WO2001086262A1 - Plasmonenresonanzsensor - Google Patents

Plasmonenresonanzsensor Download PDF

Info

Publication number
WO2001086262A1
WO2001086262A1 PCT/EP2001/005287 EP0105287W WO0186262A1 WO 2001086262 A1 WO2001086262 A1 WO 2001086262A1 EP 0105287 W EP0105287 W EP 0105287W WO 0186262 A1 WO0186262 A1 WO 0186262A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasmon resonance
incidence
resonance sensor
plane
sensor according
Prior art date
Application number
PCT/EP2001/005287
Other languages
English (en)
French (fr)
Inventor
Andreas Hofmann
Original Assignee
Jandratek Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jandratek Gmbh filed Critical Jandratek Gmbh
Priority to EP01940431A priority Critical patent/EP1281062A1/de
Priority to AU2001274010A priority patent/AU2001274010A1/en
Priority to US10/275,164 priority patent/US6801317B2/en
Publication of WO2001086262A1 publication Critical patent/WO2001086262A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the invention relates to a plasmon resonance sensor for biological, biochemical or chemical tests with a translucent body, in particular glass prism, a reflective metal layer or semiconductor layer applied to a surface of the body with a surface sensitive to molecules to be detected in a sample, which in connection with a cuvette forms a measuring cell, a monochromatic light source, in particular a laser diode, for emitting a diverging light beam or beam path through the translucent body onto the inner surface of the layer and a detector which is assigned to the outgoing beam path reflected by the layer and which is dependent on time and which is sensitive to molecular deposits Surface-changing angle of reflection of the light, at which due to the resonance, an intensity minimum of incident light occurs.
  • a plasmon resonance sensor with a glass prism, a thin gold layer from 40 to 70 nm and a light source in the form of a laser diode is known from US 4,844,613.
  • the phenomenon of surface plasmon resonance is a collective excitation of the electrons on the surface of a layer having free electrons.
  • the resonance frequency of the surface plasmon is very sensitive to the refractive index of the medium that is adjacent to the sensitive surface. This can be used to measure thin layers (refractive index or layer thickness). This effect is used in particular in biosensors to investigate the attachment kinetics of biomolecules to a functionalized metal surface.
  • the resonance condition of the surface plasmons is detected in a time-resolved manner.
  • the surface plasmons of the thin metal layer are excited by light that shines through the glass onto the metal layer at a certain angle or range of angles. The resonance condition is then fulfilled for a certain combination of wavelength and angle of incidence.
  • the intensity of the light reflected on the metal layer is significantly reduced due to the generation of the surface plasmon.
  • either the angle of incidence (at constant wavelength) or the wavelength (at constant angle of incidence) can be scanned and the intensity of the reflected light can be detected.
  • the plasmon resonance sensor described at the outset it is expedient to work with a fixed wavelength and to determine the angle of incidence at which the resonance condition is fulfilled.
  • a laser diode is used which emits an elliptical beam cone.
  • the opening angles are typically 22 ° in one dimension and 9 ° in the other - half of the intensity maximum (FWHM).
  • This beam divergence is used to illuminate the light source with different angles of incidence within a win- ding without any beam shaping optics and without changing the orientation of the light source. to illuminate the range that is considered for the occurrence of the resonance condition.
  • an elongated detector arrangement is provided which records the diverging beam path across its entire dimension in the plane of incidence of light and can thus determine the angle of incidence at which the resonance condition is met at the time of measurement.
  • This known plasmon resonance sensor because it does not require any beam shaping optics and devices for changing the angle of incidence, is comparatively simple and therefore inexpensive to manufacture.
  • light rays with different angles of incidence hit different points of the reflective metal layer, so that high demands must be placed on their homogeneity in order to prevent falsifications of the measurement results. In this sense, however, sufficiently homogeneous metal layers can be applied.
  • the main disadvantage of the known design is therefore seen in the fact that the performance of the plasmon resonance sensor equipped with a single measuring cell, based on the number of tests that can be carried out, is low and that this does not permit simultaneous reference measurements in order to eliminate the influence, for example, of the heating of the reflective metal layer.
  • reference measurements are particularly useful.
  • additional measuring cells must be arranged at a greater distance from one another so that different beam cones do not overlap and thus lead to falsifications. Such a distance would run counter to the desired compact design and also significantly increase the costs for correspondingly large parts.
  • the object of the invention is to create a plasmon resonance sensor which, with a compact and inexpensive design, enables high test performance with error-free results at the same time.
  • this object is achieved according to the invention in that a collimation lens is arranged between the light source and the translucent body, which collimates the incident beam path perpendicular to the plane of incidence, but still leaves it diverging in the plane of incidence.
  • the plasmon resonance sensor according to the invention manages with simple beam shape optics in the form of a cylindrical lens, and therefore requires only a small amount of construction.
  • the original beam divergence for example of a laser diode
  • the targeted parallel alignment of the beam path in the direction perpendicular to the plane of incidence In this direction a narrow beam path is created, which enables a compact juxtaposition of several identical plasmon resonance sensors and, accordingly, of several measuring cells, which leads to a powerful device with the possibility of advantageous reference measurements.
  • Figure 1 is a side view of a plasmon resonance sensor
  • Figure 2 is a top view of a plasmon resonance sensor with four measuring cells
  • FIG. 3 shows a plasmon resonance sensor similar to the embodiment according to FIG. 2, but in which each measuring cell is assigned its own light source;
  • Figure 4 shows a further modification compared to the embodiment of Figure 3, according to which each measuring cell and light source is assigned its own collimation optics.
  • a translucent body 1 in the form of a glass prism with a triangular cross-sectional shape is provided.
  • This prism has a light incident side 2, a light incident side 3 and a horizontally oriented upper reflection side 4.
  • On this reflection side 4 is a reflective measurement tall Mrs 5 applied, which consists for example of gold in a thickness of 50 nm.
  • a sensitive coating 6 is also applied to the metal layer 5, as is indicated schematically.
  • This sensitive coating is matched, for example, to the biomolecules to be detected in the sample to be examined, so that the biomolecules in question attach to the sensitive coating.
  • Such coatings and their regeneration for example by means of a hydrochloric acid solution, are familiar to the person skilled in the art.
  • a monochromatic light source 7 in the form of a laser diode is assigned to the light incidence side 2, and in a corresponding manner the detector 3 is at a distance from the light exit side 3 of the prism 1.
  • a divergent beam path 9 is generated by the laser diode 7, which is reflected on the metal layer 5 and is directed onto the detector 8.
  • the beam path 9 is divided into an incident beam path 10 in front and an outgoing beam path 11 behind the metal layer 5, the plane of incidence 12 (FIG. 2) running parallel to the plane of the drawing in FIG. 1.
  • collimation optics 13 are arranged in the form of a cylindrical lens, which is arranged inclined in the plane of incidence 12 in accordance with the incident beam path.
  • This cylindrical lens 13 brings about collimation or parallel alignment of the light beams only in a direction perpendicular to the plane of incidence 12 (FIG. 2), while the beam divergence is retained in the plane of incidence, as shown in FIG. 1.
  • the beam path 9 runs through the prism 1 within a comparatively narrow area with a small dimension perpendicular to the plane of incidence 12.
  • the occurring plasmon resonance on which the test method carried out with the plasmon resonance sensor according to the invention is based, is indicated schematically in FIG. 1.
  • the divergence of the beam path 9 in the plane of incidence 12 is sufficiently large to cover the range of angles of incidence within which the resonance phenomenon occurs.
  • the reso- Specifically leading angles of incidence change as a result of the attachment of molecules from the sample to be examined to the sensitive coating 6.
  • the incident light beam is noticeably weakened at the respectively resonant angle of incidence, and this angle of incidence is determined by the detector 8 in a time-resolved manner.
  • a laser diode 15, a cylindrical lens 16 and a prism 17 are provided in accordance with the description of FIG. 1, which likewise has a triangular cross section and extends perpendicular to the plane of incidence 12 of the light, four measuring cells 18 on the prism 17, 19, 20 and 21 are formed, on each of which the metal layer 5 and the sensitive coating 6 are present.
  • Each measuring point is assigned its own detector 22, 23, 24 or 25.
  • the incident beam path 10 corresponds to the description with reference to FIG. 1. Accordingly, there is divergence between the laser diode 15 and the cylindrical lens 16 both in the plane of incidence 12 and perpendicular to it, while behind the cylindrical lens 16 there is only divergence in the plane of incidence 12 and perpendicular to the Plane of incidence there is a parallel beam path.
  • the various measuring cells 18 to 21 and the associated detectors 22 to 25 are not only spaced apart from one another, but in particular are radially decoupled from one another, as illustrated by the outgoing beam paths 26, 27, 28 and 29, and this even with a small distance between the measuring cells 18 to 21 and accordingly between the detectors 22 to 25 and despite the intended divergence in the emerging beam paths 26 to 29, which is only present in the direction of the plane of incidence 12.
  • a compact arrangement with four measuring cells 18 to 21 with only one laser diode 15, a cylindrical lens 16 and a prism 17 can thus be achieved.
  • the four measuring cells 18 to 21 four samples can be examined simultaneously, or three samples in connection with a reference measurement based on a known reference sample.
  • the increase in performance by additional measuring cells is particularly valuable because the individual measurements can be comparatively time-consuming, depending on the samples to be examined or the molecules to be detected.
  • the duration of the examination or measurement in particular in the case of biological or biochemical tests, can be up to one hour.
  • FIGS. 3 and 4 also provide a common prism 17 with four measuring cells and detectors assigned to them.
  • the differences relate to the beam path in each case, without however changing the beam divergence in the plane of incidence and the collimation in the direction perpendicular to the plane of incidence.
  • the measuring cells 30 to 33 are assigned their own laser diodes 34 to 37. Nevertheless, a common cylindrical lens 38 can be used, which collimates the four differently directed beam paths 39 to 42. Corresponding to the fan-shaped beam paths 39 to 45, the arrangement of the detectors 43 to 46 is spread out in a somewhat more space-consuming manner.
  • each of the laser diodes 51 to 54 assigned to a measuring cell 47 to 50 is assigned its own cylindrical lens 55 to 58.
  • the individual beam paths 59 to 62 run parallel to one another until they strike the detectors 63 to 66 assigned to the measuring cells 47 to 50.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Beim erfindungsgemässen Plasmonenresonanzsensor ist eine Kollimationsoptik (13) in Form einer Zylinderlinse zwischen der Laserdiode (7) und dem Prisma (1) mit der reflektierenden Metallschicht (5) angeordnet. Dadurch bleibt in der Einfallsebene die Strahlendivergenz erhalten, die alle für eine Resonanz in Betracht kommenden Einfallswinkel umfasst, die vom Detektor (8) ermittelt werden. Senkrecht zur Einfallsebene wird der Strahlengang jedoch kollimiert, was eine kompakte Bauweise und die gleichzeitige Anordnung mehrerer senkrecht zur Einfallsebene hintereinander ausgerichteter Messzellen ermöglicht.

Description

Patentanmeldung
Bezeichnung: Plasmonenresonanzsensor
B e s c h r e i b u n g
Die Erfindung bezieht sich auf einen Plasmonenresonanzsensor für biologische, biochemische oder chemische Tests mit einem lichtdurchlässigen Körper, insbesondere Glasprisma, einer auf eine Fläche des Körpers aufgebrachten reflektierenden Metallschicht oder Halbleiterschicht mit einer für nachzuweisende Moleküle in einer Probe sensitiven Oberfläche, die in Verbindung mit einer Küvette eine Meßzelle bildet, einer monochromatischen Lichtquelle, insbesondere Laserdiode, zur Aussendung eines divergierenden Lichtbündels oder Strahlengangs durch den lichtdurchlässigen Körper auf die Innenfläche der Schicht und einem Detektor, der dem von der Schicht reflektierten ausfallenden Strahlengang zugeordnet ist und zeitabhängig den sich durch Molekülanlagerungen an die sensitive Oberfläche ändernden Ausfallswinkel des Lichts feststellt, bei dem resonanzbedingt ein Intensitäts inimum an ausfallendem Licht auftritt. Ein derartiger Plasmonenresonanzsensor mit einem Glasprisma, einer dünnen Goldschicht von 40 bis 70 nm und einer Lichtquelle in Form einer Laserdiode ist aus US 4 844 613 bekannt.
Beim Phänomen der Oberflächenplasmonenresonanz (SPR - Surface Plasmon Resonance) handelt es sich um eine kollektive Anregung der Elektronen an der Oberfläche einer Freielektronen aufweisenden Schicht. Die Resonanzfrequenz der Oberflächenplasmonen ist sehr empfindlich auf den Brechungsindex des Mediums, das an die sensitive Oberfläche angrenzt. Dieses kann genutzt werden, um dünne Schichten (Brechungsindex oder Schichtdicke) zu vermessen. Insbesondere in der Biosensorik wird dieser Effekt genutzt, um die Anlagerungskinetik von Biomolekülen an eine funk- tionalisierte Metalloberfläche zu untersuchen. Hierzu wird zeitaufgelöst die Resonanzbedingung der Oberflächenplasmonen detektiert. Die Oberflächenplasmonen der dünnen Metallschicht werden durch Licht angeregt, das durch das Glas auf die Metall- schicht unter einem bestimmten Winkel oder Winkelbereich leuchtet. Die Resonanzbedingung ist dann für eine bestimmte Kombination Wellenlänge-Einfallswinkel erfüllt. Unter dieser Resonanzbedingung ist die Intensität des an der Metallschicht reflektierten Lichtes auf Grund der Erzeugung der Oberflächenplasmonen deutlich vermindert. Zum Auffinden der Resonanzbedingung kann entweder der Einfallswinkel (bei konstanter Wellenlänge) oder die Wellenlänge (bei konstantem Einfallswinkel) durchge- stim t werden, und die Intensität des reflektierten Lichtes detektiert werden.
Beim eingangs beschriebenen Plasmonenresonanzsensor wird zweckmäßigerweise mit einer festen Wellenlänge gearbeitet und der Einfallswinkel bestimmt, bei dem die Resonanzbedingung erfüllt ist. Dabei wird eine Laserdiode genutzt, die einen elliptischen Strahlenkegel aussendet. Die Öffnungswinkel liegen typischerweise in der einen Dimension bei 22° und in der anderen Dimension bei 9° - jeweils bei der Hälfte des Intensitätsmaxi ums (FWHM) . Diese Strahlendivergenz wird genutzt, um ohne jegliche Strahlformungsoptik und ohne Änderung der Ausrichtung der Lichtquelle gegenüber der reflektierenden Schicht diese mit Licht unter verschiedenen Einfallswinkeln innerhalb eines Win- kelbereichs anzuleuchten, der für das Auftreten der Resonanzbedingung in Betracht kommt. Dementsprechend ist eine langgestreckte Detektoranordnung vorgesehen, die den divergierenden ausfallenden Strahlengang über seine gesamte Abmessung in der Lichteinfallsebene aufnimmt und so den Einfallswinkel bestimmen kann, bei dem im Meßzeitpunkt die Resonanzbedingung erfüllt ist.
Dieser bekannte Plasmonenresonanzsensor ist, da er ohne Strahl- formungsoptik und Einrichtungen zur Veränderung des Lichteinfallswinkels auskommt, vergleichsweise einfach ausgebildet und damit preiswert herzustellen. Allerdings treffen Lichtstrahlen mit unterschiedlichem Einfallswinkel auf unterschiedliche Punkte der reflektierenden Metallschicht, so daß an deren Homogenität hohe Anforderungen gestellt werden müssen, um Verfälschungen der Meßergebnisse vorzubeugen. Jedoch lassen sich in diesem Sinne ausreichend homogene Metallschichten aufbringen.
Der wesentliche Nachteil der bekannten Ausbildung wird deshalb darin gesehen, daß die auf die Zahl der durchführbaren Tests, bezogene Leistung des mit einer einzigen Meßzelle ausgestatteten Plasmonenresonanzsensors gering ist und daß dieser keine gleichzeitigen Referenzmessungen ermöglicht, um den Einfluß beispielsweise der Erwärmung der reflektierenden Metallschicht auszuschalten. Gerade wegen der starken Temperaturabhängigkeit des Brechungsindexes von Flüssigkeiten und da die zu untersuchenden Proben üblicherweise in Flüssigkeit gelöst untersucht werden sind Referenzmessungen besonders sinnvoll. In diesem Zusammenhang ist auch zu berücksichtigen, daß wegen des divergierenden Strahlengangs zusätzliche Meßzellen in größerem Abstand zueinander angeordnet werden müssen, damit es nicht zu Überschneidungen verschiedener Strahlenkegel und damit zu Verfälschungen kommt. Eine solche Distanzierung würde aber der erstrebten kompakten Bauweise zuwider laufen und auch die Kosten für entsprechend große Teile deutlich erhöhen.
Aus EP 305 109 Bl ist es bereits bekannt, bei einem vergleichbaren Plasmonenresonanzsensor zur Durchführung biologischer Tests mit einer parallel strahlenden Lichtquelle zu arbeiten und daraus mittels einer Optik einen konvergenten Strahlenfächer mit allen notwendigen Einfallswinkeln zu erzeugen, wobei auch im divergierenden ausfallenden Strahlengang eine Optik vorgesehen ist, die den Strahlengang vor dem Auftreffen auf den Detektor wieder parallel ausrichtet. Bei diesem Plasmonenresonanzsensor wird das Licht auf einen Punkt der Metallschicht fo- kussiert, so daß der Einfluß von Inhomogenitäten der Metallschicht weitgehend ausgeschaltet ist. Dafür muß jedoch mit einer verstärkten Erwärmung der Metallschicht und mit dadurch verfälschten Ergebnissen gerechnet werden. Ein weiterer Nachteil des bekannten Plasmonenresonanzsensors ist in der vergleichsweise teuren Strahlformungsoptik zu sehen. Im übrigen würden zusätzliche Meßzellen zur Leistungssteigerung und für Referenzmessungen auch zusätzliche entsprechende Strahlformungsoptiken erfordern und damit den Plasmonenresonanzsensor erheblich verteuern.
Dementsprechend liegt der Erfindung die Aufgabe zugrunde, einen Plasmonenresonanzsensor zu schaffen, der bei kompakter und preiswerter Ausbildung eine hohe Testleistung bei gleichzeitig fehlerfreien Ergebnissen ermöglicht.
Diese Aufgabe wird ausgehend vom eingangs beschriebenen Plasmonenresonanzsensor erfindungsgemäß dadurch gelöst, daß zwischen der Lichtquelle und dem lichtdurchlässigen Körper eine Kollima- tionsoptik angeordnet ist, die den einfallenden Strahlengang senkrecht zur Einfallsebene kollimiert, in der Einfallsebene aber weiterhin divergierend beläßt.
Zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
Der erfindungsgemäße Plasmonenresonanzsensor kommt mit einer einfachen Strahlformoptik in. Form einer Zylinderlinse aus, erfordert also nur einen geringen baulichen Aufwand. Obwohl die originäre Strahlendivergenz beispielsweise einer Laserdiode genutzt wird, um den gesamten interessierenden Einfallswinkelbereich abzudecken, wird durch die gezielte Parallelausrichtung des Strahlengangs in Richtung senkrecht zur Einfallsebene ein in dieser Richtung schmaler Strahlengang geschaffen, der eine kompakte Nebeneinander-Anordnung von mehreren gleichen Plasmonenresonanzsensoren und dementsprechend von mehreren Meßzellen ermöglicht, was zu einer leistungsfähigen Einrichtung mit der Möglichkeit vorteilhafter Referenzmessungen führt.
Zweckmäßigerweise wird dieses Ergebnis jedoch nicht durch die Aneinanderreihung mehrerer kompletter Plasmonenresonanzsensoren sondern vielmehr dadurch erreicht, daß auf einem gemeinsamen lichtdurchlässigen Körper bzw. Prisma zwei oder mehr Meßzellen für verschiedene Proben angeordnet werden, die in einer Reihe senkrecht zur Einfallsebene ausgerichtet sind, wobei jeder Meßzelle ein eigener Detektor zugeordnet wird. Eine solche Ausbildung mit einem gemeinsamen lichtdurchlässigen Körper bzw. Prisma und ggf. nur einer Lichtquelle und einer Kollimationsop- tik führt zu einem besonders geringen Kostenaufwand in Relation zur Leistungsfähigkeit.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer schematischen Zeichnung näher erläutert. Darin zeigen:
Figur 1 einen Plasmonenresonanzsensor in Seitenansicht;
Figur 2 einen Plasmonenresonanzsensor mit vier Meßzellen in Draufsicht;
Figur 3 einen der Ausführungsform gemäß Figur 2 ähnlichen Plasmonenresonanzsensor, bei dem jedoch jeder Meßzelle eine eigene Lichtquelle zugeordnet ist; und
Figur 4 eine weitere Abwandlung gegenüber der Ausführung gemäß Figur 3, derzufolge jeder Meßzelle und Lichtquelle eine eigene Kollimationsoptik zugeordnet ist.
Gemäß Figur 1 ist ein lichtdurchlässiger Körper 1 in Form eines Glasprismas von dreieckiger Querschnittsform vorgesehen. Dieses Prisma weist eine Lichteinfallseite 2, eine Lichtausfallseite 3 sowie eine horizontal ausgerichtete obere Reflektionsseite 4 auf. Auf diese Reflektionsseite 4 ist eine reflektierende Me- tallschicht 5 aufgebracht, die beispielsweise aus Gold in einer Stärke von 50 nm besteht. Auf die Metallschicht 5 ist noch eine sensitive Beschichtung 6 aufgebracht, wie es schematisch angedeutet ist. Diese sensitive Beschichtung ist beispielsweise auf nachzuweisende Biomoleküle in der zu untersuchenden Probe abgestimmt, so daß sich die betreffenden Biomoleküle an die sensitive Beschichtung anlagern. Derartige Beschichtungen sowie ihr Regenerieren beispielsweise mittels einer Salzsäurelösung sind dem Fachmann geläufig.
Der Lichteinfallseite 2 ist eine monochromatische Lichtquelle 7 in Form einer Laserdiode zugeordnet, und in entsprechender Weise liegt der Lichtausfallseite 3 des Prismas 1 ein Detektor 8 im Abstand gegenüber. Somit wird wie in Figur 1 dargestellt von der Laserdiode 7 ein divergierender Strahlengang 9 erzeugt, der an der Metallschicht 5 reflektiert wird und auf den Detektor 8 geleitet wird. Der Strahlengang 9 ist in einen einfallenden Strahlengang 10 vor und einen ausfallenden Strahlengang 11 hinter der Metallschicht 5 unterteilt, wobei die Einfallsebene 12 (Figur 2) parallel zur Zeichenebene der Figur 1 verläuft.
Im einfallenden Strahlengang 10 ist eine Kollimationsoptik 13 in Form einer Zylinderlinse angeordnet, die dem einfallenden Strahlengang entsprechend geneigt in der Einfallsebene 12 angeordnet ist. Diese Zylinderlinse 13 bewirkt eine Kollimation oder Parallelausrichtung der Lichtstrahlen nur in einer Richtung senkrecht zur Einfallsebene 12 (Figur 2) , während in der Einfallsebene die Strahlendivergenz erhalten bleibt, wie es Figur 1 zeigt. Infolge der Wirkung der Kollimationsoptik 13 verläuft der Strahlengang 9 durch das Prisma 1 innerhalb eines vergleichsweise schmalen Bereichs mit einer geringen Abmessung senkrecht zur Einfallsebene 12.
Die auftretende Plasmonenresonanz , auf der das mit dem erfindungsgemäßen Plasmonenresonanzsensor durchgeführte Testverfahren beruht, ist in Figur 1 schematisch angedeutet. Die Divergenz des Strahlengangs 9 in der Einfallsebene 12 ist ausreichend groß, um den Bereich an Einfallswinkeln abzudecken, innerhalb dessen die Resonanzerscheinung auftritt. Der zur Reso- nanz führende Einfallswinkel verändert sich nämlich infolge der Anlagerung von Molekülen aus der zu untersuchenden Probe an die sensitive Beschichtung 6. Beim jeweils resonanzgemäßen Einfallswinkel wird der ausfallende Lichtstrahl merklich geschwächt, und dieser Einfallswinkel wird zeitaufgelöst vom Detektor 8 festgestellt. Dementsprechend sind in Figur 1 beim ausfallenden Strahlengang 11 Stufen oder Bereiche mit unterschiedlicher Lichtintensität angedeutet, wobei der Bereich stärkster Schwärzung dem schwächsten Lichtausfall entspicht und damit den zeitabhängig probenspezifischen Resonanz-Einfallswinkel veranschaulicht. Somit tritt gemäß Figur 1 die Resonanz bei einem mittleren Einfallswinkel auf. Die anhand von Figur 1 erläuterten Verhältnisse gelten allgemein für alle nachfolgend beschriebenen Ausführungsbeispiele.
Bei der Ausführungsform gemäß Figur 2 sind entsprechend der Beschreibung zu Figur 1 eine Laserdiode 15, eine Zylinderlinse 16 und ein Prisma 17 vorgesehen, das gleichfalls einen Dreiecksquerschnitt aufweist und sich senkrecht zur Einfallsebene 12 des Lichts erstreckt, wobei auf dem Prisma 17 vier Meßzellen 18, 19, 20 und 21 ausgebildet sind, an denen jeweils die Metallschicht 5 und die sensitive Beschichtung 6 vorhanden sind. Jeder Meßstelle ist ein eigener Detektor 22, 23, 24 bzw. 25 zugeordnet.
Der einfallende Strahlengang 10 entspricht der Beschreibung anhand von Figur 1. Dementsprechend besteht zwischen der Laserdiode 15 und der Zylinderlinse 16 Divergenz sowohl in der Einfallsebene 12 wie senkrecht zu dieser, während hinter der Zylinderlinse 16 Divergenz nur noch in der Einfallsebene 12 vorhanden ist und senkrecht zur Einfallsebene ein paraleller Strahlengang vorhanden ist. Dementsprechend sind die verschiedenen Meßzellen 18 bis 21 und die zugehörigen Detektoren 22 bis 25 nicht nur zueinander beabstandet sondern insbesondere strahlenmäßig voneinander entkoppelt, wie die eingezeichneten ausfallenden Strahlengänge 26, 27, 28 und 29 veranschaulichen, und das auch bei engem Abstand zwischen den Meßzellen 18 bis 21 und entsprechend zwischen den Detektoren 22 bis 25 und trotz der vorgesehenen Divergenz in den ausfallenden Strahlengängen 26 bis 29, die allerdings nur in Richtung der Einfallsebene 12 vorhanden ist. Somit läßt sich eine kompakte Anordnung mit vier Meßzellen 18 bis 21 mit nur einer Laserdiode 15, einer Zylinderlinse 16 und einem Prisma 17 erreichen.
Mit den vier Meßzellen 18 bis 21 können vier Proben gleichzeitig untersucht werden, oder aber drei Proben in Verbindung mit einer Referenzmessung anhand einer bekannten Re erenzprobe. Die Leistungserhöhung durch zusätzliche Meßzellen ist deswegen besonders wertvoll, weil die einzelnen Messungen je nach den zu untersuchenden Proben bzw. nachzuweisenden Molekülen vergleichsweise zeitaufwendig sein können. Beispielsweise kann die Untersuchungs- bzw. Meßdauer insbesondere bei biologischen oder biochemischen Tests jeweils bis zu einer Stunde betragen.
Auch die Ausführungsfor en gemäß Figur 3 und Figur 4 sehen ein gemeinsames Prisma 17 mit vier Meßzellen sowie diesen zugeordneten Detektoren vor. Die Unterschiede betreffen jeweils den Strahlengang, ohne daß sich jedoch an der Strahlendivergenz in der Einfallsebene und der Kollimation in Richtung senkrecht zur Einfallsebene etwas ändert.
Nach Figur 3 sind den Meßzellen 30 bis 33 eigene Laserdioden 34 bis 37 zugeordnet. Gleichwohl kann mit einer gemeinsamen Zylinderlinse 38 gearbeitet werden, welche die vier unterschiedlich gerichteten Strahlengänge 39 bis 42 kollimiert. Entsprechend den fächerförmig ausfallenden Strahlengängen 39 bis 45 ist die Anordnung der Detektoren 43 bis 46 etwas raumaufwändiger gespreizt.
Hierauf kann verzichtet werden, wenn gemäß Figur 4 jeder einer Meßzellen 47 bis 50 zugeordneten Laserdiode 51 bis 54 eine eigene Zylinderlinse 55 bis 58 zugeordnet ist. In diesem Falle verlaufen die einzelnen Strahlengänge 59 bis 62 zueinander parallel bis zum Auftreffen auf die den Meßzellen 47 bis 50 zugeordneten Detektoren 63 bis 66.

Claims

P a t e n t a n s p r ü c h e
1. Plasmonenresonanzsensor für biologische, biochemische oder chemische Tests mit einem lichtdurchlässigen Körper (1, 17) , insbesondere Glasprisma, einer auf eine Fläche (4) des Körpers (1, 17) aufgebrachten reflektierenden Metallschicht (5) oder HalbleiterSchicht mit einer für nachzuweisende Moleküle in einer Probe sensitiven Oberfläche (6) , die in Verbindung mit einer Küvette eine Meßzelle bildet, einer monochromatischen Lichtquelle (7, 15, 34 bis 37, 51 bis 54) , insbesondere Laserdiode, zur Aussendung eines divergierenden Lichtbündels oder Strahlengangs (9, 26 bis 29, 39 bis 42, 59 bis 62) durch den lichtdurchlässigen Körper (1, 17) auf die Innenfläche der Schicht (5) und einem Detektor (8, 22 bis 25, 43 bis 46, 63 bis 66), der dem von der Schicht (5) reflektierten ausfallenden Strahlengang (11) zugeordnet ist und zeitabhängig den sich durch Molekülanlagerungen an die sensitive Oberfläche (6) ändernden Ausfallswinkel des Lichts feststellt, bei dem resonanzbedingt ein Intensitätsminimum an ausfallendem Licht auftritt, dadurch gekennzeichnet, daß zwischen der Lichtquelle (7, 15, 34 bis 37, 51 bis 54) und dem lichtdurchlässigen Körper (1, 17) eine Kollimationsoptik (13, 16, 38, 55 bis 58) angeordnet ist, die den einfallenden Strahlengang (10) senkrecht zur Einfallsebene (12) kollimiert, in der Einfallsebene (12) aber weiterhin divergierend beläßt.
2. Plasmonenresonanzsensor nach Anspruch 1, dadurch gekennzeichnet, daß als Kollimationsoptik (13, 16, 38, 55 bis 58) eine Zylinderlinse vorgesehen ist.
3. Plasmonenresonanzsensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die sensitive Oberfläche durch eine sensitive Beschichtung (6) der reflektierenden Schicht (5) gebildet ist.
4. Plasmonenresonanzsensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß dem lichtdurchlässigen Körper (1, 17) zwei oder mehr Meßzellen (18 bis 21, 30 bis 33, 47 bis 50) für verschiedene Proben zugeordnet sind, die in einer Reihe senkrecht zur Einfallsebene (12) ausgerichtet sind, wobei jeder Meßzelle ein eigener Detektor (22 bis 25, 43 bis 46, 63 bis 66) zugeordnet ist.
5. Plasmonenresonanzsensor nach Anspruch 4, dadurch gekennzeichnet, daß eine einzige reflektierende Schicht (5) vorgesehen ist, die sich senkrecht zur Einfallsebene (12) über alle Meßzellen (18 bis 21, 30 bis 33, 47 bis 50) erstreckt.
6. Plasmonenresonanzsensor nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß jeder Meßzelle (30 bis 33, 47 bis 50) eine eigene Lichtquelle (34 bis 37, 51 bis 54) zugeordnet ist.
7. Plasmonenresonanzsensor nach Anspruch 6, dadurch gekennzeichnet, daß den Lichtquellen (34 bis 37) eine gemeinsame Kollimationsoptik (38) zugeordnet ist.
8. Plasmonenresonanzsensor nach Anspruch 6, dadurch gekennzeichnet, daß jeder Lichtquelle (51 bis 54) eine eigene Kollimationsoptik (55 bis 58) zugeordnet ist.
9. Plasmonenresonanzsensor nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Meßzellen durch Blenden voneinander abgetrennt sind.
PCT/EP2001/005287 2000-05-12 2001-05-09 Plasmonenresonanzsensor WO2001086262A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01940431A EP1281062A1 (de) 2000-05-12 2001-05-09 Plasmonenresonanzsensor
AU2001274010A AU2001274010A1 (en) 2000-05-12 2001-05-09 Plasmon resonance sensor
US10/275,164 US6801317B2 (en) 2000-05-12 2001-05-09 Plasmon resonance sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10023363A DE10023363C1 (de) 2000-05-12 2000-05-12 Plasmonenresonanzsensor
DE10023363.5 2000-05-12

Publications (1)

Publication Number Publication Date
WO2001086262A1 true WO2001086262A1 (de) 2001-11-15

Family

ID=7641845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005287 WO2001086262A1 (de) 2000-05-12 2001-05-09 Plasmonenresonanzsensor

Country Status (5)

Country Link
US (1) US6801317B2 (de)
EP (1) EP1281062A1 (de)
AU (1) AU2001274010A1 (de)
DE (1) DE10023363C1 (de)
WO (1) WO2001086262A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059301A1 (en) * 2002-12-25 2004-07-15 Proteoptics Ltd. Surface plasmon resonance sensor
EP1617203A1 (de) * 2003-04-23 2006-01-18 Japan Science and Technology Agency Vorrichtung zur differenziellen oberflächenplasmonenresonanzmessung und messverfahren
US7233391B2 (en) 2003-11-21 2007-06-19 Perkinelmer Las, Inc. Optical device integrated with well
US7271885B2 (en) 2004-03-25 2007-09-18 Perkinelmer Las, Inc. Plasmon resonance measuring method and apparatus
WO2008025488A1 (de) * 2006-09-01 2008-03-06 Fraunhofer-Gesellschaft Zur Förderung Angewandter Forschung E.V. Plasmonenresonanzsensor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804007B2 (en) * 2002-09-10 2004-10-12 Reichert, Inc. Apparatus for multiplexing two surface plasma resonance channels onto a single linear scanned array
JP4298392B2 (ja) * 2003-06-16 2009-07-15 Ntn株式会社 等速自在継手
EP1932029A4 (de) * 2005-08-30 2010-10-13 William M Robertson Optischer sensor auf der basis von elektromagnetischer oberflächenwellenresonanz in materialien mit protonischem bandabstand und verwendungsverfahren dafür
JP2009520188A (ja) * 2005-12-16 2009-05-21 インディアナ・ユニバーシティ・リサーチ・アンド・テクノロジー・コーポレーション サブミクロン表面プラズモン共鳴センサシステム
US8355136B2 (en) 2005-12-16 2013-01-15 Indiana University Research And Technology Corporation Sub-micron surface plasmon resonance sensor systems
US7652767B2 (en) * 2006-10-19 2010-01-26 Sporian Microsystems, Inc. Optical sensor with chemically reactive surface
DE102007005147A1 (de) * 2007-02-01 2008-08-07 Hofmann, Andreas Verfahren und Vorrichtung zur Untersuchung der Anheftung oder Ablösung lebender oder toter Zellen oder zellähnlicher Partikel oder sonstiger Oberflächenbelegung an Oberflächen mittels Plasmonenresonanz sowie Verwendung dieses Verfahrens und dieser Vorrichtung
WO2008142689A1 (en) * 2007-05-21 2008-11-27 Bio-Rad Laboratories Inc. Optical resonance analysis using a multi-angle source of illumination
US20090181857A1 (en) * 2008-01-15 2009-07-16 Academia Sinica System and method for producing a label-free micro-array biochip
WO2012129196A2 (en) 2011-03-20 2012-09-27 Robertson William M Surface electromagnetic waves in photonic band gap multilayers
EP3028033B1 (de) 2013-08-04 2020-10-07 Photonicsys Ltd. Optischer sensor auf der basis einer mehrschichtigen plasmonischen struktur mit nanoporöser metallschicht
TWI567376B (zh) * 2015-03-25 2017-01-21 Nat Chin-Yi Univ Of Tech A Novel Localized Plasma Resonance Biochemical Sensor with High Sensitivity and Its Simulation Test Method
CN108027313B (zh) 2015-08-26 2021-01-29 光子系统有限责任公司 谐振周期性结构以及使用它们作为滤光器和传感器的方法
JP6854134B2 (ja) * 2017-01-16 2021-04-07 矢崎総業株式会社 高選択性腐食センサーシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019769A (ja) * 1996-04-30 1998-01-23 Fuji Photo Film Co Ltd 表面プラズモンセンサー
US5917607A (en) * 1996-04-25 1999-06-29 Fuji Photo Film Co., Ltd. Surface plasmon sensor for multiple channel analysis
DE19814811C1 (de) * 1998-04-02 1999-08-05 Inst Physikalische Hochtech Ev Anordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie
US5965456A (en) * 1992-06-11 1999-10-12 Biacore Ab Analyte detection
US5991048A (en) * 1995-10-25 1999-11-23 University Of Washington Surface plasmon resonance light pipe sensor
EP0971226A1 (de) * 1998-07-06 2000-01-12 Suzuki Motor Corporation SPR Sensorzelle und diese verwendende Vorrichtung für Immunoassay

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2197065A (en) * 1986-11-03 1988-05-11 Stc Plc Optical sensor device
CA1321488C (en) * 1987-08-22 1993-08-24 Martin Francis Finlan Biological sensors
SE462408B (sv) * 1988-11-10 1990-06-18 Pharmacia Ab Optiskt biosensorsystem utnyttjande ytplasmonresonans foer detektering av en specific biomolekyl, saett att kalibrera sensoranordningen samt saett att korrigera foer baslinjedrift i systemet
GB2254415B (en) * 1991-03-22 1994-10-12 Marconi Gec Ltd An optical sensor
US5485277A (en) * 1994-07-26 1996-01-16 Physical Optics Corporation Surface plasmon resonance sensor and methods for the utilization thereof
DE19615366B4 (de) * 1996-04-19 2006-02-09 Carl Zeiss Jena Gmbh Verfahren und Einrichtung zum Nachweis physikalischer, chemischer, biologischer oder biochemischer Reaktionen und Wechselwirkungen
US6992770B2 (en) * 2001-01-25 2006-01-31 Fuji Photo Film Co., Ltd. Sensor utilizing attenuated total reflection
US7030988B2 (en) * 2001-03-22 2006-04-18 Fuji Photo Film Co., Ltd. Measuring apparatus and measuring chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965456A (en) * 1992-06-11 1999-10-12 Biacore Ab Analyte detection
US5991048A (en) * 1995-10-25 1999-11-23 University Of Washington Surface plasmon resonance light pipe sensor
US5917607A (en) * 1996-04-25 1999-06-29 Fuji Photo Film Co., Ltd. Surface plasmon sensor for multiple channel analysis
JPH1019769A (ja) * 1996-04-30 1998-01-23 Fuji Photo Film Co Ltd 表面プラズモンセンサー
DE19814811C1 (de) * 1998-04-02 1999-08-05 Inst Physikalische Hochtech Ev Anordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie
EP0971226A1 (de) * 1998-07-06 2000-01-12 Suzuki Motor Corporation SPR Sensorzelle und diese verwendende Vorrichtung für Immunoassay

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05 30 April 1998 (1998-04-30) *
See also references of EP1281062A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999942B2 (en) 2002-12-25 2011-08-16 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US7443507B2 (en) 2002-12-25 2008-10-28 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US7586616B2 (en) 2002-12-25 2009-09-08 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
WO2004059301A1 (en) * 2002-12-25 2004-07-15 Proteoptics Ltd. Surface plasmon resonance sensor
US8111400B2 (en) 2002-12-25 2012-02-07 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US8363223B2 (en) 2002-12-25 2013-01-29 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
US8743369B2 (en) 2002-12-25 2014-06-03 Bio-Rad Laboratories Inc. Surface plasmon resonance sensor
EP1617203A1 (de) * 2003-04-23 2006-01-18 Japan Science and Technology Agency Vorrichtung zur differenziellen oberflächenplasmonenresonanzmessung und messverfahren
EP1617203A4 (de) * 2003-04-23 2008-02-20 Japan Science & Tech Agency Vorrichtung zur differenziellen oberflächenplasmonenresonanzmessung und messverfahren
US7233391B2 (en) 2003-11-21 2007-06-19 Perkinelmer Las, Inc. Optical device integrated with well
US7271885B2 (en) 2004-03-25 2007-09-18 Perkinelmer Las, Inc. Plasmon resonance measuring method and apparatus
WO2008025488A1 (de) * 2006-09-01 2008-03-06 Fraunhofer-Gesellschaft Zur Förderung Angewandter Forschung E.V. Plasmonenresonanzsensor
US7973934B2 (en) 2006-09-01 2011-07-05 Andreas Hofmann Plasmon resonance sensor

Also Published As

Publication number Publication date
US6801317B2 (en) 2004-10-05
EP1281062A1 (de) 2003-02-05
DE10023363C1 (de) 2001-12-20
US20030076501A1 (en) 2003-04-24
AU2001274010A1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
WO2001086262A1 (de) Plasmonenresonanzsensor
DE3882620T2 (de) Biologische sensoren.
EP0834066B1 (de) Verfahren und einrichtung zum nachweis physikalischer, chemischer, biologischer oder biochemischer reaktionen und wechselwirkungen
EP1257809B1 (de) Spr-sensor und spr-sensoranordnung
EP3504535B1 (de) Messvorrichtung zur absorptionsmessung von gasen
DE4223840C2 (de) Refraktometer
DE102006014277A1 (de) Vorrichtung und Verfahren zur kontinuierlichen optischen Bestimmung des Füllstands von Flüssigkeiten in Flüssigkeitsvorratsbehältern von Fahrzeugen oder Flugzeugen
WO2003056308A1 (de) Vorrichtung und verfahren zur untersuchung dünner schichten
WO2003034046A1 (de) Oberflächenplasmonen-resonanz-sensor
WO2008116658A1 (de) Photoakustische multipass-zelle mit konzentrierenden reflexionsmitteln
EP1523669A1 (de) Vorrichtung zur ir-spektrometrischen analyse eines festen, flüssigen oder gasförmigen mediums semination
DE102006041338B3 (de) Plasmonenresonanzsensor
WO2017125374A1 (de) Vorrichtung zur detektion und charakterisierung von organischen molekülen in einem flüssigen probenvolumen
EP3614130B1 (de) Vorrichtung zur ermittlung optischer eigenschaften von proben
EP3598103B1 (de) Gasanalysator und gasanalyseverfahren
EP1929279B1 (de) Vorrichtung und verfahren zur bestimmung des brechungsindex eines fluids
EP4133258B1 (de) Verfahren und vorrichtung zum bestimmen frequenzabhängiger brechungsindizes
DE10324973B4 (de) Anordnung und Verfahren zur optischen Detektion von in Proben enthaltenen chemischen, biochemischen Molekülen und/oder Partikeln
EP0043522A1 (de) Refraktometer
DE19920184C2 (de) Verfahren für die gleichzeitige Erfassung von diffuser und specularer Reflexion von Proben, insbesondere undurchsichtiger Proben, sowie Reflektanz-Meßsonde
EP1541990B1 (de) Verfahren und Vorrichtung zur Untersuchung von Gasen oder Gasgemischen mittels Laserdiodenspektroskopie
DE102012106867A1 (de) Vorrichtung und Verfahren zur resonator-verstärkten optischen Absorptionsmessung an Proben mit kleinem Absorptionswirkungsquerschnitt
DE10054415C2 (de) Analysesensor und Verfahren zur spektroskopischen Analyse in optisch dichten Medien
DE102021116991A1 (de) Verfahren und Vorrichtung zum Bestimmen frequenzabhängiger Brechungsindizes
EP4189372A1 (de) System und verfahren zur überwachung der güte einer fahrzeugscheibe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10275164

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001940431

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001940431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001940431

Country of ref document: EP