgebung abgeben, die eine Geweberegeneration fördern
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zellen entzündungsauslösende Mediatoren oder Faktoren abgeben.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mediatoren oder Faktoren abgebenden Zellen autologe Zellen des Transplantatempfängers, insbesondere Leukozyten, dendritische Zellen, Makrophagen oder Mischungen aus diesen Zellen umfassen.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass die Mediatoren oder Faktoren abgebenden Zellen Vorgängerzellen oder Stammzellen umfassen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mediatoren oder Faktoren abgebenden Zellen während der Besiedlung wenigstens zeitweilig einem für die Besiedlung verwendeten Kulturmedium und/oder der Gewebematrix zugeführt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Zuführung durch Zusatz von Eigenblut oder Eigenblut- Bestandteilen des Transplantat- oder Implantatempfängers er- folgt .
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Mediatoren oder Faktoren abgebenden Zellen in einer Kultur gehalten werden, die mit dem Gewebe während der Besiedlung in der Form in Verbindung steht, dass von der Kultur der Zellen abgegebene Mediatoren/Faktoren dem Gewebe während der Besiedlung zugeführt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Kultur der Mediatoren oder Faktoren abgebenden Zellen, vorzugsweise eine Makrophagenkultur, während der Besiedlung oder Behandlung mit empfängerverträglichen Zellen durch eine für die zellulären Mediatoren und/oder Faktoren durchlässige Fo- lie, Membran oder Trennwand von dem Kulturmedium getrennt gehalten werden und die gebildeten Mediatoren und/oder Faktoren kontinuierlich in das Gewebe-Transplantat-Kulturmedium abgegeben werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Gewebematrix eine synthetische Gewebematrix verwendet wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die verwendete Gewebematrix eines oder mehrere der folgenden Materialien umfasst: Polyglactid, Polydioxanon, biologisch abbaubare Polyester, Polyurethane, Polyacryle, Kollagen, Fibrinogen.
11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Gewebematrix eine native oder azellula- risierte xenogene oder allogene Gewebematrix verwendet wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch ge- kennzeichnet, dass die verwendeten empfängerverträglichen Zellen autologe Zellen des Transplantat- oder Implantat- Empfängers sind.
13. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die verwendeten empfängerverträglichen Zellen für den Empfänger als verträglich ausgewählte allogene oder genetisch veränderte allogene Zellen sind.
PCT/DE2001/001984 2000-05-29 2001-05-28 Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats WO2001092475A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2410670A CA2410670C (en) 2000-05-29 2001-05-28 Method for producing a recipient-specific tissue transplant or tissue implant
US10/296,672 US7915038B2 (en) 2000-05-29 2001-05-28 Method for producing a recipient-specific tissue transplant or tissue implant
EP01943147A EP1287118B1 (de) 2000-05-29 2001-05-28 Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats
DK01943147T DK1287118T3 (da) 2000-05-29 2001-05-28 Fremgangsmåde til fremstilling af et recipientspecifikt vævstransplantat eller -implantat
DE50113506T DE50113506D1 (de) 2000-05-29 2001-05-28 Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats
JP2002500669A JP4898068B2 (ja) 2000-05-29 2001-05-28 レシピエント特異的組織移植片または組織インプラントの作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10026480.8 2000-05-29
DE10026480A DE10026480A1 (de) 2000-05-29 2000-05-29 Verfahren zur Herstellung eines empfängerspezifischen Gewebe-Transplantats oder -Implantats

Publications (2)

Publication Number Publication Date
WO2001092475A2 true WO2001092475A2 (de) 2001-12-06
WO2001092475A3 WO2001092475A3 (de) 2002-05-10

Family

ID=7643894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001984 WO2001092475A2 (de) 2000-05-29 2001-05-28 Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats

Country Status (11)

Country Link
US (1) US7915038B2 (de)
EP (1) EP1287118B1 (de)
JP (1) JP4898068B2 (de)
CN (1) CN1208453C (de)
AT (1) ATE384123T1 (de)
CA (1) CA2410670C (de)
DE (2) DE10026480A1 (de)
DK (1) DK1287118T3 (de)
ES (1) ES2299490T3 (de)
PT (1) PT1287118E (de)
WO (1) WO2001092475A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013239A2 (de) * 2001-08-06 2003-02-20 Peter Lamm Verfahren zur devitalisierung natürlicher organe und/oder zur bereitstellung extrazellulärer matrices zum 'tissue-engineering'

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156561A1 (de) * 2001-11-20 2003-05-28 Artiss Gmbh Bioartifizielles Trachea-Implantat und Verfahren zu seiner Herstellung
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
DK2144639T3 (da) * 2007-04-25 2012-12-10 Stem Cells Spin S A Ny stamcellelinie og anvendelse deraf

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024873A1 (en) * 1994-03-14 1995-09-21 Cryolife, Inc. Treated tissue for implantation and preparation methods
WO1999000152A2 (de) * 1997-06-27 1999-01-07 Augustinus Bader Bioartifizielles transplantat und verfahren zu seiner herstellung
WO1999052572A1 (en) * 1998-04-09 1999-10-21 Children's Medical Center Corporation Methods and compositions for tissue regeneration

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381346A (en) * 1979-11-13 1983-04-26 Huasin Syed S Isolation of plasminogen activators useful as therapeutic and diagnostic agents
US4479896A (en) * 1981-12-11 1984-10-30 Antoniades Harry N Method for extraction localization and direct recovery of platelet derived growth factor
US5904717A (en) * 1986-01-28 1999-05-18 Thm Biomedical, Inc. Method and device for reconstruction of articular cartilage
US5266480A (en) * 1986-04-18 1993-11-30 Advanced Tissue Sciences, Inc. Three-dimensional skin culture system
US5804178A (en) * 1986-11-20 1998-09-08 Massachusetts Institute Of Technology Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue
US4890612A (en) * 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4878913A (en) * 1987-09-04 1989-11-07 Pfizer Hospital Products Group, Inc. Devices for neural signal transmission
US5207705A (en) * 1988-12-08 1993-05-04 Brigham And Women's Hospital Prosthesis of foam polyurethane and collagen and uses thereof
US5538722A (en) * 1989-06-13 1996-07-23 Stanford University Isolation, growth, differentiation and genetic engineering of human muscle cells
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5206023A (en) * 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
US5192312A (en) * 1991-03-05 1993-03-09 Colorado State University Research Foundation Treated tissue for implantation and methods of treatment and use
US5387237A (en) * 1992-07-30 1995-02-07 The University Of Toledo Bioartificial pancreas
JPH06247873A (ja) * 1993-02-24 1994-09-06 Yasushi Daikuhara 肝実質細胞増殖因子の誘導剤
US6001654A (en) * 1994-01-28 1999-12-14 California Institute Of Technology Methods for differentiating neural stem cells to neurons or smooth muscle cells using TGT-β super family growth factors
US5834308A (en) * 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) * 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
NZ293419A (en) 1994-09-12 1998-11-25 Advanced Tissue Sciences Inc Stromal cell-coated heart valves, production thereof
US5716404A (en) * 1994-12-16 1998-02-10 Massachusetts Institute Of Technology Breast tissue engineering
JP3799626B2 (ja) * 1995-04-25 2006-07-19 有限会社ナイセム 心臓血管修復材及びその製造方法
US5855610A (en) * 1995-05-19 1999-01-05 Children's Medical Center Corporation Engineering of strong, pliable tissues
US6074673A (en) * 1996-04-22 2000-06-13 Guillen; Manuel Slow-release, self-absorbing, drug delivery system
US6001352A (en) * 1997-03-31 1999-12-14 Osteobiologics, Inc. Resurfacing cartilage defects with chondrocytes proliferated without differentiation using platelet-derived growth factor
US5880090A (en) * 1997-09-19 1999-03-09 The Hope Heart Institute Treatment of vascular graft implants with G-CSF
DE19752900A1 (de) * 1997-11-28 1999-06-02 Biotechnolog Forschung Gmbh Knochenmatrix und/oder osteogene Zellen, deren Verwendung, therapeutische Zubereitung und Kit
JPH11349598A (ja) * 1998-06-10 1999-12-21 Ono Pharmaceut Co Ltd 血管内皮細胞増殖抑制因子およびその用途
US6551355B1 (en) * 1998-08-14 2003-04-22 Cambridge Scientific, Inc. Tissue transplant coated with biocompatible biodegradable polymer
JP2000135275A (ja) * 1998-10-30 2000-05-16 Menicon Co Ltd 人工皮膚基材又は細胞培養用基材の滅菌方法
US6197061B1 (en) * 1999-03-01 2001-03-06 Koichi Masuda In vitro production of transplantable cartilage tissue cohesive cartilage produced thereby, and method for the surgical repair of cartilage damage
DE10026482A1 (de) * 2000-05-29 2001-12-13 Augustinus Bader Verfahren zur Herstellung eines bioartifiziellen Transplantats
ES2422881T3 (es) * 2002-06-20 2013-09-16 Augustinus Bader Uso de eritropoyetina para la regeneración de tejido in vivo
DE502004011252D1 (de) * 2003-12-30 2010-07-15 Augustinus Bader Verwendung des erythropoietins zur regeneration von lebergewebe
US20070026517A1 (en) * 2004-10-19 2007-02-01 Ronny Schulz Method and bioreactor for the cultivation and stimulation of three-dimensional, vitally and mechanically reistant cell transplants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024873A1 (en) * 1994-03-14 1995-09-21 Cryolife, Inc. Treated tissue for implantation and preparation methods
WO1999000152A2 (de) * 1997-06-27 1999-01-07 Augustinus Bader Bioartifizielles transplantat und verfahren zu seiner herstellung
WO1999052572A1 (en) * 1998-04-09 1999-10-21 Children's Medical Center Corporation Methods and compositions for tissue regeneration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013239A2 (de) * 2001-08-06 2003-02-20 Peter Lamm Verfahren zur devitalisierung natürlicher organe und/oder zur bereitstellung extrazellulärer matrices zum 'tissue-engineering'
WO2003013239A3 (de) * 2001-08-06 2003-10-02 Peter Lamm Verfahren zur devitalisierung natürlicher organe und/oder zur bereitstellung extrazellulärer matrices zum 'tissue-engineering'
DE10138564B4 (de) * 2001-08-06 2007-07-12 Lamm, Peter Wilhelm, Dr. Verfahren zur Devitalisierung natürlicher Organe und/oder zur Bereitstellung extrazellulärer Matrices zum "Tissue-Engineering"

Also Published As

Publication number Publication date
CA2410670C (en) 2012-10-23
ATE384123T1 (de) 2008-02-15
US7915038B2 (en) 2011-03-29
PT1287118E (pt) 2008-04-23
WO2001092475A3 (de) 2002-05-10
JP2003534857A (ja) 2003-11-25
CA2410670A1 (en) 2002-11-27
US20040028662A1 (en) 2004-02-12
DE50113506D1 (de) 2008-03-06
DE10026480A1 (de) 2001-12-13
DK1287118T3 (da) 2008-05-26
CN1439050A (zh) 2003-08-27
EP1287118A2 (de) 2003-03-05
EP1287118B1 (de) 2008-01-16
ES2299490T3 (es) 2008-06-01
JP4898068B2 (ja) 2012-03-14
CN1208453C (zh) 2005-06-29

Similar Documents

Publication Publication Date Title
DE69634454T2 (de) Zusammensetzungen und Verfahren mit Bezug auf eine auf natürliche Weise sekretierte Matrix
DE10021627B4 (de) Verfahren zur Herstellung eines vaskularisierten bioartifiziellen Gewebes und zugehöriger Versuchsreaktor
EP1086710B1 (de) Verfahren zur Oberflächenbeschichtung medizinischer Implantate
WO1997015655A2 (de) Neue künstliche gewebe, verfahren zu ihrer herstellung und ihre verwendung
EP0687185A1 (de) Verfahren zum herstellen eines implantates aus zellkulturen
WO2003015803A1 (de) Zellzusammensetzungen zur behandlung von osteoarthrose, sowie verfahren zu deren herstellung
EP1286708B1 (de) Verfahren zur herstellung eines bioartifiziellen transplantates
EP3319652B1 (de) Verfahren zur herstellung eines bioartifiziellen, primär azellulären konstrukts auf fibrinbasis und dieses konstrukt selbst
EP2794842B1 (de) Verfahren und vorrichtung zur herstellung eines bioartifiziellen gewebekonstrukts
EP1287118B1 (de) Verfahren zur herstellung eines empfängerspezifischen gewebe-transplantats oder -implantats
EP1230939B2 (de) Bioartifizielle, primär vaskularisierte Gewebematrix und bioartifizielles, primär vaskularisiertes Gewebe
EP1481055A1 (de) Verfahren zur behandlung von erkranktem, degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren
DE102007005946A1 (de) Therapeutische Zusammensetzung und Verwendung einer zellfreien Substanz
DE19540487A1 (de) Zellinteraktionssystem zur Induktion künstlicher Gewebe
EP2755666B1 (de) Verfahren zur herstellung eines biologischen gewebekonstrukts und verwendung spezifisch gewonnener autologer zellen und dessen medizinische verwendung
WO2005113743A2 (de) Vorrichtung zur durchführung einer liquid-air-kultur von epithel
EP1362092B1 (de) Verfahren zur herstellung eines biologischen gewebes unter verwendung einer kollagenunterlage und zugehöriges gewebekonstrukt
DE112019002479B4 (de) Verfahren zur herstellung einer kollagen-laminin-matrix zur heilung von hautgeschwüren, verbrennungen und wunden beim menschen
DE19632404A1 (de) Transplantierbare Knorpelgewebe mit immunsuppressiven Eigenschaften, Verahren zu ihrer Herstellung und Verwendung
DE10227611A1 (de) Verfahren und Vorrichtung zur Vermehrung und Differenzierung von Zellen in Anwesenheit von Wachstumsfaktoren und einer biologischen Matrix oder Trägerstruktur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2410670

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018102948

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001943147

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001943147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10296672

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001943147

Country of ref document: EP