WO2001090689A1 - Procede et appareil pour mesurer les interferences - Google Patents

Procede et appareil pour mesurer les interferences Download PDF

Info

Publication number
WO2001090689A1
WO2001090689A1 PCT/JP2001/004147 JP0104147W WO0190689A1 WO 2001090689 A1 WO2001090689 A1 WO 2001090689A1 JP 0104147 W JP0104147 W JP 0104147W WO 0190689 A1 WO0190689 A1 WO 0190689A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
test
interference
path
reference light
Prior art date
Application number
PCT/JP2001/004147
Other languages
English (en)
French (fr)
Inventor
Jun Kawakami
Hisashi Shiozawa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US10/276,724 priority Critical patent/US6940605B2/en
Priority to DE60141140T priority patent/DE60141140D1/de
Priority to EP01932130A priority patent/EP1298410B1/en
Priority to AT01932130T priority patent/ATE456022T1/de
Publication of WO2001090689A1 publication Critical patent/WO2001090689A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Definitions

  • the present invention relates to an interference measurement method and an interference measurement apparatus using an interferometer, and more particularly, to a scan that changes the phase difference between the test light from the test surface and the reference light from the reference surface. Scanning), and based on the interference signal obtained as a result, an interference measurement method for obtaining a phase difference between the test light and the reference light in a predetermined state as shape information of the test surface, and interference measurement It concerns the device.
  • FIG. 7 is a configuration diagram of a conventional interferometer 70 for measuring the surface shape of the test surface 72.
  • the light emitted from the light source 71 is guided to both the test surface 72 and the reference surface 73, and the light is reflected by the test surface 72.
  • the test light 72 a and the reference light 73 a generated by the reflection of the light on the reference surface 73 interfere with each other to generate interference fringes, and the interference fringes are imaged by a CCD image sensor or the like. Detected by element 76. From the interference fringes detected in this way, the two-dimensional distribution of the phase difference between the test light 72 a and the reference light 73 a can be known.
  • the surface shape of the test surface 72 with respect to is represented.
  • Fringe scan interferometry is referenced by a moving mechanism such as a piezo element.
  • a moving mechanism such as a piezo element.
  • the optical distance between the test light 72 a and the reference light 73 a is changed by about one wavelength (one phase as a phase difference) by about one wavelength (
  • the test light 72 a and the reference light 73 a in a predetermined state are detected.
  • the value of the phase difference (initial phase difference) with is accurately obtained.
  • the same result can be obtained by moving the test surface 72 by about ⁇ wavelength.
  • the interference measurement device 70 is set so that the position of the reference surface 73 changes linearly with time during this fringe scan (the moving mechanism 77 and the control circuit 78). It depends on the setting.)
  • the image sensor 76 charges each pixel disposed on the light receiving surface with an amount of electric charge corresponding to the intensity of incident light for a unit time T.
  • a time integration value of the incident light intensity over the time Tc that is, the accumulated data B. , B ⁇ 2 , ⁇ ⁇ ⁇ are sequentially output.
  • the stored data ⁇ 0 , ⁇ 2 ,... are used as interference signals.
  • phase difference (t) between the test light 72a and the reference light 73 a after the time t has elapsed from the start of the fringe scan is given by It is represented by (1).
  • the interference light intensity I (t) of the test light 72 a and the reference light 73 a is expressed by the equation (2) using the phase difference (t).
  • e and a are numbers (constants) determined by the intensity (amplitude) of light emitted from the light source 71 and the like, respectively.
  • / (t) / 0 [l + ycos ( ⁇ (t))]...
  • the interference light intensity I (t) and the interference light intensity T Accumulation de Isseki beta 0 is a time integral value over between, beta have beta 2, the relationship between ... ', we express by the formula (3).
  • each accumulation de night B. , B, and B 2 are represented by equation (4).
  • the arithmetic circuit 79 of the interference measurement device 70 applies the equation (7) to the stored data B 0 , B ls ⁇ 2 , ⁇ (measured values) output from the imaging element 76.
  • the initial phase difference is ⁇ .
  • this initial phase difference is ⁇ . Is calculated for the output of each pixel of the image sensor 76, and the calculated initial phase difference ⁇ . Is output to a display (not shown) such as a monitor as the shape information of the test surface 72 based on the reference surface 73.
  • the calculation can be simplified by limiting the way in which the reference plane 73 is moved.
  • the method of finding the initial phase ⁇ 0 from the four stored data using equation (8a) is called the "four-bucket method". From the five stored data, the initial phase ⁇ 0 is calculated using equation (8b). (However, in this case, the fringe scan is performed at least for (1 + 1/4) cycles with a phase difference.) Is called a "5-note method”.
  • the 5-bucket method takes longer processing time than the 4-bucket method by one more number of stored data to be based, The accuracy is high.
  • the noise light is a part of the light emitted from the light source 71 and is reflected at any part of the interferometer 75 to be inspected.
  • Noise light (noise light b (N)) that interferes with the test light ⁇ 2 a or the reference light 7 3 a without passing through the reference surface 73, and reflection from the test surface 72 or the reference surface 73 A part of the light that is reflected by the surface of the interference optical system 74 or the exit of the light source 71 and returns to the surface to be inspected 72 or the reference surface 73 again, and the surface to be inspected 72 or reference Noise light (noise light c (WNW) s noise light d (WNR) s noise light e (R NR) ⁇ ⁇ ⁇ noise light f that interferes with the test light 7 2 a or the reference light 7 3 a after being reflected by the surface 73 (R NW)).
  • the reflection path of the test surface 72 is represented by W
  • the reflection path of the reference surface 73 is represented by R
  • the reflection path of any part in the interferometer 75 is represented by N. Since the reflectance at such a point is sufficiently lower than the reflectance of the test surface 72 and the reference surface 73, noise light reflected at that point more than once is ignored.
  • the coherent noise component that changes at a different cycle from the required signal component can be separated from the signal component by some operation, but the coherent noise changes at the same cycle as the required signal component. No matter what operation is applied to the noise component, it is impossible to separate it.
  • the interference measuring device 70 of the coherent noise components, those generated by the noise light b interfering with the reference light 73a and those generated by the noise light c interfering with the reference light 73a.
  • the noise light d interferes with the test light 72a
  • the noise light e interferes with the reference light 73a
  • the noise light f interferes with the reference light 73a. Since the signal component changes with the same period as the required signal component as the reference plane 73 moves, it cannot be separated (that is, removed) (for details, see Table 2 described later).
  • noise light b, c, d, e, and f which is the cause of the coherent noise component
  • noise light generated according to the reflectivity and the arrangement angle of the surface of the optical element can be generated in any interferometer including any optical element, and it is impossible to completely avoid it.
  • An object of the present invention is to provide an interference measurement method and an interference measurement device that can reliably reduce the influence of a coherent noise component by applying the above-described fringe scan interferometry.
  • the light emitted from the light source is guided to both the test surface and the reference surface, and the test light generated by the reflection of the light on the test surface and the light are generated.
  • An interference optical system that interferes with reference light generated by reflection on the reference surface; and an interference signal that is arranged in an optical path of the interference light formed by the test light and the reference light, and that is based on the intensity of the incident light.
  • An interferometer provided with a light-receiving element that outputs a light beam, the optical distance of the optical path of the test light when scanning to change the phase difference between the test light and the reference light, By simultaneously changing both the optical distance of the reference light path and the optical distance of the reference light path in a predetermined pattern, the interference signal changes according to a phase difference between the reference light and the test light.
  • the intensity change period of the required signal component, and the test light path And a modulation scanning device that makes a difference between a predetermined noise light passing through at least a part of the reference light path and the intensity change cycle of a coherent noise component caused by interference with the test light or the reference light. And a phase difference between the test light and the reference light in a predetermined state based on an interference signal output from the light receiving element when the modulation scanning procedure is being performed. And a calculation procedure for determining the interference.
  • a second invention is the first invention, wherein in the modulation scanning step, a ratio of a change amount of the optical distance of the test light path to a change amount of the optical distance of the reference light path is set. Is maintained at 1: 1: 1.
  • the noise light on which the coherent noise component is superimposed is a part of the light emitted from the light source, is reflected at any point in the interferometer, and is not reflected on the surface to be inspected without passing through the reference surface.
  • Noise light that interferes with the reference light, and part of the reflected light from the test surface or reference surface that is reflected by the surface of the interference optical system or the exit of the light source before returning to the test surface or reference surface The test light is noise light that interferes with the reference light after being reflected by the test surface or the reference surface.
  • the ratio between the amount of change in the optical distance of the optical path to be measured and the amount of change in the optical distance of the reference light path is maintained at 1: 1: 1, so that at least The intensity change cycle of the coherent noise component formed by this noise light is different from the intensity change cycle of the required signal component. That is, the influence of the coherent noise component can be reliably removed in the calculation procedure performed thereafter.
  • the interferometer noise light that is reflected at least two times at any point is generated, but the reflectivity at that point is sufficiently lower than the reflectivity of the test surface and the reference surface.
  • the coherent noise component formed by this noise light is sufficiently smaller than the previously described coherent noise component. Therefore, according to this interference measurement method, the influence of the coherent noise component can be sufficiently suppressed.
  • the test light Reduce the total amount of change in the optical distance between the optical path and the reference optical path It is preferable because it can be suppressed.
  • a third invention is the first invention, wherein in the modulation scanning step, a ratio of a change amount of the optical distance of the test light path to a change amount of the optical distance of the reference light path is set. Is maintained at 1: 3 or 3: 1.
  • the intensity change cycle of the coherent noise component due to the same noise light as that of the second invention is different from the intensity change cycle of the required signal component.
  • the influence of the coherent noise component can be sufficiently suppressed.
  • the ratio of the movement amounts of 1: 3 or 3: 1 the total amount of change in the optical distance is larger than that of the ratio of 1: 1: 1, but other ratios are set. Can be kept smaller than in the case of
  • a fourth invention is any one of the first invention to the third invention, wherein in the modulation scanning procedure, the scanning is performed at least for two cycles of the intensity change of the necessary signal component, In the calculation procedure, the shape information of the surface to be measured is obtained based on the interference signal corresponding to at least two periods of the required signal component intensity change.
  • the coherent noise component can be obtained by using the periodic property of the necessary signal component and the periodic property of the coherent noise component. It is possible to remove and leave only necessary signal components. As a result, the effect of the coherent noise component can be reliably suppressed.
  • the light emitted from the light source is guided to both the test surface and the reference surface, and the test light generated by reflecting the light on the test surface, and the light
  • An interference optical system that interferes with reference light generated by reflection on a reference surface; and an interference optical system disposed in an optical path of the interference light formed by the test light and the reference light.
  • a light-receiving element that outputs an interference signal according to the intensity of incident light; a moving unit that simultaneously moves both an optical distance of the test light path and an optical distance of the reference light path; At the time of scanning for changing the phase difference between light and the reference light, the moving means is operated to deviate both the optical distance of the test light path and the optical distance of the reference light path.
  • the intensity change cycle of a necessary signal component of the interference signal that changes according to a phase difference between the reference light and the test light;
  • Modulation scanning means for providing a difference between an intensity change cycle of a coherent noise component caused by interference of predetermined noise light passing through at least a part of the optical path and the reference light path with the test light or the reference light.
  • the transformation Calculating means for obtaining a phase difference between the test light and the reference light in a predetermined state as shape information of the test surface, based on an interference signal output from the light receiving element during scanning by the scanning means.
  • An eighth invention is any one of the fifth invention to the seventh invention, wherein the modulation scanning means performs the scanning at least for two cycles of the intensity change of the necessary signal component,
  • the calculation means calculates the shape information of the surface to be detected based on at least the interference signal corresponding to at least two periods of the required signal component intensity change. According to the interferometers of the fifth to eighth inventions, the interferometers of the first to fourth inventions are automatically implemented.
  • a ninth invention is an interferometer that measures the difference between the reference surface and the test surface by causing the reflected light from the test surface to be measured and the reflected light from the reference surface to interfere with each other. And an optical path length varying means for synchronously changing the optical path lengths of the light beam passing through the test surface and the light beam passing through the reference surface.
  • FIG. 1 is a configuration diagram of the interferometer of the first embodiment and the second embodiment. '
  • FIG. 2 is a diagram for explaining the operation of the first embodiment, the second embodiment, and the third embodiment.
  • FIG. 3 is a diagram comparing how the coherent noise components and the required signal components change in the first embodiment.
  • FIG. 4 is a diagram comparing the manner of change between each coherent noise component and a required signal component in the conventional example.
  • FIG. 5 is a diagram comparing how the coherent noise components and the required signal components change in the second embodiment.
  • FIG. 7 is a configuration diagram of a conventional interference measurement device.
  • FIG. 8 is a diagram for explaining the operation of the conventional interference measurement device.
  • FIG. (Configuration of the first embodiment)
  • FIG. 1 is a configuration diagram of an interference measurement device 10 of the present embodiment (and an interference measurement device 20 of a second embodiment described later).
  • the same components as those of the conventional interference measurement device 70 shown in FIG. 7 are denoted by the same reference numerals.
  • the interference measurement device 10 is different from the interference measurement device 70 shown in FIG. 7 in that a movement mechanism 17 for moving the test surface 72 is further provided, and a control circuit 18 is provided instead of the control circuit 78. This is equivalent to that provided with an arithmetic circuit 19 instead of the arithmetic circuit 79. That is, the interferometer 10 includes a light source 71, an interference optical system 74 (beam splitter 4b, beam expander 74a, imaging lens 74c, etc.), and an image sensor 76.
  • interferometer 7 5 a system composed of a light source 71, an interference optical system 74, and an image sensor 76 is referred to as an interferometer 7 5).
  • the interference optical system 74 guides the light emitted from the light source 71 to both the test surface 72 and the reference surface 73, and reflects the light on the test surface 72.
  • the generated test light 72 a interferes with the reference light 73 a generated by the reflection of the light on the reference surface 73.
  • the moving mechanism 17 is used to change the optical distance of the optical path of the test light 7 2a. Then, the test surface 72 is moved in the direction of the optical axis by a distance corresponding to the applied driving voltage, and the moving mechanism 77 is used to change the optical distance of the optical path of the reference light 73 a. The reference surface 73 is moved in the optical axis direction by a distance according to the applied drive voltage.
  • These moving mechanisms 17 and 77 are composed of, for example, a piezo element or the like. In the present embodiment, it is assumed that those having the same characteristics are used.
  • the image sensor 76 is, for example, a CCD type image sensor arranged on the optical path of the interference light formed by the test light 72 a and the reference light 73 a, and when driven by the control circuit 18, each pixel An amount of charge corresponding to the incident light intensity is accumulated per unit time Tc, and
  • Accumulation signal B which is a signal indicating a time integration value over a period Tc.
  • B 2 ,... (Actually measured values) are sequentially output (subscripts are added in the order of acquisition in this specification).
  • the accumulated data B is used.
  • B x , B 2 ,... (Actually measured values) are used as interference signals indicating the density of interference fringes.
  • the control circuit 18 drives the light source 71 at the time of fringe scanning, and applies a driving voltage in a predetermined pattern to each of the moving mechanisms 77 and 17 to obtain the reference surface 73 and the test surface 7. Are moved in a predetermined pattern.
  • the control circuit 18 drives the image sensor 76, and the accumulated data output from the image sensor 76: ⁇ . , ⁇ 2 , ⁇ '(actual value) are given to the arithmetic circuit 19.
  • the arithmetic circuit 19 calculates the phase difference (for example, the initial phase difference) between the reference light 73 a and the test light 72 a in a predetermined state (for example, the initial state at the time of starting fringe scanning). , Accumulate de overnight. , B or ⁇ 2 , ⁇ '(actual value)
  • the arithmetic circuit 19 may be provided outside the interference measurement device 10. Further, a computer that operates in the same manner as the arithmetic circuit 19 may be used instead of the arithmetic circuit 19. (Operation of the first embodiment)
  • FIG. 2 is a diagram illustrating the operation of the present embodiment.
  • the storage time is B. , B ⁇ 2 , ⁇ ⁇ ⁇ ⁇ (actual measurement value)
  • the surface to be inspected during fringe scanning is not And the reference plane 73 are moved simultaneously.
  • the ratio of the amount of movement of the test surface 72 to the amount of movement of the reference surface 73 is kept at 1: 1.
  • the difference between the optical distance between the test light 72a and the reference light 73a is calculated. At least two wavelengths (two periods of phase difference) of light emitted from the light source 71 are changed.
  • both the position of the reference surface 73 and the position of the test surface 72 linearly change with time with sufficient accuracy, and
  • control circuit 18 changes the drive voltage applied to the moving mechanism 77 according to time during the period of 8 Tc to move the reference surface 73 evenly by 1Z2 wavelengths, and at the same time, the moving mechanism By changing the drive voltage applied to 17 according to time, the test surface 72 is moved evenly by 1 1/22 wavelength.
  • the positive / negative difference in the moving amount depends on the optical path shortening direction / optical path expansion. This corresponds to a difference in direction, although either direction can be positive).
  • the arithmetic circuit 19 of the present embodiment has an initial phase difference of ⁇ .
  • the following equation (9) is applied to the accumulated data B 0 , B 2 , B 3 , B 4 , B 5 , and B 7 (actually measured values) for these two cycles when calculating (See Fig. 2 (c).) (The meaning of this equation (9) will be described later.)
  • the noise light related to the coherent noise component in the interference measurement device 10 is the noise light b (N), the noise light c (WNW) s the noise light d (WNR), the noise light e ( RNR) and noise light f (RNW).
  • the letters in parentheses indicate the reflection paths. That is, the reflection path of the test surface 72 is represented by W, the reflection path of the reference surface 73 is represented by R, and the reflection path of any part in the interferometer 75 is represented by N. In addition, since the reflectance at any point in the interferometer 75 is sufficiently lower than the reflectance of the test surface 72 or the reference surface 73, noise light reflected at that point more than once is ignored. . Next, based on Table 1, the intensity change cycle of the required signal component is compared with the intensity change cycle of each coherent noise component.
  • Table 1 is a table for comparing the optical path difference of each light and the amount of change in the optical path difference in the present embodiment. Table comparing the optical path difference of each light and the amount of change in the optical path difference in the first embodiment.
  • the optical path change of the test light 72 a when the optical path change of the reference light 73 a is “1” is “ ⁇ Therefore, the optical path change amounts of the noise lights b, c, d, e, and f are “0”, “ ⁇ 2”, “0”, “2”, and “0”, respectively.
  • Intensity variation period of the interference light i.e. required signal component S M of the reference beam 7 3 a and test light 7 2 a forms in this case is shown by the column M.
  • This column M contains the reference light 7 3
  • optical path difference “W ⁇ R” between “a” and the test light 7 2 a and the optical path difference ′ change amount “1 2” are described.
  • the magnitude of the optical path difference change amount “1 2” is Indicates the speed at which the intensity of the interference light changes between the two lights.
  • the intensity change period of each interference light is represented by the “magnitude of the optical path difference change amount” of the two lights that form the interference light. That is, the required signal component S M is
  • the coherent noise component s ⁇ i generated by the interference of the noise light b with the test light 72 a changes in “period 1” (see column 1 1 1).
  • the coherent noise component S i 12 generated by the noise light c interfering with the test light 72 a changes in “period 1” (see columns 1 12).
  • the coherent noise component S i ⁇ 3 generated by the interference of the noise light d with the test light 72 a changes in “period 1” (see columns 1 13).
  • the noise light e coherent noise components S 1 1 4 cause interferes with test light 7 2 a is changed in the "cycle 3" (see column 1 14).
  • the coherent noise component S i ⁇ 5 generated by the interference of the noise light f with the test light 72 a changes in “period 1” (see column 1 15).
  • the coherent noise component S i 2 1 noise light b is cause interferes with the reference beam 7 3 a is changed in "period 1" (see column 1 2 1).
  • the coherent noise components S 1 2 2 noise light c is cause interferes with the reference beam 7 3 a is changed in the "cycle 3" (see column 1 2 2).
  • the coherent noise components S 1 2 3 cause interfere with noisyzu light d is the reference beam 7 3 a is changed in "period 1" (see column 1 2 3).
  • the coherent noise component S i 25 generated by the interference of the noise light f with the reference light 73 a changes in “period 1” (see columns 1 25).
  • FIG. 3 shows each of the noise components S! In the present embodiment. ! x - and S 12 5, a diagram comparing the manner of change of the required signal component S M.
  • Fig. 3 (a) shows the signal that changes in "Period 2" like the required signal component S M
  • Fig. 3 (b) shows the coherent noise component S or S! 12 S 1 13, have shown a signal varying "period 1" as S 12 have S 123, S 124, S 125
  • FIG. 3 (c) is as coherent Tonoizu component S 1 14, S 122 Indicates a signal that changes in “Period 3” (however, Neither the amplitude nor the phase is significant. ).
  • the accumulated data B output from the image sensor 76 during the fringe scan described above. ⁇ B have B 2, B 3, B 4, the B have B 6, B 7 (actually measured value), the change in "period 2"
  • Equation (9) is the initial phase difference ⁇ derived from equation (4), similar to equation (8a) of the 4-bucket method described above. Is a calculation formula. Therefore, Equation (9) is equivalent to Equation (8a) under the assumption that no coherent noise component occurs.
  • the required signal components ⁇ 10 , B 12 , B 13 , B 14 , B! 5N B 16 , 7 are determined by their periods, as is clear from equation (4) and Fig. 3 (a).
  • B ⁇ 3 B i 7 holds.
  • equation (9) unlike equation (8a) of the four-packet method, the accumulated data to be based on is increased to two periods (the required signal component B 1 k), so that the Due to its periodic nature, the coherent noise component B 2 B 3 k is removed and only the required signal component B lk remains.
  • the conventional interferometer 70 does not move the test surface 72 at all, so that the optical path change amount of the reference light 73 a is “1”.
  • the optical path change amount of the test light 72 a when is is “0”.
  • the optical path change amounts of the noise lights b, c, d, e, and f are “0”, “0”, “1”, “2”, and “1”, respectively.
  • the required signal component S M (interference light formed by the reference light 73 a and the test light 72 a) changes in “Period 1” (see column M).
  • coherent noise components S ,, S 1 12 generated by the interference of the noise light beams b and c with the test light beam 72 a and the reference light beam 73 coherence Tonoizu component S causes interfere with a 123 ', S 1 2 5 5 are both (Ru i.e. steady der) for varying the "cycle 0" (column 1 1 1, 1 1 2, 1 2 3, 1 2 5).
  • the noise light d it it Kohi one alkylene Tonoizu component S ⁇ 3 ,, S 1 15 that cause interferes with the test light 7 2 a 'of, and noise light b, c, that of e Coherent noise caused by interference with the reference beam 7 3 a
  • the components s 121 , s 122 , and S 124 all change in “period 1” (see columns 1 13, 1 15, 12 1, and 12 2 124).
  • the coherent noise component S 114 ′ generated by the interference of the noise light e with the test light 72 a changes at a “period 2” (see columns 114 ).
  • the accumulated data B 0, B, B 2 , and B 3 (actually measured values) output from the conventional image sensor 76 include, as shown in FIG. 10, B: x, B 12 , B 13 coherence Tonoizu component B 2 of (FIG. 4 (a) refer) and changes in the "periodic 1". ,, B 21 ,, B 22 ,, B 2 3, ( FIG. 4 (b) refer) and, Kohi one Ren Tonoizu component B 30 changes in "period 2" ', B 31 ⁇ B 32 ⁇ B 33 5 (See Fig. 4 (c)). That is, when representing the Kohi one Len Tonoizu component considering Isseki the accumulation de B k (measured value), B k two B lk + B 2k, + B 3k, become.
  • the positions of the test surface 72 and the reference surface 73 are different. By moving them while maintaining the movement amount ratio of 1: 1-1, the intensity change period of the coherent noise component is made different from the intensity change period of the required signal component, and the equation (9) is applied.
  • the influence of such a coherent noise component can be reliably removed. As a result, the shape measurement of the test surface 72 is improved in accuracy.
  • the interference measurement device 20 of the present embodiment is the same as the interference measurement device 10 shown in FIG. 1 except that a control circuit 28 is provided instead of the control circuit 18.
  • the control circuit 28 applies a drive voltage in a predetermined pattern to each of the moving mechanisms 77 and 17 at the time of fringe scanning, so that the reference surface ⁇ 3 and the test surface ⁇ 2 Are moved in a predetermined pattern, and the image sensor 76 is driven, and the accumulated data B output from the image sensor 76 at that time.
  • B 2 ,... Are given to the arithmetic circuit 19, but the movement pattern of the reference surface ⁇ 3 and the test surface 72 is different from that of the control circuit 19.
  • the ratio of the movement amount of the test surface 72 to the movement amount of the reference surface 73 during fringe scanning is kept at 3: 1.
  • control circuit 28 changes the drive voltage applied to the moving mechanism 77 according to time during the period of 8 Tc to move the reference surface 73 evenly by ⁇ wavelength, and The test surface 72 is moved evenly by 3/2 wavelength by changing the drive voltage applied to the moving mechanism 17 according to time.
  • the positive / negative difference in the moving amount depends on the optical path shortening direction Z optical path. Corresponds to the difference in the expansion direction. However, either direction can be positive).
  • the light related to the coherent noise component is the noise light b (N), the noise light c (WNW), the noise light d (WNR), and the noise light e (as in the first embodiment. RNR) and noise light f (RNW).
  • the letters in parentheses indicate the reflection paths. That is, the reflection path of the test surface 72 is represented by W, the reflection path of the reference surface 73 is represented by R, and the reflection path of any part in the interferometer 75 is represented by N. In addition, since the reflectance at any point in the interferometer 75 is sufficiently lower than the reflectance of the test surface 72 or the reference surface 73, noise light reflected at that point more than once is ignored. . Next, based on Table 3, the intensity change cycle of the required signal component and the intensity change cycle of each coherent noise component are compared.
  • Table 3 is a table for comparing the optical path difference of each light and the amount of change in the optical path difference in the present embodiment.
  • Table 3 Table comparing the optical path difference and optical path difference change S of each light in the second embodiment.
  • the coherent noise component S 113 "generated by the interference of the noise light d with the test light 72 a changes in" period 1 "(see columns 1 13).
  • the coherent noise component S 114 "generated by the interference of the noise light e with the test light 72 a changes in the“ period 1 ”(see columns 1 to 14 ).
  • coherent noise components S, 2 ! Generated by the noise light b interfering with the reference light 73a. "Changes at" cycle 1 "(see columns 122). Moreover, coherent noisy noise component S 1 2 2 cause interfering noisyzu light c is the reference beam 7 3 a "is changed in the" cycle 5 "(see column 1 2 2).
  • Kohi noise light d is cause interferes with the reference beam 7 3 a one Rent noise component S 1 2 3 "is changed in” period 3 "(see column 1 2 3).
  • Kohi noise light e is cause interferes with the reference beam 7 3 a one alkylene preparative noise component S 1 2 4 "varies" period 1 "(see column 1 2 4).
  • noisy light coherent noise component S 1 2 5 where f is cause interferes with the reference beam 7 3 a "varies" period 3 "(see column 1 2 5).
  • each coherent noise component S to S is a coherent noise component
  • Figure 5 is a diagram comparing the present embodiment, the manner of change in each Kohi one alkylene Tonoizu component S i to S 12 5 "required signal component S M".
  • Fig. 5 (a) shows a signal that changes in "Period 2" like the required signal component S M "
  • Fig. 5 (b) shows the coherent noise components S ii 3 ", s 1 14 ", sil 5 ", S 12 1 ", and S 124 " show signals that change in "Period 1”.
  • Fig. 5 (c) shows the coherent noise components SHS 1 1 2 ", S 123 “, S 1 2 5" indicates a signal which changes at like the "period 3”
  • FIG. 5 (d) illustrates a signal that varies in same "cycle 5" and Kohi one alkylene Tonoizu component S 122 "( However, the amplitude and phase shown in Fig. 5 have no meaning.)
  • the accumulated data B 0 , B or B 3 , B 4 , B 6 or B 7 (actually measured value) output from the image sensor 76 at the time of the above fringe scan changes in “Period 2”.
  • Beta 37 (FIG. 5 (c) refer) and, coherence Tonoi scan component t» 4 0 changes in "period 5 ', j3 4 i, B 42, t> 4 3, D 4 4, B 4 have 1 ) 46 and -D 4 7 (see Fig. 5 (d)) are considered to be superimposed.
  • B k (actually measured value)
  • B vl is established, Kohi one Ren Tonoizu component B 3. ", B 3 1 ,,, B 3 2 ,,, B 33 ,,, B 34", B 3 5 ,,,,
  • equation (9) unlike equation (8a) of the 4-bucket method, the accumulated data to be based is increased to two cycles (of the required signal component Blk ). Due to the periodic nature of, the coherent noise components B 2 k “, B 3 k ", and B 4 k are removed and only the necessary signal component B lk remains.
  • the intensity change cycle of the coherent noise component is required by moving each of the test surface 72 and the reference surface 73 while maintaining the moving amount ratio of 3: 1.
  • the influence of the coherent noise component can be surely removed by making the intensity change cycle of the signal component different from that of the signal component and applying the equation (9). As a result, the test surface 7
  • the moving amount ratio between the test surface 72 and the reference surface 73 is
  • FIG. 6 is a configuration diagram of the interference measurement device 30 of the present embodiment.
  • the interferometer 30 is different from the interferometers 10 and 20 of the first and second embodiments (the interferometer 75 is a Michelson interferometer), and is a Fizeau type. Interferometer 35 is applied.
  • the Fizeau interferometer 35 has a light source 31, a beam expander 35a, a beam splitter 35b, a null lens 35d, an imaging lens 35c, an imaging element 36, and the like.
  • the light emitted from the light source 31 is incident on the null lens 35d via the beam expander 35a and the beam splitter 35b.
  • the light beam incident on the null lens 35 d is incident on a Fiso surface 33 (a reference surface of a Fizeau interferometer) arranged at a predetermined position.
  • a part of the light beam incident on the Fizeau surface 33 is reflected by the Fizeau surface 33 to become the reference light 33a, and the other part passes through the Fizeau surface, and then the test surface 3 placed at a predetermined position The light is reflected by 2 and becomes the test light 3 2a.
  • the reference light 33a passes through the null lens 35d, the beam splitter 35b, and the imaging lens 35c, and then enters the image sensor 36, while the test light 32a is After passing through the surface 33, the null lens 35d, the beam splitter 35b, and the imaging lens 35c, the light enters the image sensor 36.
  • the reference light 33a and the test light 32b interfere with each other to form interference fringes on the image sensor 36.
  • the difference between the Fizeau interferometer 35 and the Michelson interferometer reference numeral 75 in FIG. 1 is that the optical path of the reference light 33 a and the optical path of the test light 32 a are common. (However, the optical path length is different).
  • the Fizeau interferometer 35 can make the environment of the optical path of the reference light 33a and the environment of the optical path of the test light 32a almost coincide with each other. Suitable for.
  • the interferometer 30 provided with the Fizeau type interferometer 35 includes two moving mechanisms 372 and 373, a control circuit 38, and an arithmetic circuit 39. .
  • the moving mechanism 372 moves the test surface 32 in the direction of the optical axis by a distance corresponding to a given driving voltage in order to change the optical distance of the optical path of the test light 32a.
  • the moving mechanism 3 7 3 moves the reference surface 3 3 in the optical axis direction by a distance corresponding to a given driving voltage in order to change the optical distance of the optical path of the reference light 3 3 a. Things.
  • These moving mechanisms 372 and 373 are composed of, for example, a piezo element, and in the present embodiment, it is assumed that those having the same characteristics are used.
  • the image sensor 36 is a CCD type image sensor or the like, and when driven by the control circuit 38, an amount of electric charge corresponding to the incident light intensity is accumulated in each pixel per unit time Tc, and the incident light intensity is reduced.
  • the control circuit 38 applies a driving voltage in a predetermined pattern to each of the moving mechanisms 37 3 and 37 2 at the time of fringe scanning, and causes the reference surface 33 and the test surface 32 to have a predetermined pattern. To move. At this time, the control circuit 38 drives the image sensor 36 to calculate the accumulated data output from the image sensor 36 ⁇ 0 , ⁇ 2 ,. Give to 9.
  • the arithmetic circuit 39 calculates a phase difference (for example, initial phase difference) between the reference light 33 a and the test light 32 a in a predetermined state (for example, an initial state at the time of starting fringe scanning). performing a predetermined operation on the accumulated data B Q, B ⁇ 2, ⁇ ⁇ '( measured value).
  • the arithmetic circuit 39 may be provided outside the interference measurement device 30. Further, instead of the arithmetic circuit 39, a computer that operates in the same manner as the arithmetic circuit 39 may be used.
  • the ratio of the movement amount of the test surface 32 to the movement amount of the Fize surface 33 (reference surface) is maintained at 1: 1 to 1 during fringe scanning.
  • At least two wavelengths (two periods of phase difference) of the light emitted from the light source 31 are changed at least by the difference in optical distance between the test light 32a and the reference light 33a (Fig. 2 ( a)).
  • the position of the test surface 32 change linearly with time with sufficient accuracy, and the phase difference between the test light 32 a and the reference light 33 a per unit time Tc
  • the quantity 27 ⁇ a is set to be 7 ⁇ / 2 (that is, a2 ⁇ 1/4) (see Fig. 2 (a)).
  • control circuit 38 changes the drive voltage applied to the moving mechanism 373 according to time during the period of 8 Tc, and adjusts the Fiso surface 33 (reference surface). ) Is evenly moved by half a wavelength, and at the same time, the drive voltage applied to the moving mechanism 372 is changed according to time to move the test surface 32 evenly by a half wavelength.
  • a positive / negative difference in quantity corresponds to a difference in the optical path shortening direction and the Z optical path extending direction, although either direction can be positive).
  • the arithmetic circuit 39 calculates the accumulated data B 0 , B B 2 , B as B 4 , B B 6 , B 7 (the measured values Equation (9) above is applied to () (see Fig. 2 (c)).
  • Noise light noise light (noise light c (WNW), noise light d that interferes with the test light 3 2a or the reference light 3 3a after reflecting on the surface 3 2 (WNR) s noise light e (RNR), noise light f (RNW)).
  • the letters in parentheses indicate the reflection paths. That is, the reflection path of the test surface 32 is represented by W, the reflection path of the Fizeau surface 33 is represented by: R, and the reflection path at any point in the Fizeau interferometer 35 is represented by N. In addition, the reflectance at any point in the Fizeau interferometer 35 is sufficiently lower than the reflectance of the test surface 32 or the Fizeau surface 33. Ignore noise light.
  • the optical path difference of each light and the amount of change in the optical path difference are calculated as follows.
  • the results are as shown in Table 1. That is, even in the present embodiment, on purpose similar differences first embodiment form is provided in the intensity variation cycle of the coherent noisy's component S ii ⁇ S 12 5 intensity change period and the required signal component S M.
  • the initial phase difference ⁇ is not affected by the coherent component by the equation (9). Is required.
  • the test surface 32 and the Fize in the same pattern as in the first embodiment, the test surface 32 and the Fize ), And by applying equation (9), the effect of the coherent noise component can be reliably removed. As a result, the shape measurement of the surface 3 2 Is done.
  • the moving amount ratio between the test surface 32 and the Fize surface 33 may be changed to 3: 1 or 1: 3 as in the second embodiment. Also in this case, the shape measurement is made more precise for the same reason as described in the description of the second embodiment.
  • the test surface 72, 32 may be moved in any pattern. If the movement pattern realizes such a periodic relationship, the effect of the coherent noise component can be reliably removed by the above equation (9).
  • the moving amount ratio between the test surfaces 72, 32 and the reference surface 73 is 1: 1-1, since the total moving distance of these surfaces can be kept small.
  • the transfer ratio be 3: 1 or 1: 3. As a result, an increase in the size of the interferometer can be suppressed.
  • Equation (12) is the initial phase difference derived from equation (4), similar to equation (8b) of the 5-bucket method described above. Is a calculation formula. Therefore, Equation (12) is equivalent to Equation (8b) under the assumption that no coherent noise component is generated.
  • equation (12) unlike equation (8b) of the five-packet method, the accumulated data to be based is increased to two cycles (of necessary signal components). The coherent noise component is removed and only the required signal component remains due to the characteristic.
  • an arithmetic expression based on any number of accumulated data may be applied as long as the coherent noise component can be eliminated.
  • the required signal component and the coherent If the reference surface and the test surface can be moved in a pattern that gives a difference to the period of the noise component, and the necessary signal component and coherent noise component can be separated or eliminated, Any movement pattern may be combined with any arithmetic expression.
  • the test surface and the reference surface When moving the test surface and the reference surface, it is necessary to move the test surface and the reference surface by controlling the timing of the start of movement and the difference in the movement speed.
  • a moving mechanism that synchronizes the test surface and the reference surface and drives each surface in the optical axis direction is required.
  • the reason why the test surface and the reference surface are moved respectively is to change the optical path length of the light beam passing through the test surface and the light beam passing through the reference surface.
  • the means for synchronously changing the respective optical path lengths is not limited to the moving mechanism for driving the test surface and the reference surface in the optical axis direction.
  • a piezo element having the same characteristics is applied between the moving mechanism 17 and the moving mechanism 77 or between the moving mechanism 373 and the moving mechanism 372. Then, it is preferable in that it is easy to set the driving voltage for realizing the above-described fringe scan, but if a desired fringe scan can be realized with sufficient accuracy, a piezo element having a different characteristic is applied. You may.
  • the present invention provides an interferometer and an interferometer for measuring the shape of a test surface, Can be used in a wide range of industrial fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

明 細 書 干渉計測方法および干渉計測装置 技術分野
本発明は、 干渉計による干渉計測方法、 および干渉計測装置に関する ものであり、 特に、 被検面からの被検光と参照面からの参照光との間の 位相差を変化させる走査 (フリ ンジスキャン) を行い、 その結果得られ る干渉信号に基づいて、 所定の状態における前記被検光と前記参照光と の位相差を前記被検面の形状情報として求める干渉計測方法、 および干 渉計測装置に関するものである。 背景技術
第 7図は、 被検面 7 2の面形状を測定するための従来の干渉計測装置 7 0の構成図である。
干渉計測装置 7 0では、 光源 7 1から出射された光が被検面 7 2と参 照面 7 3との双方に導かれると共に、 その光が被検面 7 2で反射するこ とにより生じた被検光 7 2 aと、 その光が参照面 7 3で反射することに より生じた参照光 7 3 aとが干渉して干渉縞を生じさせ、 その干渉縞は C C D型撮像素子などの撮像素子 7 6によって検知される。 このように して検知された干渉縞から、 被検光 7 2 aと参照光 7 3 aとの間の位相 差の二次元分布を知ることができ、 この二次元分布によって、 参照面 7 3を基準とした被検面 7 2の面形状が表される。
さらに高精度化を図る場合には、 以下に説明するフリンジスキャン干 渉法が適用される。
フリンジスキャン干渉法は、 ピエゾ素子などの移動機構 7 7により参 照面 7 3を 1 Z 2波長分程度移動させることで、 被検光 7 2 aと参照光 7 3 aとの光学的距離を 1波長分 (位相差にして 1周期分) 程度変化さ せ(フリンジスキャン)、 そのときの干.渉縞の濃淡の変化の仕方を検知す ることにより、所定の状態(例えばフリンジスキャン開始時の初期状態) における被検光 7 2 aと参照光 7 3 aとの位相差 (初期位相差) の値を 正確に求めるものである。 また、 被検面 7 2を 1 / 2波長分程度移動さ せても同じ結果が得られる。
一般に、 干渉計測装置 7 0では、 このフリンジスキャンの際に、 参照 面 7 3の位置が時間に対して直線的に変化するように設定されている (移動機構 7 7、 および制御回路 7 8の設定による。)。
また、 撮像素子 7 6は、 受光面に配置された各画素において、 入射光 強度に応じた量の電荷を単位時間 T。毎に蓄積し、 入射光強度の時間 T c間に亘る時間積分値、 すなわち蓄積デ一夕 B。、 B Β 2、 · · · を順 次出力する。 この蓄積データ Β 0、 Β 2、 · · ·が、 干渉信号として 使用される。
いま仮に、 干渉縞のある点 Αにおける、 被検光 7 2 aと参照光 7 3 a との初期位相差を 。とおき、単位時間 T。当たりの位相差変化量を 2 7Γ a (定数) とおくと、 フリンジスキャン開始からの時間 t経過時におけ る被検光 7 2 aと参照光 7 3 aとの位相差 ( t ) は、 式 ( 1 ) で表さ れる。
, . . 2jta , , 、
Φ( = -( + Φο … ) また、 被検光 7 2 aと参照光 7 3 aとによる干渉光強度 I ( t ) は、 この位相差 ( t ) を用いて式 ( 2 ) で表される。 なお、 ェ。、 ァはそ れそれ光源 7 1から出射される光の強度 (振幅) 等により定まる数 (定 数) である。 /(t) = /0[l + ycos(^(t))] … (2) また、 干渉光強度 I ( t) と、 干渉光強度の T。間に亘る時間積分値 である蓄積デ一夕 Β 0、 Βい Β 2、 · · ' との関係は、 式 ( 3 ) で表され る。
Figure imgf000005_0001
したがって、 各蓄積デ一夕 B。、 B 、 B2 は、 式 (4) で表さ れる。
J γΧ
Β,. = /0i + ~ ~sin^iacos(27r E: + ^0) ··· ( 4 ) の式 (4) を変形すると、 式 ( 5)、 および式 (6 ) が得られる
B ― sin πα cos 2nak cos ^0一- sin 7ta sin mk sin φ0
Ml
D^Xk C-Yk S
(5) D^I c> C = IoYTc COS^, S = I0yTc sin φ0
X k =—— sin Tta cos 2t k, Yh =— sin mi sin 2 k
ττα 0 = tan"1^) - (6) また、 上式 (4) からは、 単位時間 T。当たりの位相差変化量 27Γ a を、 4つの蓄積デ一夕 B。、 B B 3、 B 4で表す式 ( 7 ) が導かれる。
Figure imgf000005_0002
これらの関係に基づき、 干渉計測装置 70の演算回路 79は、 撮像素 子 7 6が出力する各蓄積データ B0、 B ls Β2、 · · ' (実測値) に、 式 ( 7 ) を適用して aの値を求め、 さらに求めた aの値と、 式 ( 5) およ び式 ( 6 ) から、 初期位相差 ø。の値を求める。
さらにこの初期位相差 ø。の値の算出は、 撮像素子 7 6の各画素の出 力についてそれそれ行われ、 算出された初期位相差 ø。の二次元分布が、 参照面 73を基準とした被検面 72の形状情報と'して、 モニタなどの表 示器 (不図示) に出力される。
ここで、 以上のようなフリンジスキャン干渉法においては、 参照面 7 3の移動のさせ方を限定して演算を簡略化させることができる。
例えば、 第 8図 ( a) に示すように、 単位時間 T c当たりの被検光 7 2 aと参照光 7 3 aとの位相差変化量 2 ττ aが ノ 2となるよう (すな わち、 a = 1 /4となるよう) 設定すれば、 次式 ( 8 a) 又は式 ( 8 b) (何れも式 (4 ) において a= 1Z4とおく ことで導かれる式である。) によって、 連続する 4つの蓄積デ一夕、 例えば B。、 B 2、 B 3 (実 測値)、 または連続する 5つの蓄積デ一夕、 例えば B。、 Bい B 2、 B 3、 B4 (実測値) から、 直接的に初期位相差 0。を求めることができる (第 8図 (b)、 ( c ) 参照)。
Figure imgf000006_0001
なお、 4つの蓄積データから式 ( 8 a) により初期位相 ø 0を求める 方法は 「4バケツ ト法」 と呼ばれ、 5つの蓄積デ一夕から式 ( 8 b) に より初期位相 ø。を求める方法 (但しこの場合、 フ リンジスキャンは、 少なく とも位相差にして ( 1 + 1/4) 周期分行われる。) は 「 5ノ ケヅ ト法」 と呼ばれる。因みに、 4バケッ ト法よりも、 5バケッ ト法の方が、 基づくべき蓄積デ一夕の数が 1多い分だけ処理時間が長くかかるが、 そ の分高精度である。
ところで、撮像素子 7 6が出力する各蓄積デ一夕 B 0、B 1、B 2、· · · (実測値) には、 必要な信号成分 (参照光 7 3 aと被検光 7 2 aとが成 す干渉光による) の他に、 コヒーレントノイズ成分 (余分な反射を行つ て撮像素子 7 6に入射したノイズ光が成す干渉光による) が重畳されて いる。
ここで、 ノイズ光は、 第 7図中細線で示すように、 光源 7 1からの出 射光の一部であって干渉計 7 5内の何れかの箇所で反射して被検面 7 2 や参照面 7 3を介することなく被検光 Ί 2 aや参照光 7 3 aに干渉する ノイズ光 (ノイズ光 b (N))、 および、 被検面 7 2または参照面 7 3か らの反射光の一部であって干渉光学系 7 4の表面や光源 7 1の射出口な どで反射して再び被検面 7 2または参照面 7 3に向かい、 被検面 7 2ま たは参照面 7 3で反射した後に被検光 7 2 aや参照光 7 3 aに干渉する ノィズ光(ノィズ光 c (WNW)s ノィズ光 d (WNR)s ノィズ光 e (R NR)ヽ ノイズ光 f (R NW)) である。
なお、括弧内に示したアルファべッ トは、反射経路を示す。すなわち、 被検面 7 2の反射経路が W、 参照面 7 3の反射経路が R、 干渉計 7 5内 の何れかの箇所の反射経路が Nで表される (干渉計 7 5内の何れかの箇 所の反射率は、 被検面 7 2や参照面 7 3の反射率と比較して十分に低い ので、 その箇所で 2回以上反射したノイズ光については無視する)。
これらノイズ光 b、 c、 d、 e、 f によって干渉信号に重畳されるコ ヒーレントノイズ成分は、 何らかの演算によって必要な信号成分と分離 し、 かつ除去することが望まれる。 .
しかしながら、 従来の干渉計測装置 7 0では、 上記したように式 ( 8 a) や式 ( 8 b) が適用されることからも明らかなように、 蓄積データ B 0、 Bい B 2、 · · ·(実測値) にコヒーレン トノィズ成分が重畳され ていないとみなされていたので、 最終的に形状情報として求められる初 期位相差 。には、 誤差が含まれていた。
ここで、 必要な信号成分とは異なった周期で変化するコヒーレン トノ ィズ成分については、 何らかの演算によってその信号成分からの分離が 可能であるが、 必要な信号成分と同じ周期で変化するコヒーレン トノィ ズ成分については、 如何なる演算を適用しても、 その分離が不可能であ る。
因みに、 干渉計測装置 7 0では、 コヒ一レン トノイズ成分のうち、 ノ ィズ光 bが参照光 7 3 aに干渉して生じさせるもの、 ノィズ光 cが参照 光 7 3 aに干渉して生じさせるもの、 ノィズ光 dが被検光 7 2 aに干渉 して生じさせるもの、 ノイズ光 eが参照光 7 3 aに干渉して生じさせる もの、ノィズ光 f が参照光 7 3 aに干渉して生じさせるものについては、 参照面 7 3の移動に伴って必要な信号成分と同じ周期で変化するために. 分離 (すなわち除去) できない (なお、 詳細は後述する表 2参照。)。 そこで考えられるのは、 コヒ一レン トノィズ成分の原因であるノイズ 光 b、 c、 d、 e、 f の発生自体を、 干渉計 7 5内の光学素子の変更な どにより回避することであるが、 光学素子の面の反射率と配置角度など に応じて生じるノィズ光は、 どのような光学素子からなる干渉計におい ても少なからず発生し得るため、 その完全な回避は不可能である。
したがつて従来では、 コヒ一レン トノィズ成分による影響を抑えるこ とは、 演算内容の変更によっても、 ハードウェアの変更によっても不可 能と考えられ、 光学素子の表面に反射防止膜を形成したり、 余分な反射 光を光路から外すための素子を揷入したり して、 コヒーレン トノィズ成 分の強度を僅かに抑えるという程度のことしかされていなかった。 発明の開示 本発明は、 上記のフリンジスキャン干渉法を応用することによって、 コヒーレントノィズ成分による影響を確実に低減させることができる干 渉計測方法および干渉計測装置を提供することを目的とする。
すなわち、 第 1の発明は、 光源から出射された光を被検面と参照面と の双方に導く と共に、 その光が前記被検面で反射することにより生じた 被検光と、 その光が前記参照面で反射することにより生じた参照光とを 干渉させる干渉光学系と、 前記被検光と前記参照光とが成す干渉光の光 路に配置され、 入射光の強度に応じた干渉信号を出力する受光素子とを 備えた干渉計による干渉計測方法であつて、 前記被検光と前記参照光と の位相差を変化させる走査の際に、 前記被検光光路の光学的距離と、 前 記参照光光路の光学的距離との双方をそれそれ所定のパターンで同時に 変化させることによって、 前記干渉信号のうち、 前記参照光と前記被検 光との間の位相差に応じて変化する必要な信号成分の強度変化周期と、 前記被検光光路および前記参照光光路の少なく とも一部を経由した所定 のノィズ光が前記被検光または前記参照光に干渉することにより生じる コヒ一レン トノイズ成分の強度変化周期とに、 差異を設ける変調走査手 順と、 前記変調走査手順が行われているときに前記受光素子から出力さ れる干渉信号に基づき、 所定の状態における前記被検光と前記参照光と の位相差を前記被検面の形状情報として求める算出手順とを有すること を特徴とする干渉計測方法である。
一般に、 変化周期の互いに異なる 2つの信号は、 演算により分離可能 である。 したがって、 前記変調走査手順によってその強度変化周期に差 異が設けられた必要な信号成分とコヒーレントノィズ成分とは、 演算に より互いに分離可能である。 よって、 本発明においては、 受光素子が出 力する干渉信号に、 上記のようなコヒ一レン トノイズ成分が重畳されて いたとしても、 その後行われる算出手順においてその影響を除去するこ とができる。 よって、 本発明によれば、 コヒ一レン トノイズ成分による 影響が確実に低減するので、 形状情報を高精度に求めることができる。 第 2の発明は、 前記第 1の発明であって、 前記変調走査手順では、 前 記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離の 変化量との比が 1 : 一 1に保たれることを特徴とするものである。
ここで、 コヒーレン トノイズ成分を重畳させるノイズ光は、 光源から の出射光の一部であって干渉計内の何れかの箇所で反射して被検面ゃ参 照面を介することなく被検光ゃ参照光に干渉するノイズ光、 および、 被 検面または参照面からの反射光の一部であって干渉光学系の表面や光源 の射出口などで反射して再び被検面または参照面に向かい、 被検面また は参照面で反射した後に被検光ゃ参照光に干渉するノイズ光である。
しかし、 上記した変調走査手順では、 前記被検光光路の光学的距離の 変化量と前記参照光光路の光学的距離の変化量との比が 1 : 一 1に保た れるので、 少なく ともこれらのノィズ光が成すコヒ一レントノィズ成分 の強度変化周期は、 必要な信号成分の強度変化周期とは異なるものとな る。 つまりこのコヒ一レン トノイズ成分による影響を、 その後行われる 算出手順において確実に除去することができる。
なお、 干渉計内では、 何れかの箇所で 2回以上反射したノイズ光が発 生するが、 その箇所の反射率は、 被検面ゃ参照面の反射率と比較して十 分に低いので、 このノイズ光が成すコヒーレン トノイズ成分は、 先に示 したコヒーレン トノイズ成分と比較して十分に小さい。 したがって、 こ の干渉計測方法によると、 コヒ一レントノィズ成分による影響は十分に 小さく抑えられる。
また、 変調走査手段による移動量比については 1 : — 1以外の他の値 であっても同じ効果が得られるようなものはあるが、 1 :— 1の比によ れば、 被検光光路と参照光光路との光学的距離の変化量の合計を小さく 抑えられる点で好ましい。
第 3の発明は、 前記第 1の発明であって、 前記変調走査手順では、 前 記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離の 変化量との比が 1 : 3または 3 : 1に保たれることを特徴とするもので ある。
この比が保たれているときには、 前記第 2の発明と同じノイズ光によ るコヒーレン トノイズ成分の強度変化周期が、 必要な信号成分の強度変 化周期とは異なるものとなるので、 前記第 2の発明と同様にして、 コヒ —レン トノィズ成分による影響を十分に小さく抑えることができる。 また、 このような移動量の比 1 : 3、 または 3 : 1によると、 光学的 距離の変化量の合計は、 比 1 : — 1による場合と比較すると大きくなる ものの、 その他の比が設定された場合よりは小さく抑えられる。
第 4の発明は、 前記第 1の発明から第 3の発明のいずれかであって、 前記変調走査手順では、 前記走査が、 少なく とも前記必要な信号成分の 強度変化の 2周期分行われ、 前記算出手順では、 前記被検面の形状情報 が、 少なく とも前記必要な信号成分の強度変化の 2周期分に対応する前 記干渉信号に基づいて求められることを特徴とするものである。
このように、 基づくべき干渉信号を 2周期分とすれば、 必要な信号成 分の周期的な性質と、 コヒ一レン トノイズ成分の周期的な性質とを利用 して、 コヒ一レン トノイズ成分を除去して必要な信号成分のみを残留さ せることができる。 この結果、 コヒ一レン トノイズ成分による影響を、 確実に抑えることができる。
第 5の発明は、 光源から出射された光を被検面と参照面との双方に導 く と共に、 その光が前記被検面で反射することにより生じた被検光と、 その光が前記参照面で反射することにより生じた参照光とを干渉させる 干渉光学系と、 前記被検光と前記参照光とが成す干渉光の光路に配置さ れ、 入射光の強度に応じた干渉信号を出力する受光素子と、 前記被検光 光路の光学的距離と前記参照光光路の光学的距離との双方を同時に移動 させる移動手段と、 前記被検光と前記参照光との位相差を変化させる走 査の際に、 前記移動手段を動作させて、 前記被検光光路の光学的距離と 前記参照光光路の光学的距離との双方をそれそれ所定のパターンで同時 に変化させることにより、 前記干渉信号のうち、 前記参照光と前記被検 光との間の位相差に応じて変化する必要な信号成分の強度変化周期と、 前記被検光光路および前記参照光光路の少なく とも一部を経由した所定 のノィズ光が前記被検光または前記参照光に干渉することにより生じる コヒーレン トノイズ成分の強度変化周期とに、 差異を設ける変調走査手 段と、 前記変調走査手段による走査中に前記受光素子から出力される干 渉信号に基づき、 所定の状態における前記被検光と前記参照光との位相 差を前記被検面の形状情報として求める算出手段とを備えたことを特徴 とする干渉計測装置である。
第 6の発明は、 前記第 5の発明であって、 前記変調走査手段が、 前記 被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離の変 化量との比を 1:一 1に保つ機能を有することを特徴とするものである。 第 7の発明は、 前記第 5の発明であって、 前記変調走査手段が、 前記 被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離の変 化量との比を 1 : 3または 3 : 1に保つ機能を有することを特徴とする ものである。
第 8の発明は、 前記第 5の発明から第 7の発明のいずれかであって、 前記変調走査手段が、 前記走査を、 少なくとも前記必要な信号成分の強 度変化の 2周期分行い、 前記算出手段が、 前記被検面の形状情報を、 少 なく とも前記必要な信号成分の強度変化の 2周期分に対応する前記干渉 信号に基づいて求めることを特徴とするものである。 これら第 5の発明〜第 8の発明である干渉計測装置によれば、 それそ れ前記第 1の発明〜第 4の発明である干渉計測方法が自動的に実施され る。
第 9の発明は、 光源から射出され、 測定対象である被検面からの反射 光と参照面からの反射光を干渉させ、 参照面に対する被検面の差異を測 定する干渉計測装置であって、 前記被検面を経た光線と前記参照面を経 た光線のそれそれの光路長を、 同期して変化させる光路長可変手段を有 することを特徴とする干渉計測装置である。
本手段においては、 必要な新合成分とコヒーレントノィズ成分の周期 に同期して差異を与えるようにすることができるので、 必要な信号成分 とコヒ一レントノイズ成分とを分離したり、 コヒーレン トノイズ成分を 除去したりすることができる。 図面の簡単な説明
第 1図は、 第 1実施形態および第 2実施形態の干渉計測装置の構成図 である。 '
第 2図は、 第 1実施形態、 第 2実施形態、 および第 3実施形態の動作 を説明する図である。
第 3図は、 第 1実施形態における各コヒ一レントノィズ成分と必要な 信号成分との変化の仕方を比較する図である。
第 4図は、 従来例における各コヒーレントノイズ成分と必要な信号成 分との変化の仕方を比較する図,である。
第 5図は、 第 2実施形態における各コヒ一レントノィズ成分と必要な 信号成分との変化の仕方を比較する図である。
第 6図は、 第 3実施形態の干渉計測装置の構成図である。
第 7図は、 従来の干渉計測装置の構成図である。 第 8図は、 従来の干渉計測装置の動作を説明する図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態のうち、 最良と思われるものの例を、 図を' 用いて説明するが、 本発明の範囲は、 これら実施の形態の範囲に限定さ れるものでないことは言うまでもない。
<第 1実施形態 >
以下、 第 1図、 第 2図、 第 3図、 第 4図に基づいて本発明の第 1実施 形態を説明する。 (第 1実施形態の構成)
第 1図は、 本実施形態の干渉計測装置 1 0 (および後述する第 2実施 形態の干渉計測装置 2 0 ) の構成図である。 第 1図において、 第 7図に 示す従来の干渉計測装置 7 0と同じものについては同一の符号を付して 示した。
干渉計測装置 1 0は、 第 7図に示した干渉計測装置 7 0において、 被 検面 7 2を移動させる移動機構 1 7がさらに備えられ、 制御回路 7 8に 代えて制御回路 1 8が備えられ、 演算回路 7 9に代えて演算回路 1 9が 備えられたものに等しい。すなわち、干渉計測装置 1 0は、光源 7 1 と、 干渉光学系 7 4 (ビ一ムスプリ ヅ夕 Ί 4 b、ビームエキスパンダ 7 4 a、 結像レンズ 7 4 c等) と、 撮像素子 7 6と、 2つの移動機構 7 7 s 1 7 と、 制御回路 1 8と、 演算回路 1 9 とを備える (以下、 光源 7 1、 干渉 光学系 7 4、 撮像素子 7 6からなる系を、 干渉計 7 5とする)。
この中で干渉光学系 7 4は、 光源 7 1から出射された光を被検面 7 2 と参照面 7 3との双方に導く と共に、 その光が被検面 7 2で反射するこ とにより生じた被検光 7 2 aと、 その光が参照面 7 3で反射することに より生じた参照光 7 3 aとを干渉させるものである。
移動機構 1 7は、 被検光 7 2 aの光路の光学的距離を変化させるため に、 与えられる駆動電圧に応じた距離だけ被検面 7 2を光軸方向へ移動 させるものであり、 移動機構 7 7は、 参照光 7 3 aの光路の光学的距離 を変化させるために、 与えられる駆動電圧に応じた距離だけ参照面 7 3 を光軸方向に移動させるものである。 これら移動機構 1 7、 7 7は、 例 えばピエゾ素子などからなり、 本実施形態では、 互いに同じ特性のもの が使用されるとする。
撮像素子 7 6は、 被検光 7 2 aと参照光 7 3 aとが成す干渉光の光路 に配置された C C D型撮像素子などであり、 制御回路 1 8により駆動さ れると、 各画素において入射光強度に応じた量の電荷を単位時間 T c毎 に蓄積し、 入射光強度の時
間 T cに亘る時間積分値を示す信号である蓄積デ一夕 B。、 B 2、 · · ·(実測値) を順次出力する (本明細書では、 取得順に添え字を 付す。)。 干渉計測装置 1 0においては、 この蓄積データ B。、 B x , B 2、 · · ·(実測値) が、 干渉縞の濃淡を示す干渉信号として利用される。 制御回路 1 8は、フリンジスキヤン時に、光源 7 1を駆動すると共に、 移動機構 7 7、 1 7のそれそれに対して所定のパターンで駆動電圧を印 加し、 参照面 7 3と被検面 7 2とをそれそれ所定のパターンで移動させ る。 また、 制御回路 1 8はこのときに撮像素子 7 6を駆動し、 撮像素子 7 6から出力される蓄積データ: Β。、 Β 2、 · · '(実測値) を演算 回路 1 9に与える。
演算回路 1 9は、 所定状態 (例えばフ リンジスキャン開始時の初期状 態) における参照光 7 3 aと被検光 7 2 aとの間の位相差 (例えば初期 位相差 。) を求める際に、 蓄積デ一夕 B。、 Bい Β 2、 · · '(実測値) に対して所定の演算を施す。 なお、 この演算回路 1 9は、 干渉計測装置 1 0の外部に備えられていてもよい。また、この演算回路 1 9に代えて、 演算回路 1 9と同じ動作をするコンピュータを利用してもよい。 (第 1実施形態の動作)
第 2図は、 本実施形態の動作を説明する図である。
本実施形態では、 蓄積デ一夕 B。、 B Β 2、 · · ·(実測値) に重畳 されるコヒーレントノイズ成分の強度変化周期を、 必要な信号成分の強 度変化周期と違うものとするために、 フリンジスキャン時に被検面 7 2 と参照面 7 3との双方を、 同時に移動させる。 この際、 被検面 7 2の移 動量と参照面 7 3の移動量との比は、 1 : ー 1に保たれる。
さらに、 必要な信号成分の 2周期分に相当する倩報を得るために、 第 2図 ( a) に示すように、 被検光 7 2 aと参照光 7 3 aの光学的距離の 差を、 少なく とも光源 7 1から出射される光の 2波長分 (位相差にして 2周期分) 変化させる。
また、 後述する式 ( 9 ) を適用するための条件として、 参照面 7 3の 位置と被検面 7 2の位置とが何れも十分な精度で時間に対して直線的に 変化し、 かつ単位時間 T c当たりの被検光 7 2 aと参照光 7 3 aとの位 相差変化量 27Γ aが 7Γ/2となるよう (すなわち、 a= l/4となるよ う) 設定される (第 2図 (a) 参照)。
すなわち、 制御回路 1 8は、 8 T cの期間中に、 移動機構 7 7に与え る駆動電圧を時間に応じて変化させて参照面 7 3を 1Z2波長分均等に 移動させると同時に、 移動機構 1 7に与える駆動電圧を時間に応じて変 化させて被検面 7 2を一 1/2波長分均等に移動させる (なお、 移動量 の正/負の相違は、 光路短縮方向/光路拡張方向の相違に対応する。 た だし、 どちらの方向を正にとつてもよい)。
このフリンジスキャンの結果、 順に蓄積データ B。、 B B 2、 B 3、 B4、 B 5、 B 6、 B 7 (実測値) が得られる (第 2図 (b) 参照)。 これ らの各蓄積デ一夕は、それぞれ必要な信号成分の 1 /4周期分に相当し、 これらの蓄積データの全体は、 必要な信号成分の 2周期分のデータに相 当する。
さらに、本実施形態の演算回路 1 9は、初期位相差 ø。を求める際に、 これら 2周期分の蓄積デ一夕 B0、 Bい B2、 B3、 B4、 B5、 Bい B 7 (実測値) に対して、 次式 (9) を適用する (第 2図 (c) 参照) (な お、 この式 (9 ) の意味については後述する。)。
Figure imgf000017_0001
(第 1実施形態におけるコヒ一レン トノイズ成分の振る舞い)
ここで、 干渉計測装置 1 0においてコヒーレントノィズ成分に関係す るノイズ光は、 従来と同様、 ノイズ光 b (N)、 ノイズ光 c (WNW)s ノイズ光 d (WNR)、 ノイズ光 e (RNR)、 ノイズ光 f (RNW) で める。
なお、括弧内に示したアルファべッ トは、反射経路を示す。すなわち、 被検面 72の反射経路が W、 参照面 73の反射経路が R、 干渉計 75内 の何れかの箇所の反射経路が Nで表される。 また、 干渉計 75内の何れ かの箇所の反射率は、 被検面 72や参照面 73の反射率と比較して十分 に低いので、その箇所で 2回以上反射したノィズ光については無視する。 次に、 表 1に基づいて、 必要な信号成分の強度変化周期と、 各コヒー レン トノイズ成分の強度変化周期とを比較する。
表 1は、 本実施形態における各光の光路差、 および光路差変化量を比 較する表である。 第 1実施形態における各光の光路差, 光路差変化量を比較する表
Figure imgf000018_0001
(参照光の光路変化 を基準とする) 上記したように本実施形態では、 参照光 7 3 aの光路変化量が 「 1」 であるときの被検光 7 2 aの光路変化量は 「― 1」 であるので、 ノイズ 光 b、 c、 d、 e、 f の光路変化量は、 それそれ 「 0」、 「― 2 」、 「 0」、 「 2」、 「 0」 となる。
このときの参照光 7 3 aと被検光 7 2 aとが成す干渉光、 すなわち必 要な信号成分 S Mの強度変化周期は、 欄 Mによって示される。 この欄 M には、 参照光 7 3
aと被検光 7 2 aとの光路差 「W— R」 と、 光路差'変化量 「一 2」 とが 記されており、 この光路差変化量 「一 2」 の大きさが、 この 2光が成す 干渉光の強度変化の速さを示す。
そこで以下では、 各干渉光の強度変化周期を、 その干渉光を成す 2光 の 「光路差変化量の大きさ」 で表す。 すなわち、 必要な信号成分 S M
「周期 2」 で変化する。
同様に、 ノイズ光 bが被検光 7 2 aに干渉して生じさせるコヒ一レン トノィズ成分 s 丄 iは、 「周期 1」 で変化する (欄 1 1 1参照)。
また、 ノィズ光 cが被検光 7 2 aに干渉して生じさせるコヒーレン ト ノイズ成分 S i 1 2は、 「周期 1」 で変化する (欄 1 1 2参照)。 また、 ノイズ光 dが被検光 7 2 aに干渉して生じさせるコヒ一レント ノイズ成分 S i丄 3は、 「周期 1」 で変化する (欄 1 1 3参照)。
また、 ノイズ光 eが被検光 7 2 aに干渉して生じさせるコヒーレント ノイズ成分 S 1 1 4は、 「周期 3」 で変化する (欄 1 14参照)。
また、 ノイズ光 f が被検光 7 2 aに干渉して生じさせるコヒ一レン ト ノイズ成分 S i丄 5は、 「周期 1」 で変化する (欄 1 1 5参照)。
また、 ノイズ光 bが参照光 7 3 aに干渉して生じさせるコヒーレント ノイズ成分 S i 2 1は、 「周期 1」 で変化する (欄 1 2 1参照)。
また、 ノイズ光 cが参照光 7 3 aに干渉して生じさせるコヒーレント ノイズ成分 S 1 2 2は、 「周期 3」 で変化する (欄 1 2 2参照)。
また、 ノィズ光 dが参照光 7 3 aに干渉して生じさせるコヒーレント ノイズ成分 S 1 2 3は、 「周期 1」 で変化する (欄 1 2 3参照)。
また、 ノィズ光 eが参照光 7 3 aに干渉して生じさせるコヒ一レント ノィズ成分 S i 2 4は、 「周期 1」 で変化する (欄 1 24参照)。
また、 ノイズ光 f が参照光 7 3 aに干渉して生じさせるコヒーレント ノイズ成分 S i 2 5は、 「周期 1」 で変化する (欄 1 2 5参照)。
すなわち、 本実施形態では、 各コヒーレン トノィズ成分 S t i 〜312 5の強度変化周期と、 必要な信号成分 S Mの強度変化周期とに差異が設け られる。
第 3図は、 本実施形態における、 各コヒ一レン トノィズ成分 S! ! x - S 12 5と、 必要な信号成分 SMとの変化の仕方を比較する図である。 第 3図 ( a) が必要な信号成分 SMと同じく 「周期 2」 で変化する信号を 示すのに対し、 第 3図 (b) はコヒ一レン トノィズ成分 S い S! 12 S 1 13、 い S 12い S 123、 S 124、 S 125のように 「周期 1」 で 変化する信号を示し、 第 3図 ( c) はコヒーレン トノイズ成分 S 1 14、 S 122のように 「周期 3」 で変化する信号を示す (但し、 第 3図に示し た振幅および位相は何れも意味を持たない。)。
したがって、 上記フリンジスキヤン時に撮像素子 76から出力される 蓄積デ一夕 B。ヽ Bい B2、 B3、 B4、 Bい B6、 B 7 (実測値) には、 「周期 2」 で変化
する必要な信号成分 B 10、 B! 1 B 12, Β 13、 Β 14、 い B 16、 B 17 (第 3図 (a) 参照) と、 「周期 1」 で変化するコヒ一レン トノィ ス成分 I) 2 o、 B 2い B22、 J323、 t 2 4 s B 2 5 N B 26、 J327 ( 5l!3図 (b) 参照) と、 「周期 3」 で変化するコヒ一レン トノイズ成分 B 30、 B3い B32、 B33、 B34、 B3い B3い B37 (第 3図 (c) 参照) とが重ね合わされていると考えられる。 すなわち、 コヒーレン トノイズ 成分を考慮して各蓄積デ一夕 Bk (実測値) を表すと、 Bk = B l k + B2 k + B 3 kとなる。
さて、 上記したように本実施形態では、 式 ( 9) が使用される。 この 式 (9) は、 上記した 4バケツ ト法の式 (8 a) と同様に式 (4) から 導かれる初期位相差 ø。の算出式である。 したがって、 式 ( 9) は、 コ ヒ一レン トノイズ成分が発生しないとの仮定の下では、 式 ( 8 a) と等 価である。
ここで、 必要な信号成分 Β 10、 い B 12、 B 13、 B 14、 B ! 5N B 167については、 式 (4) や第 3図 (a) からも明らかなよう に、 その周期的性質から、 B 10 = B 14、 B J! = B! 5 B 12-B! 6, B丄 3 = B i 7が成立する。 また、 コヒーレン トノイズ成分 B 2。、 B21、 j322、 D 2 3、 D 2 4、 I)25、 B2 6、 Β27ί· ^い こ (ま、 Β 2 0 + 2 4 — -D
2 1 + B25 = B22 + B26 = B23 + B27 = Bv lが成立し (第 3図 (b) 参照)、 コヒ一レン トノイズ成分 B3。、 B 3 1 , B32、 B33、 B34、 B 3 5、 B 3 6 s B 3 7 V (/、 し ίま、 Β3 0 + Β 3 4 ~ Β 3 1 + Β3 5 ~ Β 3 2 + Β 3 6
= Β3337 = Βν3が成立する (第 3図 (c) 参照)。 このとき、 式 ( 9 ) の右辺に、 蓄積デ一夕 B 0、 B Bい B3、 B4、 B 5、 B 6、 B 7 (実測値) を当てはめると、 下式 ( 1 0 ) に明らかなよ うに、 コヒーレン トノィズ成分に相当する項 (B 2 0 B 2 1 B 2 2 B
B 2 4 B 2 5ヽ B " 2 6ヽ B " 2 7ヽ B3 0 ' B B 3 2 ' B 3 3 B 3 4 B
3 5 B 3 6 B 37) は全て消去される
Figure imgf000021_0001
'(2Bw +Bvl +Bv3)-(2Bt2 +B^ +B
tan
^(2£ll +JSvl +ifv3)-(2Bl3 + /Jvl +B„3)J
'2Βω -2ΒΙ2\
- lan
2B„ ~2Baj
tan" 一ね "I
(1 0) Βηί5, Bl2 = β16, Βη,
β20 + Β24 = ΒΆ + Β252226 = Β23 + Β = RvL,
Β^ + Β^ = , + Bis - B32 + B3i = By3 + Β37 = βリ、
すなわち、 式 ( 9 ) では、 4パケッ ト法の式 ( 8 a) とは異なり、 基 づくべき蓄積データが (必要な信号成分 B 1 kの) 2周期分に増えてい るので、各成分の周期的な性質によって、コヒーレン トノイズ成分 B 2 B 3 kが除去されて必要な信号成分 B l kのみが残留する。
したがって、 本実施形態における式 ( 9 ) によれば、 蓄積デ一夕 B k (実測値) にコヒーレン トノイズ成分 B 2 k、 B 3 kが如何なる強度で重 畳されていようとも、 その成分の影響を受けずに初期位相差 ø。が求め られる。
次に、 以上説明した本実施形態と比較するため、 従来の干渉計測装置 70におけるコヒーレン トノイズ成分の振る舞いを、 表 2、 第 4図に基 づいて説明する。
(表 2 ) 従来例における各光の光路差, 光路差変化 ftを比較する表
Figure imgf000022_0001
(参照光の光路変化置を基準とする) 上記したように従来の干渉計測装置 7 0では被検面 7 2については何 ら移動させないので、 参照光 7 3 aの光路変化量が 「 1」 であるときの 被検光 7 2 aの光路変化量は「 0」である。 これに伴いノイズ光 b、 c、 d、 e、 f の光路変化量は、 それそれ 「 0」、 「 0」、 「 1」、 「 2」、 「 1」 となる。
また、 必要な信号成分 SM, (参照光 7 3 aと被検光 7 2 aとが成す干 渉光) は 「周期 1」 で変化する (欄 M参照)。
また、 ノイズ光 b、 cのそれそれが被検光 7 2 aに干渉して生じさせ るコヒーレン トノイズ成分 S 丄 ,、 S 1 12, およびノイズ光 d、 f のそ れそれが参照光 7 3 aに干渉して生じさせるコヒーレン トノイズ成分 S 123'、 S 1 2 5 5 は、 何れも 「周期 0」 で変化する (すなわち定常的であ る) (欄 1 1 1、 1 1 2、 1 2 3、 1 2 5参照)。
また、 ノイズ光 d、 : のそれそれが被検光 7 2 aに干渉して生じさせ るコヒ一レン トノイズ成分 S丄 丄 3 ,、 S 1 15'、 およびノイズ光 b、 c、 eのそれそれが参照光 7 3 aに干渉して生じさせるコヒ一レントノイズ 成分 s 121,、 s 122,、 S 124, は、 何れも 「周期 1」 で変化する (欄 1 1 3、 1 1 5、 1 2 1、 12 2 124参照)。
また、 ノイズ光 eが被検光 72 aに干渉して生じさせるコヒ一レン ト ノイズ成分 S 114' は、 「周期 2」 で変化する '(欄 1 14参照)。
すなわち、 従来例では、 一部のコヒーレン トノイズ成分 S i 3,、 S!
15\ S 121\ S 122\ S 1 24 ' の強度変化周期が、 必要な信号成分 S M 5 の強度変化周期と同じになっている。
したがって、従来の撮像素子 76から出力される蓄積データ B 0、 B 、 B2、 B 3 (実測値) には、 第 4図に示すように、 「周期 1」 で変化する 必要な信号成分 B10、 B: x, B 12、 B 13 (第 4図 (a) 参照) と、 「周 期 1」 で変化するコヒーレン トノィズ成分 B 2。,、 B21,、 B22,、 B 2 3, (第 4図 (b) 参照) と、 「周期 2」 で変化するコヒ一レン トノイズ 成分 B30'、 B31\ B32\ B 33 5 (第 4図 (c) 参照) とが重ね合わ されていると考えられる。 すなわち、 コヒ一レン トノイズ成分を考慮し て各蓄積デ一夕 Bk (実測値) を表すと、 Bk二 B l k + B2k, +B3k, となる。
そして、 従来適用されていた例えば式 (8 a) では、 2つずれた蓄積 データ同士が引き算されているので、 「周期 2」で変化するコヒーレン ト ノイズ成分 B 3。,、 B31\ B32,、 B 3 3 5 からは、 B3。, 二 B32,、 B 3 1533' が成立するために影響を受けないものの、 必要な信号 成分 Β10、 い B12、 B 13と同じ 「周期 1」 で変化するコヒーレン トノイズ成分 Β2。,、 Β21\ Β22\ Β23' からは、 影響を受ける。 また仮に、 別の式を用いたとしても、 同じ周期で変化する信号同士は 分離不可能であるため、 このコヒ一レン トノイズ成分 B2k' を消去する ことはできない。
その点、 上述した本実施形態では、 被検面 7 2と参照面 73のそれそ れを移動量比 1 : 一 1に保ちつつ移動させることにより、 コヒ一レント ノィズ成分の強度変化周期を必要な信号成分の強度変化周期とは異なる ものとし、 かつ、 式 ( 9 ) の適用によって、 このようなコヒ一レントノ 'ィズ成分の影響を確実に除去することができる。 この結果、 被検面 7 2 の形状測定が高精度化される。
<第 2実施形態 >
次に、 第 1図、 第 5図に基づいて本発明の第 2実施形態を説明する。 ここでは、 第 1実施形態との相違点についてのみ説明する。
(第 2実施形態の構成)
本実施形態の干渉計測装置 2 0は、 第 1図に示す干渉計測装置 1 0に おいて、制御回路 1 8に代えて制御回路 2 8が備えられたものに等しい。 制御回路 2 8は、 制御回路 1 8と同様に、 フリンジスキャン時に移動 機構 7 7、 1 7のそれそれに対して所定のパターンで駆動電圧を印加し、 参照面 Ί 3 と被検面 Ί 2とをそれぞれ所定のパターンで移動させると共 に、 撮像素子 7 6を駆動し、 そのときに撮像素子 7 6から出力される蓄 積データ B。、 B 2、 · · · を演算回路 1 9に与えるが、 参照面 Ί 3 および被検面 7 2の移動パターンは、 制御回路 1 9によるものとは異な る。
(第 2実施形態の動作)
第 2実施形態では、 フリンジスキャン時に、 被検面 7 2の移動量と参 照面 7 3の移動量との比は、 3 : 1に保たれる。
すなわち、 制御回路 2 8は、 8 T cの期間中に、 移動機構 7 7に与え る駆動電圧を時間に応じて変化させて、 参照面 7 3を 1 / 2波長分均等 に移動させると同時に、 移動機構 1 7に与える駆動電圧を時間に応じて 変化させて被検面 7 2を 3 / 2波長分均等に移動させる (なお、 移動量 の正/負の相違は、 光路短縮方向 Z光路拡張方向の相違に対応する。 た だし、 どちらの方向を正にとつてもよい)。
このフリ ンジスキャンの結果、 順に蓄積データ B。、 B2、 B3
B4、 Bい B6、 B 7 (実測値) が得られる (第 2図 (b) 参照)。 これ らの各蓄積データは、 第 1実施形態で得られる各蓄積データと同様、 そ れそれ必要な信号成分の 1/4周期分に相当し、 これらの蓄積デ一夕の 全体は、 必要な信号成分の 2周期分のデータに相当する。
そして、 演算回路 1 9が初期位相差 0。を算出する際には、 第 1実施 形態と同様の上式 (9) が適用される (第 2図 (c) 参照)。
(第 2実施形態におけるコヒ一レン トノィズ成分の振る舞い)
ここで、 干渉計測装置 20においてコヒーレントノイズ成分に関係す る光は、 第 1実施形態と同様、 ノイズ光 b (N), ノイズ光 c (WNW)、 ノイズ光 d (WNR)、 ノイズ光 e (RNR)、 ノイズ光 f (RNW) で ある。
なお、括弧内に示したアルファべッ トは、反射経路を示す。すなわち、 被検面 72の反射経路が W、 参照面 73の反射経路が R、 干渉計 75内 の何れかの箇所の反射経路が Nで表される。 また、 干渉計 75内の何れ かの箇所の反射率は、 被検面 72や参照面 73の反射率と比較して十分 に低いので、その箇所で 2回以上反射したノィズ光については無視する。 次に、 表 3に基づいて、 必要な信号成分の強度変化周期と、 各コヒ一 レン トノイズ成分の強度変化周期とを比較する。
表 3は、 本実施形態における各光の光路差、 および光路差変化量を比 較する表である。
(表 3 ) 第 2実施形態における各光の光路差, 光路差変化 Sを比較する表
Figure imgf000026_0001
(参照光の光路変化; ftを基準とする) 上記したように本実施形態では、 参照光 7 3 aの光路変化量が 「 1」 であるときの被検光 7 2 aの光路変化量は 「3」 であるので、 ノイズ光 b、 c、 d、 e、 f の光路変化量は、 それそれ「 0」、 「 6」、 「4」、 「 2」、 「4」 となる。
このとき参照光 7 3 aと被検光 7 2 aとによる必要な信号成分 SM" は、 「周期 2」 で変化する (欄 M参照)。
同様に、 ノイズ光 bが被検光 7 2 aに干渉して生じさせるコヒーレン トノイズ成分 S!! i" は、 「周期 3」 で変化する (欄 1 1 1参照)。
また、 ノイズ光 cが被検光 7 2 aに干渉して生じさせるコヒ一レント ノイズ成分 S 1 12" は、 「周期 3」 で変化する (欄 1 1 2参照)。
また、 ノイズ光 dが被検光 7 2 aに干渉して生じさせるコヒ一レン ト ノイズ成分 S 113"は、 「周期 1」 で変化する (欄 1 1 3参照)。
また、 ノイズ光 eが被検光 7 2 aに干渉して生じさせるコヒーレン ト ノイズ成分 S 1 14" は、 「周期 1」 で変化する (欄 1 1 4参照)。
また、 ノイズ光 f が被検光 7 2 aに干渉して生じさせるコヒーレント ノイズ成分 S 1 1 5" は、 「周期 1」 で変化する (欄 1 1 5参照)。
また、 ノイズ光 bが参照光 7 3 aに干渉して生じさせるコヒ一レント ノィズ成分 S , 2!" は、 「周期 1」 で変化する (欄 1 2 1参照)。 また、 ノィズ光 cが参照光 7 3 aに干渉して生じさせるコヒーレント ノィズ成分 S 1 2 2" は、 「周期 5」 で変化する (欄 1 2 2参照)。
また、 ノイズ光 dが参照光 7 3 aに干渉して生じさせるコヒ一レント ノイズ成分 S 1 2 3" は、 「周期 3」 で変化する (欄 1 2 3参照)。
また、 ノイズ光 eが参照光 7 3 aに干渉して生じさせるコヒ一レン ト ノイズ成分 S 1 2 4" は、 「周期 1」 で変化する (欄 1 2 4参照)。
また、 ノィズ光: f が参照光 7 3 aに干渉して生じさせるコヒーレント ノイズ成分 S 1 2 5" は、 「周期 3」 で変化する (欄 1 2 5参照)。
すなわち、 本実施形態でも、 各コヒーレン トノィズ成分 S 〜 S
1 2 5" の強度変化周期が、 何れも必要な信号成分 SM" の強度変化周期 とは異なっている。
第 5図は、 本実施形態における、 各コヒ一レン トノイズ成分 S i 〜S 12 5" と必要な信号成分 SM"との変化の仕方を比較する図である。 第 5図 ( a) が必要な信号成分 SM" と同じく 「周期 2」 で変化する信 号を示すのに対し、 第 5図 (b) は、 コヒ一レン トノイズ成分 S i i 3"、 s 1 14"、 s i l 5"、 S 12 1"、 S 124" と同じく 「周期 1」 で変化する信 号を示し、 第 5図 ( c) は、 コヒーレン トノイズ成分 S H S 1 1 2"、 S 123"、 S 1 2 5 "と同じく 「周期 3」で変化する信号を示し、第 5図( d) は、 コヒ一レン トノィズ成分 S 122" と同じく 「周期 5」 で変化する信 号を示す (但し、 第 5図に示した振幅および位相は何れも意味を持たな い)。
したがって、 上記フリンジスキャン時に撮像素子 7 6から出力される 蓄積データ B0、 Bい Bい B3、 B4、 Bい B 6、 B 7 (実測値) には、 「周期 2」で変化する必要な信号成分 B 10、 B! ^ B 1 2 B 1 3s B 14, い B 1 6、 B 17 (第 5図 ( a) 参照) と、 「周期 1」 で変化するコヒ
—レン トノイズ成分 B 20"、 B 2 1 "ヽ B 22,,、 B 23,,、 B 24"、 B 25,,、 B 2 6"、 B 2 7" (第 5図 (b) 参照) と、 「周期 3」 で変化するコヒ一レ ノ トノイス成分 B 30 s B 3! s B 3 2 、 B 3 3 、 t> 3 4 D 3 5 ヽ ·0 3 6
Β 37" (第 5図 ( c ) 参照) と、 「周期 5」 で変化するコヒーレン トノィ ス成分 t» 4 0、 j34 i、 B42、 t> 4 3、 D 4 4、 B 4い 1) 4 6、 -D 4 7 ( 5図 (d) 参照) が重ね合わされていると考えられる。 すなわち、 コヒーレ ン トノイズ成分を考慮して各蓄積デ一夕 Bk (実測値) を表すと、 B k =
B 1 k + 2 k + 3 k + D 4 kとな《。
さて、 上記したように本実施形態では、 式 ( 9 ) が使用される。 この 式 ( 9 ) は、 上記第 1実施形態において使用されたものと同じである。 すなわち、 コヒーレントノイズ成分が発生しないとの仮定の下では、 式 ( 8 a) と等価な初期位相差 ø。の算出式である。
ここで、 必要な信号成分 Β 1 0、 い B 1 2、 B 1 3、 B 14、 B ! 5 B 1 67については、 その変化周期から、 B 1 0 = B 14、 B 1 1 = B 1 い B 1 2 = B 1 6、 B 1 3 二 B 1 7が成立する (第 5図 ( a) 参照)。 また、 コヒ一レン トノイズ成分 B 2 。,,、 B 2 1,,、 B 2 2"、 B 23,,、 B 24"、 B 2 5,,、
B 2 6 、 B 2 7 つ ヽて ヽ I) 2 0 + b 2 4 = B 2 1 + B 2 5 ― B 2
2" +B 2 6" = B 2 3" + B 2 7" = B v lが成立し (第 5図 (b) 参照)、 コヒ一レン トノイズ成分 B 3。"、 B 3 1,,、 B 3 2,,、 B 33,,、 B 34"、 B 3 5,,、
•l33 6 ヽ B 3 7 ついて ί 、 h 3 o + b 34 = L 3 ! + B 3 5 = B 3 2,, + B 3 6 " = B 3 3 " + B 3 7 " =B v 3が成立し (第 5図 ( C ) 参照)、 また、 コヒーレン トノイズ成分 B4。、 B4い B42、 B 4 3 s B 44、 B 4 い B 4 6、 B 4 7に Jいては、 B 40 + B 44 = B 4 1 + B 4 5 = B 4 2 + B 4 6 = B 43 + B 47 = B v 5が成立する (第 5図 ( d) 参照)。
このとき、 式 ( 9 ) の右辺に、 蓄積デ一夕 B 0、 Bい B 2、 B 3 s B 4、 B 5、 B 6、 B 7 (実測値) を当てはめると、 下式 ( 1 1 ) に明らかなよ うに、 コヒ一レントノイズ成分(B 2 0,,、 B 2 1,,、 B 2 2,,、 B 23,,、 B 24,,、 ω
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
B20"+B 24 td td
533 "十 '
お 43 + β47 = Β"
(11) ω ω
すなわち、 式 ( 9 ) では、 4バケヅ ト法の式 ( 8 a) とは異なり、 基 づくべき蓄積デ一夕が (必要な信号成分 B l kの) 2周期分に増えている ので、各成分の周期的な性質によって、コヒ一レン トノィズ成分 B 2 k"、 B 3 k"、 B 4 kが除去されて'必要な信号成分 B l kのみが残留する。
したがって、 本実施形態における式 ( 9 ) によれば、 蓄積データ B k (実測値) にコヒ一レン トノイズ成分 B 2 k"、 B 3 k"、 B 4kが如何なる 強度で重畳されていようとも、 その成分の影響を受けずに初期位相差 ø 。が求められる。
以上説明したように、 本実施形態では、 被検面 7 2と参照面 7 3のそ れそれを移動量比 3 : 1に保ちつつ移動させることにより、 コヒーレン トノィズ成分の強度変化周期を必要な信号成分の強度変化周期とは異な るものとし、 かつ、 式 ( 9 ) の適用によって、 このようなコヒ一レン ト ノイズ成分の影響を確実に除去することができる。 この結果、 被検面 7
2の形状測定が高精度化される。
なお、 本実施形態においては、 被検面 7 2と参照面 7 3の移動量比を
1 : 3に代えてもよい。 この場合にも、 3 : 1 とした場合と同様に形状 測定が高精度化される。
<第 3実施形態 >
次に、 第 2図、 第 6図に基づいて本発明の第 3実施形態を説明する。 ここでは、 第 1実施形態や第 2実施形態との相違点についてのみ説明す る。
(第 3実施形態の構成)
第 6図は、 本実施形態の干渉計測装置 3 0の構成図である。
干渉計装置 3 0は、 上記第 1実施形態や第 2実施形態の干渉計測装置 1 0 , 2 0 (なお、 干渉計 7 5はマイケルソン型干渉計である。) とは異 なり、 フィゾー型干渉計 3 5が適用されている。 フィゾー型干渉計 3 5は、 光源 3 1、 ビームエキスパンダ 3 5 a、 ビ 一ムスプリ ッ夕 3 5 b、 ヌルレンズ 3 5 d、 結像レンズ 3 5 c、 撮像素 子 3 6等を有する。
フィゾー型干渉計 3 '5において、 光源 3 1から出射された光は、 ピー ムエキスパンダ 3 5 a、 ビームスプリ ヅ夕 3 5 bを介してヌルレンズ 3 5 dに入射する。
ヌルレンズ 3 5 dに入射した光束は、 所定位置に配置されたフィゾ一 面 3 3 (フィゾー型干渉計の参照面である。) に入射する。
フィゾ一面 3 3に入射した光束は、 一部がフィゾ一面 3 3で反射して 参照光 3 3 aとなり、 他の一部がフィゾー面を透過した後所定位置に配 置された被検面 3 2で反射して被検光 3 2 aとなる。
参照光 3 3 aは、 ヌルレンズ 3 5 d、 ビ一ムスプリ ヅ夕 3 5 b、 結像 レンズ 3 5 cを経た後、撮像素子 3 6に入射し、一方、被検光 3 2 aは、 フィゾー面 3 3、 ヌルレンズ 3 5 d、 ビームスプリ ヅ夕 3 5 b、 結像レ ンズ 3 5 cを経た後、 撮像素子 3 6に入射する。 そして、 これら参照光 3 3 aと被検光 3 2 bとは干渉して撮像素子 3 6上に干渉縞を成す。 このフィゾー型干渉計 3 5とマイケルソン型干渉計(第 1図符号 7 5 ) との相違は、 参照光 3 3 aの光路と、 被検光 3 2 aの光路とが共通して いる点にある (但し光路長は異なる)。 このため、 フィゾー型干渉計 3 5 は、 参照光 3 3 aの光路の環境と被検光 3 2 aの光路の環境とをほぼ一 致させることができるので、特に高精度が要求される計測に適している。 そして、 このフィゾ一型干渉計 3 5を備えた干渉計測装置 3 0には、 2つの移動機構 3 7 2および移動機構 3 7 3と、 制御回路 3 8 と、 演算 回路 3 9 とが備えられる。
移動機構 3 7 2は、 被検光 3 2 aの光路の光学的距離を変化させるた めに、 与えられる駆動電圧に応じた距離だけ被検面 3 2を光軸方向へ移 動させるものであり、 移動機構 3 7 3は、 参照光 3 3 aの光路の光学的 距離を変化させるために、 与えられる駆動電圧に応じた距離だけ参照面 3 3を光軸方向に移動させるものである。 これら移動機構 3 7 2、 3 7 3は、 例えばピエゾ素子などからなり、 本実施形態では、 互いに同じ特 性のものが使用されるとする。
撮像素子 3 6は、 C C D型撮像素子などであり、 制御回路 3 8により 駆動されると、 各画素において入射光強度に応じた量の電荷を単位時間 T c毎に蓄積し、 入射光強度の時間 T cに亘る時間積分値を示す信号で ある蓄積デ一夕 B 0、 B 1 Ν Β 2、 · · '(実測値) を順次出力する。
制御回路 3 8は、 フリンジスキャン時に、 移動機構 3 7 3、 3 7 2の それそれに対して所定のパターンで駆動電圧を印加し、 参照面 3 3と被 検面 3 2とをそれぞれ所定のパターンで移動させる。 また制御回路 3 8 は、 このときに撮像素子 3 6を駆動し、 撮像素子 3 6から出力される蓄 積デ一夕 Β 0、 Βい Β 2、 · · ■ (実測値) を演算回路 3 9に与える。 演算回路 3 9は、 所定状態 (例えばフリンジスキャン開始時の初期状 態) における参照光 3 3 aと被検光 3 2 aとの間の位相差 (例えば初期 位相差 。) を求める際に、 蓄積データ B Q、 B Β 2、 · · '(実測値) に対して所定の演算を施す。 なお、 この演算回路 3 9は、 干渉計測装置 3 0の外部に備えられていてもよい。また、この演算回路 3 9に代えて、 演算回路 3 9と同じ動作をするコンピュータを利用してもよい。
(第 3実施形態の動作)
本実施形態では、 第 1実施形態と同様、 フリンジスキャンの際に、 被 検面 3 2の移動量とフィゾ一面 3 3 (参照面) の移動量との比を 1 : 一 1に保ちつつ、 被検光 3 2 aと参照光 3 3 aの光学的距離の差を少なく とも光源 3 1から出射される光の 2波長分 (位相差にして 2周期分) 変 化させる (第 2図 ( a ) 参照)。 また、 フィゾー面 3 3 (参照面) の位置 と被検面 3 2の位置とが何れも十分な精度で時間に対して直線的に変化 し、 かつ単位時間 T c当たりの被検光 3 2 aと参照光 3 3 aとの位相差 変化量 27Γ aが 7Γ/ 2となるよう (すなわち、 a二 1/4となるよう) 設定される (第 2図 ( a) 参照)。
すなわち、 制御回路 3 8は、 制御回路 1 8と同様に、 8 T cの期間中 に、 移動機構 3 7 3に与える駆動電圧を時間に応じて変化させて、 フィ ゾ一面 3 3 (参照面) を 1/2波長分均等に移動させると同時に、 移動 機構 3 72に与える駆動電圧を時間に応じて変化させて被検面 3 2を— 1/2波長分均等に移動させる (なお、 移動量の正/負の相違は、 光路 短縮方向 Z光路拡張方向の相違に対応する。 ただし、 どちらの方向を正 にとつてもよい)。
このフリンジスキャンの結果、 蓄積デ一夕: B。、 B i s B2、 B 3、 B4、 B5、 Bい B7 (実測値) が得られる (第 2図 (b) 参照)。
そして、 演算回路 3 9は、 初期位相差 (^。を求める際に、 これら 2周 期分の蓄積データ B 0、 Bい B 2、 B a s B4、 Bい B 6、 B7 (実測値) に対して、 上式 ( 9 ) を適用する (第 2図 ( c ) 参照)。
(第 3実施形態におけるコヒ一レン トノイズ成分の振る舞い)
ここで、 第 6図に示すフィゾー型干渉計 3 5 と、 第 1図、 第 7図に示 す干渉計 7 5 (マイケルソン型干渉計である。) との相違は、 上記したよ うに光路が一部重なっているか否かの相違のみであるので、 干渉計測装 置 3 0においてコヒ一レントノィズ成分に関係するノィズ光の種類は、 干渉計測装置 1 0、 2 0、 7 0におけるノイズ光の種類と同じである。 すなわち、 第 6図に細線で示したように、 光源 3 1からの出射光の一 部であってフィゾー型干渉計 3 5内の必要反射面以外の何れかの箇所で 反射して被検面 3 2やフィゾー面 3 3を介することなく被検光 3 2 aや 参照光 3 3 aに干渉するノイズ光 (ノイズ光 b (N))、 被検面 3 2また はフィゾ一面 3 3からの反射光の一部であってフィゾ一型干渉計 3 5内 の光源 3 1の射出口やその他の光学系の表面などで反射して再び被検面 3 2またはフィゾ一面 3 3'に向かい、 被検面 3 2ゃフィゾ一面 3 3で反 射した後に被検光 3 2 aや参照光 3 3 aに干渉するノイズ光 (ノイズ光 c (WNW)、 ノイズ光 d (WNR)s ノイズ光 e (RNR)、 ノイズ光 f (RNW)) である。
なお、括弧内に示したアルファべッ トは、反射経路を示す。すなわち、 被検面 3 2の反射経路が W、 フィゾー面 3 3の反射経路が: R、 フィゾー 型干渉計 3 5内の何れかの箇所の反射経路が Nで表される。 また、 フィ ゾー型干渉計 3 5内の何れかの箇所の反射率は、 被検面 3 2やフィゾー 面 3 3の反射率と比較して十分に低いので、 その箇所で 2回以上反射し たノィズ光については無視する。
そして、 第 1実施形態と同様のパターンで被検面 32とフィゾー面 3 3 (参照面)とのそれそれを移動させる本実施形態では、各光の光路差、 および光路差変化量は、 第 1実施形態と同様、 表 1に示す通りとなる。 すなわち、 本実施形態でも、 各コヒーレントノィズ成分 S i i〜S 12 5の強度変化周期と必要な信号成分 SMの強度変化周期とに第 1実施形 態と同様の差異が設けられる。
この結果、 上記第 1実施形態の説明中に記載したのと同じ理由で、 式 ( 9 ) によってコヒーレント成分の影響を受けずに初期位相差 ø。が求 められる。
以上説明したように、 本実施形態では、 フィゾー型干渉計 3 5が適用 された干渉計測装置 3 0において、 第 1実施形態と同様のパターンで被 検面 3 2とフィゾ一面 3 3 (参照面) のそれそれを移動させ、 かつ、 式 ( 9 ) を適用することによって、 コヒーレントノイズ成分の影響を確実 に除去することができる。 この結果、 被検面 3 2の形状測定が高精度化 される。
なお、 本実施形態においては、 被検面 32とフィゾ一面 33 (参照面) の移動量比を、 第 2実施形態と同様の 3 : 1または 1 : 3に代えてもよ い。 この場合にも、 上記第 2実施形態の説明中に記載したのと同じ理由 で、 形状測定が高精度化される。
<その他 >
上記各実施形態においては、 必要な信号成分が偶数周期変化する間に コヒ一レン トノイズ成分が整数周期 (但し、 必要な信号成分とは異なる 周期) 変化するのであれば、 被検面 72、 32、 参照面 73、 33のそ れぞれを如何なるパターンで移動させてもよい。 このような周期関係を 実現させる移動パターンであれば、 上式 ( 9) によって確実にコヒ一レ ントノイズ成分の影響を除去できる。 ただし、 被検面 72, 32と参照 面 73 (フィゾー面 33 ) の移動量比は 1 : 一 1とすることがこれらの 面の移動距離の合計を小さく抑えられる点で好ましい。 次いで、 この移 動量比を 3 : 1または 1 : 3とすることが好ましい。 この結果、 干渉計 測装置の大型化が抑えられる。
また、 上記各実施形態においては、 取得する蓄積デ一夕の数を 8個に 代えて 9個とする (すなわちフリンジスキャンは少なく とも位相差にし て ( 2 + 1 / 4 )周期分行われる。) と共に、 式 ( 9 ) に代えて式 ( 1 2 ) を適用してもよい。 この式 ( 1 2) は、 上記した 5バケッ ト法の式 ( 8 b) と同様に式 (4) から導かれる初期位相差 。の算出式である。 し たがって、 式 ( 12) は、 コヒーレン トノィズ成分が発生しないとの仮 定の下では、 式 (8 b) と等価である。
Figure imgf000036_0001
因みに、 この式 ( 12) の右辺に、 上記各実施形態において説明した ようにコヒーレント成分が重畳された蓄積デ一夕 B。、 B ^ B 2、 B 3、 B4、 B5、 B6、 Bい B8 (実測値) を当てはめると、 下式 ( 1 3 ) に 示すように、 コヒ一レン トノィズ成分に相当する項は全て消去される。
Figure imgf000036_0002
すなわち、 式 ( 12) では、 5パケッ ト法の式 (8 b) とは異なり、 基づくべき蓄積デ一夕が (必要な信号成分の) 2周期分に増えているの で、 各成分の周期的な性質によって、 コヒーレントノイズ成分が除去さ れて必要な信号成分のみが残留する。
したがって、 上記各実施形態に適用された式 ( 1 2) によれば、 蓄積 デ一夕 Bk (実測値) にコヒーレン トノイズ成分が如何なる強度で重畳 されていよう とも、 その成分の影響を受けずに初期位相差 ø。が求めら れる。
また、 上記各実施形態においては、 コヒ一レン トノイズ成分を消去す ることができるのであれば、 如何なる数の蓄積データに基づく演算式を 適用してもよい。
さらには、 上記各実施形態において、 必要な信号成分とコヒーレン ト ノィズ成分との周期に差異を与えるようなパターンで参照面と被検面と を移動させ、 かつ必要な信号成分とコヒ一レントノイズ成分とを分離ま たは消去することができるのであれば、 如何なる移動パターンと、 如何 なる演算式とが組み合わされてもよい。
なお、 被検面と参照面をそれそれ移動させる際には、 被検面、 参照面 のそれそれの移動開始のタイミングゃ移動速度差を制御して移動させる 必要がある。 そのために、 たとえば、 被検面と参照面を同期して、 それ それの面を光軸方向に駆動する移動機構が必要である。 なお、 被検面と 参照面をそれそれ移動させるのは、 被検面を経た光線と参照面を経た光 線の光路長を変化させるためである。 本発明においては、 それぞれの光 路長を同期して変化させる手段は、 被検面と参照面を光軸方向に駆動す る移動機構だけに限られない。
また、 上記各実施形態において説明したように、 移動機構 1 7と移動 機構 7 7との間、 または移動機構 3 7 3と移動機構 3 7 2との間で、 同 じ特性のピエゾ素子を適用すると、 上記したフリンジスキャンを実現す るための駆動電圧の設定が容易である点で好ましいが、 十分な精度で所 望のフリンジスキヤンを実現できるのであれば、 異なる特性のビエゾ素 子を適用してもよい。
特に、 上記各実施形態におけるピエゾ素子として、 伸縮量を測定しな がら駆動電圧を制御できるフィ一ドバック機構を備えたピエゾ素子を適 用すると、 その伸縮の直線性を高くすることができ、 時間に対して参照 面及び被検面の位置が高精度で直線的に変化させることができるので、 高精度の計測が可能となる。 産業上の利用可能性
本発明は、 被検面の形状を測定する干渉計測方法及び干渉計として、 幅広い産業分野で使用することができる。

Claims

請 求 の 範 囲
1 . 光源から出射された光を被検面と参照面との双方に導く と共に、 そ の光が前記被検面で反射することにより生じた被検光と、 その光が前記 参照面で反射することにより生じた参照光とを干渉させる干渉光学系と、 前記被検光と前記参照光とが成す干渉光の光路に配置され、 入射光の強 度に応じた干渉信号を出力する受光素子と
を備えた干渉計による干渉計測方法であって、
前記被検光と前記参照光との位相差を変化させる走査の際に、 前記被検 光光路の光学的距離と、 前記参照光光路の光学的距離との双方をそれそ れ所定のパターンで同時に変化させることによって、 前記干渉信号のう ち、 前記参照光と前記被検光との間の位相差に応じて変化する必要な信 号成分の強度変化周期と、 前記被検光光路および前記参照光光路の少な くとも一部を経由した所定のノィズ光が前記被検光または前記参照光に 干渉することにより生じるコヒ一レン トノィズ成分の強度変化周期とに、 差異を設ける変調走査手順と、
前記変調走査手順が行われているときに前記受光素子から出力される干 渉信号に基づき、 所定の状態における前記被検光と前記参照光との位相 差を前記被検面の形状情報として求める算出手順とを有する
ことを特徴とする干渉計測方法。
2 . 請求の範囲第 1項に記載の干渉計測方法であって、
前記変調走査手順では、
前記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離 の変化量との比が 1 :一 1に保たれる
ことを特徴とする干渉計測方法。
3 . 請求の範囲第 1項に記載の干渉計測方法であって、 前記変調走査手順では、
前記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離 の変化量との比が 1 : 3または 3 : 1に保たれる
ことを'特徴とする干渉計測方法。
4 . 請求の範囲第 1項から第 3項のうち何れか 1項に記載の干渉計測方 法であって、
前記変調走査手順では、
前記走査が、 少なく とも前記必要な信号成分の強度変化の 2周期分行わ れ、
前記算出手順では、
前記被検面の形状情報が、 少なくとも前記必要な信号成分の強度変化の 2周期分に対応する前記干渉信号に基づいて求められる
ことを特徴とする干渉計測方法。
5 . 光源から出射された光を被検面と参照面との双方に導く と共に、 そ の光が前記被検面で反射することにより生じた被検光と、 その光が前記 参照面で反射することにより生じた参照光とを干渉させる干渉光学系と、 前記被検光と前記参照光とが成す干渉光の光路に配置され、 入射光の強 度に応じた干渉信号を出力する受光素子と、
前記被検光光路の光学的距離と前記参照光光路の光学的距離との双方を 同時に移動させる移動手段と、
前記被検光と前記参照光との位相差を変化させる走査の際に、 前記移動 手段を動作させて、 前記被検光光路の光学的距離と前記参照光光路の光 学的距離との双方をそれそれ所定のパターンで同時に変化させることに より、 前記干渉信号のうち、 前記参照光と前記被検光との間の位相差に 応じて変化する必要な信号成分の強度変化周期と、 前記被検光光路およ び前記参照光光路の少なくとも一部を経由した所定のノイズ光が前記被 検光または前記参照光に干渉することにより生じるコヒ一レン トノイズ 成分の強度変化周期とに、 差異を設ける変調走査手段と、
前記変調走査手段による走査中に前記受光素子から出力される干渉信号 に墓づき、 所定の状態における前記被検光と前記参照光との位相差を前 記被検面の形状情報として求める算出手段とを備えた
ことを特徴とする干渉計測装置。
6 . 請求の範囲第 5項に記載の干渉計測装置であって、
前記変調走査手段が、
前記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離 の変化量との比を 1 : — 1に保つ機能を有する
ことを特徴とする干渉計測装置。
7 . 請求の範囲第 5項に記載の干渉計測装置であって、
前記変調走査手段が、
前記被検光光路の光学的距離の変化量と、 前記参照光光路の光学的距離 の変化量との比を 1 : 3または 3 : 1に保つ機能を有する
ことを特徴とする干渉計測装置。
8 . 請求の範囲第 5項から第 7項のうち何れか 1項に記載の干渉計測装 置であって、
前記変調走査手段が、
前記走査を、少なくとも前記必要な信号成分の強度変化の 2周期分行い、 前記算出手段が、
前記被検面の形状情報を、 少なくとも前記必要な信号成分の強度変化の 2周期分に対応する前記干渉信号に基づいて求める
ことを特徴とする干渉計測装置。
9 . 光源から射出され、 測定対象である被検面からの反射光と参照面か らの反射光を干渉させ、 参照面に対する被検面の差異を測定する干渉計 測装置であって、
前記被検面を経た光線と前記参照面を経た光線のそれそれの光路長を. 同期して変化させる光路長可変手段を有する
ことを特徴とする干渉計測装置。
PCT/JP2001/004147 2000-05-22 2001-05-18 Procede et appareil pour mesurer les interferences WO2001090689A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/276,724 US6940605B2 (en) 2000-05-22 2001-05-18 Method for measuring interference and apparatus for measuring interference
DE60141140T DE60141140D1 (de) 2000-05-22 2001-05-18 Verfahren zur interferenzmessung und vorrichtung zur interferenzmessung
EP01932130A EP1298410B1 (en) 2000-05-22 2001-05-18 Method for measuring interference and apparatus for measuring interference
AT01932130T ATE456022T1 (de) 2000-05-22 2001-05-18 Verfahren zur interferenzmessung und vorrichtung zur interferenzmessung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000149533A JP4765140B2 (ja) 2000-05-22 2000-05-22 干渉計測方法および干渉計測装置
JP2000-149533 2000-05-22

Publications (1)

Publication Number Publication Date
WO2001090689A1 true WO2001090689A1 (fr) 2001-11-29

Family

ID=18655376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004147 WO2001090689A1 (fr) 2000-05-22 2001-05-18 Procede et appareil pour mesurer les interferences

Country Status (6)

Country Link
US (1) US6940605B2 (ja)
EP (1) EP1298410B1 (ja)
JP (1) JP4765140B2 (ja)
AT (1) ATE456022T1 (ja)
DE (1) DE60141140D1 (ja)
WO (1) WO2001090689A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1831638A4 (en) * 2004-11-12 2008-01-23 Medeikon Corp INTERFEROMETRIC DETECTOR WITH LOW COHERENCE, MULTIPLE CHANNELS AND SINGLE TRACE
US7417740B2 (en) * 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
JP5153120B2 (ja) * 2006-11-02 2013-02-27 オリンパス株式会社 フリンジスキャン干渉縞計測方法および干渉計
JP2010281741A (ja) * 2009-06-05 2010-12-16 Nikon Corp ノイズ除去装置、ノイズ除去方法、ノイズ位置検出装置、ノイズ位置検出方法、測定システムおよびプログラム
CN103038826A (zh) * 2011-06-17 2013-04-10 松下电器产业株式会社 调制信号检测装置及调制信号检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198319A (ja) 1993-12-28 1995-08-01 Agency Of Ind Science & Technol リアルタイム位相シフト干渉計
JPH08159709A (ja) 1994-12-05 1996-06-21 Nikon Corp 干渉測定装置
US5847827A (en) 1995-06-23 1998-12-08 Carl Zeiss Jena Gmbh Coherence biometry and coherence tomography with dynamic coherent
WO1999060331A1 (en) 1998-05-15 1999-11-25 Laser Diagnostic Technologies, Inc. Method and apparatus for recording three-dimensional distribution of light scattering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693771B2 (ja) * 1996-11-13 2005-09-07 オリンパス株式会社 形状測定方法および装置
JPH10253892A (ja) * 1997-03-11 1998-09-25 Olympus Optical Co Ltd 位相干渉顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198319A (ja) 1993-12-28 1995-08-01 Agency Of Ind Science & Technol リアルタイム位相シフト干渉計
JPH08159709A (ja) 1994-12-05 1996-06-21 Nikon Corp 干渉測定装置
US5847827A (en) 1995-06-23 1998-12-08 Carl Zeiss Jena Gmbh Coherence biometry and coherence tomography with dynamic coherent
WO1999060331A1 (en) 1998-05-15 1999-11-25 Laser Diagnostic Technologies, Inc. Method and apparatus for recording three-dimensional distribution of light scattering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. CREATH: "Phase- measurement interferometry techniques", PROGRESS IN OPTICS, vol. 26, 1988, pages 350 - 393

Also Published As

Publication number Publication date
ATE456022T1 (de) 2010-02-15
US20030174342A1 (en) 2003-09-18
EP1298410A4 (en) 2009-01-14
JP2001330409A (ja) 2001-11-30
DE60141140D1 (de) 2010-03-11
EP1298410B1 (en) 2010-01-20
EP1298410A1 (en) 2003-04-02
JP4765140B2 (ja) 2011-09-07
US6940605B2 (en) 2005-09-06

Similar Documents

Publication Publication Date Title
US5589938A (en) Method and apparatus for optical interferometric measurements with reduced sensitivity to vibration
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
EP0682771B1 (en) Method for surface topography measurement by spatial-frequency analysis of interferograms
CN106500589B (zh) 一种多波长可调谐显微干涉的测量方法及其装置
Chen et al. 3-D surface profilometry using simultaneous phase-shifting interferometry
US7102761B2 (en) Scanning interferometry
US7605925B1 (en) High-definition vertical-scan interferometry
US20090076768A1 (en) Absolute position measurement apparatus
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
US6624893B1 (en) Correction of scanning errors in interferometric profiling
US5999263A (en) Method and apparatus for performing interferometric measurements with reduced sensitivity to vibration
CN107202548A (zh) 波长移相算法灵敏度测试系统及测试方法
JP2004502954A (ja) 干渉測定装置
WO2001090689A1 (fr) Procede et appareil pour mesurer les interferences
US8520216B2 (en) Shape measuring apparatus
CN110926360B (zh) 一种全视场外差移相测量自由曲面的装置
CN113587844B (zh) 移相干涉测量系统及测量方法
JP2000221013A (ja) 干渉計測方法および干渉計測装置
EP1535024A1 (en) Phase measuring method and apparatus for multi-frequency interferometry
JPH10221032A (ja) 干渉計測方法および干渉計測装置
JPH11218411A (ja) 干渉計測方法および干渉計測装置
JPH10281738A (ja) 干渉計測方法および干渉計測装置
KR101968916B1 (ko) 반사면 프로파일 측정 방법 및 장치
JP2993835B2 (ja) 多波長位相干渉法及び多波長位相干渉計
JP3493329B2 (ja) 平面形状計測装置、平面形状計測方法及び該方法を実行するプログラムを記憶した記憶媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001932130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276724

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001932130

Country of ref document: EP