WO2001086982A1 - Systeme de reseau de stations de base radio, station de controle, procede de commutation de station de base, procede de traitement de signal et procede de commande de transfert - Google Patents

Systeme de reseau de stations de base radio, station de controle, procede de commutation de station de base, procede de traitement de signal et procede de commande de transfert Download PDF

Info

Publication number
WO2001086982A1
WO2001086982A1 PCT/JP2001/003845 JP0103845W WO0186982A1 WO 2001086982 A1 WO2001086982 A1 WO 2001086982A1 JP 0103845 W JP0103845 W JP 0103845W WO 0186982 A1 WO0186982 A1 WO 0186982A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
optical
wavelength
station
Prior art date
Application number
PCT/JP2001/003845
Other languages
English (en)
French (fr)
Inventor
Yuji Aburakawa
Hitoshi Yoshino
Toru Otsu
Yasushi Yamao
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000137879A external-priority patent/JP3854446B2/ja
Priority claimed from JP2000380882A external-priority patent/JP3798622B2/ja
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to DE60143253T priority Critical patent/DE60143253D1/de
Priority to EP01926153A priority patent/EP1250018B1/en
Publication of WO2001086982A1 publication Critical patent/WO2001086982A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25756Bus network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures

Definitions

  • the present invention also relates to a system in which a control station for controlling a communication network including a plurality of base stations receives signals from a mobile station during handover from the plurality of base stations and performs equalization processing on the signals.
  • a wireless base station network to which optical wavelength division multiplexing (WDM) is applied, usually, a plurality of base stations that communicate with wireless communication terminals and an external communication network that integrally control the plurality of base stations are provided. There is a supervising station that communicates with, and these stations are connected by optical fiber lines.
  • WDM optical wavelength division multiplexing
  • a conventional base station converts a signal received from a wireless communication terminal into an optical signal for transmission to a supervising station via an optical fiber line, it converts the signal into an optical signal having a wavelength unique to the base station.
  • the supervising station holds an optical receiving device that can correspond to the wavelength of the number of base stations in the network.
  • This optical receiver is composed of a plurality of optical receivers that can handle one wavelength. Each of these optical receivers is responsible for receiving an optical signal from one base station and converting it to an electrical signal. The converted signal is switched by the selection switch to become a received electric signal.
  • FIG. 1 is a block diagram showing a configuration example of a conventional wireless base station network system.
  • a reception wavelength is assigned to each BS, and the control station 10 is provided with an optical transmitter 16 for transmitting an optical wavelength for each BS.
  • Each optical signal is multiplexed and transmitted by the WDM power blur 17 for wavelength multiplex transmission.
  • a radio signal from the MS is received by an access-system radio transceiver 22 via an antenna 21, converted into an optical signal by an optical transmitter 24, and multiplexed by a WDM power bracket 25 for wavelength multiplex transmission.
  • the signal is transmitted from the control station to BS 3 with the wavelength; L BS3 , and transmitted from BS 3 to the control station 10 with the wavelength; l BS3 .
  • Fig. 2 is a diagram showing an example of a WDM power bra in a conventional control station.
  • An object of the present invention is to provide a wireless base station network system in which a base station arranged in a plurality of cells and a control station for controlling the base station are connected by wavelength division multiplexing transmission with an optical fiber, wherein the base station has a predetermined wavelength.
  • a tunable transmitter for transmitting an optical signal, and an optical power coupler for multiplexing the optical signal from the tunable transmitter for wavelength division multiplexing transmission.
  • the control station comprises: a plurality of optical receivers for receiving wavelengths of wavelength-multiplexed optical signals; and the optical receivers for wavelength-multiplexed optical signals transmitted from the plurality of base stations.
  • the optical power blur is, for example, a WDM coupler, but any device can be used as long as an optical signal can be demultiplexed and multiplexed for each wavelength.
  • Another object of the present invention is to improve the communication quality of a mobile station during soft handover of the wireless communication network system.
  • the object is to provide a plurality of base stations that communicate with a wireless communication terminal, a control station that controls each of the base stations and communicates with an external communication network, and an optical link that connects each of the base stations and the control station.
  • Each base station receives a signal transmitted from a wireless communication terminal, converts the received signal into an optical signal, and transmits the optical signal to the control station via an optical fiber line.
  • each of the base stations has signal conversion means for converting a signal transmitted from a wireless communication terminal into an optical signal having a wavelength uniquely assigned to each of the source wireless communication terminals
  • the control station is configured to receive a signal transmitted from the same wireless communication terminal by at least two base stations and convert the signal into an optical signal having the same wavelength by the signal conversion means.
  • An optical signal receiving means for simultaneously receiving an optical signal via an optical fiber line, converting the signal into an electric signal and outputting the signal, and an equalizing / combining means for equalizing / combining the output signal. This is achieved with a base station network system.
  • FIG. 1 is a diagram partially showing an outline of a conventional wireless base station network system.
  • FIG. 2 is a diagram showing an example of a WDM power bra in a control station in a conventional example.
  • FIG. 3 is a diagram partially showing an outline of the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an example of a WDM power bra in the control station according to the first embodiment.
  • FIG. 5 is a diagram partially showing an outline of a wireless communication system according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram illustrating an example of a WDM force bra in a BS according to the second embodiment.
  • FIG. 7 is a diagram partially showing an outline of a wireless communication system according to Embodiment 3 of the present invention.
  • FIG. 8 is a diagram showing an example of a WDM force bra in a BS according to the third embodiment.
  • FIG. 9 is a diagram partially showing an outline of a wireless communication system according to Embodiment 4 of the present invention.
  • FIG. 10 is a diagram partially showing an outline of a wireless communication system according to Embodiment 5 of the present invention.
  • FIG. 11 is a diagram partially showing an outline of a wireless communication system according to Embodiment 6 of the present invention.
  • FIG. 12 is a diagram partially showing an outline of a wireless communication system according to Embodiment 7 of the present invention.
  • FIG. 13 is a diagram partially showing an outline of a wireless communication system according to Embodiment 7 of the present invention.
  • FIG. 14 is a diagram partially showing an outline of a wireless communication system according to Embodiment 8 of the present invention.
  • FIG. 15 is a schematic diagram for explaining a time difference that may cause interference when a diversity equalizer is not provided in the control station.
  • FIG. 16 is a diagram partially showing an outline of a wireless communication system according to Embodiment 9 of the present invention.
  • FIG. 17 is a diagram partially showing an outline of the radio communication system according to Embodiment 10 of the present invention.
  • FIG. 18 is a diagram illustrating a case where a plurality of base stations are connected in a mesh.
  • FIG. 19 is a diagram showing a case where a plurality of base stations are connected in a cluster type.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • the control station 40 and the base station (BS) are connected in a loop by an optical fiber, and optical signals are transmitted and received by wavelength multiplex transmission.
  • a wavelength tunable light source 44 is provided as an optical transmitter for transmitting each optical wavelength, and the respective optical signals are multiplexed by the WDM power bracket 45 for wavelength multiplex transmission and transmitted to the BS.
  • the optical signal of the wavelength addressed to itself is demultiplexed by the respective WDM coupler 55 and received by the optical receiver 53.
  • the signal from the optical receiver 53 is wirelessly transmitted to the wireless communication terminal (MS) via the antenna 51 by the access system wireless (wireless communication between the BS and the wireless communication terminal) transceiver 52.
  • the wireless signal from the wireless communication terminal is transmitted to the access wireless transceiver 5 via the antenna 51.
  • the signals are multiplexed by the M coupler 55 for wavelength multiplex transmission.
  • the optical signal from each BS is demultiplexed for each wavelength by the WDM coupler 45 and received by the optical receiver 43.
  • BS 3 is transmitting information from MS 1 at a wavelength of L MS1 to the managing station. At that time, MS 1 moves and BS
  • FIG. 4 is a diagram showing an example of a WDM power bra in the control station according to the first embodiment.
  • WDM coupler 45 2 optical signals of wavelengths example MS1 ⁇ l MSN from each BS is The light is demultiplexed to each terminal by each wavelength and received by the optical receiver 43.
  • the wavelength of the MS does not change from the BS, so that the optical signal is demultiplexed from the same output terminal.
  • the same optical receiver 43 can receive the signal, and the switching operation becomes unnecessary.
  • FIG. 5 is a diagram partially showing an outline of a wireless communication system according to Embodiment 2 of the present invention.
  • the control station 60 and the base station (BS) are connected in a loop by an optical fiber 30, and optical signals are transmitted and received by wavelength division multiplexing transmission.
  • the control station 60 is provided with a wavelength tunable light source 64 capable of changing the wavelength of the light to be transmitted.
  • the WDM coupler 65 multiplexes the respective optical signals for wavelength-division multiplex transmission and transmits them to the BS.
  • the optical signal of the wavelength addressed to itself is demultiplexed by the WDM coupler 75 and received by the optical receiver 73.
  • the signal from the optical receiver 73 is wirelessly transmitted to the wireless communication terminal (MS) via the antenna 71 by the access wireless transceiver 72.
  • a wireless signal from a wireless communication terminal is received by an access wireless transmitter / receiver 72 via an antenna 71, is converted into an optical signal of an arbitrary wavelength by a wavelength variable light source 74, and is converted into a wavelength signal by a WDM power bracket 5.
  • the optical signal from each BS is demultiplexed for each wavelength by the 0 ⁇ 1 coupler 65 and received by the optical receiver 63.
  • the communication information is transmitted from control station 60 to BS 3 at wavelength ⁇ ⁇ 33 .
  • the control station 60 changes the wavelength of the tunable light source from BS 3 to ⁇ ⁇ 54, and transmits. Switching of BS is realized.
  • FIG. 7 is a diagram partially showing an outline of a wireless communication system according to Embodiment 3 of the present invention.
  • control station 80 and the base station (BS) are connected in a loop by the optical fiber 30, and optical signals are transmitted and received by wavelength multiplex transmission.
  • the control station 80 is provided with an optical transmitter 84 for transmitting each optical wavelength, and the WDM coupler 85 multiplexes the respective optical signals for wavelength division multiplex transmission and transmits them to the BS.
  • the transmission light source of the optical transmitter 84 is prepared for each MS. For example, when MS 1 first starts communication with BS 3, the wavelength of the transmission light source of MS 1 is set to BS3 .
  • an optical signal of an arbitrary wavelength is demultiplexed by the respective variable WDM coupler 95 and received by the optical receiver 93.
  • a signal from the optical receiver 93 is wirelessly transmitted to a wireless communication terminal (MS) via an antenna 91 by an access wireless transceiver 92.
  • a wireless signal from a wireless communication terminal is received by an access wireless transmitter / receiver 92 via an antenna 91, is converted into an optical signal of a predetermined wavelength by a wavelength variable light source 94, and is subjected to wavelength multiplex transmission by a WDM power bracket 95. Multiplexed.
  • the variable wavelength light source 94 is a light source that can arbitrarily control the output wavelength of the light source.
  • the optical signal from each BS is demultiplexed for each wavelength by the WDM coupler 85 and received by the optical receiver 83.
  • the communication information is transmitted from the head office to the BS 3 at the wavelength LBS3 .
  • the control station 80 does not change the transmission wavelength for the base station.
  • the wireless communication terminal be changed base stations, the wavelength e BS 3 of the optical signals of the base station before the movement, as it is without changing, and transmits to the BS 4.
  • BS4 separates the signal transmitted from the central control station 80 for MS 1 transmitted by the wavelength base station BS3 with the variable WDM power brassier 85 and receives it by the optical receiver 93. Wirelessly transmits to the MS 1 via the antenna 91.
  • control station 80 can continue to communicate with the MS 1 without performing the switching of the optical transmitter and the operation of controlling the wavelength, and the switching of the BS is realized.
  • FIG. 8 is a diagram showing an example of a WDM force bra in a BS according to the third embodiment.
  • an optical signal BSM of a predetermined wavelength is demultiplexed, and the other signals pass.
  • Signal from the wavelength tunable light source 94 of the BS, the WDM coupler 95 2 are combined to wavelength multiplexing transmission.
  • BS 4 controls the demultiplexing wavelength of the variable WDM power brass to ABS 3 , so that the optical signal from the control station 80 is transmitted to BS 4. It is transmitted and BS switching is realized.
  • FIG. 9 is a diagram partially showing an outline of a wireless communication system according to Embodiment 4 of the present invention.
  • the control station 100 and the base station (BS) are connected in a loop by an optical fiber 30 and run.
  • the separated signal is converted into an entrance radio signal by the frequency variable entrance MOD 104 by the MUXZDEMUX 102, frequency-division multiplexed by the frequency selective power bracket 105, and subcarrier optical transmission by the EZO 106. Transmitted to BS.
  • each OZE 115 frequency multiplexing is performed by each OZE 115.
  • the signal of a predetermined en- anced radio frequency is split by the frequency-selective force bra 114, and the frequency variable entrance DEMI 13! (The frequency variable entrance MODEM 1 13, the frequency variable Entoran scan DEMI 13 to demodulate, and consists by variable-frequency entrance MOD 1 13 2 to perform the modulation.) Is demodulated from.
  • the digital signal demodulated by the variable frequency entrance DEMI 13 is converted into a radio frequency signal for the radio communication terminal by the access radio transmitter / receiver 112, and transmitted to the radio communication terminal (MS) via the antenna 111. Is done.
  • a wireless signal from the wireless communication terminal is received by the access wireless transmitter / receiver 112 via the antenna 111 and converted into a digital signal.
  • the Dijitanore signal is then converted into entrance radio signal (frequency f MS1) by variable-frequency entrance MOD 113 2.
  • the output signal is multiplexed by a frequency-selective power blur 114 and transmitted by EZO 116 to a control station or another BS by subcarrier optical transmission.
  • the optical signal from each BS is converted into a frequency-multiplexed radio signal by the OZE 107, demultiplexed for each frequency by the frequency-selective power blur 105, and each output is frequency-variable entrance. Demodulated by DEMI 03 to become a digital signal.
  • the BS4 when started communicating with BS 4 by MS 1 moves, the BS4, the frequency variable entrance MOD 1 13 2 carriers (i.e., entrance radio frequency) by controlling the information from the MS 1 Is modulated at the entrance radio frequency of the frequency f MS1 and transmitted to the control station 100 by subcarrier optical transmission.
  • the control station 100 can receive the signal of the MS 1 by receiving the signal of the same entrance radio frequency f MS1 .
  • the control station 120 and the base station (BS) are connected in a loop by the optical fiber 30.
  • the separated signal is modulated by the MUX / DEMUX 122 into an entrance radio signal (frequency f BS1 to f BSN ) by the frequency variable entrance MOD 124, and the frequency is changed by the frequency selective power bra 125. It is multiplexed and transmitted to each BS by subcarrier optical transmission by E / O 126.
  • the signal is converted into a frequency-multiplexed radio signal by the respective OZE 135, and the signal of the frequency addressed to the own BS is demultiplexed by the frequency selective type power bra 134, and the frequency variable entrance DEMI 33 i is demodulated by the (the frequency tunable entrance MODEM 133 is a variable frequency Entoransu DEM 133, and is constituted by variable-frequency entrance MOD 133 2 for performing modulation. for demodulating).
  • Di digital signal demodulated by the variable entrance DEMI 33 1 is wirelessly transmitted by the access system radio transceiver 132 to the via the antenna 131 free line communication apparatus (MS).
  • a wireless signal from the wireless communication terminal is received by the access wireless transceiver 132 via the antenna 131 and converted into a digital signal. Then, the digital signal is modulated into a radio signal for entrance by variable-frequency entrance MOD 133 2. The output signal is frequency-multiplexed by the frequency selective coupler 134 and transmitted to the control station 120 or another BS by subcarrier optical transmission by EZQ136.
  • the control station 120 modulates the information into a radio signal for an entrance having a frequency of f BS 3 and transmits the BS by subcarrier optical transmission.
  • FIG. 11 is a diagram partially showing an outline of a wireless communication system according to Embodiment 6 of the present invention.
  • the control station 140 and the base station (BS) are connected in a loop by an optical fiber 30.
  • the signal is converted into a frequency-multiplexed radio signal by each OZE 155, and a signal of a predetermined frequency is demultiplexed by a variable frequency selection type power bra.
  • E the frequency variable entrance MODEM 1 53, the frequency variable entrance D EM 1 5 3 and that is constituted by variable-frequency entrance MOD 1 5 3 2 for modulating. perform demodulation
  • the digital signal demodulated by the variable entrance DEMI 53 is wirelessly transmitted to the wireless communication terminal (MS) via the antenna 15 1 by the access system wireless (wireless communication between the BS and the wireless communication terminal) transceiver 152.
  • a wireless signal from the wireless communication terminal is received by the access-type wireless transmitter / receiver 152 via the antenna 151, and is converted into a digital signal.
  • the digital signal is converted into a radio signal for entrance by variable-frequency entrance MOD 1 5 3 2.
  • the output signal is multiplexed by a variable frequency selective power bracket 154 and transmitted to the control station 140 or another BS by sub-carrier optical transmission by the E / O 156.
  • the central office 140 frequency-multiplexes the optical signals from each BS by OE147.
  • the output is demodulated into a digital signal by the frequency variable entrance DEMI 43 by being converted into a radio signal, and demultiplexed for each frequency by the frequency-selective power blur 145.
  • the control station 140 modulates the information with the entrance frequency of the frequency f BS3 and transmits the information to the BS 3 by subcarrier optical transmission.
  • BS4 can vary the branching frequency of the frequency-selective force bra 154 and by controlled so becomes f B S3, receives an entrance radio signal of frequency f BS3 from the control station 140.
  • FIGS. 12 and 13 are diagrams partially showing an outline of the wireless communication system according to Embodiment 7 of the present invention.
  • This embodiment shows a case in which a radio communication terminal (MS) roams from a cluster 1 to a cluster 2 when a communication network is constructed in a cluster, FIG. 12 shows control of an uplink, and FIG. The state of the control is shown.
  • MS radio communication terminal
  • BS 6 when communicating with the BS 6 in the MS 1 force cluster 1, BS 6 is the information from the MS 1 wavelength; sending to the cluster control station 1 l MS1.
  • BS 2 clusters 2 MS 1 has moved, the signal from the MS 1, the same wavelength example MS i the wavelength which has been transmitted to the BS 6 force cluster control station 1 before moving the cluster 1, cluster control Send to station 2. If the wavelength MS is used in the cluster 2, the BS 2 of the cluster 2 transmits to the cluster control station 2 with the wavelength MS not used in the cluster 2.
  • the wireless communication terminal can switch between the cluster and the base station. This also enables seamless handover between clusters.
  • BS 6 when communicating with BS 6 of MS 1 cluster 1, BS 6 receives information from cluster control station 1 at wavelength ⁇ MS ! It is receiving at.
  • the cluster control station 1 of the cluster 1 transmits the signal for the MS 1 to the BS 2 of the cluster 2 at the same wavelength as the wavelength transmitted to the BS 6 before the movement. Transmit to station 160.
  • the signal of the MS 1 loaded on the wavelength control MS1 from the cluster control station 1 is used as it is as a relay without wavelength conversion as a cluster. Send it to Supervision Bureau 2.
  • a cluster 2 wavelength if using the MS1, the control station 160, the wavelength of the cluster control station 1; the L MS1, and wavelength-converted into the wavelength e MS1 that is not used in cluster 2, Sent to cluster control station 2.
  • the cluster control station 2 transmits the signal for the MS 1 to the destination BS 2 using the wavelength MS 1 or the wavelength L MS1 .
  • the BS 2 converts the frequency to an access system radio (wireless communication between the BS and the radio communication terminal) frequency and transmits it to the MS 1 by radio.
  • Embodiments 1 to ⁇ of the present invention in a wireless base station network system in which a plurality of base stations are connected by a wavelength division multiplex transmission to a control station that controls the base stations, By assigning wavelengths to communication of communication terminals and controlling the wavelength of optical signals for transmitting information at the base station and the control station when the mobile terminal moves and base station switching occurs, the control station In this case, switching operation is not required, and control can be simplified.
  • the same effect can be obtained by controlling the frequency of the subcarrier in combination with the subcarrier optical transmission.
  • a highly scalable wireless base station network system can be realized, and a wireless communication terminal can roam between clusters.
  • FIG. 14 is a diagram partially showing an outline of a wireless communication system according to Embodiment 8 of the present invention.
  • the supervising station receives signals transmitted from the same mobile station at the same time as converted optical signals at the two base stations, and performs handover by monitoring both parties.
  • both optical signals have the same wavelength even though the time to reach the control station 201 differs depending on the base station that is converted into an optical signal.
  • the signals may be received by the same receiver, causing interference between the two signals, making it difficult to establish communication. Therefore, in the present embodiment, the equalizing and combining processing is performed at a subsequent stage of the optical receiver.
  • the control station 201 and a plurality of base stations are connected in a loop by an optical fiber line.
  • Each base station is provided for each cell and controls wireless communication with a wireless communication terminal located in each cell.
  • the type and performance of the optical fiber and the distance between the base stations may be arbitrary.
  • the control station and each base station communicate with each other by using the wavelength division multiplexing transmission method for optical signals.
  • the supervising station 201 includes a control unit 202, an MUX / D EMUX 203, a wavelength tunable light source 204, a WDM coupler 205, an optical receiving device 206, diversity, etc. 207.
  • the control unit 202 controls communication between a base station (BS 1 to BS 7) network managed by the supervising station 201 and an external communication network (here, a backbone network).
  • a base station BS 1 to BS 7
  • an external communication network here, a backbone network
  • the MU X / D EMU X 203 separates multiplexed signals received from the backbone network and multiplexes signals to be transmitted to the backbone network.
  • the tunable light source 204 (corresponding to N types of wavelengths: 1, 2,..., N, here) transmits a transmission signal, which is an electrical signal, to a light of an arbitrary wavelength specific to each mobile station of the transmission destination. Convert to a signal.
  • a transmission signal which is an electrical signal
  • the WDM coupler 205 multiplexes transmission optical signals having different wavelengths, and demultiplexes the received multiplexed optical signal for each wavelength.
  • the optical receiver 206 includes a plurality of optical receivers, receives optical signals demultiplexed for each wavelength, and converts them into electric signals.
  • one wavelength is allocated to each mobile station, and that optical receivers are provided for each wavelength, that is, for the assumed maximum allowable number of mobile stations. That is, an optical signal obtained by converting a signal transmitted from the same mobile station is converted into an electric signal by the same receiver regardless of an optical signal transmitted from any base station.
  • Diversity equalization section 207 is provided at the subsequent stage of optical receiving apparatus 206, and among received signals converted into electric signals, a signal whose original transmission source is the same mobile station, The received signal, which was an optical signal having the same wavelength at the stage of input to the station 201, is subjected to an equalizing / combining process, and a signal having a time difference in arrival is equalized.
  • the configuration of each base station will be described using the base station BS2 as an example. It is assumed that all base stations have the same configuration.
  • Each base station is composed of a WDM coupler 208, an optical receiver 209, an access-system radio transmission / reception unit 210, an antenna 211, a radio transceiver 212, and an access system MODEM 2 13 and a tunable light source 2 14.
  • the WDM coupler 208 demultiplexes and takes in the optical signal of the wavelength addressed to the own station from the combined optical signal transmitted from the control station 201, and converts the optical signal to be transmitted to the control station 201. Multiplex.
  • the optical receiver 209 receives the optical signal captured by the WDM coupler 208 and converts it into an electric signal.
  • the access-system wireless transmission / reception unit 210 includes a wireless transceiver 212 for performing wireless communication with a mobile station via an antenna 211, and an access system MODEM 212 for performing modulation and demodulation of a transmission / reception signal.
  • the tunable light source 2 14 receives the electric signal received from the mobile station and converts it into an optical signal having a wavelength unique to the mobile station.
  • FIG. 15 is a schematic diagram for explaining a time difference that may cause interference when a diversity equalizer is not provided in the control station.
  • the mobile station MS is in a handover state between the base station BS 1 and the base station BS 2, and the signal transmitted from the mobile station MS passes through the base station BS 1
  • route rl the vehicle arrives at the control station 201 via the base station BS 2 and the base station BS 3 in order
  • route r2 the route reaches the headquarters via the route (hereinafter referred to as route r2).
  • the control station 201 receives the signal passing through the route r1 and the signal passing through the route r2 at the same time, monitors and compares the line qualities of both, and performs soft handover.
  • the configurations required for transmitting and receiving signals other than the coupler 208 and the antenna 211 in the base stations BS1 to BS3 are collectively represented by the radio circuit unit 301.
  • the time required to transfer a signal from the mobile station MS to the base station BS 1 is t 1
  • the time required to transfer a signal from the mobile station MS to the base station BS 2 T 2 is t 1 2
  • a signal passing through the routes r 1 and r 2 is transmitted from the base station BS 2 to the control station 2 0
  • the total transfer time required when passing through route rl can be expressed as t + t1 + t12
  • the total transfer time required when passing through route r2 Time can be expressed as t + t2.
  • the transfer times t1, t2, and t12 are values that constantly fluctuate depending on the location of the mobile station MS, the station location of the base station BS, and other communication environment factors. Therefore, the above time adjustment is difficult.
  • both the signal passing through the route r1 and the signal passing through the route r2 have the same wavelength, as a result of the time difference, the two interfere with each other in the optical receiver of the control station. Therefore, although soft handover can be performed by simultaneous reception of signals via route r1 and signals via route r2 and monitoring of line quality, establishment and maintenance of communication during one execution of soft handover may be difficult.
  • the diversity equalizer 207 in the control station is provided to prevent the possibility of such an adverse effect, and when an optical signal having the same wavelength is received, the optical receiver device 206 is provided. After the conversion, the received signal after the conversion is equalized and combined. By this processing, equalization and synthesis including the delayed wave are performed, so that the above-described interference can be prevented from occurring. Also, a diversity effect is obtained, and communication quality is improved.
  • the transmission signal to the mobile station MS 1 is separated by the MUXZDEMUX 203 and converted into an optical signal having a wavelength ⁇ 31 by the wavelength variable light source 204.
  • the transmission signal to the mobile station MS 1 is multiplexed with an optical signal of another wavelength by the WDM coupler 205 and transmitted from the control station 201.
  • the transmission signal to the mobile station MS1 via the wireless base station network is demultiplexed and taken in by the WDM coupler 208 of the base station BS3.
  • the signal transmitted from the mobile station MS 1 is first received by the wireless transceiver 212 of the access system wireless transceiver 210 via the antenna 211 of the base station BS 3, demodulated by the access system MODEM 213, and wavelength-tunable.
  • the light is sent to the light source 214.
  • the transmission signal from the mobile station MS 1 is demultiplexed and taken in by the WDM coupler 205 of the control station 201.
  • the transmission signal from the mobile station MS 1 comprises an optical receiver unit for MS 1 of the optical receiver 206, i.e. the wavelength example optical receiver for MS1, is converted into an electric signal, the Daibashi Ji equalizer 207 Sent.
  • the transmission signal from mobile station MS 1 is subjected to equalization synthesis processing by diversity equalizer 207, and sent to MUX / DEMUX 203.
  • the transmission signal from the mobile station MS 1 is transmitted by the MUXZDEMUX 203. It is multiplexed and sent to the backbone network via the control unit 202.
  • the base station BS 3 and the base station BS 4 convert both signals received from the mobile station MS 1 into optical signals having a wavelength ⁇ ⁇ 5 i and transmit them to the control station 201. I do.
  • the supervising station 201 simultaneously receives signals that have passed through the base station BS3 and the base station BS4, respectively, and monitors the line quality of each.
  • the optical signal having the wavelength MS 1 transmitted from the base station BS 3 and the base station B
  • the optical signal having the wavelength ⁇ 51 transmitted from S4 arrives at the control station 201 with a constantly varying time difference as described above.
  • Received wavelength ⁇ MS ! The optical signal having the following is converted into an electric signal by the same optical receiver, even if transmitted from the base station at the shift.
  • the diversity equalization unit 207 performs equalization processing on all signals transmitted by the mobile station during handover.However, in order to further improve communication quality, known modes and Only the received signals selected by the method may be equalized and combined.
  • variable frequency entrance MOD 401 modulates the signal separated by the MU X D EMU X 203 into a radio signal for entrance.
  • Frequency of Ento lance radio signal is assigned one frequency for each mobile station, here as moving station which are N, shall take frequency f MS 1 ⁇ f MS N.
  • the OZE 404 converts a received optical signal into a frequency-multiplexed radio signal.
  • the variable frequency entrance DEM 405 demodulates the entrance radio signal.
  • the entrance MODEM 406 demodulates the captured entrance radio signal and modulates the signal received from the mobile station into an entrance radio signal.
  • control station and each base station can be configured to omit the optical receiver and the variable wavelength light source, and the effect of reducing the configuration and Z or the processing steps can be obtained.
  • FIG. 17 is a diagram partially showing an outline of the radio communication system according to Embodiment 10 of the present invention.
  • This embodiment has a configuration substantially similar to that of the ninth embodiment, except that an access radio signal is used instead of an entrance radio signal.
  • FDMA frequency-multiplexed
  • TDMA time division multiplexing
  • CDMA code division Multiplexing
  • the base station network according to the present invention is It may be a mesh shape as shown in FIG. 18 or a cluster type as shown in FIG. 19 as an example in the seventh embodiment.
  • handover is naturally limited to the radio communication terminal which is a mobile station.
  • Other communication terminals that communicate via the connected external communication network are not limited to mobile wireless terminals, but may be fixed wired terminals such as personal computers, mobile wired terminals such as PDAs, or wireless and AN. A fixed wireless terminal may be used.
  • the description has been given mainly by taking a WDM power blur as an example of a device for demultiplexing and multiplexing an optical signal.
  • the optical signal is demultiplexed and multiplexed for each wavelength.
  • the device is not limited to the WDM force bra, but may be any device having any configuration and structure.
  • OADM optical Add-Drop Mu 1 tip 1 exer
  • AOT F Acoustic Optics 1 Tunable Filter
  • control station even if the control station receives optical signals of the same wavelength from different base stations by providing equalization and combining processing means at the subsequent stage of the optical receiver, they will interfere with each other. It is possible to obtain a diversity effect and improve the communication quality of a mobile station during soft handover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Description

明 細 書 無線基地局ネッ トワークシステム、 及び統括局、 並びに、 基地局切替方法、 信号 処理方法、 及ぴハンドオーバー制御方法 技術分野
本発明は、無線通信システムに関し、特に、複数のセルに配置された基地局と、 それを統括する統括局とが光ファイバで波長多重伝送又はサブキヤリァ光伝送に より接続されている無線基地局ネットワークシステム、 及びその基地局切替方法 に関するものである。
又、 本発明は、 更に、 複数の基地局から成る通信ネットワークを統括する統括 局がハンドオーバー中の移動局からの信号を複数の基地局から受信し、 それらを 等化処理するシステムにも関する。 背景技術
例えば光波長分割多重 (WDM) が適用された無線基地局ネットワークにおい ては、 通常、 無線通信端末と通信する複数の基地局と、 これら複数の基地局を統 括的に制御し、 外部通信ネットワークと通信する統括局とが設けられ、 これらの 局は光ファイバ回線で接続されている。
¾来の基地局は、 光フアイバ回線を介して統括局へ送信するために無線通信端 末から受信した信号を光信号に変換する際、 基地局固有の波長を有する光信号に 変換する。
よって、 統括局は、 該ネットワークにおける基地局数の波長に対応し得る光受 信装置を保持する。 この光受信装置は、 一波長に対応可能な光受信器が複数個集 まって構成される。 この各光受信器は、 一基地局からの光信号の受信及び電気信 号への変換を担当する。 変換された信号は選択スィツチによって切り替えられ、 受信電気信号となる。
即ち、 移動局が移動し異なるセルに入ると、 統括局では該移動局からの受信を 継続するために選択スィツチを別の光受信器に切り替えることになる。 以下、 図 1及び 2を用いて、 従来の、 WDMが適用された無線基地局ネットヮ ークを説明する。 図 1は、 従来の無線基地局ネットワークシステムの構成例を示 すブロック図である。
統括局 10と基地局 (BS 1〜BS 7、 なお、 BSの数は、 7に限定されない。 以下、 「BS」 という。 ) とは、 光ファイバ 30によりループ状に接続されてい て、 波長多重伝送により光信号の送受信がなされている。
この構成において、 各 B Sに統括局 10から光伝送する場合は、 各 BS毎に受 信波長が割り当てられており、 統括局 10において各 BS用の光波長を送信する 光送信器 16が具備され、 WDM力ブラ 1 7によりそれぞれの光信号が波長多重 伝送するために合波されて送信される。
各 B S 1〜B S 7においては、 それぞれの WDMカプラ 25によって、 自分宛 ての波長の光信号が分波され、 光受信器 23により受信される。 光受信器 23か らの信号はアクセス系無線 (BSと無線通信端末間の無線通信) 送受信器 22に よりアンテナ 21を介して無線通信端末 (MS 1、 MS 2、 なお、 MSの数は、 2に限定されない。 以下、 「MS」 という。) と無線通信する。
MSからの無線信号はアンテナ 21を介してアクセス系無線送受信器 22によ り受信され、 光送信器 24により光信号に変換され WDM力ブラ 25により波長 多重伝送するために合波される。
なお、 B Sのアクセス系無線送受信器 22には、 MSから受信した無線信号を 復調してディジタル信号に変換する移動通信用無線信号復調器と、 光受信器 23 の出力であるディジタル信号を移動通信用無線周波数信号に変換する移動通信用 無線信号変調器とを具備している。
統括局 10では各 B Sからの光信号を WDMカプラ 17により、 それぞれの波 長毎に分波され、 光受信器 1 5により受信される。
例えば、 MS 1が B S 3と通信している場合は、 統括局から波長; LBS3で B S 3に伝送し、 B S 3から統括局 10へ波長; lBS3.で伝送されている。
その際に、 MSが移動して B S 4と通信を始めたときは、 統括局 10において は、 B S 3用の波長 BS3から B S 4用の波長; lBS4の光送信器に選択スィツチ 1 4で切り替え、 統括局 10から波長え BS4で B S 4に伝送する。 また、 同時に、 BS4では、 統括局 10へ波長え BS4.で伝送する。 その結果、 統括局 10への信 号は波長え BS3.からえ BS4.に変わるので、 統括局 10では、 波長え BS4. の信号 を受信する光受信器に選択スィツチ 13により切り替えて受信する。これにより、 MSと統括局は通信を続けることが可能となる。
図 2は、 従来の統括局における WDM力ブラの例を示す図である。
WDM力ブラ 17 こおいては、 各波長の光送信器からの信号が入力され、 そ れが波長多重するために合波されて各 B Sへ送信される。
従って、 送信する B Sが B S 3から B S 4に切り替わった場合には、 波長; LBS 3から; BS4へ光送信器を切り替えて伝送する。
一方、 WDMカプラ 172においては、 各 B Sからの波長; LBS1.からえ BSN.の 光信号は、 それぞれの波長により各端子へ分波され、 それぞれ光受信器により受 信される。
従って、 受信先の BSが、 B S 3から B S 4に切り替わった場合には、 出力端 子を波長; BS3.からえ BS4.に変更する必要があるため、 選択スィッチにより光 受信器を切り替えて受信する。
しかしながら、 無線通信端末の移動による基地局の切り替えが頻繁に生じると 統括局において、 各光送受信器の選択スィツチ等の選択合成を行う処理が過大に なり統括局の処理能力が大きくなりすぎるという問題があった。 発明の開示
そこで、 本発明の概括的な目的は、 上記従来技術の問題点を解決した新規で有 用な無線基地局ネットワークシステムを提供することである。
本発明の詳細な目的は、 無線通信端末の移動により、 基地局の切り替えが生じ ても、 統括局における処理を軽減させ、 効率的な無線基地局ネットワークシステ ム及びその基地局切替方法を提供することである。
上記目的は、 複数のセルに配置された基地局と、 それを統括する統括局とが光 ファイバで波長多重伝送により接続されている無線基地局ネットワークシステム において、 前記基地局は、 所定の波長の光信号を送信する波長可変送信器と、 前 記波長可変送信器からの光信号を波長多重伝送するために合波する光力ブラを具 備し、 前記統括局は、 波長多重伝送された光信号の波長を受信する複数の光受信 器と、 複数の前記基地局より波長多重伝送されてきた光信号を各波長にそれぞれ 前記光受信器に分波する光力ブラを具備し、 前記基地局と通信する無線通信端末 が移動して、 通信する基地局を変更した場合、 無線通信端末が移動した先の基地 局は、 前記波長可変送信器の波長を制御し、 移動前の基地局が送信した光信号波 長と同一の光信号波長で、 前記統括局に送信する無線通信ネットワークシステム にて達成される。
ここで、 上記光力ブラとは、 例え ^WDMカプラであるが、 光信号を波長毎に 分波及び合波できれば任意の装置でよレ、。
又、 本発明の他の目的は、 上記無線通信ネッ トワークシステムのソフトハンド オーバー中の移動局の通信品質を向上させることである。
上記目的は、 無線通信端末と通信する複数の基地局と、 該各基地局を統括的に 制御し、 外部通信ネッ トワークと通信する統括局と、 前記各基地局及び前記統括 局を接続する光ファイバ回線とを有し、 前記各基地局は、 無線通信端末から送信 された信号を受信し、 この受信信号を光信号に変換し、 光ファイバ回線を介して 前記統括局へ送信する無線基地局ネットワークシステムにおいて、 前記各基地局 は、 無線通信端末から送信された信号を発信元の無線通信端末毎に固有に割り当 てられた波長を有する光信号に変換する信号変換手段を有し、 前記統括局は、 同 一の無線通信端末から送信された信号が、 少なくとも 2つの基地局によって受信 され、 それぞれ前記信号変換手段によって同一の波長を有する光信号に変換され て成る光信号を、 光ファイバ回線を介して同時に受信し、 電気信号に変換して出 力する光信号受信手段と、 該出力信号を等化合成処理する等化合成処理手段とを 有する構成を採る無線基地局ネッ トワークシステムにて達成される。
なお、 本発明の他の目的、 特徴、 利点は、 添付図面と共に為される以下の詳細 な説明にて、 明らかにされる。 図面の簡単な説明
図 1は、 従来の無線基地局ネットワークシステムの概略を部分的に示す図であ る。 図 2は、 従来例における統括局内の WDM力ブラの例を示す図である。
図 3は、 本発明の実施の形態 1に係る無線通信システムの概略を部分的に示す 図である。
図 4は、 実施の形態 1における統括局内の WDM力ブラの例を示す図である。 図 5は、 本発明の実施の形態 2に係る無線通信システムの概略を部分的に示す 図である。
図 6は、 実施の形態 2における B S内の WDM力ブラの例を示す図である。 図 7は、 本発明の実施の形態 3に係る無線通信システムの概略を部分的に示す 図である。
図 8は、 実施の形態 3における B S内の WDM力ブラの例を示す図である。 図 9は、 本発明の実施の形態 4に係る無線通信システムの概略を部分的に示す 図である。
図 1 0は、 本発明の実施の形態 5に係る無線通信システムの概略を部分的に示 す図である。
図 1 1は、 本発明の実施の形態 6に係る無線通信システムの概略を部分的に示 す図である。
図 1 2は、 本発明の実施の形態 7に係る無線通信システムの概略を部分的に示 す図である。
図 1 3は、 本発明の実施の形態 7に係る無線通信システムの概略を部分的に示 す図である。
図 1 4は、 本発明の実施の形態 8に係る無線通信システムの概略を部分的に示 す図である。
図 1 5は、 統括局においてダイバーシチ等化部を設けなかった場合に生じ得る 干渉の原因となる時間差について説明するための概略図である。
図 1 6は、 本発明の実施の形態 9に係る無線通信システムの概略を部分的に示 す図である。
図 1 7は、 本発明の実施の形態 1 0に係る無線通信システムの概略を部分的に 示す図である。
図 1 8は、 複数の基地局がメッシュ状に接続された場合を示す図である。 図 19は、 複数の基地局がクラスタ型に接続された場合を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて説明する。
まず、 図 3及び 4を用いて、 本発明の実施の形態 1について説明する。
図 3は、 本発明の実施の形態 1に係る無線通信システムの概略を部分的に示す 図である。
統括局 40と基地局 (BS) は光ファイバによりループ状に接続されていて、 波長多重伝送により光信号の送受信がなされている。
統括局 40においては、 各光波長を送信する光送信器として波長可変光源 44 が具備され、 WDM力ブラ 45によりそれぞれの光信号が波長多重伝送するため に合波されて B Sに伝送される。
各基地局 BS:!〜 BS 7においては、 それぞれの WDMカプラ 55によって、 自分宛ての波長の光信号が分波され、 光受信器 53により受信される。 光受信器 53からの信号は、 アクセス系無線 (B Sと無線通信端末間の無線通信) 送受信 器 52によりアンテナ 51を介して無線通信端末 (MS) へ無線伝送される。 無 線通信端末からの無線信号は、 アンテナ 51を介してアクセス系無線送受信器 5
2により受信され、 波長可変光源 54により任意の波長の光信号に変換され WD
Mカプラ 55により波長多重伝送するために合波される。
統括局 40では、 各 BSからの光信号は、 WDMカプラ 45によりそれぞれの 波長毎に分波され、 光受信器 43により受信される。
ここで、 MS 1が B S 3と通信している場合、 BS 3は、 MS 1からの情報を 波長; LMS1で統括局に送信している。 その際、 MS 1が移動することにより BS
4と通信を始めた場合には、 BS4は、 波長可変光源 54の波長をえ MS1にして 統括局 40に送信することで、 統括局 40では、 切り替え操作を行うことなく波 長え MS iの信号を受信し続けることが可能となる。
これにより、 MS 1の B S 3から B S 4への基地局の切り替えが実現する。 図 4は、 実施の形態 1における統括局内の WDM力ブラの例を示す図である。 WDMカプラ 452においては、 各 B Sからの波長え MS1〜 lMSNの光信号は、 それぞれの波長により各端子へ分波され、 それぞれ光受信器 4 3により受信され る。
実施の形態 1においては、 M Sが移動したことにより、 基地局の切り替えが生 じても、 その M Sに関して、 B Sからの波長は変化しないため、 同一の出力端子 から光信号が分波されるため、同一の光受信器 4 3で受信することが可能となり、 切り替え操作が不要になる。
次いで、 図 5及び 6を用いて、 本発明の実施の形態 2について説明する。
図 5は、 本発明の実施の形態 2に係る無線通信システムの概略を部分的に示す 図である。
統括局 6 0と基地局 (B S ) は光ファイバ 3 0によりループ状に接続されてい て、 波長多重伝送により光信号の送受信がなされている。
統括局 6 0においては、 送信する光波長を可変できる波長可変光源 6 4が具備 され、 WDMカプラ 6 5によりそれぞれの光信号が波長多重伝送するために合波 されて B Sに伝送される。
各 B S 1 〜 B S 7においては、 それぞれの WDMカプラ 7 5によって、 自分宛 ての波長の光信号が分波され、 光受信器 7 3により受信される。 光受信器 7 3か らの信号は、 アクセス系無線送受信器 7 2によりアンテナ 7 1を介して無線通信 端末 (M S ) へ無線伝送される。 無線通信端末からの無線信号は、 アンテナ 7 1 を介してアクセス系無線送受信器 7 2で受信され、 波長可変光源 7 4により任意 の波長の光信号に変換されて、 WDM力ブラ Ί 5により波長多重伝送するために 合波される。
統括局 6 0では、 各 B Sからの光信号は、 0^1カプラ6 5で、 それぞれの波 長毎に分波され、 光受信器 6 3により受信される。
ここで、 M S 1が B S 3と通信している場合、 その通信情報は、 統括局 6 0か ら波長 λ Β 3 3で B S 3に送信している。 つぎに、 M Sが移動することにより、 B S 4と通信を始めた場合には、 統括局 6 0は、 波長可変光源の波長をえ B S 3から λ Β 5 4に変更して送信することで、 B Sの切り替えが実現する。
これにより、 統括局 8 0では、 送信器である波長可変光源の波長を制御するだ けで、 B Sの切り替えが実現する。 図 6は、 実施の形態 2における B S内の WDM力ブラの例を示す図である。 W DMカプラ 75 iでは、 統括局 60又は他 B Sからの波長え BS1〜え BSNの光信号 のうち、 自 B S宛ての波長の光信号え BSMが分波され、 他の信号は通過する。 B Sの波長可変光源からの信号は、 WDMカプラ 752によって、 波長多重伝送す るために合波される。
従って、 MS 1が B S 3から B S 4との通信に切り替わるときに、 統括局にお いて、その通信情報を伝送する波長可変光源の波長を; LBS3からえ BS4に変更して 送信することにより、 B Sの切り替えが実現する。
次いで、 図 7及び 8を用いて、 本発明の実施の形態 3について説明する。 図 7は、 本発明の実施の形態 3に係る無線通信システムの概略を部分的に示す 図である。
統括局 80と基地局 (BS) は光ファイバ 30によりループ状に接続されてい て、 波長多重伝送により光信号の送受信がなされている。
統括局 80においては、 各光波長を送信する光送信器 84が具備され、 WDM カプラ 85によりそれぞれの光信号が波長多重伝送するために合波されて B Sに 伝送される。
なお、 光送信器 84の送信光源は、 MS毎に用意する。 例えば、 MS 1が、 B S 3と最初に、 通信を開始したときには、 MS 1の送信光源の波長は、 BS3に 設定される。
各 B S 1〜B S 7においては、 それぞれの可変 WDMカプラ 95によって、 任 意の波長の光信号が分波され、 光受信器 93により受信される。 光受信器 93か らの信号は、 アクセス系無線送受信器 92により、 アンテナ 91を介して無線通 信端末 (MS) へ無線伝送される。
無線通信端末からの無線信号は、 アンテナ 91を介してアクセス系無線送受信 器 92により受信され、 波長可変光源 94で所定の波長の光信号に変換され、 W DM力ブラ 95により波長多重伝送するために合波される。 なお、 波長可変光源 94は、 その光源の出力波長を任意に制御することができる光源である。
統括局 80では、 各 B Sからの光信号は WDMカプラ 85によりそれぞれの波 長毎に分波され、 光受信器 83により受信される。 ここで、 MS 1が B S 3と通信している場合、 その通信情報は統括局から波長 ; LBS3で B S 3に送信している。 ついで、 MSが移動することにより、 BS4と 通信を始めた場合でも、 統括局 80は、 基地局向けの送信波長を変更しない。 つ まり、 無線通信端末が基地局を変更しても、 移動前の基地局の光信号の波長え BS 3を、 変更せずにそのまま、 BS 4に送信する。
一方、 BS4は、 波長え BS3で伝送されている MS 1向けの統括局 80からの 信号を、 可変 WDM力ブラ 85で分波して光受信機 93で受信し、 アクセス系無 線送受信器 92により、 アンテナ 91を介して MS 1へ無線伝送する。
これにより、 統括局 80では、 光送信器の切り替えや波長を制御する操作を行 うことなく、 MS 1と通信し続けることが可能となり、 BSの切り替えが実現す る。
図 8は、 実施の形態 3における B S内の WDM力ブラの例を示す図である。
WDMカプラ 95 iでは、 統括局 80又は他 B Sからの波長え BS1〜え BSNの光 信号のうち、 所定の波長の光信号え BSMが分波され、 他の信号は通過する。 BS の波長可変光源 94からの信号は、 WDMカプラ 952によって、 波長多重伝送 するために合波される。
従って、 MS 1が B S 3から B S 4との通信に切り替わるときに、 B S 4で可 変 WDM力ブラの分波波長を ABS3へ制御することにより、 統括局 80からの光 信号は BS 4へ伝送され、 B Sの切り替えが実現する。
次いで、 図 9を用いて、 本発明の実施の形態 4について説明する。
図 9は、 本発明の実施の形態 4に係る無線通信システムの概略を部分的に示す 図である。
統括局 100と基地局 (BS) は光ファイバ 30によりループ状に接続されて レヽる。
統括局 100においては、 MUXZDEMUX 102によって、 分離された信 号は、 周波数可変エントランス MOD 104によりエントランス用無線信号に変 換され、 周波数選択型力ブラ 105により周波数多重され、 EZO106により サブキャリア光伝送により BSに伝送される。
各 B S 1〜B S 7においては、 それぞれの OZE 1 15により周波数多重され た無線信号に変換され、 周波数選択型力ブラ 114によって、 所定のェントラン ス無線周波数の信号が分波され、 周波数可変エントランス DEMI 13! (なお、 周波数可変エントランス MODEM 1 13は、 復調を行う周波数可変ェントラン ス DEMI 13 ,と変調を行う周波数可変エントランス MOD 1 132により構 成されている。 ) より復調される。 周波数可変エントランス DEMI 13 で復 調されたディジタル信号は、 アクセス系無線送受信器 112により、 無線通信端 末向けの無線周波数信号に変換され、 アンテナ 1 11を介して無線通信端末 (M S) へ無線伝送される。
無線通信端末からの無線信号は、 アンテナ 111を介してアクセス系無線送受 信器 1 12により受信され、 ディジタル信号に変換される。 このディジタノレ信号 は、 次いで、 周波数可変エントランス MOD 1132によりエントランス用無線 信号 (周波数 fMS1) に変換される。 その出力信号は、 周波数選択型力ブラ 1 14 により多重され、 EZO 1 16によりサブキヤリァ光伝送で統括局又は他の B S に伝送される。
統括局 100では、 各 BSからの光信号は、 OZE 107により周波数多重さ れた無線信号に変換され、 周波数選択型力ブラ 105によりそれぞれの周波数毎 に分波され、 それぞれの出力は周波数可変エントランス DEMI 03により復調 されて、 ディジタル信号となる。
ここで、 MS 1が B S 3と通信している場合、 BS 3は、 MS 1からの情報を 周波数 fMS1の周波数可変エントランス用無線信号で変調して、サブキヤリァ光伝 送によって、 統括局 100に送信している。
その際、 MS 1が移動することにより B S 4と通信を始めた場合には、 BS4 は、 周波数可変エントランス MOD 1 132のキャリア (つまり、 エントランス 無線周波数) を制御して、 MS 1からの情報を周波数 fMS1のエントランス用無線 周波数で変調して、サブキャリア光伝送によって、統括局 100に送信する。 統 括局 100では、同じエントランス無線周波数 fMS1の信号を受信することにより、 MS 1の信号を受信することが可能となる。
これにより、 MS 1の B S 3から B S 4への基地局の切り替えが実現する。 次いで、 図 10を用いて、 本発明の実施の形態 5について説明する。 図 10は、 本発明の実施の形態 5に係る無線通信システムの概略を部分的に示 す図である。
統括局 120と基地局 (BS) は光ファイバ 30によりループ状に接続されて いる。
統括局 120においては、 MUX/DEMUXに 122よって、 分離された信 号は周波数可変エントランス MOD 124によりエントランス用無線信号 (周波 数 fBS1〜fBSN) に変調され、周波数選択型力ブラ 125により周波数多重され、 E/O 126によりサブキャリア光伝送で各 B Sに伝送される。
各 BS 1〜BS 7においては、 それぞれの OZE 135により周波数多重され た無線信号に変換され、 周波数選択型力ブラ 134によって、 自 BS宛ての周波 数の信号が分波され、 周波数可変エントランス DEMI 33 i (なお、 周波数可 変エントランス MODEM 133は、 復調を行う周波数可変ェントランス DEM 133 ,と変調を行う周波数可変エントランス MOD 1332により構成されて いる。 ) により復調される。 可変エントランス DEMI 331で復調されたディ ジタル信号は、 アクセス系無線送受信器 132によりアンテナ 131を介して無 線通信端末 (MS) へ無線伝送される。 無線通信端末からの無線信号はアンテナ 131を介してアクセス系無線送受信器 132により受信されてディジタル信号 に変換される。 次いで、 このディジタル信号は、 周波数可変エントランス MOD 1332によりエントランス用無線信号に変調される。 その出力信号は、 周波数 選択型カプラ 134により周波数多重され、 EZQ136によりサブキャリア光 伝送で統括局 120又は他の B Sに伝送される。
統括局 120で、 各 BSからの光信号は、 OZE 127により周波数多重され た無線信号に変換され、 周波数選択型力ブラ 125によりそれぞれの周波数毎に 分波され、 それぞれの出力はエントランス DEMI 23により、 ディジタル信号 に復調される。
ここで、 MS 1が B S 3と通信している場合、 統括局 120は、 その情報を周 波数 fBS 3のエントランス用無線信号に変調しサブキャリア光伝送によって、 B S
3に送信している。
その際、 MS 1が移動することにより BS4と通信を始めた場合には、 統括局 1 20は、 周波数可変エントランス MOD 1 24のキヤリァ (つまり、 ェントラ ンス無線周波数) を制御して、 fBS3のエントランス無線周波数から、 fBS4のェン トランス無線周波数に変換して、 サブキャリア光伝送によって、 B S 4に送信す る。 これにより、 統括局 1 20では、 周波数可変エントランス MOD 1 24のキ ャリアを制御することにより、 B S 3から B S 4に信号の送り先を変更すること が可能となり、 B Sの切り替えが実現する。
次いで、 図 1 1を用いて、 本発明の実施の形態 6について説明する。
図 1 1は、 本発明の実施の形態 6に係る無線通信システムの概略を部分的に示 す図である。
統括局 1 40と基地局 (B S) は、 光ファイバ 30によりループ状に接続され ている。
統括局 1 40においては、 MUXZDEMUX 142によって分離された信号 は周波数可変エントランス MOD 144によりエントランス用無線信号 (周波数 f BS 1〜fBSN) に変調され、 周波数選択型力ブラ 1 45により周波数多重され、 E /O 1 46によりサブキャリア光伝送で各 B Sに伝送される。
各 B S 1〜B S 7においては、 それぞれの OZE 1 55により周波数多重され た無線信号に変換され、 可変周波数選択型力ブラ 1 54によって、 所定の周波数 の信号が分波され、 周波数可変エントランス DEMI 53ェ (なお、 周波数可変 エントランス MODEM 1 53は、 復調を行う周波数可変エントランス D EM 1 5 3 と変調を行う周波数可変エントランス MOD 1 5 32により構成されてい る。 ) により復調される。 可変エントランス DEMI 53 で復調されたデイジ タル信号は、 アクセス系無線 (B Sと無線通信端末間の無線通信) 送受信器 1 5 2によりアンテナ 1 5 1を介して無線通信端末 (MS) へ無線伝送される。
無線通信端末からの無線信号は、 アンテナ 1 5 1を介してアクセス系無線送受 信器 1 5 2により受信されてディジタル信号に変換される。 このディジタル信号 は、 周波数可変エントランス MOD 1 5 32によりエントランス用無線信号に変 換される。 その出力信号は、 可変周波数選択型力ブラ 1 54により多重され、 E /O 1 56によりサブキヤリァ光伝送で統括局 1 40又は他の B Sに伝送される。 統括局 1 40は、 各 B Sからの光信号は、 O E 1 47により周波数多重され た無線信号に変換され、 周波数選択型力ブラ 145によりそれぞれの周波数毎に 分波され、 それぞれの出力は周波数可変エントランス DEMI 43により、 ディ ジタル信号に復調される。
ここで、 MS 1が B S 3と通信している場合、 統括局 140は、 その情報を周 波数 fBS3のエントランス用周波数で変調し、 サブキャリア光伝送によって、 BS 3に送信している。
その際、 MS 1が移動することにより B S 4と通信を始めても、 統括局 140 は、 周波数 fBS 3のエントランス用無線信号で、 サブキャリア光伝送によって、 B S 4に送信する。
一方、 BS4は、 可変周波数選択型力ブラ 154の分波周波数を fB S3になるよ うに制御して、統括局 140からの周波数 fBS3のエントランス用無線信号を受信 する。
これにより、 周波数の切り替え操作を行うことなく B S 3から B S 4に信号の 送り先を変更することが可能となり、 B Sの切り替えが実現する。
次いで、 図 12及び 13を用いて、 本発明の実施の形態 7について説明する。 図 12及び 13は、 本発明の実施の形態 7に係る無線通信システムの概略を部 分的に示す図である。
本実施形態は、 通信ネットワークがクラスタ状に構築された場合において、 無 線通信端末(MS) 、 クラスタ 1からクラスタ 2へローミングする場合を示し、 図 12は上り回線の制御、 図 13は下り回線の制御の様子をそれぞれ示す。
図 12で、 MS 1力 クラスタ 1の BS 6と通信しているとき、 BS 6は、 M S 1からの情報を波長; lMS1でクラスタ統括局 1に送信している。
その際、 MS 1が移動することにより、 クラスタを変更し、 クラスタ 2の BS 2と通信を始めた場合を考える。 本実施例ではこの場合、 クラスタ 1のクラスタ 統括局 1は、 MS 1からの信号を、 移動前の B S 6が送信していた波長と同じ波 長; LMS1で、 クラスタ 2のクラスタ統括局 2に向けて、 統括局 160に送信する。 統括局 160では、 クラスタ 2で、 波長え MS を使用していなければ、 クラス タ統括局 1からの波長え MS1に乗せられた MS 1の信号を、 そのまま、 波長変換 せずに中継して、 クラスタ統括局 2に送信する。 一方、 クラスタ 2で、 波長; LMS1を使用していれば、 統括局 160は、 クラス タ統括局 1からの波長; LMS1を、 クラスタ 2で使用していない波長; lMS1 .に波長 変換して、 クラスタ統括局 2に送信する。
また、 MS 1が移動したクラスタ 2の B S 2は、 MS 1からの信号を、 移動前 のクラスタ 1の BS 6力 クラスタ統括局 1に送信していた波長と同じ波長え MS iで、 クラスタ統括局 2に送信する。 なお、 クラスタ 2で、 波長え MS を使用して いれば、 クラスタ 2の BS 2は、 クラスタ 2で使用していない波長え MS で、 ク ラスタ統括局 2に送信する。
これにより、 無線通信端末は、 クラスタと基地局を切り替えることができる。 また、 これにより、 シームレスなクラスタ間のハンドオーバーを実現することが できる。
図 13で、 MS 1力 クラスタ 1の BS 6と通信しているとき、 B S 6は、 ク ラスタ統括局 1からの情報を波長 λ MS!で受信している。
その際、 MS 1が移動することにより、 クラスタを変更し、 クラスタ 2の BS 2と通信を始めた場合を考える。 本実施例ではこの場合、 クラスタ 1のクラスタ 統括局 1は、 MS 1向けの信号を、 移動前の B S 6へ送信していた波長と同じ波 長 で、 クラスタ 2の B S 2に向けて、 統括局 160に送信する。
統括局 160では、 クラスタ 2で、 波長え MS1を使用していなければ、 クラス タ統括局 1からの波長え MS1に乗せられた MS 1の信号を、 そのまま、 波長変換 せずに中継として、 クラスタ統括局 2に送信する。
一方、 クラスタ 2で、 波長; MS1を使用していれば、 統括局 160は、 クラス タ統括局 1からの波長; LMS1を、 クラスタ 2で使用していない波長え MS1 に波長 変換して、 クラスタ統括局 2に送信する。
クラスタ統括局 2は、 MS 1向けの信号を波長え MS1又は波長; LMS1.により移 動先の BS 2に送信する。 BS 2は、 アクセス系無線 (BSと無線通信端末間の 無線通信) 周波数に変換して、 MS 1へ無線伝送する。
これにより、 無線通信端末は、 クラスタと基地局を切り替えることができる。 また、 これにより、 シームレスなクラスタ間のハンドオーバーを実現することが できる。 なお、 上記実施の形態 1乃至 7において、 合波用と分波用に WDM力ブラを分 けて説明した箇所 (例えば、 図 4、 図 6、 図 8 ) があるが、 合波機能用と分波用 機能とに着目したものであって、 一つの WDM力ブラで、 両機能を有するものを 使用してもよレ、。
なお、 複数の基地局とそれを統括する統括局間を、 エントランス用無線信号で サブキヤリァ光伝送により接続する代わりに、 移動通信用無線信号でサブキヤリ ァ光伝送により接続することも可能である。
以上説明したように、 本発明の実施の形態 1乃至 Ίによれば、 複数の基地局が それを統括する統括局が波長多重伝送で接続されている無線基地局ネットワーク システムにおいて、 基地局と無線通信端末の通信に対し波長を割り当てし、 携帯 端末が移動することにより基地局の切り替えが生じた場合に、 基地局や統括局で 情報を伝送する光信号の波長を制御することで、 統括局では切り替え操作が不要 となり、 制御を簡単化することができる。
また、 サブキャリア光伝送と組み合わせ、 そのサブキャリアの周波数を制御す ることで同様の効果を得ることができる。
さらに、 クラスタ型ネットワークに適用することで、 拡張性の高い無線基地局 ネットワークシステムを実現することができると共に、 無線通信端末がクラスタ 間をローミングすることもできる。
次いで、 図 1 4及び 1 5を用いて、 本発明の実施の形態 8について説明する。 図 1 4は、 本発明の実施の形態 8に係る無線通信システムの概略を部分的に示す 図である。
ソフトハンドオーバーを実行中、 統括局は、 同一の移動局から送信された信号 を、 2つの基地局において変換された光信号としてそれぞれを同時に受信し、 両 者を監視することによりハンドオーバーを行う。 ここで、 前述の実施形態 1乃至 7によれば、 光信号に変換される基地局によって統括局 2 0 1へ到達する時間が 異なるにもかかわらず、 両光信号が同一の波長を有するために、 同一の受信器で 受信され、 両信号間に干渉を生じ、 通信の確立が困難になるおそれがある。 そこ で、本実施形態では、光受信装置の後段において等化合成処理を行うようにする。 図 1 4において、 統括局 2 0 1と、 複数の基地局 (ここでは、 例として B S 1 〜B S 7とする) とは光ファイバ回線でループ状に接続されている。 ここでは、 例えば WDMが適用されている。 各基地局はセル毎に設けられ、 各セル内に位置 する無線通信端末との無線通信を管轄する。 光ファイバの種類 ·性能、 及び基地 局間距離は任意でよい。 又、 ここでは、 統括局及び各基地局は光信号を波長多重 伝送方式で相互に通信するものとする。
統括局 2 0 1は、 制御部 2 0 2と、 MU X/D EMUX 2 0 3と、 波長可変光 源 2 0 4と、 WDMカプラ 2 0 5と、 光受信装置 2 0 6と、 ダイバーシチ等化部 2 0 7とを有する。
制御部 2 0 2は、 統括局 2 0 1によって管理される基地局 (B S 1〜B S 7 ) ネットワークと外部の通信ネットワーク (ここでは、 バックボーンネットワーク とする) との間の通信を制御する。
MU X/D EMU X 2 0 3は、 バックボーンネットワークから受信した多重化 された信号の分離及びバックボーンネットワークへ送信する信号の多重化を行う。 波長可変光源 2 0 4 (ここでは、 N種類の波長: 1、 2、 · · · N、 に対応) は、 電気信号である送信信号を送信先の移動局毎に固有の任意の波長の光信号に 変換する。 ここでは、 各移動局に一波長が割り当てられ、 波長可変光源も波長毎 に、 即ち想定される最大許容移動局数だけ設けられているものとする。
WDMカプラ 2 0 5は、 波長の異なる送信光信号を合波処理し、 又、 受信した 合波光信号を波長毎に分波する。
光受信装置 2 0 6は、 複数の光受信器から成り、 波長毎に分波された光信号を 受信し、 それぞれ電気信号に変換する。 ここでは、 各移動局に一波長が割り当て られ、 光受信器も波長毎に、 即ち想定される最大許容移動局数だけ設けられてい るものとする。 即ち、 同一の移動局から送信された信号が変換されて成る光信号 は、 いずれの基地局から送信された光信号であっても、 同一の受信器によって電 気信号に変換される。
ダイバーシチ等化部 2 0 7は、 光受信装置 2 0 6の後段に設けられ、 電気信号 に変換された受信信号のうち、元々の送信元が同一の移動局である信号に対して、 即ち統括局 2 0 1に入力された段階で同一波長を有する光信号であった受信信号 に対して、 等化合成処理を施し、 到着に時間差のある信号を等化処理する。 次いで、 各基地局の構成を基地局 B S 2を例に示す。 なお、 いずれの基地局も 同様の構成であるものとする。 各基地局は、 WDMカプラ 2 0 8と、 光受信器 2 0 9と、 アクセス系無線送受信部 2 1 0と、 アンテナ 2 1 1と、 無線送受信器 2 1 2と、 アクセス系 MO D EM 2 1 3と、 波長可変光源 2 1 4とを有する。
WDMカプラ 2 0 8は、 統括局 2 0 1から送信された合波光信号の中から自局 宛の波長の光信号を分波して取り込み、 又、 統括局 2 0 1へ送信する光信号を合 波する。
光受信器 2 0 9は、 WDMカプラ 2 0 8によって取り込まれた光信号を受信し、 電気信号に変換する。
アクセス系無線送受信部 2 1 0は、 アンテナ 2 1 1を介して移動局と無線通信 を行う無線送受信器 2 1 2と、 送受信信号の変復調を行うアクセス系 MO D EM 2 1 3とを有する。
波長可変光源 2 1 4は、 移動局から受信された電気信号を受信し、 その移動局 に固有の波長を有する光信号に変換する。
ここで、 上記構成の動作を説明する前に、 図 1 5を用いて、 前述の、 ハンドォ 一バー時に生じ得る干渉について説明する。 図 1 5は、 統括局においてダイバー シチ等化部を設けなかった場合に生じ得る干渉の原因となる時間差について説明 するための概略図である。 図 1 5では、 簡略化のため、 移動局 M Sが、 基地局 B S 1と基地局 B S 2との間でハンドオーバー状態となり、 移動局 M Sから送信さ れた信号は、 基地局 B S 1を経由した場合、 基地局 B S 2及び基地局 B S 3を順 に経由して統括局 2 0 1へ到達するものとし (以下、 ルート r lという) 、 基地 局 B S 2を経由した場合、 基地局 B S 3を経由して統括局へ到達するものとする (以下、 ルート r 2という) 。
統括局 2 0 1は、 ルート r 1を通ってきた信号と、 ルート r 2を通ってきた信 号との同時に受信し、 両者の回線品質を監視 '比較し、 ソフトハンドオーバーを 行う。
なお、 ここでは、 簡略化のため、 基地局 B S 1〜B S 3におけるカプラ 2 0 8 及びァンテナ 2 1 1以外の信号の送受信に必要な構成はまとめて無線回路部 3 0 1で表すものとする。 ここで、 図 1 5に示すように、 信号を移動局 M Sから基地局 B S 1まで転送す るのに要する時間を t 1、 信号を移動局 M Sから基地局 B S 2まで転送するのに 要する時間を t 2、 ルート r 1を通る信号を基地局 B S 1から基地局 B S 2まで 転送するのに要する時間を t 1 2、 ルート r 1及び r 2を通る信号を基地局 B S 2から統括局 2 0 1まで転送するのに要する時間を tとすると、 ルート r lを通 る場合に要するトータル転送時間は t + t 1 + t 1 2と表すことができ、 ルート r 2を通る場合に要するトータル転送時間は t + t 2と表すことができる。
よって、 同じ移動局 M Sから送信された信号でも、 ルート r 1を通る信号とル 一ト r 2を通る信号との間に、 統括局 2 0 1への到達時間につき時間差 Δ t = I ( t 1 + t 1 2 ) — t 2 I を生じることとなる。
ここで、 転送時間 t 1、 t 2、 及び t 1 2は、 移動局 M Sの位置や基地局 B S の置局状況、 及びその他の通信環境要因により常に変動する値である。 従って、 上記時間調整は困難である。
前述のように、 ルート r 1を通る信号もルート r 2を通る信号も同一の波長を 有するため、 上記時間差の結果、 統括局の光受信器において双方が相互に干渉と なる。 よって、 ルート r 1経由信号及びルート r 2経由信号の同時受信及び回線 品質監視によりソフトハンドオーバーは実行できるものの、 ソフトハンドオーバ 一実行中の通信の確立 ·維持が困難となるおそれが生じ得る。
このような弊害が生じるおそれを防止するために設けられたのが統括局におけ るダイバーシチ等化部 2 0 7であり、同一波長を有する光信号が受信された場合、 光受信装置 2 0 6によって電気信号に変換された後、 それら変換後の受信信号は 等化合成処理される。 この処理によって、 遅延波を含め等化合成されるため、 前 述の干渉の発生を防ぐことができる。 又、 ダイバ一シチ効果も得られ、 通信品質 が向上する。
次いで、 図 1 4に示された無線通信システムの動作について説明する。 なお、 ここで、 移動局 M S 1、 M S 2を考えるものとし、 移動局 M S 1に割り当てられ た固有の波長をえ M Sい移動局 M S 2に割り当てられた固有の波長を; L MS 2、 とす る。
今、 移動局 M S 1が基地局 B S 3の管轄するセル内に位置するものとする。 バ ックボーンネットワークを経由して送信されてきた移動局 MS 1への送信信号は、 まず統括局 201の制御部 202によって受信され、 MUXZDEMUX 203 に送られる。
次いで、 移動局 MS 1への送信信号は、 MUXZDEMUX 203によって分 離され、 波長可変光源 204によって波長 λΜ31を有する光信号に変換される。 次いで、 移動局 MS 1への送信信号は、 WDMカプラ 205によって他の波長 の光信号と合波され、 統括局 201から送信される。
このようにして無線基地局ネットワークを経由した移動局 MS 1への送信信号 は、 基地局 B S 3の WDMカプラ 208によって分波され、 取り込まれる。
次いで、 移動局 MS 1への送信信号は、 光受信器 209によって電気信号に変 換され、 アクセス系無線送受信部 210のアクセス系 MODEM213によって 変調され、 無線送受信器 212によってアンテナ 21 1を経由して移動局 MS 1 へ送信される。
一方、 移動局 MS 1から送信された信号は、 まず基地局 B S 3のアンテナ 21 1を経由してアクセス系無線送受信部 210の無線送受信器 212によって受信 され、 アクセス系 MODEM213によって復調され、 波長可変光源 214へ送 られる。
次いで、 移動局 MS 1からの送信信号は、 波長可変光源 214によって波長; MS1を有する光信号に変換され、 WDM力ブラ 208によって合波され、 波長多 重伝送により統括局 201へ送信される。
次いで、 移動局 MS 1からの送信信号は、 統括局 201の WDMカプラ 205 によって分波され、 取り込まれる。
次いで、 移動局 MS 1からの送信信号は、 光受信装置 206の MS 1用の光受 信器、 即ち波長え MS1用の光受信器によって、 電気信号に変換され、 ダイバーシ チ等化器 207に送られる。
次いで、 移動局 MS 1からの送信信号は、 同一波長の信号に時間差を持って到 達する成分が存在すれば、ダイバーシチ等化器 207によって等化合成処理され、 MUX/DEMUX 203へ送られる。
次いで、 移動局 MS 1からの送信信号は、 MUXZDEMUX 203によって 多重化され、 制御部 2 0 2を介してバックボーンネットワークへ送られる。
ここで、 移動局 M S 1が基地局 B S 3の管轄するセルから基地局 B S 4の管轄 するセルに移動する場合について考える。 前述のように、 ハンドオーバー中、 基 地局 B S 3及び基地局 B S 4は移動局 M S 1から受信した信号を共に波長 λ Μ 5 i を有する光信号に変換して統括局 2 0 1へ送信する。
統括局 2 0 1は、 ハンドオーバー実行のため、 基地局 B S 3及び基地局 B S 4 をそれぞれ経由してきた信号を同時に受信し、 それぞれの回線品質を監視する。 ここで、 基地局 B S 3から送信された波長え M S 1を有する光信号及び基地局 B
S 4から送信された波長 λ Μ 5 1を有する光信号は、 前述のように常に変動する時 間差を持って統括局 2 0 1へ到達する。
受信された波長 λ M S!を有する光信号は、 レ、ずれの基地局から送信されたもの もすベて同一の光受信器によって電気信号に変換される。
電気信号に変換されたハンドオーバー中の移動局 M S 1から受信した信号は、 前述の通り、 ダイバーシチ等化部 2 0 7によって遅延波まで含めて等化合成処理 される。
このようにハンドオーバー中の移動局 M S 1から送信された信号を、 いずれの 基地局を経由したかにかかわらずすべて等化合成処理することによって、 統括局 への到達時間差による干渉を除去し、又、ダイバーシチ効果を得ることもできる。 よって、 移動局がハンドオーバー中には、 移動局から送信された信号をハンド オーバーのための回線状況監視のため同時に受信しつつ、 ハンドオーバー先の候 補となっている基地局のいずれか一局から送信された信号のみを受信信号として 扱うとするのではなく、 候補基地局すベてから送信された信号を等化合成処理す ることによって、 ハンドオーバー中にも移動局の位置の移動やその他の通信環境 要因にかかわらず通話品質を維持することができる。
なお、 ここでは、 ダイバーシチ等化部 2 0 7が、 ハンドオーバー中の移動局が 送信したすべての信号を等化処理する場合について述べたが、 通信品質の更なる 向上のため、 既知の態様及び方法により取捨選択された受信信号のみを等化合成 処理するようにしてもよい。
次いで、 図 1 6を用いて、本発明の実施の形態 9について説明する。 図 1 6は、 本発明の実施の形態 9に係る無線通信システムの概略を部分的に示す図である。 本実施形態は、 実施の形態 8と概ね同様の構成を採り、 但し統括局の管理する複 数の基地局を含む通信ネットワークにおける伝送方式に波長多重伝送方式の代わ りにサブキヤリァ光伝送方式を用いるものである。
図 1 6において、 周波数可変エントランス MO D 4 0 1は、 MU Xノ D EMU X 2 0 3によって分離された信号をエントランス用無線信号に変調する。 ェント ランス用無線信号の周波数は、 移動局毎に一周波数が割り当てられ、 ここでは移 動局が N個あるものとして、 周波数 f MS 1〜f MS Nを採るものとする。
周波数選択型力ブラ 4 0 2は、 送信先の移動局毎に異なる周波数を有するよう に変換されたエントランス用無線信号を周波数多重処理し、 又、 受信した周波数 多重された信号の中から自局宛の周波数を有する信号を分波し、 取り込む。
EZO 4 0 3は、 周波数多重ざれた信号を光信号のサブキヤリァに乗せ、 通信 ネットワークにサブキャリア光伝送方式で送信する。
OZE 4 0 4は、 受信した光信号を周波数多重された無線信号に変換する。 周 波数可変エントランス D EM 4 0 5は、 エントランス用無線信号を復調する。 エントランス MO D EM 4 0 6は、 取り込まれたエントランス用無線信号を復 調し、 移動局から受信した信号をエントランス用無線信号に変調する。
このように伝送方式がサブキヤリァ光伝送方式に替わっても、 ハンドオーバー 中の処理に何ら変更は無く、 分波後の受信信号をダイバーシチ等化部 2 0 7によ つて等化合成処理することにより、 実施の形態 8と同様の効果を得ることができ る。
又、 統括局及び各基地局を光受信器及び波長可変光源を省く構成とすることが 可能となり、 構成及び Z若しくは処理工程の縮小という効果も得られる。
次いで、 図 1 7を用いて、 本発明の実施の形態 1 0について説明する。 図 1 7 は、 本発明の実施の形態 1 0に係る無線通信システムの概略を部分的に示す図で ある。 本実施形態は、 実施の形態 9と概ね同様の構成を採り、 但しエントランス 用無線信号の代わりにアクセス系無線信号を用いるものである。
図 1 7において、 周波数可変アクセス系 MO D 5 0 1は、 MU XZD EMU X 2 0 3によって分離された信号をアクセス系無線信号に変調する。 アクセス系無 線信号の周波数は、 移動局毎に一周波数が割り当てられ、 ここでは移動局が N個 あるものとして、周波数 f MS 1〜f MS Nを採るものとする。周波数可変アクセス系 D EM 5 0 2は、 アクセス系無線信号を復調する。
このように、 サブキャリア光伝送方式において、 サブキャリアに乗せる前の段 階の無線信号を各基地局が移動局と無線通信を行う際に用いるアクセス系無線信 号とすることによって、 各基地局をアクセス系無線信号の変復調器を省く構成と することが可能となり、 実施の形態 1 1よりも更に基地局の構成及びノ若しくは 処理工程を縮小できるという効果が得られる。 なお、 本実施の形態によっても実 施の形態 8と同様の効果を得られることは明らかである。
なお、 実施の形態 9及び 1 0においては、 光信号のサブキャリアに乗せる信号 を周波数多重する場合 (即ち F DMA) について述べたが、 他の方式、 例えば時 分割多重 (T DMA) 、 符号分割多重 (C DMA) などの方式、 であってもよレ、。 その場合、 統括局及び各基地局における分波する手段は、 それぞれの方式に対応 したものとなる。
又、 上記実施の形態においては、 統括局の管理する通信ネットワーク内におい て、 複数の基地局がループ状に接続されている場合について主に述べたが、 本発 明に係る基地局ネットワークは、図 1 8に示すようなメッシュ状であってもよく、 実施の形態 7に一例を示したように、 図 1 9に示すようなクラスタ型であっても よい。
図に示すように、 図 1 8の場合、 基地局 B S 5が統括局 6 0 1となり、 図 1 9 の場合、 各クラスタをそれぞれ統括するクラスタ統括局 7 0 1、 及び複数のクラ スタ統括局 7 0 1を統括する統括局 7 0 2が存在する。 いずれの統括局も実施の 形態 8乃至 1 0で述べた統括局に相当する。
又、 上記すベての実施形態において、 ハンドオーバーするのは当然ながら移動 局である無線通信端末に限られるが、 本発明に係る無線基地局ネットワークと直 接若しくは統括局を通じて無線基地局ネットワークと接続された外部通信ネット ワーク経由して通信するそれ以外の通信端末は、 移動無線端末に限られず、 パソ コンなどの固定有線端末でもよく、 P D Aなどの移動有線端末でもよく、 無線し A Nなどの固定無線端末でもよい。 又、 上記すベての実施形態において、 光信号を分波及ぴ合波する装置として主 に WDM力ブラを例に挙げて説明したが、 本発明は光信号を波長毎に分波及び合 波することが可能な装置であれば、 WDM力ブラに限られず、 任意の構成 ·構造 を有する装置を用いることが可能であり、例えば、 OADM (O t i c a l A d d—D r o p Mu 1 t i p 1 e x e r )や、 AOT F (A c o u s t i c O p t i c a 1 Tun a b l e F i l t e r) などの可変波長フィルタなどか ら構成される装置を用いることも可能である。 ― 以上説明したように、本発明に係る無線基地局ネットワークシステムによれば、 基地局が統括局に光ファイバ回線を介して送信する光信号の波長は移動局毎に固 有であるため、 移動局がハンドオーバー中の場合であっても、 統括局では一つの 光受信器で受信することができる。 よって、 従来技術と比べて選択スィッチを省 く構成をすることができるため、構成及び処理工程を軽減することが可能となる。 又、 統括局において、 光受信器の後段に等化合成処理手段を設けることによつ て、 統括局が異なる基地局から同一波長の光信号を受信しても、 それらが相互に 干渉することを防ぐことができ、 更にダイバーシチ効果を得ると共に、 ソフトハ ンドオーバー中の移動局の通信品質を向上させることができる。

Claims

請 求 の 範 囲
1 . 複数のセルに配置された基地局と、 それを統括する統括局とが光: で波長多重伝送により接続されている無線基地局ネットワークシステムにおいて、 前記基地局は、 所定の波長の光信号を送信する波長可変送信器と、 前記波長可 変送信器からの光信号を波長多重伝送するために合波する光力ブラを具備し、 前記統括局は、波長多重伝送された光信号の波長を受信する複数の光受信器と、 複数の前記基地局より波長多重伝送されてきた光信号を各波長にそれぞれ前記光 受信器に分波する光力ブラを具備し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 八 無線通信端末が移動した先の基地局は、 前記波長可変送信器の波長を制御し、 移動前の基地局が送信した光信号波長と同一の光信号波長で、 前記統括局に送信 する無線基地局ネッ トワークシステム。
2 . 請求項 1記載の無線基地局ネットワークシステムにおいて、
前記基地局に設けた光力プラは、波長多重伝送される複数の波長の光信号から、 特定の波長のみを分波し、 前記基地局は、 前記光力ブラにより分波された光信号 を受信する光受信器を具備し、
前記統括局は、 波長多重伝送のための光信号を送信する複数の波長可変光送信 器を具備し、 前記統括局に設けた光力ブラは、 前記複数の波長可変光送信器から の光信号を波長多重伝送するために合波し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 八
前記統括局は、 前記波長可変送信器の波長を制御し、 無線通信端末が移動した 先の基地局向けの光波長に変更して、 移動した先の基地局に送信することを特徴 とする無線基地局ネッ トワークシステム。
3 . 請求項 1記載の無線基地局ネッ トワークシステムにおいて、 前記基地局に設けた光力ブラは、 可変光力ブラであって、 波長多重伝送された 複数の波長の光信号から分波する波長を可変とし、.前記基地局は、 前記可変光力 ブラにより分波された光信号を受信する光受信器を具備し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 前記統括局は、 無線通信端末が通信する基地局を変更しても、 基地局へ送信す る光信号の波長は変更せずに送信し、 移動した先の基地局は、 前記可変光力ブラ により、 統括局からの光信号の波長を分波して受信することを特徴とする無線基 地局ネッ トワークシステム。
4 . 請求項 1乃至 3のいずれか一記載の無線基地局ネットワークシステムにお いて、
前記基地局は、 前記無線通信端末から受信した無線信号を復調してディジタル 信号に変換する移動通信用無線信号復調器と、 前記移動通信用無線信号復調器に より変換された前記統括局向けのディジタル信号が波長多重伝送された光信号に 変換する光送信器と、 前記統括局からのディジタル信号が波長多重伝送されてい る光信号を受信してディジタル信号に変換する光受信器と、 前記光受信器により 変換されたディジタル信号を移動通信用無線周波数信号に変換する移動通信用無 線信号変調器とを具備し、
前記統括局は、 前記基地局から受信したディジタル信号が波長多重伝送されて いる光信号をディジタノレ信号に変換する光受信器と、 基地局向けのディジタル信 号が波長多重伝送されたディジタル信号の光信号に変換する光送信器とを具備す ることを特徴とする無線基地局ネットワークシステム。
5 . 請求項 1乃至 3のいずれか一記載の無線基地局ネットワークシステムにお いて、
前記基地局は、 前記無線通信端末から受信した移動通信用無線信号を復調して ディジタル信号に変換する移動通信用無線信号復調器と、 前記移動通信用無線信 号復調器により変換されたディジタル信号をエントランス用無線信号に変換する エントランス用無線信号変調器と、 前記エントランス用無線信号変調器により変 換されたエントランス用無線信号をサブキヤリァ光伝送するために光信号に変換 する光送信器と、 サブキャリア光伝送されたエントランス用無線信号を電気信号 に変換する光受信器と、 電気信号に変換されたエントランス用無線信号をデイジ タル信号に変換するェントランス用無線信号復調器と、 前記ェントランス用無線 信号復調器により変換されたディジタル信号を移動通信用無線周波数信号に変換 する移動通信用無線信号変調器とを具備し、
前記統括局は、 前記基地局が送信したェントランス用の無線信号でサブキヤリ ァ光伝送された光信号を電気信号に変換する光受信器と、 電気信号に変換された エントランス用無線信号をディジタル信号に変換するエントランス用無線信号復 調器と、 基地局向けのディジタル信号をエントランス用無線信号に変換するェン トランス用無線信号変調器と、 前記エントランス用無線信号変調器により変換さ れたエントランス用無線信号をサブキヤリァ光伝送するために光信号に変換する 光送信器とを具備することを特徴とする無線基地局ネットワークシステム。
6 . 請求項 1乃至 3のいずれか一記載の無線基地局ネットワークシステムにお いて、
前記基地局は、 前記無線通信端末から受信した無線信号をサブキヤリァ光伝送 するために光信号に変換する光送信器と、 前記統括局から受信した移動通信用無 線周波数信号がサブキヤリァ光伝送されている光信号を電気信号に変換する光受 信器とを具備し、
前記統括局は、 前記基地局から受信した移動通信用無線周波数信号がサブキヤ リァ光伝送されている光信号を電気信号に変換する光受信器と、 電気信号に変換 された移動通信用無線周波数信号をディジタル信号に変換する移動通信用無線信 号復調器と、 基地局向けのディジタル信号を移動通信用無線周波数信号に変換す る移動通信用無線信号復調器と、 前記移動通信用無線信号復調器により変換され た移動通信用無線周波数信号をサブキヤリァ光伝送された光信号に変換する光送 信器とを具備することを特徴とする無線基地局ネットワークシステム。
7 . 複数のセルに配置された基地局と、 それを統括する統括局が光ファイバで サブキャリア光伝送により接続されている無線基地局ネットワークシステムにお いて、
前記基地局は、 前記無線通信端末から受信した移動通信用無線信号を復調して ディジタル信号に変換する移動通信用無線信号復調器と、 前記移動通信用無線信 号復調器により変換されたディジタル信号をエントランス用無線信号に変換する 周波数可変エントランス用無線信号変調器と、 統括局又は他の基地局から伝送さ れた、 サブキヤリァ光伝送されたエントランス用無線信号を電気信号に変換する 光受信器と、 前記光受信器の出力と前記周波数可変ェントランス用無線信号変調 器の出力を合波する力ブラとを具備し、
前記統括局は、 エントランス用無線信号がサブキヤリァ光伝送されている光信 号を電気信号に変換する光受信器と、 前記光受信器の出力を周波数毎に分波する 周波数選択型力ブラと、 前記周波数選択型力ブラにより分波されたそれぞれのェ ントランス用の無線信号をディジタル信号に変換するエントランス用無線信号復 調器とを具備し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 無線通信端末が移動した先の基地局は、 前記周波数可変エントランス用無線信 号変調器のキヤリァ周波数を制御し、 移動前の基地局が送信したェントランス用 無線信号周波数と同一のエントランス用無線信号周波数で、 前記統括局に送信す る無線基地局ネットワークシステム。
8 . 請求項 7記載の無線基地局ネットワークシステムにおいて、
前記基地局は、 サブキヤリァ光伝送されたェントランス用無線信号を電気信号 に変換する光受信器と、 前記光受信器の出力から所定の周波数信号を分波する周 波数選択型力ブラと、 前記周波数選択型力ブラが分波したエントランス用無線信 号をディジタル信号に変換するエントランス用無線信号復調器と、 前記ェントラ ンス用無線信号復調器により変換されたディジタル信号を移動通信用無線周波数 信号に変換する移動通信用無線信号変調器とを具備し、 前記統括局は、 基地局向けのディジタル信号をエントランス用の無線信号に変 換する周波数可変エントランス用無線信号変調器と、 前記周波数可変ェントラン ス用無線信号変調器の出力を合波する力ブラと、 前記エントランス用無線信号変 調器により変換されたエントランス用無線信号をサブキヤリァ光伝送するために 光信号に変換する光送信器とを具備し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 前記統括局は、 基地局向けのディジタル信号をエントランス用無線信号に変換 する前記周波数可変エントランス用無線信号変調器のキヤリァ周波数を制御し、 無線通信端末が移動した基地局向けのェントランス用無線周波数に変更すること を特徴とする無線基地局ネッ トワークシステム。
9 . 請求項 7記載の無線基地局ネットワークシステムにおいて、
前記基地局は、 サブキヤリァ光伝送された複数周波数のェントランス用無線信 号を電気信号に変換する光受信器と、 所定の周波数のみを分波する可変周波数選 択型カブラと、 前記可変周波数選択型力ブラにより分波された電気信号を移動通 信用無線周波数信号に変換する移動通信用無線信号変調器とを具備し、
前記統括局は、 基地局向けのディジタル信号をエントランス用無線信号に変換 する複数のエントランス用無線信号変調器と、 前記複数のエントランス用無線信 号変調器からの電気信号を多重する力ブラと、 前記力ブラの出力をサブキャリア 光伝送するために光信号に変換する光送信器とを具備し、
前記基地局と通信する無線通信端末が移動して、 通信する基地局を変更した場 前記統括局は、 無線通信端末が通信する基地局を変更しても、 周波数可変ェン トランス用無線信号変調器のキヤリァ周波数を変更せずに送信し、
無線通信端末が移動した先の基地局は、 前記可変周波数選択型力ブラの分波周 波数を、 移動前の基地局向けのエントランス用無線信号周波数に変更すること特 徴とする無線基地局ネッ トヮ一:
1 0 . 請求項 1乃至 9のいずれか一記載の無線基地局ネットワークシステムに おいて、
複数のセルに配置された基地局と、 それを統括する統括局が光フアイバにより 接続されている無線基地局ネットワークシステムは、 ループ状に構成されている ことを特徴とする無線基地局ネットワークシステム。
1 1 . 請求項 1乃至 9のいずれか一記載の無線基地局ネットワークシステムに おいて、
複数のセルに配置された基地局と、 それを統括する統括局が光ファイバにより 接続されている無線基地局ネットワークシステムは、 メッシュ状に構成されてい ることを特徴とする無線基地局ネットワークシステム。
1 2 . 請求項 1乃至 9のいずれか一記載の無線基地局ネットワークシステムに おいて、
複数のセルに配置された基地局と、 それを統括する統括局が光ファイバにより 接続されている無線基地局ネットワークシステムは、 クラスタ型無線基地局ネッ トワークであることを特徴とする無線基地局ネットワークシステム。
1 3 . 請求項 1 2記載の無線基地局ネットワークシステムにおいて、
前記クラスタ統括局を統括する上位統括局を有し、
前記基地局と通信する無線通信端末が移動して、 通信するクラスタを変更した 場合、
移動前のクラスタ統括局は、 上位統括局を介して、 移動後のクラスタ統括局に 前記無線通信端末からの信号を、 移動前の基地局が送信していた光信号の波長と 同じ波長で送信し、
移動後のクラスタの基地局は、 前記無線通信端末からの信号を、 移動前の基地 局が送信していた光信号の波長と同じ波長で移動後のクラスタ統括局に送信する ことを特徴とする無線基地局ネットワークシステム。
1 4 . 請求項 1 2記載の無線基地局ネットワークシステムにおいて、 前記クラスタ統括局を統括する上位統括局を有し、
前記基地局と通信する無線通信端末が移動して、 通信するクラスタを変更した 場合、
移動前のクラスタ統括局は、上位統括局及び移動後のクラスタ統括局を介して、 前記無線通信端末への信号を移動後のクラスタ基地局に、 移動前の基地局に送信 していた光信号の波長と同じ波長で送信し、 また、 移動後のクラスタ統括局は、 前記無線通信端末への信号を移動後のクラスタ基地局に、 移動前の基地局に送信 していた光信号の波長と同じ波長で送信することを特徴とする無線基地局ネット ワークシステム。
1 5 . 請求項 1 3又は 1 4記載の無線基地局ネットワークシステムにおいて、 前記上位統括局は、 光波長変換手段を有し、
前記上位統括局は、 移動後のクラスタにおいて、 移動前の基地局に送信してい た光信号の波長を使用している場合は、 上記波長変換手段により、 移動後のクラ スタで使用していない光信号の波長に変換して、 移動後のクラスタのクラスタ統 括局に送信することを特徴とする無線基地局ネットワークシステム。
1 6 . 無線通信端末と通信する複数の基地局と、該各基地局を統括的に制御し、 外部通信ネットワークと通信する統括局と、 前記各基地局及び前記統括局を接続 する光ファイバ回線とを有し、
前記各基地局は、 無線通信端末から送信された信号を受信し、 該受信信号を光 信号に変換し、 光ファイバ回線を介して前記統括局へ送信する無線基地局ネット ワークシステムにおいて、
前記各基地局は、 無線通信端末から送信された信号を発信元の無線通信端末毎 に固有に割り当てられた波長を有する光信号に変換する信号変換手段を有し、 前記統括局は、 同一の無線通信端末から送信された信号が、 少なくとも 2つの 基地局によって受信され、 それぞれ前記信号変換手段によって同一の波長を有す る光信号に変換されて成る光信号を、 光ファイバ回線を介して同時に受信し、 電 気信号に変換して出力する光信号受信手段と、 該出力信号を等化合成処理する等 化合成処理手段とを有する無線基地局ネットワーク V
1 7 . 前記各基地局及び前記統括局はループ状に接続されていることを特徴と する請求項 1 6記載の無線基地局ネットワークシステム。
1 8 . 前記各基地局及び前記統括局はメッシュ状に接続されていることを特徴 とする請求項 1 6記載の無線基地局ネットワークシステム。
1 9 . 前記各基地局及び前記統括局はクラスタ状に接続されていることを特徴 とする請求項 1 6記載の無線基地局ネットワークシステム。
2 0 . 前記各基地局及び前記統括局の間の通信は波長多重伝送方式で行われる ことを特徴とする請求項 1 6乃至 1 9のいずれか一記載の無線基地局ネットヮー クシステム。
2 1 . 前記各基地局及び前記統括局の間の通信はサブキヤリァ光伝送方式で行 われ、 各サブキヤリァ光信号にはエントランス用無線信号を周波数多重した信号 が乗せられることを特徴とする請求項 1 6乃至 1 9のいずれか一記載の無線基地 局ネッ トワークシステム。
2 2 . 前記各基地局及び前記統括局の間の通信はサブキヤリァ光伝送方式で行 われ、 各サブキヤリァ光信号には各基地局が無線通信端末との無線送受信に用い るアクセス系無線信号を周波数多重した信号が乗せられることを特徴とする請求 項 1 6乃至 1 9のいずれか一記載の無線基地局ネットワークシステム。
2 3 . 無線通信端末と通信する複数の基地局と、 光ファイバ回線とを含む無線 基地局ネットワークシステムを統括する統括局であって、
同一の無線通信端末から送信された信号が、 少なくとも 2つの基地局によって 受信され、 それぞれ前記信号変換手段によって発信元の無線通信端末毎に固有に 割り当てられた波長を有する光信号に変換されて成る光信号を、 光ファイバ回線 を介して同時に受信し、 電気信号に変換して出力する光信号受信手段と、 該出力信号を等化合成処理する等化合成処理手段とを有することを特徴とする 統括局。
2 4 . 複数のセルに配置された基地局と、 それを統括する統括局が光ファイバ でそれぞれ波長多重伝送により接続されている無線基地局ネットワークシステム における基地局切替方法において、
前記基地局が前記統括局に送信する送信波長は、 無線通信端末との通信開始時 に設定し、 前記送信波長は、 前記無線通信端末が通信している間は固定し、 前記無線通信端末が、 移動して通信する基地局が変わっても、 新しい基地局か ら統括局へは、 上記無線通信端末に設定された送信波長により、 前記無線通信端 末の情報を送信する基地局切替方法。
2 5 . 複数のセルに配置された基地局と、 それを統括する統括局が光: でそれぞれ波長多重伝送により接続されている無線基地局ネットワークシステム における基地局切替方法において、
前記統括局は、 波長可変送信器を有し、
前記統括局が前記基地局に送信する送信波長は、 基地局毎に設定し、 前記無線 通信端末が、 移動して通信する基地局を変更した場合、 統括局は、 前記波長可変 送信器の波長を制御して、 変更後の基地局に設定された送信波長により、 前記無 線通信端末への情報を、 変更後の基地局に送信する基地局切替方法。
2 6 . 複数のセルに配置された基地局と、 それを統括する統括局が光: でそれぞれ波長多重伝送により接続されている無線基地局ネットワークシステム における基地局切替方法において、
前記統括局が前記基地局に送信する送信波長は、 基地局毎に設定し、 前記無線 通信端末が、 移動して通信する基地局を変更した場合、 前記統括局は、 移動後の 基地局に、 移動前の基地局に設定された送信波長により、 前記無線通信端末の情 報を送信する基地局切替方法。
2 7 . 複数のセルに配置された基地局と、 それを統括する統括局が光: でサブキヤリァ光伝送により接続されている無線基地局ネットワー^システムに おける基地局切替方法において、
前記基地局が前記統括局にサブキヤリァ光伝送するェントランス用無線信号は、 無線通信端末との通信開始時に設定し、 前記ェントランス用無線信号は、 前記無 線通信端末が通信している間は固定し、
前記無線通信端末が、 移動して通信する基地局が変わっても、 新しい基地局か ら統括局へは、 上記無線通信端末に設定されたェントランス周波数信号により、 前記無線通信端末の情報をサブキヤリァ光伝送する基地局切替方法。
2 8 . 複数のセルに配置された基地局と、 それを統括する統括局が光: でサブキヤリァ光伝送により接続されている無線基地局ネットワークシステムに おける基地局切替方法において、
前記統括局が前記基地局に送信するエントランス用無線信号は、 基地局毎に設 定し、
前記無線通信端末が、 移動して通信する基地局を変更した場合、 統括局は、 変 更後の基地局に設定されたェントランス用無線信号により、 前記無線通信端末へ の情報を、 変更後の基地局にサブキヤリァ光伝送する基地局切替方法。
2 9 . 複数のセルに配置された基地局と、 それを統括する統括局が光: でサブキヤリァ光伝送により接続されている無線基地局ネットワークシステムに おける基地局切替方法において、
前記統括局が前記基地局に送信するエントランス用無線信号は、 基地局毎に設 定し、
前記無線通信端末が、 移動して通信する基地局を変更した場合、 新しい基地局 から統括局へは、 移動前の基地局に設定されたエントランス周波数信号により、 前記無線通信端末の情報をサブキヤリァ光伝送する基地局切替方法。
3 0 . 無線通信端末と通信する複数の基地局と、該各基地局を統括的に制御し、 外部通信ネットワークと通信する統括局と、 前記各基地局及び前記統括局を接続 する光ファイバ回線とを有する無線基地局ネットワークシステムにおける信号処 理方法において、
前記各基地局は、 無線通信端末から送信された信号を受信し、 発信元の無線通 信端末毎に固有に割り当てられた波長を有する光信号に変換し、 光ファイバ回線 を介して前記統括局へ送信する工程と、
前記統括局は、 少なくとも 2つの基地局によって受信され、 同一の波長を有す る光信号に変換された同一の無線通信端末から送信された信号を、 光ファイバ回 線を介して同時に受信し、 電気信号に変換し、 等化合成処理する工程とを有する 信号処理方法。
3 1 . 請求項 3 0記載の信号処理方法に従って信号処理が為される際のハンド オーバー制御方法において、
統括局が同時に受信した同一波長を有する受信光信号の示す回線状況をそれぞ れ監視し、 この監視結果に基づいてハンドオーバー処理の終了の可否を決定する 工程と、
統括局が前記等化合成処理された信号に基づいて前記ハンドオーバー中の無線 通信端末との通信を確立させ、 又は維持させる工程とを有することを特徴とする ハンドオーバー制御方法。
PCT/JP2001/003845 2000-05-10 2001-05-08 Systeme de reseau de stations de base radio, station de controle, procede de commutation de station de base, procede de traitement de signal et procede de commande de transfert WO2001086982A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60143253T DE60143253D1 (de) 2000-05-10 2001-05-08 Ion, basisstationsvermittlungsverfahren, signalverarbeitungsverfahren sowie weiterreichungssteuerverfahren
EP01926153A EP1250018B1 (en) 2000-05-10 2001-05-08 Wireless base station network system, control station, base station switching method, signal processing method, and handover control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000137879A JP3854446B2 (ja) 2000-05-10 2000-05-10 移動通信用基地局ネットワーク及び前記ネットワークにおける基地局切換え方法
JP2000-137879 2000-05-10
JP2000-380882 2000-12-14
JP2000380882A JP3798622B2 (ja) 2000-12-14 2000-12-14 無線基地局ネットワークシステム、統括局、信号処理方法、及びハンドオーバー制御方法

Publications (1)

Publication Number Publication Date
WO2001086982A1 true WO2001086982A1 (fr) 2001-11-15

Family

ID=26591645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003845 WO2001086982A1 (fr) 2000-05-10 2001-05-08 Systeme de reseau de stations de base radio, station de controle, procede de commutation de station de base, procede de traitement de signal et procede de commande de transfert

Country Status (6)

Country Link
US (1) US20030007214A1 (ja)
EP (1) EP1250018B1 (ja)
KR (1) KR100443312B1 (ja)
CN (1) CN1156186C (ja)
DE (1) DE60143253D1 (ja)
WO (1) WO2001086982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003637A2 (en) * 2001-06-29 2003-01-09 Hrl Laboratories, Llc Method, system, and apparatus for wireless wavelength division multiplexing
US6778318B2 (en) 2001-06-29 2004-08-17 Hrl Laboratories, Llc Optical-to-wireless WDM converter

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127175B2 (en) * 2001-06-08 2006-10-24 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US20020191565A1 (en) * 2001-06-08 2002-12-19 Sanjay Mani Methods and systems employing receive diversity in distributed cellular antenna applications
KR100450404B1 (ko) * 2002-07-03 2004-09-30 한국전자통신연구원 파장식별 코드방식의 무선 액세스 망 패킷 전달방법
US7493129B1 (en) 2002-09-12 2009-02-17 At&T Mobility Ii Llc Method and apparatus to maintain network coverage when using a transport media to communicate with a remote antenna
US20040198453A1 (en) * 2002-09-20 2004-10-07 David Cutrer Distributed wireless network employing utility poles and optical signal distribution
JP4124710B2 (ja) 2002-10-17 2008-07-23 松下電器産業株式会社 無線通信システム
US7962042B2 (en) * 2003-03-07 2011-06-14 At&T Intellectual Property I, L.P. Method and system for delivering broadband services over an ultrawide band radio system integrated with a passive optical network
KR100547880B1 (ko) * 2003-05-20 2006-01-31 삼성전자주식회사 초광대역 통신방식을 이용한 실내 근거리 통신 네트워크시스템
KR100539860B1 (ko) * 2003-06-09 2005-12-28 삼성전자주식회사 초고속광대역망간 신호전송장치
ATE364970T1 (de) 2004-01-08 2007-07-15 Evolium Sas Funkbasisstation mit mehreren funkfrequenzköpfen
KR100592904B1 (ko) * 2004-05-06 2006-06-23 한국전자통신연구원 동적 클러스터 기반의 핸드오버를 제공하는 이동통신시스템, 및 그 방법
US7548695B2 (en) * 2004-10-19 2009-06-16 Nextg Networks, Inc. Wireless signal distribution system and method
CN100455104C (zh) * 2004-11-08 2009-01-21 中兴通讯股份有限公司 光学信道与无线电信道间的切换方法
US7209739B1 (en) * 2004-12-28 2007-04-24 Sprint Spectrum L.P. Method and system for processing calls within a local micro network
US20070286599A1 (en) * 2006-06-12 2007-12-13 Michael Sauer Centralized optical-fiber-based wireless picocellular systems and methods
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7627250B2 (en) * 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) * 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) * 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) * 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
KR100856520B1 (ko) * 2007-02-21 2008-09-04 삼성전자주식회사 와이맥스 이동통신 시스템에서 핸드오버를 수행하기 위한시스템 및 방법
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
EP2148456A1 (en) * 2008-07-25 2010-01-27 BAE Systems plc Multi-funcition array antenna
US20110129220A1 (en) * 2008-07-25 2011-06-02 Bae Systems Plc Multi-function array antenna
CN102369678B (zh) 2009-02-03 2015-08-19 康宁光缆系统有限责任公司 基于光纤的分布式天线系统、组件和用于校准基于光纤的分布式天线系统、组件的相关方法
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010090999A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9590733B2 (en) * 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
JP2011114689A (ja) * 2009-11-27 2011-06-09 Fujitsu Ltd 無線基地局装置
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
JP5614274B2 (ja) 2010-12-21 2014-10-29 富士通株式会社 無線通信システム
US8743852B2 (en) * 2011-01-14 2014-06-03 Apple Inc. Methods for coordinated signal reception across integrated circuit boundaries
CN203504582U (zh) 2011-02-21 2014-03-26 康宁光缆系统有限责任公司 一种分布式天线系统及用于在其中分配电力的电源装置
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
EP2702710A4 (en) 2011-04-29 2014-10-29 Corning Cable Sys Llc DETERMINING THE TRANSMISSION DELAY OF COMMUNICATIONS IN DISTRIBUTED ANTENNA SYSTEMS AND CORRESPONDING COMPONENTS, SYSTEMS AND METHODS
WO2013148986A1 (en) 2012-03-30 2013-10-03 Corning Cable Systems Llc Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
EP2874320A4 (en) * 2012-05-30 2016-05-11 Nec Corp OPTICAL WIRELESS TRANSMISSION DEVICE, OPTICAL WIRELESS TRANSMISSION METHOD AND OPTICAL WIRELESS TRANSMISSION SYSTEM
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
WO2014199380A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
EP3008515A1 (en) 2013-06-12 2016-04-20 Corning Optical Communications Wireless, Ltd Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
JP6268900B2 (ja) * 2013-10-11 2018-01-31 富士通株式会社 伝送装置、伝送システム及び伝送方法
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
EP3235336A1 (en) 2014-12-18 2017-10-25 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224986A (zh) * 1997-08-14 1999-08-04 Sk泰力康姆株式会社 微蜂窝移动通信系统
JPH11298939A (ja) * 1998-03-23 1999-10-29 Lucent Technol Inc Cdmaセルラ無線電話システムおよびcdma用ローカル基地局およびcdma用集中基地局およびcdmaセルラ無線電話システムにおける信号送受信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682256A (en) * 1988-11-11 1997-10-28 British Telecommunications Public Limited Company Communications system
CA2008900C (en) * 1989-04-04 1998-01-20 Ta-Shing Chu Optical fiber microcellular mobile radio
CA2021380C (en) * 1989-07-21 1994-05-10 Takuji Yamamoto Equalizing and amplifying circuit in an optical signal receiving apparatus
US6016426A (en) * 1996-10-10 2000-01-18 Mvs, Incorporated Method and system for cellular communication with centralized control and signal processing
US6049593A (en) * 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
DE19733764A1 (de) * 1997-08-05 1999-02-18 Alsthom Cge Alcatel Verfahren und Vorrichtung zum Entzerren eines aufgrund von Störungen im optischen Bereich verzerrten elektrischen Signals
DE69831240T2 (de) * 1998-10-15 2006-06-01 Lucent Technologies Inc. Rekonfigurierbares faseroptisches Netzwerk für Drahtlose Übertragung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224986A (zh) * 1997-08-14 1999-08-04 Sk泰力康姆株式会社 微蜂窝移动通信系统
JPH11298939A (ja) * 1998-03-23 1999-10-29 Lucent Technol Inc Cdmaセルラ無線電話システムおよびcdma用ローカル基地局およびcdma用集中基地局およびcdmaセルラ無線電話システムにおける信号送受信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN-CHIEH CHAO ET AL.: "Channel assigment schemes for WDN-based personal communications network", WCNC. 1999 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONNFERENCE, vol. 2, 1999, pages 698 - 702, ISBN 0780356683, XP002945641 *
See also references of EP1250018A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003637A2 (en) * 2001-06-29 2003-01-09 Hrl Laboratories, Llc Method, system, and apparatus for wireless wavelength division multiplexing
WO2003003637A3 (en) * 2001-06-29 2003-09-18 Hrl Lab Llc Method, system, and apparatus for wireless wavelength division multiplexing
US6778318B2 (en) 2001-06-29 2004-08-17 Hrl Laboratories, Llc Optical-to-wireless WDM converter
US7174064B2 (en) 2001-06-29 2007-02-06 Hrl Laboratories, Llc Optical channelizer utilizing resonant microsphere coupling
US7292791B2 (en) 2001-06-29 2007-11-06 Hrl Laboratories, Llc Optical-to-wireless wdm converter
US7409159B2 (en) 2001-06-29 2008-08-05 Hrl Laboratories, Llc Wireless wavelength division multiplexed system

Also Published As

Publication number Publication date
KR100443312B1 (ko) 2004-08-09
EP1250018A4 (en) 2006-09-13
EP1250018B1 (en) 2010-10-13
KR20020026520A (ko) 2002-04-10
CN1156186C (zh) 2004-06-30
CN1372773A (zh) 2002-10-02
EP1250018A1 (en) 2002-10-16
DE60143253D1 (de) 2010-11-25
US20030007214A1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
WO2001086982A1 (fr) Systeme de reseau de stations de base radio, station de controle, procede de commutation de station de base, procede de traitement de signal et procede de commande de transfert
JP3131020B2 (ja) 光トランシーバ装置
KR100871229B1 (ko) 하이브리드 듀플렉싱 방식의 무선통신 서비스를 수행하는유무선 통합 네트워크 시스템 및 이를 위한 신호제어방법
US6674966B1 (en) Re-configurable fibre wireless network
JP2018113555A (ja) 光伝送システム、ponシステムおよび伝送方法
JP2001189962A (ja) 無線基地局システム、統括局及び該統括局における信号処理方法
JPH06506335A (ja) デジタル・セルラーのマイクロセル・システム
JP2014110574A (ja) 光無線アクセスシステム
JP3798622B2 (ja) 無線基地局ネットワークシステム、統括局、信号処理方法、及びハンドオーバー制御方法
JP3670576B2 (ja) 移動通信システム及びスイッチング装置
JP4821546B2 (ja) 光伝送システム
JP2009535949A (ja) 通信システムを作動させる方法と、このような方法を実施する通信システム
JP3854446B2 (ja) 移動通信用基地局ネットワーク及び前記ネットワークにおける基地局切換え方法
JPH04207532A (ja) 通信装置
JP5053317B2 (ja) 無線通信システムおよび無線通信方法
KR100456107B1 (ko) 다파장 광중계국 연결 장치
JP2783248B2 (ja) 無線基地局ネットワーク
JP4696270B2 (ja) 通信システム及び通信方法
JP2001177866A (ja) 無線通信システム
KR102398348B1 (ko) 분산 안테나 시스템
CN102907025A (zh) 利用光信号传输数据信息的方法、系统和装置
KR100296905B1 (ko) 광신호 분배통신시스템
JP2016010036A (ja) 局側光終端装置、光中継装置、プログラムおよび光通信方法
JPH0537542A (ja) 波長分割多重伝送方法及び波長分割多重ネツトワーク
JPH01126027A (ja) 加入者線光遠隔多重伝送方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027000078

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018012043

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001926153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10030416

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027000078

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001926153

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027000078

Country of ref document: KR