WO2001090362A1 - Acides nucleiques codant les proteines du virus de l'hypertrophie des nervures de la laitue, et utilisation associee - Google Patents

Acides nucleiques codant les proteines du virus de l'hypertrophie des nervures de la laitue, et utilisation associee Download PDF

Info

Publication number
WO2001090362A1
WO2001090362A1 PCT/JP2001/004268 JP0104268W WO0190362A1 WO 2001090362 A1 WO2001090362 A1 WO 2001090362A1 JP 0104268 W JP0104268 W JP 0104268W WO 0190362 A1 WO0190362 A1 WO 0190362A1
Authority
WO
WIPO (PCT)
Prior art keywords
lettuce
protein
nucleic acid
virus
transformed
Prior art date
Application number
PCT/JP2001/004268
Other languages
English (en)
French (fr)
Inventor
Takahide Sasaya
Hiroki Koganezawa
Original Assignee
National Agricultural Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agricultural Research Organization filed Critical National Agricultural Research Organization
Priority to EP01932194A priority Critical patent/EP1312677B1/en
Priority to DE60123080T priority patent/DE60123080T2/de
Priority to US10/276,968 priority patent/US7279335B2/en
Priority to JP2001587156A priority patent/JPWO2001090362A1/ja
Publication of WO2001090362A1 publication Critical patent/WO2001090362A1/ja
Priority to US11/790,420 priority patent/US20070264690A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/00022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a nucleic acid encoding a lettuce big pain virus protein, a protein encoded by the nucleic acid, and production and use thereof.
  • Lettuce Big Vine Virus is a virus belonging to Varicosavirus, consisting of two RNAs of 7.0 kb and 6.5 kb, and has a 48 kDa coat protein.
  • Lettuce big bain virus is a soil-borne virus transmitted by Olpidum brassicae in the United States, Australia, New Zealand, Japan, and Japan. The virus is a major problem in lettuce production because it infects lettuce and significantly reduces its quality and yield.
  • lettuce vegvain virus is extremely difficult to purify and purify due to unstable virus particles, easy aggregation of virus particles, and extremely low virus concentration in plants. It is. To date, there have been two successful cases of purifying the virus (S. Kuwata et al., (1983), Koubunsho, 9, 246-251, HJ Vetten et al., (1987), Journal o. f Phytopathology, 120, 53-59) Although reported, the reproducibility is low and the amount of purification is extremely low. For this reason, no genetic information has been disclosed for the lettuce big bain virus. Disclosure of the invention
  • the present invention has been made in view of such a situation, and an object of the present invention is to isolate a lettuce big pain virus protein and a nucleic acid encoding the protein, and elucidate the structure thereof. Another object of the present invention is to confer lettuce resistance to lettuce big pain virus through expression of the nucleic acid or its antisense in lettuce. Furthermore, another object of the present invention is to provide a method for diagnosing lettuce big bain virus infection by detecting the nucleic acid or a protein encoded by the nucleic acid.
  • Lettuce vegvain virus is an RNA virus.
  • MA that encodes the protein of the virus or its antisense MA is expressed in plants, the production of lettuce big pain virus protein at the transcriptional or translational level can be improved. It is thought that the function can be inhibited (PF Tennant et ah, (1994), Phyto pathology, 84, 1359-1366, CCHuntley TCHall, (1993), Virology, 192, 290-297), DC Baul combe, (1996), The Plant Cell, 8, 1833-1844).
  • the present inventors have focused on such an idea, and isolated a gene encoding a lettuce big bean virus protein in order to produce a lettuce resistant to lettuce big pain virus.
  • the present inventors first highly purified the lettuce big bain virus, subjected it to SDS-polyacrylamide gel electrophoresis, and detected the coat protein constituting the virus. .
  • the detected coat protein was purified, decomposed into peptides, and the amino acid sequence of the portion was determined by the Edman method.
  • polymerase chain reaction using primers designed based on the determined amino acid sequence information
  • RNA encoding the lettuce big bain virus coat protein was cloned and its nucleotide sequence was determined.
  • the present inventors have succeeded in isolating RNA molecules encoding the polymerase protein from highly purified lettuce big bain virus.
  • the isolated MA molecule or its antisense molecule can impart lettuce big pain virus resistance to lettuce plants by its expression, thereby improving the productivity of lettuce. It is also possible to design a lettuce big vein virus-specific primer based on the sequence Ii information of the isolated RNA molecule and use it to make a genetic diagnosis of lettuce big vine virus. Further, based on the obtained sequence information, an antiserum that binds to a lettuce big bain virus protein can be prepared and used for a serological diagnosis of lettuce big bain virus.
  • the present invention has been completed based on the above findings, and provides a lettuce big vine virus protein, a nucleic acid encoding the protein, and their production and use.
  • the present invention provides
  • nucleic acid of the following (a) or (b) encoding a lettuce big bain virus protein, (a) a nucleic acid encoding a protein consisting of the amino acid sequence of any one of SEQ ID NOs: 2 to 6, or 13;
  • a transformed lettuce plant comprising the transformed lettuce cell according to (13),
  • a transformed lettuce plant which is a progeny or clone of the transformed lettuce plant according to (14), (16) The propagation material for the transformed lettuce plant according to (14) or (15), and
  • a method for diagnosing lettuce big bain virus infection which is described in (1) in a soil containing 01 pi dim brassicae, which is a vector of lettuce cells or a lettuce pain virus, or this vector.
  • the present invention provides a lettuce big pain virus protein and a nucleic acid encoding the protein.
  • the nucleotide sequence of the cDNA encoding the protein of the female big bain virus isolated by the present inventors included in the present invention is shown in SEQ ID NO: 1, and the amino acid sequence of the protein encoded by the cDNA is shown in SEQ ID NO: 1. : 2 to 6.
  • the isolated cDNA consisted of a 6078 bp nucleotide sequence and encoded 5 proteins.
  • Protein 1 (coating protein; Example 1) encodes 397 amino acids with translation starting from 209 bases (the isolated clone was named "LBVV-cp"; SEQ ID NO: 2); (Example 3) translates from 1492 bases and encodes 333 amino acids (SEQ ID NO: 3), and protein 3 (Example 3) starts translation from 2616 bases and encodes 290 amino acids.
  • Translated (SEQ ID NO: 4), protein 4 (Example 3) translated from 3842 bases and encoded 164 amino acids (SEQ ID NO: 5), and protein 5 (Example 3) translated from 4529 bases All encoded 368 amino acids (SEQ ID NO: 6).
  • the nucleotide sequence of a cDNA encoding the polymerase of lettuce big bain virus (Example 4), also included in the present invention and isolated by the present inventors, is represented by SEQ ID NO: 12.
  • the amino acid sequence of the encoded protein is shown in SEQ ID NO: 13 (the isolated clone was named "LBVV-L").
  • the isolated cDNA had a nucleotide sequence of 6793 bp, translation started at the 337th base, and encoded 2040 amino acids.
  • the present inventors have further shown that lettuce big bain virus is a single-stranded RNA virus and also contains some + chains in the particles.
  • the nucleic acid encoding the LBVV-cp protein (LBVV protein 1), LBVV protein 2 to 5 protein, or LBVV-L protein of the present invention includes DNA and MA.
  • This DNA includes cDNA and synthetic DNA
  • MA includes virus genomic RNA, mRNA, and synthetic RNA.
  • the nucleic acid of the present invention can be prepared by a person skilled in the art using conventional means. Specifically, RNA prepared by deproteinizing purified virus by a method such as the SDS-phenol method, or total nucleic acid extracted from virus-infected leaves by the CTAB method, etc. First-strand DNA can be synthesized by performing a reverse transcription reaction using primers or random primers designed from the above.
  • Second-strand DNA was synthesized from the first-strand DNA prepared by this method by the Gubler & Hoffman method (U. Gulber & BJ Hoffman, (1983), Gene 25, 263-269), and a number of commercially available plasmids or Cloning can be performed on the phage mid vector.
  • the DNA encoding the RNA of the virus is amplified by polymerase chain reaction using a primer designed from the sequence of the nucleic acid of the present invention with the first-strand DNA as type III, and the pGEM®-T vector
  • TA cloning or the like, or attaching a restriction enzyme site to a primer it is possible to clone to a number of commercially available plasmid vectors.
  • the nucleic acid of the present invention can also be used for the preparation of recombinant proteins and the production of lettuce big vin virus-resistant lettuce.
  • a DNA encoding the protein of the present invention is inserted into an appropriate expression vector, the vector is introduced into appropriate cells, and the transformed cells are cultured. Purify the expressed protein.
  • Recombinant proteins are expressed as fusion proteins with other proteins, for example, to facilitate purification. It is also possible to make it. For example, a method of preparing a fusion protein with maltose binding protein using E.
  • the host cell is not particularly limited as long as it is a cell suitable for expressing the recombinant protein.
  • Escherichia coli by changing the expression vector, for example, yeast, various animal and plant cells, insect cells, etc. It is possible to use.
  • a vector into a host cell for introduction into E. coli, a method using calcium ion (M. Mandel, & A. Higa, (1970), Journal of Molecular Biology, 53, 158-162, D. Hanahan, (1983), Journal of Molecular Biology, 166, 557-580).
  • the recombinant protein expressed in the host cell can be purified and recovered from the host cell or a culture supernatant thereof by a method known to those skilled in the art.
  • affinity purification can be easily performed.
  • an antibody that binds to the protein can be prepared.
  • a polyclonal antibody is prepared by immunizing an immunized animal such as a heron with a purified protein of the present invention or a part of the peptide of the present invention, collecting blood after a certain period of time, and preparing the serum from the blood clot.
  • Monoclonal antibodies are obtained by fusing antibody-producing cells of an animal immunized with the above protein or peptide with bone tumor cells and isolating a single clone of cells (hybridoma) that produces the desired antibody.
  • the antibody can be prepared by obtaining an antibody from the cells.
  • the antibody thus obtained is used for purification and detection of the protein of the present invention.
  • the antibodies of the present invention include antisera, polyclonal antibodies, monoclonal antibodies, and fragments of these antibodies.
  • DNA that suppresses the production or function of lettuce big bain virus protein may be introduced into lettuce cells, and the resulting transformed lettuce cells may be regenerated.
  • Examples of DNA that suppresses the production and function of lettuce big bain virus protein include RNA that hybridizes to any strand (sense strand or its complementary strand) of RNA encoding lettuce big bain virus protein. Encoding DNA can be used.
  • the DNA encoding the RNA that hybridizes to the sense strand and the mRNA of the viral genome includes the DNA encoding the protein of any one of SEQ ID NOs: 2 to 6, or 13 isolated by the present inventors. (Preferably a DNA containing the coding region of the nucleotide sequence of SEQ ID NO: 1 or 12), and a DNA encoding an antisense RNA complementary to the transcript.
  • the term "complementary" includes not completely complementary as long as the production of lettuce bigbane virus protein can be effectively inhibited.
  • the transcribed RNA has preferably 90% or more, and most preferably 95% or more complementarity to RNA encoding the target lettuce big bain virus protein.
  • complementarity refers to a complementary base pair with respect to the total number of bases in a corresponding region of two sequences when the corresponding region is aligned so as to maximize the number of complementary base pairs. It is% of the number of bases formed.
  • the DNA encoding the RNA that hybridizes to the complementary strand of the viral genomic RNA includes the RNA encoding the protein of any one of SEQ ID NOs: 2 to 6, or 13 isolated by the present inventors ( Preferably, DNA encoding sense MA complementary to the complementary strand of the RNA) containing the coding region of the nucleotide sequence described in SEQ ID NO: 1 or 12 can be used.
  • the term "complementary” includes not completely complementary as long as it can effectively inhibit the production of lettuce bigbain virus protein. I will.
  • the transcribed sense RNA preferably has 90% or more, and most preferably 95% or more complementarity with RNA (complementary strand) encoding the target lettuce big bain virus protein.
  • the length of the antisense RNA or sense RNA is at least 15 bases or more, preferably 100 bases or more, more preferably 500 bases or more, Usually, it is shorter than 5 kb, preferably shorter than 2.5 k.
  • a DNA encoding a ribozyme that cleaves at least one strand of RNA encoding a lettuce big bean virus protein may be used as an MA that suppresses the production of lettuce big pain virus protein.
  • Ribozyme refers to an RNA molecule having catalytic activity. Ribozymes have various activities. Among them, research on ribozymes as enzymes that cleave RNA has made it possible to design ribozymes for site-specific cleavage of RNA.
  • Ribozymes include those with a size of 400 nucleotides or more, such as the Group I intron type and MIMA included in RNaseP, but those with an active domain of about 40 nucleotides called hammerhead type or heapin type. (Makoto Koizumi and Eiko Otsuka, (1990), Protein nucleic acid enzyme, 35, 2191-2200).
  • the self-cleaving domain of the hammerhead ribozyme cleaves the 3 'side of C13 of G13U14C15, but it is important for activity that U14 forms a base pair with A at position 9; It has been shown that bases are cleaved at A or U in addition to C (M. Koizumi et a7., (1988) 3 FEBS Letters, 228, 228-230).
  • the ribozyme substrate binding region to be complementary to the RNA sequence near the target site, it is possible to create a restriction-enzymatic RNA-cleaving ribozyme that recognizes the UC, UU, or UA sequence in the target RNA. It is possible (M.
  • LBVV-cp 3 ⁇ 4 There are a plurality of target sites in the gene, LBVV protein 2 to 5 gene, or LBVV-L gene (SEQ ID NO: 1 or 12).
  • Hairpin ribozymes are also useful for the purpose of the present invention. Hairpin ribozymes are found, for example, in the negative strand of satellite RNA of tobacco ring spot virus (JMBuzayan et ai., (1986) 5 Nature, 323, 349-353). It has been shown that this ribozyme can also be designed to cause target-specific RNA cleavage (Y. Kikuchi & N. Sasaki, (1992), Nucleic Acids Research, 19, 6751-6775, Hiroshi Kikuchi, ( 1992), Chemistry and Biology, 30, 112-118).
  • a ribozyme designed to cleave the target is ligated to a promoter, such as the 35S promoter of the force reflower mosaic virus, and a transcription termination sequence so that it is transcribed in plant cells.
  • a promoter such as the 35S promoter of the force reflower mosaic virus
  • a transcription termination sequence so that it is transcribed in plant cells.
  • ribozyme activity may be lost.
  • another trimming ribozyme that acts as a cis for trimming is placed at the 5 'side or 3, side of the ribozyme portion.
  • the vector used for the transformation of lettuce cells is not particularly limited as long as it can express the inserted DNA in the cells.
  • a promoter for constant gene expression in lettuce cells eg, cauliflower
  • a vector having a mosaic virus 35S promoter) or a vector having a promoter inducibly activated by an external stimulus can also be used.
  • Suitable vectors include, for example, pBI binary vectors.
  • the “lettuce cells” to be introduced include various forms of lettuce cells, such as suspension cultured cells, protoplasts, leaf sections, and calli.
  • a polyethylene glycol method such as a polyethylene glycol method, a polycation method, an electroporation method (elect port poration), a method via an agglomerator, and a particle-gun method
  • a polyethylene glycol method such as a polyethylene glycol method, a polycation method, an electroporation method (elect port poration), a method via an agglomerator, and a particle-gun method
  • a suitable method such as a polyethylene glycol method, a polycation method, an electroporation method (elect port poration), a method via an agglomerator, and a particle-gun method
  • a method via an agglomerator such as a polyethylene glycol method, a polycation method, an electroporation method (elect port poration), a method via an agglomerator, and a particle-gun method
  • -Regeneration of a transformed plant from a transformed lettuce cell can be performed by a method known to those skilled
  • progeny can be obtained from the plant by sexual reproduction. It is also possible to obtain propagation materials (eg, seeds, strains, calli, protoplasts, etc.) from the plant, its progeny or clones, and to mass-produce the plant based on them.
  • the present invention includes plant cells into which the DNA of the present invention has been introduced, plants containing the cells, progeny and clones of the plants, and propagation material of the plants, progeny thereof, and clones.
  • the present invention also provides a method for diagnosing lettuce big pain virus infection.
  • One embodiment of the diagnostic method of the present invention is a method characterized by detecting lettuce big vine virus RNA or RNA encoding the viral protein using a primer or a probe.
  • Such probes and primers include the lettuce big probe described in any of SEQ ID NOs: 2 to 6, or 13.
  • a nucleic acid consisting of at least 15 nucleotides homologous or complementary to the DNA encoding the inviral protein can be used.
  • the nucleic acid is preferably a nucleic acid that specifically hybridizes to DNA encoding the lettuce big bain virus protein described in any of SEQ ID NOs: 2 to 6, or 13.
  • Primers and probes may be labeled as necessary.
  • Examples of the label include a radiolabel.
  • a test sample is prepared from a lettuce suspected to have been infected with the lettuce big bain virus, 01pidum suspected to be poisoning the virus, or a soil containing the fungus.
  • a PCR method using the above primers or a Northern blotting method using the above probes may be performed.
  • Another embodiment of the diagnostic method of the present invention is a method characterized by detecting a lettuce big bain virus protein using an antibody.
  • the preparation of the antibody used for this diagnosis is performed, for example, by synthesizing a peptide by estimating the antigenic region from the obtained amino acid sequence (either SEQ ID NO: 2 to 6, or 13), and carrying a carrier such as KLH or BSA It can be prepared by binding to a protein and immunizing it with rabbits.
  • the protein can be prepared by using the QIAexpress Type IV Kit (QIAGEN) to let the protein of lettuce bigpain virus expressed in Escherichia coli be tubed with histidine and immunizing the resulting protein with a rabbit. it can.
  • the antibody may be labeled if necessary.
  • the label examples include an enzyme label.
  • the target protein may be detected by labeling via a substance which binds to the antibody, for example, protein A or the like, without directly labeling the antibody itself.
  • a test sample is prepared from lettuce suspected to have been infected with the lettuce big bain virus, 01pidum suspected to be poisoning the virus, or soil containing the fungus.
  • ELISA or Western blot may be performed using the above antibody.
  • Contaminated soil was collected from a field of lettuce (variety: Cisco) showing big bain disease in 1997 in Kagawa Prefecture, and stored dry at room temperature. Lettuce varieties, Cisco, were used for virus purification, and virus inoculation was by soil inoculation.
  • Virus purification was performed by a modification of the method of Kuwata et al. (S. Kuwata et al, (1983), Nihon-ryo Disease Report, 49, 246-251). First, stop the first low speed centrifugation, 1% Triton-X treatment, after 1% Briji- 35 process, the density gradient centrifugation of Cs 2 S0 4, to give the virus fraction. When the purified virus obtained by this purification method was subjected to SDS-polyacrylamide gel electrophoresis, only one band of 48 kDa was detected. In addition, electron microscopy showed that only agglomerated LBVV particles were observed and no other impurities were observed, indicating that a highly purified virus was obtained.
  • Extraction of viral nucleic acids were purified virus after Proteinase K-SDS treatment, Fuweno Le / / black port Holm, ethanol precipitation.
  • purified viral nucleic acid was used after denaturation with dimethyl sulfoxide.
  • Extraction of Poly (A) + RNA from LBVV-infected leaves was performed using Dynabeads® mRNA DIRECT TM Kit (DYNAL®) from lettuce leaves that had LBVV infection and showed clear big bain symptoms.
  • First strand cMA was prepared using a random primer or Oligo-dT-aw HI primer, and a reverse transcription reaction was performed using SUPERSCRI ⁇ TM II RNase H "Reverse Transcriptase (GIBCO BRL).
  • the determination of the internal amino acid sequence of the LBVV coat protein was performed as follows. After purifying the purified LBVV on 12.5% SDS-polyacrylamide gel electrophoresis, transfer it to nitrocellulose membrane, cut out the target band, carboxymethylate, and Petite evening treatment. After the treatment, 38 band patterns were obtained by reverse phase HPLC. The amino acid sequence of several of these bands was determined.
  • 5LB111 primer GMWSITGGGAYGAYGARWSIACZ SEQ ID NO: 7
  • 3LB171 primer GCRTCDATRTMTCIACICCIGG / SEQ ID NO: 8
  • ESWDDESTIAMP and NLEVPGVDYIDA
  • TaKaRa Taq Yukara Company
  • a 274 bp PCR product was obtained.
  • the obtained PCR product was cloned using pGEM®-T Easy Vector Systems (Promega), and the nucleotide sequence was determined.
  • RACE was tested using RNA from purified virus or Poly (A) + RNA from LBVV infected leaves. 3.
  • 891 bp PCR product was obtained using RNA as Poly (A) + RNA from LBVV-infected leaves and PCR using Oligo-dT-BamHI primer and 5LB171 primer (AAYYTIGMGTICCIGGIGTIGA / SEQ ID NO: 9).
  • A is RNA from purified virus or Poly (A) + intestine from LBVV-infected leaves.
  • PCR product of 760 bp was obtained by 5, RACE System for Rapid Amplification of cDNA Ends II Version 2.0 (GIBCOBRL).
  • the obtained PCR product was cloned using pGEM®_T Easy Vector Systems (Promega), and the nucleotide sequence of at least 6 or more clones was determined.
  • PCR products of genes in the vicinity of the coat protein of 500 to 700 bp were cloned using primers designed to overlap each other, and the nucleotide sequences of at least three clones were determined, and the nucleotide sequence of the coat protein gene was confirmed.
  • Lettuce seeds were immersed in 70% ethanol for several seconds, then placed in a sterilizing solution (10% sodium hypochlorite, 0.05% Tween-20) and treated for 15 minutes. Next, the seeds were rinsed with sterile water, and Hyponex agar medium (3.0 g of Hyponex powder, 10.0 g of sucrose, and 8.0 ag of agar was dissolved in 1 liter of distilled water, and ⁇ was adjusted to 5.8 with IN NaOH). The plant was planted in a plant box containing) and grown at 25-28 ° C for about two weeks in a light place until the true leaves became about 5 cm.
  • Hyponex agar medium 3.0 g of Hyponex powder, 10.0 g of sucrose, and 8.0 ag of agar was dissolved in 1 liter of distilled water, and ⁇ was adjusted to 5.8 with IN NaOH.
  • the plant was planted in a plant box containing) and grown at 25-28 ° C for about two weeks in a light
  • YEB liquid medium containing 250 zg / ml streptomycin, 5 ⁇ g / ml rifampicin, and 50 ⁇ g / ml kanamycin (1.0 g Yeast extract, 5.0 g Beef extract, 5.0 g Peptone in 1 liter of distilled water) g, sucrose was melt-0.5g of 5.0g MgS0 4 ⁇ 7H 2 0, was inoculated with ⁇ Glo bacterin Riu beam adjustment) to pH 7.0 with iN NaOH, and cultured with shaking 28 ° C De ⁇ . The agrobacterium culture solution was further subcultured to a new YEB medium (containing the aforementioned antibacterial substance), and further cultured at 28 ° C with shaking for one day.
  • the lettuce seedlings whose true leaves became about 5 cm were taken out into a plastic petri dish, the true leaves were cut into about 5 mm, and immersed in a 10-fold diluted agrobacterium culture solution for 1 minute.
  • the sections are prepared on an MS medium (pH 5.8) containing 3% sucrose, 0.5 ppm benzyl adenine (BAP), O. lppm naphthylene acetic acid (NM), and 0.8% agar at 15-20 cells / plate. And co-cultured at 25 ° C and 2000 lux for 2 days.
  • the cells were sterilized for 7 days in an MS medium (pH 5.8) containing 3% sucrose, 0.5 ppm BAP, 0.1 ppm NAA 250 g / ml carpenicillin, and 0.8% agar.
  • MS medium (pH 5.8) containing 3% sucrose, 0.5 ppm BAP, O. lppm NAA S 250 zg / ml carpenicillin, 50 ig / ml kanamycin, 0.8% agar, 25 ° C
  • the culture was performed at 2000 lux. Subculture was carried out approximately every two weeks, and some plants regenerated from those inoculated with Agrobacterium in 2-3 months.
  • the redifferentiated individuals were transferred to an MS medium (pH 5.8) containing 3% sucrose, 0.3 ppm BAP, 500 ig / ml carpenicillin, and 0.8% agar, and subcultured about every two weeks. When the re-integrated individual became about 3 cm in size, the foliage was inserted into a 1 / 2-fold MS agar medium containing 500 mg / ml carbenicillin, planted and rooted.
  • the shoots were cut into vermiculites soaked with a Hyponex 500-fold diluted aqueous solution, cut, cut, and rooted.
  • the lid of the plant box was slowly opened and ventilated and acclimated.
  • the plants were planted in polypots (Kureha horticulture soil) in a closed greenhouse (maximum temperature 30 ° C or less, natural daylength), and were then planted and flowered.
  • Contaminated soil was collected from a field of lettuce (variety: Cisco) showing big bain disease in 1997 in Kagawa Prefecture, and stored dry at room temperature.
  • the virus was purified using lettuce varieties, and the virus was inoculated by soil.
  • RNA Purification of the virus and purification of the RNA were performed according to Example 1.
  • primers are synthesized in the downstream direction to extend the sequence according to the method of C.F.Fazeli & MA Rezaian (Journal of General Virology, 81, 605-615). It was performed by the method of genome walking.
  • virus-specific 5 LB5R3 Buraima one based on Example 1 AGCTCTGMCMCGACATG / SEQ ID NO: 1 6) were prepared and synthesized l st cDNA by SUPERSCRIPT TM II RNase H- Reverse Transcriptase purified LBVVRNA as ⁇ .
  • Universal primer-dN6 (5'- GCCGGAGCTCTGCAGMTTC ⁇ - 3 'da SEQ ID NO: 1 4) to synthesize a 2 nd cDNA with Klenow fragment (evening Karasha) used.
  • GLASSMAX DNA Isolation Spin Cartridge System GLASSMAX DNA Isolation Spin Cartridge System
  • a virus-specific primer and a universal primer
  • PCR was performed, and the obtained PCR product was cloned using pGEM®-T Easy Vector Systems, and the nucleotide sequence was determined. The same method was repeated four times to determine up to 5177 bases.
  • RNA2 Perform 5 RACE at the 3 'end of RNA2 (Note: A in purified LBVV contains both + and-strands.
  • PCR products of RNA2 of 500 to 700 bp were cloned with primers designed to overlap each other, the nucleotide sequence of at least three clones was determined, and the nucleotide sequence of RNA2 was confirmed.
  • Protein 1 (coating protein; Example 1) starts translation from 209 bases and encodes 397 amino acids (SEQ ID NO: 2), while protein 2 starts translation from 1492 bases and encodes 333 amino acids (SEQ ID NO: 3), protein 3 starts translation from 2616 bases and encodes 290 amino acids (SEQ ID NO: 4), and protein 4 starts translation from 3842 bases and encodes 164 amino acids ( Translation of SEQ ID NO: 5) and protein 5 started at 4529 bases and encoded 368 amino acids (SEQ ID NO: 6). Comparison of amino acid sequence homology with other viruses revealed that only protein 1 (coating protein) was homologous to nucleocapsid protein (coating protein) of a virus belonging to family a0i o irj'i ae. Was.
  • Contaminated soil was collected from a field of lettuce (variety: Cisco) showing big pain disease in Kagawa Prefecture in 1997, and stored in a dry state at room temperature.
  • the virus was purified using lettuce varieties, and the virus was inoculated by soil.
  • Virus purification was performed in the same manner as the virus purification procedure of Example 1. Extraction of high-purity viral nucleic acids was performed as follows. Purified virus to proteinase After K-SDS treatment, phenol / chloroform-form extraction was performed and ethanol precipitation was performed. Next, after DNase treatment, the viral nucleic acid is further purified using The RNaid® Kit (BIO 101), and a 1% agarose gel (SEA PLAQUE GTG; FMC). Was used for cDNA synthesis. cDNA was synthesized according to the method of P. Froussard (Nucleic Acids Research, 20, 2900).
  • This gene was translated from 337 bases and encoded 2040 amino acids (SEQ ID NO: 13).
  • SEQ ID NO: 13 The homology of the amino acid sequence was compared with that of other viruses, homology with the polymerase of the virus belonging to the order Mononegavirales was confirmed.
  • Four motifs that are believed to be responsible for the activity of the enzyme were also conserved. Industrial applicability.
  • a nucleic acid encoding a lettuce big bain virus protein was isolated, and its primary structure was elucidated. Lettuce plants having resistance to the virus by expressing the nucleic acid or its antisense nucleic acid in lettuce O 01/90362
  • Lena P Na mana, proteins and summer can produce a detection member to be 3 ⁇ 4 nucleic acid and encoded thereby.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

明細 レタスビッグべィンウィルスタンパク質をコ一ドする核酸およびその利用 技術分野
本発明は、 レタスビッグペインウィルスタンパク質をコードする核酸および該 核酸によりコードされるタンパク質、 並びにそれらの製造および用途に関する。 背景技術
レタスビッグべィンウィルス (LBVV) は Varicosavirusに属するウィルスで、 7.0kbと 6.5kbの 2本の RNAからなり、 48kDaの外被タンパクを保持している。 レタスビッグべインウィルスは、 Olpidum brassicaeによって土壌伝搬する土壌 伝搬性ウィルスで、 アメリカ、 オーストラリア、 ニュージーランド、 日本、 ョ一 口ッパで発生している。 該ウィルスはレタスに感染して、 その品質および収量を 著しく低下させるため、 レタスの生産において大きな問題となっている。
残念ながら現在までにレタスの該ウィルスに対する抵抗性遺伝子の存在は報告 されていない。 アントレ一、 シーグリーンおよびパシフィックなど数品種は LBV V抵抗性品種として市販されているものの、 その抵抗性は低い。 従って、 レタス ビッグペインウィルスによる病害に対しては、 根本的な解決策が見出されていな いのが現状である。
レタスビッグべィンウィルスによる病害を防止するためには、 その遺伝子情報 の解明が重要なステップとなる。 しかしながら、 レタスビヅグベインウィルスは、 ウィルス粒子が不安定である、 ウィルス粒子同士が容易にァグリゲーシヨンを起 こす、 植物体中でのウィルス濃度が極めて低いなどの理由から純化精製が極めて 困難である。 現在まで、 該ウィルスに対する純化の成功例は 2例 (S.Kuwata et al. , ( 1983) , 曰植病報, 9, 246-251, H. J. Vetten et al. , ( 1987) , Journal o f Phytopathology, 120, 53-59) 報告されているものの、 再現性が低く純化量も 極めて低い。 このため、 レタスビッグべインウィルスに関しては遺伝子情報の解 明は全く行われていない。 発明の開示
本発明は、 このような状況に鑑みてなされたものであり、 レタスビッグペイン ウィルスタンパク質および該タンパク質をコードする核酸を単離し、 その構造を 解明することを目的とする。 また、 本発明は、 レタスにおける該核酸またはその アンチセンスの発現を通じて、 レタスにレタスビッグペインウィルスに対する抵 抗性を付与することを目的とする。 さらに、 本発明は、 該核酸あるいは該核酸に よりコードされるタンパク質を検出することによるレタスビッグべインウィルス の感染を診断する方法を提供することも目的とする。
レタスビヅグベインウィルスは RNAウィルスであり、 該ウィルスのタンパク質 をコ一ドする MAまたはそのアンチセンス MAを植物体内で発現させれば、 転写 レベルあるいは翻訳レベルでレタスビッグペインウィルスタンパク質の産生や機 能を阻害することができると考えられる (P.F. Tennant et ah , ( 1994) , Phyto pathology, 84, 1359-1366、 C. C.Huntley T. C.Hall, ( 1993) , Virology, 192, 290-297)、 D. C. Baul combe, ( 1996 ) , The Plant Cel l, 8, 1833-1844)。
本発明者等は、 このような発想に着目してレタスビッグペインウィルスに対す る抵抗性レタスを作製するため、 レタスビヅグべィンウィルスタンパク質をコー ドする遺伝子の単離を行なつた。
具体的には、 本発明者らは、 まず、 レタスビッグべインウィルスを高度に純化 し、 これを SDS-ポリアクリルアミ ドゲル電気泳動に付し、 該ウィルスを構成す る外被タンパク質を検出した。 この検出された外被タンパク質を精製し、 ぺプチ ドに分解後エドマン法によりその部分のアミノ酸配列を決定した。 さらに、 決定 したアミノ酸配列の情報を基に設計したプライマーを用いたポリメラ一ゼ連鎖反 応 (PCR) により、 レタスビッグべインウィルス外被タンパク質をコードする RN Aをクローニングし、 その塩基配列を決定した。
次いで、 レタスビッグべィンウィルスの全外被タンパク質をコ一ドする遺伝子 を決定するために、 純化ウィルスおよび該ウィルスが感染し明瞭な感染症状を示 した葉から Aを調製し、 この A分子を用いて 3' RACEあるいは 5' RACEを実施 した。 その結果、 レタスビヅグベインウィルス外被タンパク質をコードする RNA 分子を単離するとともに、 その一次構造を決定することに成功した。 さらに、 ゲ ノムウォーキング法により、 他の 4種のレタスビッグべィンウィルスタンパク質 をコードする RNA分子を単離するとともに、 その一次構造を決定することにも成 功した。
同様に、 本発明者らは、 高度に純化したレタスビッグべインウィルスからポリ メラーゼタンパク質をコードする RNA分子を単離することにも成功した。
単離した MA分子またはそのアンチセンス分子は、 その発現によりレタス植物 体にレタスビッグペインウィルス抵抗性を付与することが可能であり、 これによ りレタスの生産性の向上を図ることができる。 また、 単離した RNA分子の配列†i 報を基にレタスビッグべィンウイルス特異的ブラィマーを設計し、 これを利用す ることによりレタスビッグべィンウィルスの遺伝診断を行うことも可能である。 また、 得られた配列情報を基に、 レタスビッグべインウィルスタンパク質に結合 する抗血清を作製して、 これをレタスビッグべインウィルスの血清学的診断法に 利用することも可能である。
本発明は、 以上のような知見を基に完成されたものであり、 レタスビッグべィ ンウィルスタンパク質および該タンパク質をコードする核酸、 並びにそれらの製 造および用途を提供する。
より詳しくは、 本発明は、
( 1 ) レタスビッグべインウィルスのタンパク質をコードする下記 (a ) または (b ) の核酸、 (a)配列番号: 2から 6、 または 13のいずれかに記載のアミノ酸配列から なるタンパク質をコードする核酸。
(b) 配列番号: 1または 12に記載の塩基配列のコード領域を含む、 (a) に記載の核酸。
(2) RNAである、 ( 1 ) に記載の核酸、
(3) DNAである、 (1) に記載の核酸、
(4) (2) に記載の核酸の相補鎖に相補的なセンス RNAをコードする!)
NAヽ
(5) (2) に記載の核酸と相補的なアンチセンス Aをコードする DNA、
(6) (2) に記載の核酸を特異的に開裂するリボザィム活性を有する R NAをコードする DNA、
(7) (3) に記載の核酸を含むベクター、
(8) (3) に記載の核酸または (7) に記載のベクターを保持する形質 転換細胞、
(9) (1) に記載の核酸によりコードされるタンパク質、
(10) (9) に記載のタンパク質に結合する抗体、
(11) (8) に記載の形質転換細胞を培養し、 該形質転換細胞またはそ の培養上清から発現させたタンパク質を回収する工程を含む、 (9) に記載の夕 ンパク質の製造方法、
(12) (4) から (6) のいずれかに記載の DNAを含むベクタ一、
(13) ( 1) に記載の核酸、 ( 4 ) から ( 6 ) のいずれかに記載の DNA、 または (7) もしくは (12) に記載のベクタ一を保持する形質転換レタス細胞、
(14) (13) に記載の形質転換レタス細胞を含む形質転換レタス植物 体、
(15) ( 14) に記載の形質転換レタス植物体の子孫またはクローンで ある、 形質転換レタス植物体、 ( 1 6) ( 14) または (1 5) に記載の形質転換レタス植物体の繁殖材 料、 および
( 1 7) レタスビッグべインウィルスの感染を診断する方法であって、 レ タス細胞またはレタスビックペインウイルスの媒介菌である 01 pi dim brassicae あるいは本媒介菌を含む土壌における、 ( 1) に記載の核酸または (9) に記載 のタンパク質を検出することを特徴とする方法、 を提供するものである。
本発明は、 レタスビッグペインウィルスのタンパク質および該タンパク質をコ ードする核酸を提供する。 本発明に含まれる、 本発明者らにより単離されたレ夕 スビッグべインウィルスのタンパク質をコードする cDNAの塩基配列を配列番 号: 1に、 該 cDNAがコードするタンパク質のアミノ酸配列を配列番号: 2から 6に示した。 単離した cDNAは、 6078bpの塩基配列からなり、 5つのタンパクを コードした。 タンパク 1 (外被タンパク質;実施例 1 ) は 209塩基より翻訳がス タートして 397のアミノ酸をコードし (単離したクローンを 「LBVV- cp」 と命名 したノ配列番号: 2)、 タンパク 2 (実施例 3) は 1492塩基より翻訳がス夕一 卜して 333のアミノ酸をコードし (配列番号: 3) 、 タンパク 3 (実施例 3) は 2616塩基より翻訳がスタートして 290のアミノ酸をコードし (配列番号: 4) 、 タンパク 4 (実施例 3) は 3842塩基より翻訳がスタートして 164のアミノ酸を コードし (配列番号: 5) 、 タンパク 5 (実施例 3) は 4529塩基より翻訳がス 夕一卜して 368のアミノ酸をコードしていた (配列番号: 6) 。
また、 同じく本発明に含まれる、 本発明者らにより単離されたレタスビッグべ インウィルスのポリメラ一ゼをコードする cDNAの塩基配列 (実施例 4) を配列 番号: 1 2に、 該 cDNAがコードするタンパク質のァミノ酸配列を配列番号: 1 3に示した (単離したクローンを 「LBVV- L」 と命名した) 。 単離した cDNAは 67 93bpの塩基配列からなり、 337塩基目より翻訳がスタートして 2040のアミノ酸 をコ一ドしていた。 本発明者らは、 さらに、 レタスビッグべインウィルスが、 一鎖の RNAウィルス であり、 粒子内に多少の +鎖も含むことを明らかにした。
これはレタスビッグべィンウイルスの遺伝子および夕ンパク質の一次構造を示 した初めての例である。
本発明の LBVV- cp夕ンパク質 (LBVV夕ンパク 1 ) 、 LBVV夕ンパク 2 ~ 5タン パク質、 または LBVV- Lタンパク質をコードする核酸には、 DNAおよび MAが含 まれる。 この DNAには cDNAおよびィ匕学合成 DNAが含まれ、 また、 MAにはウイ ルスゲノム RNA、 mRNA、 合成 RNAが含まれる。 本発明の核酸は、 当業者にとって 常套手段を利用して調製することが可能である。 具体的には、 純化ウィルスを S DS -フエノール法などの方法で除タンパク質して調製した RNA、 あるいは CTAB法 などでウィルス感染葉から抽出した全核酸を鎢型として、 本発明の核酸の配列か ら設計したプライマーあるいはランダムプライマーを用いて逆転写反応を行なう ことで第一鎖 DNAを合成できる。 この方法で作製した第一鎖 DNAから、 Gubler & Hoffman法 (U. Gulber & B.J.Hoffman, ( 1983), Gene 25, 263-269) により第 二鎖 DNAを合成し、 市販の数々のプラスミ ドあるいはファージミ ドベクタ一にク ローニングできる。 あるいは、 第一鎖 DNAを銪型とし、 本発明の核酸の配列から 設計したプライマ一を用いたポリメラ一ゼ連鎖反応により該ウィルスの RNAをコ ードする DNAを増幅し、 pGEM®- Tベクターなどを用いた TAクローニング、 ある いはプライマーに制限酵素サイ トを付けることにより市販の数々のプラスミ ドべ クタ一にクロ一ニングできる。
本発明の核酸は、 組換え夕ンパク質の調製やレタスビッグべィンウイルス抵抗 性レタスの作出に利用することもできる。
組換えタンパク質を調製する場合には、 通常、 本発明のタンパク質をコードす る DNAを適当な発現べクタ一に挿入し、 該ベクタ一を適当な細胞に導入し、 形質 転換細胞を培養して発現させたタンパク質を精製する。 組換えタンパク質は、 精 製を容易にするなどの目的で、 他のタンパク質との融合タンパク質として発現さ せることも可能である。 例えば、 大腸菌を宿主としてマルトース結合タンパク質 との融合タンパク質として調製する方法 (米国 New England BioLabs社発売のベ クタ一 pMALシリーズ) 、 グル夕チオン- S-トランスフェラーゼ(GST)との融合夕 ンパク質として調製する方法 (Amersham Pharmacia Biotech社発売のベクタ一 p GEXシリーズ) 、 ヒスチジン夕グを付加して調製する方法 (Novagen社の pETシ リーズ) などを利用することが可能である。 宿主細胞としては、 組換えタンパク 質の発現に適した細胞であれば特に制限はなく、 上記の大腸菌の他、 発現べクタ 一を変えることにより、 例えば、 酵母、 種々の動植物細胞、 昆虫細胞などを用い ることが可能である。 宿主細胞へのベクターの導入には、 当業者に公知の種々の 方法を用いることが可能である。 例えば、 大腸菌への導入には、 カルシウムィォ ンを利用した導入方法 (M.Mandel, & A.Higa, ( 1970), Journal of Molecular B iology, 53, 158-162、 D.Hanahan, ( 1983), Journal of Molecular Biology, 16 6, 557-580) を用いることができる。 宿主細胞内で発現させた組換えタンパク質 は、 該宿主細胞またはその培養上清から、 当業者に公知の方法により精製し、 回 収することができる。 組換えタンパク質を上記したマルトース結合タンパク質な どとの融合夕ンパク質として発現させた場合には、 容易にァフィ二ティー精製を 行うことが可能である。
得られた組換えタンパク質を用いれば、 これに結合する抗体を調製することが できる。 例えば、 ポリクローナル抗体は、 精製した本発明のタンパク質若しくは その一部のぺプチドをゥサギなどの免疫動物に免疫し、 一定期間の後に血液を採 取し、 血べいを除去した血清より調製することが可能である。 また、 モノクロ一 ナル抗体は、 上記タンパク質若しくはべプチドで免疫した動物の抗体産生細胞と 骨腫瘍細胞とを融合させ、 目的とする抗体を産生する単一クローンの細胞 (ハイ プリ ドーマ) を単離し、 該細胞から抗体を得ることにより調製することができる これにより得られた抗体は、 本発明の夕ンパク質の精製や検出などに利用するこ とが可能である。 本発明の抗体には、 抗血清、 ポリクロ一ナル抗体、 モノクロ一 ナル抗体、 およびこれら抗体の断片が含まれる。
レタスビッグべィンウィルス抵抗性レタスの作出する場合には、 レタスビッグ ベインウィルスタンパク質の産生や機能を抑制する DNAをレタス細胞に導入し、 これにより得られた形質転換レタス細胞を再生させればよい。
レタスビッグべィンウィルスタンパク質の産生や機能を抑制する DNAとしては、 レタスビッグべインウィルスタンパク質をコ一ドする RNAのいずれかの鎖 (セン ス鎖またはその相補鎖) にハイプリダイズする RNAをコードする DNAを用いるこ とができる。
ウィルスゲノムのセンス鎖および mRNAにハイブリダイズする RNAをコードす る DNAとしては、 本発明者らにより単離された配列番号: 2から 6、 または 1 3 のいずれかに記載のタンパク質をコードする DNA (好ましくは配列番号: 1また は 1 2に記載の塩基配列のコード領域を含む DNA) の転写産物に相補的なアンチ センス RNAをコードする DNAが挙げられる。 ここで 「相補的」 とは、 レタスビヅ グべィンウィルスタンパク質の産生を有効に阻害できる限り、 完全に相補的でな い場合も含まれる。 転写された RNAは、 標的とするレタスビッグべインウィルス 夕ンパク質をコードする RNAに対して好ましくは 90%以上、 最も好ましくは 9 5%以上の相補性を有する。 ここで 「相補性」 とは、 2つの配列の対応する領域 を、 相補的塩基対の数が最大となるように整列させた場合における、 該領域にお ける全塩基数に対する相補的塩基対を形成した塩基数の%である。
ウィルスゲノム RNAの相補鎖にハイブリダイズする RNAをコードする DNAとし ては、 本発明者らにより単離された配列番号: 2から 6、 または 1 3のいずれか に記載のタンパク質をコードする RNA (好ましくは配列番号: 1または 1 2に記 載の塩基配列のコ一ド領域を含む RNA) の相補鎖に相補的なセンス MAをコード する DNAを用いることができる。 ここで 「相補的」 とは、 レタスビヅグベインゥ ィルスタンパク質の産生を有効に阻害できる限り、 完全に相補的でない場合も含 まれる。 転写されたセンス RNAは、 標的とするレタスビッグべインウィルスタン パク質をコードする RNA (相補鎖) に対して好ましくは 90%以上、 最も好ましく は 95%以上の相補性を有する。
効果的に標的遺伝子の発現を阻害するには、 上記アンチセンス RNAやセンス R NAの長さは、 少なくとも 15塩基以上であり、 好ましくは 100塩基以上であり、 さらに好ましくは 500塩基以上であり、 通常、 5kbよりも短く、 好ましくは 2.5k わよりも短い。
また、 レタスビッグペインウィルスタンパク質の産生を抑制する MAとしては、 レタスビヅグべィンウィルスタンパク質をコードする RNAの少なくとも一方の鎖 を切断するリボザィムをコードする DNAを用いることも可能であると考えられる。 リボザィムとは触媒活性を有する RNA分子のことをいう。 リボザィムには種々 の活性を有するものがあるが、 中でも RNAを切断する酵素としてのリボザィムの 研究により、 RNAの部位特異的な切断を目的とするリボザィムの設計が可能とな つた。 リボザィムには、 グループ Iイントロン型や、 RNasePに含まれる MIMA のように 400ヌクレオチド以上の大きさのものもあるが、 ハンマーへッド型やへ ァピン型と呼ばれる 40ヌクレオチド程度の活性ドメインを有するものもある(小 泉誠および大塚栄子, (1990) , 蛋白質核酸酵素, 35, 2191-2200 )。
例えば、 ハンマ一ヘッド型リボザィムの自己切断ドメインは、 G13U14C15の C1 5の 3'側を切断するが、 活性には U14が 9位の Aと塩基対を形成することが重要 とされ、 15位の塩基は Cの他に Aまたは Uでも切断されることが示されている (M. Koizumi et a7. , ( 1988) 3 FEBS Letters, 228, 228-230)。 リボザィムの基質 結合部を標的部位近傍の RNA配列と相補的になるように設計すれば、 標的 RNA中 の UC、 UUまたは UAという配列を認識する制限酵素的な RNA切断リボザィムを作 出することが可能である(M.Koizumi et a ,(1988) , FEBS Letters, 239, 285、 小泉誠および大塚栄子,(1990 ), 蛋白質核酸酵素, 35, 2191-2200、 M. Koizumi et ah , ( 1989 ) , Nucleic Acids Research, 17, 7059-7071 ) 0 例えば、 LBVV-cp ¾ 伝子、 LBVVタンパク 2〜5遺伝子、 または LBVV- L遺伝子 (配列番号': 1または 12) 中には標的となりうる部位が複数存在する。
また、 ヘアピン型リボザィムも、 本発明の目的のために有用である。 ヘアピン 型リボザィムは、 例えばタバコリングスポットウィルスのサテライ ト RNAのマイ ナス鎖に見出される(J.M.Buzayan et ai.,(1986)5 Nature, 323, 349-353)。 こ のリボザィムも、 標的特異的な RNA切断を起こすように設計できることが示され ている(Y.Kikuchi & N.Sasaki, (1992), Nucleic Acids Research, 19, 6751-67 75、 菊池洋, (1992), 化学と生物, 30, 112-118)。
標的を切断できるよう設計されたリボザィムは、 植物細胞中で転写されるよう に力リフラワーモザイクウィルスの 35Sプロモーターなどのプロモーターおよび 転写終結配列に連結される。 しかし、 その際、 転写された MAの 5'末端や 3'末 端に余分な配列が付加されていると、 リボザィムの活性が失われてしまうことが ある。 このようなとき、 転写されたリボザィムを含む Aからリボザィム部分だ けを正確に切り出すために、 リボザィム部分の 5 '側や 3,側に、 トリミングを行 うためのシスに働く別のトリミングリボザィムを配置させることも可能である(K. Taira et al., (1990), Protein Eng., 3, 733-738、 A.M.Dzianott & J.J.Bujar ski, (1989), Proc. Natl. Acad. Sci. USA., 86, 4823-4827、 A.Grosshans & R.T. Cech, (1991), Nucleic Acids Research, 19, 3875-3880、 K. Taira et al., (19 91), Nucleic Acids Research, 19, 5125-5130)。 また、 このような構成単位を タンデムに並べ、 標的遺伝子内の複数の部位を切断できるようにして、 より効果 を高めることもできる (N.Yuyama et al. , (1992), Biochem. Biophys.Res . Commu n., 186, 1271-1279)。 このようなリボザィムを用いて本発明で標的となる遺伝 子の転写産物を特異的に切断し、 該遺伝子の発現を抑制することができる。
レタス細胞の形質転換に用いられるベクターとしては、 該細胞内で挿入された DNAを発現させることが可能なものであれば特に制限はない。 例えば、 レタス細 胞内での恒常的な遺伝子発現を行うためのプロモー夕一 (例えば、 カリフラワー モザイクウィルスの 35Sプロモーター) を有するベクターや、 外的な刺激により 誘導的に活性化されるプロモーターを有するベクタ一を用いることも可能である 好適なベクターとしては、 例えば、 pBIバイナリーベクターが挙げられる。 べク 夕一の導入される 「レタス細胞」 には、 種々の形態のレタス細胞、 例えば、 懸濁 培養細胞、 プロトプラスト、 葉の切片、 カルスなどが含まれる。
レタス細胞へのベクターの導入は、 ポリエチレングリコール法、 ポリカチオン 法、 電気穿孔法 (エレクト口ポーレーシヨン) 、 ァグロパクテリゥムを介する方 法、 パーティ'クルガン法など当業者に公知め種々の方法を用いることができる。 例えば、 文献 (S. Z. Pang et ah , ( 1996 ), The Plant Journal, 9, 899- 909)に 記載の方法は好適な方法の一例である。 - 形質転換レタス細胞からのレ夕ス植物体の再生は、 レタス細胞の種類に応じて 当業者に公知の方法で行うことが可能である。 好適な再生の方法としては、 例え ば、 文献 (S. Enomoto, et ah , ( 1990), Plant Cell Reports, 9, 6-9) に記載 の方法が挙げられる。
一旦、 ゲノム内に本発明の DNAが導入された形質転換レタス植物体が得られれ ば、 該植物体から有性生殖により子孫を得ることが可能である。 また、 該植物体 やその子孫あるいはクローンから繁殖材料 (例えば、 種子、 株、 カルス、 プロト プラスト等) を.得て、 それらを基に該植物体を量産することも可能である。 本発 明には、 本発明の DNAが導入された植物細胞、 該細胞を含む植物体、 該植物体の 子孫およびクローン、 並びに該植物体、 その子孫、 およびクローンの繁殖材料が 含まれる。
また、 本発明は、 レタスビッグペインウィルスの感染を診断する方法を提供す る。 本発明の診断方法の一つの態様は、 プライマーあるいはプローブを利用した レタスビッグべィンウィルス RNAあるいは該ウィルスタンパク質をコ一ドする R NAを検出することを特徴とする方法である。 このようなプローブやプライマ一 としては、 配列番号: 2から 6、 または 1 3のいずれかに記載のレタスビッグべ インウィルスタンパク質をコードする DNAに相同的または相補的な少なくとも 1 5ヌクレオチドからなる核酸を用いることができる。 該核酸は、 好ましくは配列 番号: 2から 6、 または 1 3のいずれかに記載のレタスビッグべインウィルス夕 ンパク質をコ一ドする DNAに特異的にハイプリダイズする核酸である。
プライマ一やプローブは必要に応じて標識されていてもよい。 標識としては、 例えば、 放射標識等が挙げられる。
この診断においては、 例えば、 レタスビッグべインウィルスに感染したことが 疑われるレタス、 該ウィルスを保毒していると疑われる 01pidum、 あるいは本菌 を含む土壌から被検試料を調製し、 該試料に対し、 上記のプライマーを用いた P CR法あるいは上記のプローブを利用したノーザンブロッティング法を実施すれ ばよい。
本発明の診断方法の他の一つの態様は、 抗体を利用したレタスビッグべインゥ ィルスタンパク質を検出することを特徴とする方法である。 この診断に用いる抗 体の調製は、 例えば、 得られたアミノ酸配列 (配列番号: 2から 6、 または 1 3 のいずれか) から抗原領域を推定してペプチドを合成し、 KLHあるいは BSAなど のキヤリアタンパクに結合させ、 これをゥサギに免疫することにより調製するこ とができる。 また、 QIAexpress Type IV Kit (QIAGEN社)を用いて、 大腸菌で発 現させたレタスビヅグペインウィルスのタンパク質をヒスチジンで夕ツギングし、 得られたタンパク質をゥサギに免疫することにより調製することもできる。 抗体 は、 必要に応じて標識されていてもよい。 標識としては、 例えば、 酵素標識等が 挙げられる。 また、 抗体自体を直接標識しなくとも、 抗体に結合する物質、 例え ば、 プロテイン Aなどを介して標識して、 目的のタンパク質を検出してもよい。 この診断においては、 例えば、 レタスビッグべインウィルスに感染したことが 疑われるレタス、 該ウィルスを保毒していると疑われる 01pidum、 あるいは本菌 を含む土壌から被検試料を調製し、 該試料に対し、 上記の抗体を用いて ELISA法 あるいはウエスタンブロヅト法を実施すればよい。 発明を実施するための最良の形態
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明はこれら実施例 に制限されるものではない。
[実施例 1 ] レタスビッグべインウィルスの外被タンパク質遺伝子のクロ一二 ング
1997年に香川県のビッグべイン症を示したレタス (品種;シスコ) 圃場より 汚染土を採集し、 乾燥状態で室温で保存した。 ウィルス純化にはレタスの品種シ スコを用い、 ウイルス接種は土壌接種によった。
ウィルス純化は Kuwataら (S. Kuwata et aL , ( 1983), 日植病報, 49, 246-25 1) の方法を改変して行った。 まず、 最初の低速遠心をやめ、 1% Triton- X処置、 1% Briji- 35処理後、 Cs2S04の密度勾配遠心をし、 ウィルス画分を得た。 本純化 法で得られた純化ウィルスを SDS-ポリアクリルアミ ドゲル電気泳動すると、 48k Daの一本のバンドのみが検出された。 また、 電子顕微鏡観察では LBVVの粒子の 集塊のみが観察され他の不純物が観察されなかったことより、 かなり高純度の純 化ウィルスが得られていると推定された。
ウィルス核酸の抽出は、 純化ウィルスを Proteinase K—SDS処理後、 フヱノー ル/ /クロ口ホルム、 エタノール沈殿で行った。 また、 第一鎖 cDNAの作製には精 製ウィルス核酸を Dimethyl sulfoxide変性して用いた。 LBVV感染葉からの Poly (A) + RNAの抽出は、 LBVV感染し明暸なビッグべイン症状を示したレタス葉から Dynabeads® mRNA DIRECT™ Kit (DYNAL®社)を用いて行った。 第一鎖 cMAの作製 にはランダムプライマ一あるいは Oligo- dT- aw HIプライマーを用い、 SUPERSCRI ρτ™ I I RNase H" Reverse Transcriptase (GIBCO BRL社) で逆転写反応を行った。
LBVV外被タンパク質の内部アミノ酸配列の決定は以下のようにして行った。 純化 LBVVを 12.5% SDS-ポリアクリルアミ ドゲル電気泳動後、 ニトロセルロース 膜に転写し、 目的のバンドを切り出し、 カルボキシメチル化後、 リジルエンドべ プチ夕ーゼ処理した。 処理後、 逆相 HPLCにより 38本のバンドパターンを得た。 それらのバンドのうち数バンドについてアミノ酸の配列を決定した。
得られた数種のァミノ酸配列のうち、 ESWDDESTIAMPおよび NLEVPGVDYIDAを基 に 5LB111プライマー (GMWSITGGGAYGAYGARWSIACZ配列番号: 7 ) および 3LB17 1プライマー (GCRTCDATRTMTCIACICCIGG/配列番号: 8 ) を設計し、 TaKaRa Ta q (夕カラ社) を用いて PCRを行ったところ、 274bpの PCR産物が得られた。 得 られた PCR産物を pGEM®- T Easy Vector Systems (Promega社) を用いてクロー ニングし、 塩基配列を決定した。
LBVVの全外被タンパク質遺伝子を決定するために、 純化ウィルスからの RNA あるいは LBVV感染葉からの Poly(A)+ RNAを用いて 3' RACEあるいは 5, RACEを試 みた。 3, RACEでは、 RNAは LBVV感染葉からの Poly(A)+ RNAを、 PCRは Oligo-dT -Bam HIプライマーおよび 5LB171プライマー (AAYYTIGMGTICCIGGIGTIGA/配列 番号: 9 ) を用い、 891bpの PCR産物を得た。 5' RACEでは、 Aは純化ウィルス からの RNAあるいは LBVV感染葉からの Poly(A)+腸を、 プライマ一には 3LB5R 4プライマ一 (GTTTTTGACCCTGATAG/配列番号: 1 0 ) と 3LB5R5プライマー (GT CGACTCTAGACACTTGTTGTTTGTCGTG/配列番号: 1 1 ) を用い、 5, RACE System for Rapid Amplification of cDNA Endsヽ Version 2.0 (GIBCOBRL社) によって 760b pの PCR産物を得た。 得られた PCR産物は pGEM®_T Easy Vector Systems (Prome ga社) を用いてクローニングし、 少なくとも 6クローン以上の塩基配列を決定 した。 また、 互いに重なるようにデザインしたプライマーで 500〜700bpの外被 タンパク質近傍の遺伝子の PCR産物をクローニングし、 少なくとも 3クローンの 塩基配列を決定し、 外被夕ンパク質遺伝子の塩基配列を確認した。
以上の方法により、 1425bpの塩基配列を決定した。 本遺伝子は 209塩基より 翻訳がスタートし、 397のアミノ酸をコードしていた (配列番号: 1参照) 。
[実施例 2 ] 形質転換レタスの作製 ( 1 ) レタス種子の殺菌および培養
レタス種子を 70% エタノールに数秒間浸漬後、 殺菌液 (10% 次亜塩素酸ナト リウム、 0.05% Tween-20) に入れ 15分間処理した。 次に、 種子を殺菌水ですす ぎ、 ハイポネックス寒天培地 (1 リツトルの蒸留水に対し、 ハイポネックス粉末 を 3.0g、 ショ糖を 10.0g、 寒天を 8. O g溶かし、 IN NaOHで ρίίを 5.8に調整) の 入ったプラントボックスに植え、 明所 25〜28°Cで約 2週間、 本葉が 5cm程度に なるまで生育させた。
( 2 ) ァグロパクテリゥムの培養と接種
250 zg/ml ストレプトマイシン、 5〃g/ml リファンピシン、 50〃g/ml カナマ ィシンを含む YEB液体培地 ( 1リツトルの蒸留水に、 Yeast extractを 1. 0g、 Be ef extractを 5.0g、 Peptoneを 5.0g、 ショ糖を 5.0g MgS04 · 7H20を 0.5g溶か し、 IN NaOHで pHを 7.0に調整) にァグロバクテリゥムを接種し、 28°Cでー晚 振とう培養した。 ァグロパクテリゥム培養液をさらに新しい YEB培地 (前述の抗 生物質を含む) に植え継ぎ、 さらに 28°Cで一日振とう培養した。
本葉が 5cm程度になったレタスの幼植物をプラスチックシャーレに取り出し、 本葉を 5mm程度に刻み、 10倍希釈のァグロバクテリゥム培養液に 1分間浸漬し た。 次に, 切片を 3% ショ糖、 0.5ppmベンジルアデニン (BAP) 、 O. lppm ナフ 夕レン酢酸 (NM) 、 0.8% 寒天を含む MS培地 (pH5.8)に 15〜20個/プレートに なるように並べ、 25°C、 2000ルクス、 2日間共存培養した。 共存培養後、 3% シ ョ糖、 0.5ppm BAP、 O. lppm NAA 250 g/ml カルペニシリン、 0.8% 寒天を含む MS培地 (pH5.8)で 7日間除菌培養した。
( 3 ) 形質転換体の選抜と培養
除菌培養後、 3% ショ糖、 0.5ppm BAP、 O. lppm NAAS 250 zg/ml カルペニシリ ン、 50 ig/ml カナマイシン、 0.8% 寒天を含む MS培地 (pH5.8) に移し、 25°C、 2000ルクスで培養を行った。 約 2週問ごとに植え継ぎを行い、 2〜3力月でァグ ロバクテリウムを接種したものから再分化するものが現れた。 再分化した個体を 3% ショ糖、 0. 3ppm BAP、 500 ig/ml カルペニシリン、 0. 8% 寒天を含む MS培地 (pH5.8)に移し、 約 2週間ごとに植え継ぎを行った。 再分 化個体が 3cm程度の大きさになったら、 500〃g/mlのカルべニシリンを含む 1/2 倍 MS寒天培地に茎葉を挿して植え発根させた。
( 4 ) レタスの順化と採種
再分化個体が発根してシュートが l〜2cm伸びてきた状態で、 ハイポネクスの 500倍希釈水溶液を浸したバーミキユラィ トにシュートを切って挿し木し発根さ せた。 プラントボックスのふたを徐々に開けて換気し順化させた。 十分順化した ところで、 閉鎖系温室内 (最高気温 30°C以下、 自然日長) でポリポット (クレ ハ園芸培土) に定植して、 そのまま抽苔 ·開花させて採種した。
[実施例 3 ] LBVVの RNA2遺伝子のクロ一ニング
1997年に香川県のビッグべイン症を示したレタス (品種;シスコ) 圃場より 汚染土を採集し、 乾燥状態で室温で保存した。 ウィルス純化にはレタスの品種シ スコを用い、 ウィルス接種は土壌接種によった。
ウィルスの純化および RNAの精製は実施例 1にしたがって行った。 cDNAの合 成および塩基配列の決定は、 C. F . Fazel i & M.A. Rezaian (Journal of General Virology, 81 , 605-615) の方法にしたがい、 下流方向にプライマーを合成して 配列を伸ばして行くゲノムウォーキングの方法でおこなった。 まず、 実施例 1を 基にウィルス特異的な 5 LB5R3ブラィマ一 (AGCTCTGMCMCGACATG/配列番号: 1 6 ) を作製し、 精製 LBVVRNAを鎵型として SUPERSCRIPT™ I I RNase H— Reverse Transcriptaseで lstcDNAを合成した。 次ぎに、 Universal primer-dN6 ( 5'- GCCGGAGCTCTGCAGMTTC丽丽丽- 3'ダ配列番号: 1 4 )を用いクレノーフラグメント (夕カラ社) で 2 ndcDNAを合成した。 GLASSMAX DNA Isolation Spin Cartridge System ( GIBCO BRL社)で余分なプライマーを除去後、 ウィルス特異的なプライマ 一と Universal primer ( 5'- GCCGGAGCTCTGCAGMTTC- 3'/配列番号: 1 5 )を用い て PCRを行い、 得られた PCR産物を pGEM®-T Easy Vector Systemsを用いてクロ 一二ングし、 塩基配列を決定した。 同様な方法を 4回繰り返し、 5177塩基まで を決定した。 RNA2の 3'末端は 5,RACEで行い (注;精製 LBVVの Aには +鎖と- 鎖の両鎖が含まれているので 5,RACEで 5,末端のみならず 3,末端も決めることが できる) 、 LBVVがコードする 5つのタンパク質遺伝子を含む 6078bpの塩基配列 決定した (配列番号: 1 ) 。 なお、 互いに重なるようにデザインしたプライマー で 500〜700bpの RNA2の PCR産物をクロ一ニングし、 少なくとも 3クローンの塩 基配列を決定し、 RNA2の塩基配列を確認した。
以上の方法により、 6078bpの塩基配列を決定した。 本遺伝子は 5つのタンパ クをコードした。 タンパク 1 (外被タンパク質;実施例 1 ) は 209塩基より翻訳 がスタートして 397のアミノ酸をコードし (配列番号: 2 ) 、 タンパク 2は 1492塩基より翻訳がスタートして 333のアミノ酸をコードし (配列番号: 3 ) 、 タンパク 3は 2616塩基より翻訳がスタートして 290のアミノ酸をコードし (配 列番号: 4 ) 、 タンパク 4は 3842塩基より翻訳がスタートして 164のアミノ酸 をコードし (配列番号: 5 ) 、 タンパク 5は 4529塩基より翻訳がスタートして 368のアミノ酸をコードしていた (配列番号: 6 ) 。 アミノ酸配列の相同性を 他のウィルスと比較したところ、 タンパク 1 (外被タンパク質) のみが ? a0i o irj'i ae科に属するウィルスのヌクレオカプシドタンパク (外被夕 ンパク質) と相同性が認められた。
[実施例 4 ] LBVVポリメラーゼ遺伝子のクローニング
1997年に香川県のビッグペイン症を示したレタス (品種;シスコ) 圃場より 汚染土を採集し、 乾燥状態で室温で保存した。 ウィルス純化にはレタスの品種シ スコを用い、 ウィルス接種は土壌接種によった。
ウィルス純化は、 実施例 1のウィルス純化の手順と同様にして行った。 高純度 のウィルス核酸の抽出は以下のようにして行った。 純化ウィルスを Proteinase K一 SDS処理後、 フエノール/クロ口ホルム抽出しエタノール沈殿した。 次ぎに、 DNase処理し The RNaid® Kit (BIO 101社)でウィルス核酸を更に精製後、 1% ァ ガロースゲル (SEA PLAQUE GTG; FMC社) 電気泳動で 2本ある LBVV核酸のうち 7, 3kbのバンドを分取し、 cDNA合成に用いた。 cDNAの合成は P . Froussard (Nucle ic Acids Research, 20, 2900) の方法にしたがって行った。 即ち、 Universal rimer- dN6 (5, -GCCGGAGCTCTGCAGMTTCN丽丽 N- 3, /配列番号: 1 4 ) を用い SUPER SCRIPT™ I I RNase H" Reverse Transcriptaseで lstcDNAを合成した。 次ぎに、 ク レノーフラグメントで 2 ndcDNAを合成し、 Universal primer (5, -GGCGGAGCTCTGC AGMTTC- 3'ノ配列番号: 1 5 ) を用いて PCRを行い、 得られた PCR産物を pGEM® - T Easy Vector Systemsを用いてクローニングし, 塩基配列を決定した。
500b 前後の LBVVのポリメラーゼ遺伝子断片を 8個得た。 ポリメラーゼ遺伝 子の両末端は 5' RACEで、 その断片間は PCRで埋め、 全ポリメラーゼ遺伝子を含 む 6793bpの塩基配列を決定した (配列番号: 1 2 ) 。 なお、 互いに重なるよう にデザィンしたプライマーで 500〜700bpのポリメラ一ゼ遺伝子の PCR産物をク ローニングし、 少¾くとも 3クローンの塩基配列を決定し、 ポリメラ一ゼ遺伝子 の塩基配列を確認した。
本遺伝子は 337塩基より翻訳がス夕一卜し、 2040のアミノ酸をコードしてい た (配列番号: 1 3 ) 。 アミノ酸配列の相同性を他のウィルスと比較したところ、 Mononegavirales目に属するウィルスのポリメラ一ゼとの相同性が確認され、 特 に、 Rhabdoviridae科に属するウィルスのポリメラーゼと高い相同性があり、 ポ リメラ一ゼ活性を担うとされる 4つのモチーフも保存されていた。 産業上の利用の可能性 .
本発明により、 レタスビッグべインウィルスのタンパク質をコードする核酸が 単離され、 その一次構造が解明された。 該核酸あるいはそのアンチセンス核酸を レタスで発現させることにより、 該ウィルスに対する抵抗性を有するレタス植物 O 01/90362
1 9
レナ P ナ まナ, ¾核酸やそれにコードされるタンパク質を検出 体の作出が可能となつに。 、
することにより、 レタスビッグべインウィルスの感染を診断することが可能とな つた。

Claims

請求の範囲
1 . レタスビッグべインウィルスのタンパク質をコードする下記 (a ) または ( b ) の核酸。
( a ) 配列番号: 2から 6、 または 1 3のいずれかに記載のアミノ酸配列からな るタンパク質をコードする核酸。
( b ) 配列番号: 1または 1 2に記載の塩基配列のコ一ド領域を含む、 ( a ) に 記載の核酸。
2 . MAである、 請求項 1に記載の核酸。
3 . DNAである、 請求項 1に記載の核酸。
4 . 請求項 2に記載の核酸の相補鎖に相補的なセンス RNAをコードする DNA。
5 . 請求項 2に記載の核酸と相補的なアンチセンス RNAをコードする DNA。
6 . 請求項 2に記載の核酸を特異的に開裂するリボザィム活性を有する RNAを コードする DNA。
7 . 請求項 3に記載の核酸を含むぺク夕一。
8 . 請求項 3に記載の核酸または請求項 7に記載のベクターを保持する形質転 換細胞。
9 . 請求項 1に記載の核酸によりコ一ドされるタンパク質。
1 0 . 請求項 9に記載のタンパク質に結合する抗体。
1 1 . 請求項 8に記載の形質転換細胞を培養し、 該形質転換細胞またはその培養 上清から発現させたタンパク質を回収する工程を含む、 請求項 9に記載の夕ンパ ク質の製造方法。
1 2 . 請求項 4から 6のいずれかに記載の DNAを含むベクタ一。
1 3 . 請求項 1に記載の核酸、 請求項 4から 6のいずれかに記載の DNA、 または 請求項 7もしくは 1 2に記載のベクターを保持する形質転換レタス細胞。
1 4 . 請求項 1 3に記載の形質転換レタス細胞を含む形質転換レタス植物体。
1 5 . 請求項 1 4に記載の形質転換レタス植物体の子孫またはクローンである、 形質転換レ ス植物体。
1 6 . 請求項 1 4または 1 5に記載の形質転換レタス植物体の繁殖材料。
1 7 . レタスビッグべインウィルスの感染を診断する方法であって、 レタス細胞 またはレタスビックべインウィルスの媒介菌である Olpidumにおける、 請求項 1 に記載の核酸または請求項 9に記載のタンパク質を検出することを特徴とする方 法。
PCT/JP2001/004268 2000-05-22 2001-05-22 Acides nucleiques codant les proteines du virus de l'hypertrophie des nervures de la laitue, et utilisation associee WO2001090362A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01932194A EP1312677B1 (en) 2000-05-22 2001-05-22 Nucleic acids encoding lettuce big-vein virus proteins and utilization thereof
DE60123080T DE60123080T2 (de) 2000-05-22 2001-05-22 Nukleinsaeuren, die für lbvv (lettuce big-vein virus) proteine kodieren und deren verwendung
US10/276,968 US7279335B2 (en) 2000-05-22 2001-05-22 Nucleic acids encoding lettuce big-vein viral proteins and utilization thereof
JP2001587156A JPWO2001090362A1 (ja) 2000-05-22 2001-05-22 レタスビッグベインウイルスタンパク質をコードする核酸およびその利用
US11/790,420 US20070264690A1 (en) 2000-05-22 2007-04-25 Nucleic acids encoding lettuce big-vein viral proteins and utilization thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-154440 2000-05-22
JP2000154440 2000-05-22
JP2001065339 2001-03-08
JP2001-65339 2001-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/790,420 Division US20070264690A1 (en) 2000-05-22 2007-04-25 Nucleic acids encoding lettuce big-vein viral proteins and utilization thereof

Publications (1)

Publication Number Publication Date
WO2001090362A1 true WO2001090362A1 (fr) 2001-11-29

Family

ID=26592560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004268 WO2001090362A1 (fr) 2000-05-22 2001-05-22 Acides nucleiques codant les proteines du virus de l'hypertrophie des nervures de la laitue, et utilisation associee

Country Status (6)

Country Link
US (2) US7279335B2 (ja)
EP (1) EP1312677B1 (ja)
JP (1) JPWO2001090362A1 (ja)
DE (1) DE60123080T2 (ja)
ES (1) ES2272474T3 (ja)
WO (1) WO2001090362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485463B2 (en) 2002-07-18 2009-02-03 National Agricultural And Bio-Oriented Research Organization Nucleic acids encoding mirafiori lettuce virus proteins and utilization thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684226A (en) * 1994-01-06 1997-11-04 Harris Moran Seed Company Multiple disease resistance in lettuce
WO2004009817A1 (ja) 2002-07-18 2004-01-29 National Agriculture And Bio-Oriented Research Organization ミラフィオリレタスウイルスタンパク質をコードする核酸およびその利用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAULCOMBE D.C.: "Mechanisms of pathogen-derived resistance to viruses in transgenic plants", THE PLANT CELL., vol. 8, October 1996 (1996-10-01), pages 1833 - 1844, XP002945091 *
ROGGERO P. ET AL.: "An ophiovirus isolated from lettuce with big-vein symptoms", ARCH. VIROL., vol. 145, 2000, pages 2629 - 2642, XP002945090 *
SASAYA T. ET AL.: "Nucleotide sequence of the coat protein gene of lettuce big-vein virus", JOURNAL OF GENERAL VIROLOGY, vol. 82, June 2001 (2001-06-01), pages 1509 - 1515, XP002945089 *
See also references of EP1312677A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485463B2 (en) 2002-07-18 2009-02-03 National Agricultural And Bio-Oriented Research Organization Nucleic acids encoding mirafiori lettuce virus proteins and utilization thereof

Also Published As

Publication number Publication date
DE60123080D1 (de) 2006-10-26
JPWO2001090362A1 (ja) 2004-03-04
EP1312677A4 (en) 2004-09-22
DE60123080T2 (de) 2007-05-03
US7279335B2 (en) 2007-10-09
EP1312677A1 (en) 2003-05-21
US20040014032A1 (en) 2004-01-22
US20070264690A1 (en) 2007-11-15
EP1312677B1 (en) 2006-09-13
ES2272474T3 (es) 2007-05-01

Similar Documents

Publication Publication Date Title
AU2019276382B2 (en) Use of Yr4DS gene of Aegilops tauschii in stripe rust resistance breeding of Triticeae plants
KR100228326B1 (ko) 토스포바이러스 rna를 암호화 하는 dna 서열을 포함하는 재조합 dna 구조체, 이 구조체로 형질전환된 식물 및 그 식물의 제조방법
JPH03280883A (ja) Rna型ウイルス由来の配列を包含する組換えdnaおよびそれを用いる遺伝子操作方法
WO2001006006A1 (fr) Gene de resistance au stress ambiant
JPWO2003074706A1 (ja) 催涙成分生成酵素活性を有する蛋白質又はポリペプチド、該蛋白質又はポリペプチドをコードするDNA、該DNAを用いた催涙成分生成酵素活性を有する蛋白質又はポリペプチドの製造方法及び該蛋白質又はポリペプチドについてのmRNAの翻訳を阻害する機能を有する核酸分子
CA2512644A1 (fr) Gene de resistance a aphis gossypii
CN110172465B (zh) 一种黄曲霉致病基因wprA的应用
PL189499B1 (pl) Sposób indukowania odporności na wirus BNYVV, roślina transgeniczna odporna na wirus BNYVV, transgeniczna tkanka roślinna i struktura odtwarzalna otrzymana z rośliny transgenicznej
CA3089053A1 (en) Biological control of cucumber green mottle mosaic virus
JP4877726B2 (ja) オオムギ条性遺伝子とその利用
WO2001090362A1 (fr) Acides nucleiques codant les proteines du virus de l'hypertrophie des nervures de la laitue, et utilisation associee
JP4797171B2 (ja) 熱又は水分ストレス耐性向上活性を有するアラビノガラクタンタンパク質
US7485463B2 (en) Nucleic acids encoding mirafiori lettuce virus proteins and utilization thereof
AU9778098A (en) Nepovirus resistance in grapevine
US20110296553A1 (en) Engineering broad and durable resistance to grapevine fanleaf virus in plants
Nega Review on Barely yellow dwarf viruses
JP2005253400A (ja) チューリップ条斑ウイルスタンパク質をコードする核酸およびその利用
WO2002039808A1 (en) Method of enhancing virus-resistance in plants and producing virus-immune plants
Hooker Analysis of the genetic diversity of Grapevine rupestris stem pitting-associated virus in Ontarian vineyards and construction of a full-length infectious clone
JP4754676B2 (ja) 環境ストレス耐性遺伝子
WO1994016087A1 (fr) Plantes transgeniques resistantes aux virus vegeteaux et procede d'obtention
JP2000312540A (ja) てん菜そう根病抵抗性植物
CN117088947A (zh) 辣椒疫霉菌效应因子RxLR572048及其片段、突变体、互作蛋白和应用
Loebenstein Potato X Virus (PVX; Genus Potexvirus)
WO2013007728A1 (fr) Procédé d'amélioration de la résistance des plantes aux virus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE ES GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001932194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276968

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001932194

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001932194

Country of ref document: EP