WO2001092064A1 - Pare-chocs d'automobile - Google Patents

Pare-chocs d'automobile Download PDF

Info

Publication number
WO2001092064A1
WO2001092064A1 PCT/US2001/017433 US0117433W WO0192064A1 WO 2001092064 A1 WO2001092064 A1 WO 2001092064A1 US 0117433 W US0117433 W US 0117433W WO 0192064 A1 WO0192064 A1 WO 0192064A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer shell
mold cavity
energy
energy absorber
polymeric material
Prior art date
Application number
PCT/US2001/017433
Other languages
English (en)
Inventor
Frederick D. Hunter
Paul Lafata
Original Assignee
Textron Automotive Company Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textron Automotive Company Inc. filed Critical Textron Automotive Company Inc.
Priority to US10/297,153 priority Critical patent/US6863322B2/en
Priority to AU2001265177A priority patent/AU2001265177A1/en
Priority to EP01939685A priority patent/EP1284889A4/fr
Publication of WO2001092064A1 publication Critical patent/WO2001092064A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1615The materials being injected at different moulding stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1676Making multilayered or multicoloured articles using a soft material and a rigid material, e.g. making articles with a sealing part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3044Bumpers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • B60R2019/184Blow moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/186Additional energy absorbing means supported on bumber beams, e.g. cellular structures or material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/186Additional energy absorbing means supported on bumber beams, e.g. cellular structures or material
    • B60R2019/1873Cellular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1886Bumper fascias and fastening means therefor

Definitions

  • This invention relates generally to motor vehicle bumper systems, and more particularly, to bumper systems comprising a fascia with integral energy absorbers.
  • bumpers ore employed not only to control and limit the energy from an impact as it enters the vehicle, typically channeling the energy into structural members of the vehicle, but also to limit the damage to a vehicle as a result of relatively minor accidents, thereby fulfilling the 5 mph impact test.
  • automotive bumpers came in two general varieties.
  • a first general variety of known bumpers comprises an outer fascia having a layer of energy absorbing foam, typically a polyurethane foam, disposed behind the fascia.
  • the fascia and foam are further attached to a structural bumper beam.
  • the fascia provides the cosmetic outer surface viewable from the exterior of the vehicle. Under an impact event, impact energy to the fascia is, to some degree, absorbed or dissipated by the energy absorbing foam material.
  • the bumper beam is designed to absorb the impact and route it to structural components of the vehicle, such as frame rails.
  • the second general variety of bumper assemblies comprises a fascia, a bumper beam and, usually two, hydraulic or pneumatic piston type shock absorbers.
  • the fascia fulfills the aesthetic requirements of the bumper assembly.
  • the bumper beam is typically a metallic member disposed behind, and/or contained within the fascia, for receiving the energy of an impact and channeling the energy to the shock absorbers.
  • the shock absorbers as with the shocks in the suspension system, absorb and lessen the energy of an impact and transfer the remainder of the energy to structural components of the vehicle, such as frame rails.
  • the present invention is an automotive bumper system comprising a an outer shell having at least one, but preferably several, energy absorbing features disposed adjacent thereto.
  • the energy absorbing features preferable functionally comprise projections from an inner surface of the outer shell. These energy absorbing features may actually be integral with the inner surface of the outer shell, or may be separate components disposed adjacent to the inner surface of the outer shell.
  • the energy absorbing features may include cones, pyramids, cylinders, or truncated variations of the previous. Additionally, the energy absorbing characteristics of the energy absorbers may be modified by providing them with indentations.
  • the energy absorbers and the outer shell both preferably comprise a polymeric material, although not necessarily the same polymeric material.
  • the present invention provides a method of making a bumper having energy absorbing features.
  • the method is a sequential molding operation wherein the outer shell is formed of a polymeric material in a first mold. Subsequently the energy absorbing features are formed integrally with the inner surface of the outer shell using a mold wherein at least a portion of the mold is defined by the previously formed outer shell inner surface. Alternately, the energy absorbing features may be formed first, and the outer shell formed subsequently thereto. Consistent with this last, as least a portion of the mold forming the inner surface of the outer shell is defined by at least a portion of the previously formed energy absorbers.
  • the outer shell is formed separately from the energy absorbers. The separately formed outer shell and energy absorbers may subsequently be joined together by methods including thermal bonding, adhesive bonding, solvent welding, mechanical fastening etc.
  • FIG. 1 is a rear perspective view of a fascia with the fascia partially cut away to show a pattern of energy absorbers
  • FIG. 2 is a cross sectional view of the fascia of FIG. 1 taken along line 2-2.
  • outer shell 10 is a fascia of a motor vehicle. As shown in FIG. 2, the outer shell 10 is generally the aesthetic component of a bumper system 12, and covers the internal components of the bumper system 12 including an energy absorber 14 and support structure 16, such as a bumper beam.
  • Outer shell 10 has an inner surface 18 and an outer surface 20, and comprises a plastic material. At least one, and more preferably a plurality of, energy absorbers 14 are attached to outer shell 10.
  • the energy absorbers 14 comprise isolated protuberances projecting from the inner surface 18 of the outer shell 10.
  • Preferred designs of the energy absorbers 14 comprise cylinders, cones, truncated cones, pyramids, or truncated pyramids.
  • energy absorbers 14 are disposed adjacent the support structure 16 when outer shell 10 is assembled to the vehicle. In the case of an impact to the outer surface 20 of outer shell 10, energy absorbers 14 deform and absorb either the entire impact energy or at least a portion thereof. Optionally, and depending on the magnitude of the impact, the energy absorbers 14 may also transmit energy to the support structure 16.
  • the energy absorption characteristics of energy absorbers 14 maybe modified by providing the energy absorbers 14 with at least one indentation 22, preferably extending from a surface adjacent the support structure towards the inner surface 18 of the outer shell 10, therein providing the energy absorbers 14 with a cored construction.
  • the energy absorbing characteristics of energy absorbers 14 may further be modified by varying the number of, and separation between, energy absorbers 14 .
  • the number of energy absorbers may be increased.
  • the height of energy absorber 14 i.e. the distance between the surface adjacent the support structure and the inner surface 18 of the outer shell 10
  • the ratio of cross-sectional area of the surface of energy absorber 14 in contact with inner surface 18 will also alter the energy absorbing characteristics.
  • the energy absorbing characteristics of the energy absorbers 14 may be further modified by connecting the energy absorbers with a rib structure to form an egg crate or grid structure.
  • Outer shell 10 is preferably formed from a thermoplastic material using a thermoplastic injection molding process.
  • An exemplary thermoplastic material comprises polypropylene (PP).
  • outer shell 10 may also be formed from a thermoset material using, for example, a reaction injection molding process.
  • An exemplary thermoset material comprises thermoset polyurethane.
  • Other forming techniques may include, but are not limited to, injection-compression molding, compression molding, thermoforming, vacuum forming, pressure forming and blow molding. It is preferred that the outer shell 10 be molded in color, thereby obviating the need for post process painting or finishing.
  • Energy absorbers 14 are preferably formed from an energy absorbing polymer material, more preferably an expanded polymeric foam material.
  • the energy absorbing foam material may comprise a thermoplastic or thermoset polymeric material, and the blowing agent used to foam the polymer may be chemical or physical.
  • energy absorbers 14 maybe formed from a solid thermoplastic or thermoset polymeric material.
  • An exemplary thermoplastic material comprises polypropylene (PP), while an exemplary thermoset material comprises thermoset polyurethane.
  • PP polypropylene
  • thermoset material comprises thermoset polyurethane.
  • energy absorbers 14 are preferably formed by injection molding.
  • energy absorbers 14 are preferably formed by reaction injection molding.
  • outer shell 10 and energy absorbers 14 are manufactured using a sequential two-step molding process.
  • energy absorber 14 are formed from a first polymeric material injected or otherwise introduced, into a first mold cavity comprising the shape of energy absorbers 14. The mold is then adjusted to provide a second mold cavity comprising the shape of the outer shell 10.
  • Outer shell 10 is then formed from a second polymeric material injected into the second mold cavity.
  • the inner surface 18 of outer shell 10 bonds to energy absorbers 14 during the molding operation.
  • outer shell 10 may be formed first, and the energy absorbers 14 maybe formed thereafter.
  • the outer shell 10 and energy absorbers 14 may be molded using a single, integrated piece of equipment, rather than having to transfer the first molded object to a second piece of molding equipment.
  • a rotatable platen molding apparatus When a rotatable platen molding apparatus is used, the first mold cavity comprising the shape of the energy absorbers 14 starts the molding cycle at a first molding station. At the first molding station, polymeric material is introduced into a mold comprising the first mold cavity. Shortly thereafter, the rotatable platen is rotated approximately 120 degrees and the molded energy absorbers 14 are indexed to a second molding station.
  • polymeric material is introduced into a mold comprising the second mold cavity comprising the outer shell 10.
  • the inner surface 18 of outer shell 10 bonds to the energy absorber 14 during or shortly after molding.
  • the rotatable platen is rotated approximately 120 degrees and the formed energy absorbers 14 and outer shell 10 are indexed to a de-mold station where they are removed from the molding operation.
  • the outer shell 10 may be formed in the first mold cavity and the energy absorber 14 may be formed in the second mold cavity.
  • outer shell 10 and energy absorbers 14 may be formed in completely separate independent mold operations and, rather than being joined during the formation of the second piece, may be joined subsequently after both pieces are first formed.
  • preferred methods of joining include, but are not limited to, thermal welding, thermal bonding, solvent bonding, mechanical attachment and/or adhesive bonding, as well as combinations thereof.
  • outer shell 10 and energy absorbers 14 maybe formed at the same time and from the same polymeric material. This will reduce the number of mold cavities required from two to one, and reduce the complexity of the equipment and the molding operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Vibration Dampers (AREA)

Abstract

L'invention concerne un système de pare-chocs d'automobile comprenant une coquille extérieure (10) de pare-chocs d'automobile présentant une surface intérieure (18) généralement orientée vers le véhicule. Cette coquille extérieure comprend une pluralité de protubérances (14) absorbant l'énergie et s'étendant vers l'intérieur à partir de la surface intérieure de la coquille extérieure. Ces protubérances absorbant l'énergie peuvent être constituées d'un matériau absorbant l'énergie, tel qu'une mousse polymère et/ou peuvent comporter des indentations s'étendant dans le corps de la protubérance de façon à améliorer les caractéristiques d'absorption d'énergie de la protubérance.
PCT/US2001/017433 2000-05-31 2001-05-31 Pare-chocs d'automobile WO2001092064A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/297,153 US6863322B2 (en) 2000-05-31 2001-05-31 Motor vehicle bumper
AU2001265177A AU2001265177A1 (en) 2000-05-31 2001-05-31 Motor vehicle bumper
EP01939685A EP1284889A4 (fr) 2000-05-31 2001-05-31 Pare-chocs d'automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20814600P 2000-05-31 2000-05-31
US60/208,146 2000-05-31

Publications (1)

Publication Number Publication Date
WO2001092064A1 true WO2001092064A1 (fr) 2001-12-06

Family

ID=22773364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/017433 WO2001092064A1 (fr) 2000-05-31 2001-05-31 Pare-chocs d'automobile

Country Status (4)

Country Link
US (1) US6863322B2 (fr)
EP (1) EP1284889A4 (fr)
AU (1) AU2001265177A1 (fr)
WO (1) WO2001092064A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039916A2 (fr) * 2001-11-09 2003-05-15 Dynamit Nobel Kunststoff Gmbh Pare-chocs dote d'un amortisseur de chocs et d'un habillage
DE10260387A1 (de) * 2002-12-21 2004-07-01 Volkswagen Ag Stoßfängeranordnung für ein Fahrzeug, insbesondere für ein Kraftfahrzeug
EP1676752A3 (fr) * 2004-12-24 2006-12-27 HONDA MOTOR CO., Ltd. Structure de poutre ayant parrois d'appuis pour soufflet central
FR2903358A1 (fr) * 2006-07-06 2008-01-11 Faurecia Bloc Avant Procede de realisation d'une serie de pare-chocs pour vehicule automobile et serie de pare-chocs associee.
EP2022681A3 (fr) * 2007-08-09 2009-11-25 Magna International Inc. Renfort de revêtement ferme formé sous vide pour carénage frontal de pare-chocs
ITTO20090557A1 (it) * 2009-07-23 2011-01-24 Inglass S R L Procedimento per la realizzazione di un articolo in materia plastica stampata
EP2899230A1 (fr) 2014-01-22 2015-07-29 Solvay Specialty Polymers USA, LLC. Articles pour automobiles
FR3117429A1 (fr) * 2020-12-16 2022-06-17 Psa Automobiles Sa Dispositif de pare-chocs a absorbeur integre et vehicule comportant un tel dispositif

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625023B2 (en) * 2000-02-07 2009-12-01 Oakwood Energy Management, Inc. Modular energy absorber with ribbed wall structure
WO2004028863A1 (fr) * 2002-09-30 2004-04-08 Sekisui Kaseihin Kogyo Kabushiki Kaisha Pare-chocs de protection des pietons
US20040174025A1 (en) * 2003-03-07 2004-09-09 General Electric Company Blow molded energy absorber for a vehicle front end
JP4292911B2 (ja) * 2003-07-31 2009-07-08 トヨタ自動車株式会社 車体のバンパ構造
US7188876B2 (en) * 2004-09-14 2007-03-13 General Electric Company Bumper assembly including energy absorber with vertical translation crush lobes
US7625036B2 (en) 2006-04-04 2009-12-01 Oakwood Energy Management, Inc. Multi-sectional modular energy absorber and method for configuring same
JP4735843B2 (ja) * 2006-06-29 2011-07-27 マツダ株式会社 自動車のバンパ構造
DE102006030504B4 (de) * 2006-07-01 2015-07-02 Audi Ag Stoßfänger für ein Kraftfahrzeug
DE102007040942A1 (de) * 2007-08-30 2009-03-05 GM Global Technology Operations, Inc., Detroit Aufprallbegrenzungssystem eines Fahrzeugs
US20090072557A1 (en) * 2007-09-18 2009-03-19 Magna International Inc. Vehicle bumper system energy absorber
KR101013901B1 (ko) * 2007-12-18 2011-02-14 현대자동차주식회사 다단 에너지 완충구조를 갖는 범퍼장치
US7866716B2 (en) 2008-04-08 2011-01-11 Flex-N-Gate Corporation Energy absorber for vehicle
US8029041B2 (en) * 2008-04-12 2011-10-04 Ford Global Technologies, Llc Door trim-integrated pelvic impact energy-absorbing construction for vehicle
KR100897334B1 (ko) * 2008-04-30 2009-05-15 현대자동차주식회사 충격 흡수판
GB2486253A (en) * 2010-12-09 2012-06-13 Sandeep Kumar Anand Safety bumper
DE102011122010A1 (de) * 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox-Flow-Batterie mit außenliegender Versorgungsleitung und/oder Entsorgungsleitung
JP5920228B2 (ja) * 2013-01-09 2016-05-18 トヨタ自動車株式会社 歩行者衝突検出装置を備えた車両用バンパ
US20140216852A1 (en) * 2013-02-07 2014-08-07 GM Global Technology Operations LLC Impact resistant article
JP6226226B2 (ja) * 2013-06-21 2017-11-08 スズキ株式会社 車両前部の構造
US9415708B2 (en) 2014-02-18 2016-08-16 Oakwood Energy Management, Inc. Conformable energy absorber
DE102014011790A1 (de) 2014-08-12 2016-02-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Stoßfängermodul
DE102014016044A1 (de) 2014-10-29 2016-05-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Frontpartie eines Kraftfahrzeugs und Stoßfängeraussteifung dazu
US10065587B2 (en) 2015-11-23 2018-09-04 Flex|N|Gate Corporation Multi-layer energy absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029350A (en) * 1974-03-05 1977-06-14 Regie Nationale Des Usines Renault Energy absorbing device
US5139297A (en) * 1991-09-12 1992-08-18 Ford Motor Company Internal stroking bumper beam
US5385375A (en) * 1992-11-23 1995-01-31 General Motors Corporation Reinforced impact beam for a bumper assembly and method of manufacture
US5780129A (en) * 1994-01-11 1998-07-14 Nippon Steel Chemical Co., Ltd. Multi-layer blow-molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146826A (ja) * 1983-02-10 1984-08-22 Hashimoto Forming Co Ltd 合成樹脂成形品の製造方法
US5100187A (en) * 1987-12-28 1992-03-31 Milad Limited Partnership Vehicle bumper
US5695699A (en) * 1994-09-21 1997-12-09 Taisei Plas Co., Ltd. Heterogenous foam injection molding method
WO1999052697A1 (fr) * 1998-04-13 1999-10-21 Conix Corporation Procede de surmoulage de depressions en surface d'un composant automobile
EP1065108B1 (fr) * 1999-06-28 2004-04-21 Mazda Motor Corporation Structure d'une partie avant de caisse d'un véhicule automobile
CA2380401C (fr) * 1999-08-16 2007-11-20 Decoma International Corp. Procede de formage d'un ensemble de carenage frontal pour un vehicule a moteur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029350A (en) * 1974-03-05 1977-06-14 Regie Nationale Des Usines Renault Energy absorbing device
US5139297A (en) * 1991-09-12 1992-08-18 Ford Motor Company Internal stroking bumper beam
US5385375A (en) * 1992-11-23 1995-01-31 General Motors Corporation Reinforced impact beam for a bumper assembly and method of manufacture
US5780129A (en) * 1994-01-11 1998-07-14 Nippon Steel Chemical Co., Ltd. Multi-layer blow-molded article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1284889A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039916A2 (fr) * 2001-11-09 2003-05-15 Dynamit Nobel Kunststoff Gmbh Pare-chocs dote d'un amortisseur de chocs et d'un habillage
WO2003039916A3 (fr) * 2001-11-09 2003-08-14 Dynamit Nobel Kunststoff Gmbh Pare-chocs dote d'un amortisseur de chocs et d'un habillage
DE10260387A1 (de) * 2002-12-21 2004-07-01 Volkswagen Ag Stoßfängeranordnung für ein Fahrzeug, insbesondere für ein Kraftfahrzeug
CN100381300C (zh) * 2004-12-24 2008-04-16 本田技研工业株式会社 保险杠横梁结构体
US7338099B2 (en) 2004-12-24 2008-03-04 Honda Motor Co., Ltd. Bumper beam structure having support walls for center gusset, which are laid over walls of bumper beam
EP1676752A3 (fr) * 2004-12-24 2006-12-27 HONDA MOTOR CO., Ltd. Structure de poutre ayant parrois d'appuis pour soufflet central
FR2903358A1 (fr) * 2006-07-06 2008-01-11 Faurecia Bloc Avant Procede de realisation d'une serie de pare-chocs pour vehicule automobile et serie de pare-chocs associee.
EP2022681A3 (fr) * 2007-08-09 2009-11-25 Magna International Inc. Renfort de revêtement ferme formé sous vide pour carénage frontal de pare-chocs
US7726725B2 (en) 2007-08-09 2010-06-01 Magna International Inc. Vacuum-formed “firm-feel” reinforcement for bumper fascias
ITTO20090557A1 (it) * 2009-07-23 2011-01-24 Inglass S R L Procedimento per la realizzazione di un articolo in materia plastica stampata
EP2899230A1 (fr) 2014-01-22 2015-07-29 Solvay Specialty Polymers USA, LLC. Articles pour automobiles
FR3117429A1 (fr) * 2020-12-16 2022-06-17 Psa Automobiles Sa Dispositif de pare-chocs a absorbeur integre et vehicule comportant un tel dispositif
WO2022129719A1 (fr) * 2020-12-16 2022-06-23 Psa Automobiles Sa Dispositif de pare-chocs a absorbeur integre et vehicule comportant un tel dispositif

Also Published As

Publication number Publication date
US20040017089A1 (en) 2004-01-29
US6863322B2 (en) 2005-03-08
AU2001265177A1 (en) 2001-12-11
EP1284889A1 (fr) 2003-02-26
EP1284889A4 (fr) 2005-04-27

Similar Documents

Publication Publication Date Title
US6863322B2 (en) Motor vehicle bumper
US6758507B2 (en) Energy absorbing external component for vehicle
US7306081B2 (en) Impact absorbing member for vehicle
KR100348231B1 (ko) 다층블로우성형품
US5183615A (en) Molding method of air bag cover
EP1612108B1 (fr) Articles d'absorption d'energie
JP4472898B2 (ja) 二輪車用衝撃吸収体
US20040174025A1 (en) Blow molded energy absorber for a vehicle front end
EP1857327B1 (fr) Assemblage de pare-choc de véhicule et véhicule correspondant doté dudit assemblage de pare-choc
US6793256B2 (en) Vehicle bumper energy absorber system and method
US6353415B1 (en) Molded in place antenna assembly and method of making same
US20030164618A1 (en) Energy-absorbing elements for automobile bumpers and methods of making the same
JP4216923B2 (ja) 自動車用バンパー芯材の製造方法
JPH0263048B2 (fr)
US20020121714A1 (en) Automobile interior components that satisfy impact standards and a method for manufacturing the same
JP3112793B2 (ja) 衝撃エネルギー吸収体およびこれを用いた自動車用ドアトリム
JP4229676B2 (ja) 車両用衝撃吸収体
RU2707853C2 (ru) Активный буфер (варианты)
JP3878825B2 (ja) 車両用樹脂製フード、およびその製造方法
JPH0924781A (ja) バンパーの樹脂製アーマチャー成形構造
KR102202379B1 (ko) 차량용 범퍼 빔 구조체 및 그의 제조방법
JP2005133905A (ja) 車両用衝撃吸収体
JPS58170653A (ja) バンパ−スペ−サ
WO2002070306A2 (fr) Composants d'automobile absorbant l'energie et leurs procedes de fabrication
JPH07108540B2 (ja) 樹脂成形品の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001939685

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001939685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10297153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP