WO2001084620A1 - Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them - Google Patents

Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them Download PDF

Info

Publication number
WO2001084620A1
WO2001084620A1 PCT/JP2001/000351 JP0100351W WO0184620A1 WO 2001084620 A1 WO2001084620 A1 WO 2001084620A1 JP 0100351 W JP0100351 W JP 0100351W WO 0184620 A1 WO0184620 A1 WO 0184620A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
light
measurement
time
value
Prior art date
Application number
PCT/JP2001/000351
Other languages
French (fr)
Japanese (ja)
Inventor
Teruo Takahashi
Motoyuki Watanabe
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to US10/275,136 priority Critical patent/US6768552B2/en
Priority to AU2001227075A priority patent/AU2001227075A1/en
Priority to EP01901468A priority patent/EP1296367B1/en
Priority to DE60127673T priority patent/DE60127673T2/en
Publication of WO2001084620A1 publication Critical patent/WO2001084620A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • Conventional thickness measuring devices for semiconductor wafers include a contact type thickness gauge and a Michelson interferometer type thickness gauge. Of these thickness gauges, the contact type thickness gauge cannot be applied to in-situ measurement. In addition, the wafer may be damaged due to contact, and high-speed measurement cannot be performed, or when a holding substrate or film is attached, the thickness cannot be measured using only the wafer. There is.
  • a Michelson interferometer-type thickness gauge measures the thickness of a semiconductor wafer without contact.
  • a thickness gauge there is an apparatus disclosed in Japanese Patent Application Laid-Open No. H5-2488817.
  • a semiconductor wafer is irradiated with measurement light to reflect reflected light from the wafer surface.
  • the time change of the thickness is measured by the change of the reflection timing.
  • it is necessary to give initial conditions of the thickness such as the position of the back surface in order to obtain the thickness.
  • the measurement light is reflected by the etching liquid on the wafer surface, so that the thickness of the semiconductor wafer cannot be measured.
  • the present invention has been made to solve the above problems, and has been made in consideration of the above circumstances, and provides a thickness measuring apparatus, a thickness measuring method, and a thickness measuring method capable of measuring the thickness of a semiconductor wafer during execution of wet etching.
  • the purpose of the present invention is to provide a wet etching apparatus and a wet etching method.
  • a thickness measuring apparatus for measuring the thickness of a semiconductor wafer during execution of wet etching using an etching solution, wherein: At each of a plurality of measurement times separated by a time interval, a measurement light source that supplies measurement light, (2) a light branching unit that branches the measurement light from the measurement light source, and (3) a light branching unit that is branched by the light branching unit One of the measurement lights is output to the semiconductor wafer to be measured, from the etching surface side where the etching solution is supplied.
  • the thickness change line is determined by linear approximation calculation for the time change of multiple raw thickness values that are valid within the set allowable numerical value range, and the statistical thickness is calculated from the thickness change line.
  • the statistical thickness value calculating means is the first measuring time after a specified time has elapsed from the first measuring time, and is effective up to the measuring time.
  • the thickness change line for selection is determined by linear approximation calculation, the selection numerical range is set from the thickness change line for selection, and the raw thickness value outside the selection numerical value range is calculated.
  • Invalidation date including evening selection After performing the overnight selection calculation, determine the thickness change line by linear approximation calculation for the time change of the raw thickness value that is valid after the selection, and set the allowable numerical range from the thickness change line It is characterized by the following.
  • the thickness measuring method is a thickness measuring method for measuring the thickness of a semiconductor wafer during the execution of wet etching using an etching solution, wherein (1) a plurality of measuring methods at predetermined time intervals.
  • a measuring light supply step for supplying measuring light from the measuring light source at each time; (2) an optical branching step for branching the measuring light from the measuring light source; and (3) a measuring light branched in the optical branching step.
  • One of the half An optical output step for outputting to the conductive wafer and irradiating from the etching surface side to which the etching liquid is supplied; and (4) a measuring light irradiated in the optical output step is reflected by the etching liquid or the semiconductor wafer.
  • the reference light path length is set by passing the other of the measurement light branched in the light branching step through the reference light path having a variable optical path length.
  • the light intensity distribution between two light intensity peaks selected from a plurality of light intensity peaks having a light intensity larger than the set threshold value is calculated.
  • the raw thickness value calculation step for calculating the raw thickness value of the semiconductor wafer based on the optical path length difference of the reference optical path length, and (9) setting at each of the measurement times after the specified time has elapsed from the first measurement time Statistical calculation that determines the thickness change straight line by linear approximation calculation for the time change of multiple raw thickness values that are valid within the specified allowable numerical value range and calculates the statistical thickness value from the thickness change straight line
  • the first measurement time after a specified time has elapsed from the first measurement time, and (1 1) valid until the measurement time Time of raw thickness Of the thickness change line for sorting by linear approximation calculation, setting of the numerical range for sorting from the thickness changing line for sorting, and a method of invalidating the raw thickness value outside the numerical range for
  • the reflected light reflected by irradiating the semiconductor wafer with the measuring light and the reflected light that is branched from the measuring light and passes through a predetermined optical path are used as the light.
  • the generated interference light is detected by combining the emitted light with the reference light having the reference light path length set. Then, the thickness of the semiconductor wafer during gate etching is measured from a plurality of light intensity peaks generated in the light intensity distribution of the interference light. At this time, the measurement light applied to the semiconductor wafer is reflected on the surface of the etching solution, the upper surface (etched surface) of the semiconductor wafer, the lower surface, and the like. In the light intensity distribution, light intensity peaks corresponding to those surfaces are respectively obtained. can get.
  • the thickness of the semiconductor wafer during wet etching regardless of the presence of the etchant, or The time change can be measured.
  • the thickness is not determined from the reflected light from the upper surface of the wafer and the initial conditions used as the reference, the reflected light from both the upper surface and the lower surface of the wafer is used.
  • the thickness of the semiconductor wafer can always be accurately measured.
  • the fitting calculation for selecting the thickness change line and the statistics of the raw thickness value by the fitting calculation for determining the thickness change line are performed. Processing is being performed.
  • the raw thickness value selected by statistical processing at the first measurement time after the specified time has elapsed is determined
  • the thickness change line is the initial condition for statistical processing at the second and subsequent measurement times.
  • a preliminary straight-line approximation calculation for data selection is performed as described above, and the raw thickness value that caused measurement errors is invalidated using the thickness change straight line for selection and the selection numerical range, and statistical processing is performed.
  • the thickness change straight line and the allowable numerical range are set, so that the effects of error variation etc. can be efficiently reduced at each measurement time after the specified time has elapsed. It is possible to reduce the cost.
  • the data selection calculation using the thickness change line for selection is not limited to one time, but it is repeated several times to exclude extra raw thickness values such as raw thickness values that have caused measurement errors. You may go without fail.
  • the thickness is obtained via the etching control means on the basis of the thickness value obtained for the semiconductor wafer during the wet etching. Accordingly, it is possible to appropriately control the end of the wet etching by stopping the supply of the etching solution, or the change of the etching rate.
  • FIG. 1 is a configuration diagram showing one embodiment of a thickness measuring device and a wet etching device provided with the thickness measuring device.
  • FIG. 2A and 2B are views showing a method for measuring the thickness of the semiconductor wafer in the wet etching apparatus shown in FIG.
  • FIG. 3 is a flowchart showing an embodiment of the thickness measuring method and the etching method.
  • Fig. 4 is a graph schematically showing an example of the raw thickness value calculated up to the specified time.o
  • FIG. 5 is a graph showing the first data selection calculation.
  • FIG. 6 is a graph showing the second data selection calculation.
  • FIG. 7 is a graph showing the setting of the allowable numerical value range.
  • FIG. 8 is a graph showing the determination of the raw thickness value within the allowable numerical value range.
  • FIG. 9 is a graph showing determination of a thickness change line and calculation of a statistical thickness value.
  • FIG. 1 is a configuration diagram showing an embodiment of a thickness measuring device and a wet etching device including the same.
  • This wet etching apparatus is configured to include a thickness measuring apparatus A and a normal wet etching apparatus B except for the thickness measuring apparatus A (hereinafter, this apparatus portion is simply referred to as a wet etching apparatus B). .
  • the thickness measuring device A irradiates the semiconductor wafer W to be measured with measurement light, and measures the thickness of the semiconductor wafer W by using the light intensity change of the reflected light from the semiconductor wafer W and the interference light of the reference light.
  • the measurement light used for thickness measurement is supplied from the measurement light source 11 (measurement light supply step) at each of a plurality of measurement times at predetermined time intervals, and the measurement light output from the measurement light source 11 is The light is input to an optical power blur 12 composed of a fiber power blur via an input optical fiber 11a.
  • the measurement light source 11 it is preferable to use a low coherence light source (for example, an SLD that generates light having a wavelength of 1.3 m).
  • a wavelength that sufficiently transmits the semiconductor wafer W, the etchant, and the like is selected.
  • the optical power bra 12 functions as an optical branching unit for branching the measuring light from the measuring light source 11, and the measuring light input to the optical power bra 12 is used as a measuring optical fiber toward the measuring optical path.
  • No. 13a and a reference optical fiber 14a directed to the reference optical path are branched (light branching step).
  • the branched measurement lights are input to a probe head 13 for measuring the thickness and a reference light generation unit 14 for generating the reference light, respectively.
  • the probe head 13 is a light output means for irradiating the measurement light onto the semiconductor wafer W, and a light output means for re-inputting the reflection light which is reflected by the semiconductor wafer W or the etching liquid.
  • This is an optical input / output unit that functions as an optical input unit.
  • the measurement light branched to the optical fiber 13 a side is output from the probe head 13 to the semiconductor wafer W and is directed upward to the semiconductor wafer W. Light is emitted from the etching surface on the surface side (light output step).
  • the measurement light As the measurement light, light having a wavelength sufficiently transmitting through the semiconductor wafer W or the like is used as described above, but part of the light is reflected at each interface, and the reflected light is returned to the probe again.
  • the data arrives at input 13 and is input (optical input step).
  • the reflected light that has reached the probe 13 and has been re-input is input to the optical power bra 12 via the optical fiber 13 a.
  • reference light for measuring the thickness is generated by interference light with the reflected light from the semiconductor wafer W or the like (reference light generation step).
  • the measurement light branched to the optical fin 14a by the optical power bra 12 is transmitted to the optical path length modulation optical system disposed between the output end of the optical fiber 14a and the reflection mirror 14c.
  • the reference light passes through the reference optical path 14b and becomes the reference light in which the optical path length (reference optical path length) of the reference light with respect to the optical path length (reflected optical path length) of the reflected light from the semiconductor wafer W or the like is set.
  • the measurement light output from the output end of the optical fiber 14a transmits through the parallel flat glass substrate 14d, reaches the reflection mirror 14c, and is reflected.
  • the reflected light from the reflecting mirror 14c again passes through the glass substrate 14d in the reverse direction, and is used as a reference light having an appropriate reference optical path length set through the optical fin 14a. Entered in 1 2
  • the above-described reference light generator 14 is configured such that the optical path length of the reference optical path 14 b is variable.
  • the glass 14f on the reference optical path 14b is attached to the galvanometer 14e.
  • the galvanometer 14 e operates based on a periodic signal from the reference optical path length control unit 17, whereby the inclination of the glass substrate 14 d with respect to the reference optical path 14 b periodically changes. Change.
  • the optical path length of the reference optical path 14 b since the thickness of the glass substrate 14 d as viewed in the direction of the reference optical path 14 b changes, the optical path length of the reference optical path 14 b periodically changes, and the reflection occurs.
  • the reference optical path length with respect to the optical path length (the timing of the reference light with respect to the reflected light) is periodically scanned.
  • the optical power bra 12 is a light branching means for branching the measurement light from the measurement light source 11 as described above, and also reflects the reflected light from the probe head 13 and the light from the reference light generation unit 14. It also functions as an optical coupling means for coupling the reference light.
  • the reflected light reflected by the semiconductor wafer W and the like and returned to the probe head 13 and input thereto, and the reference light having the reference light path length set in the reference light generation unit 14 are combined by the optical power blur 12.
  • the light becomes interference light (optical coupling step), and is input to a photodetector 15 such as a photodiode (PD) via an output optical fiber 15a and detected (light detection step).
  • a photodetector 15 such as a photodiode (PD)
  • the data of the interference light detected by the photodetector 15 is processed by the thickness calculator 16 and the thickness of the semiconductor wafer W is calculated based on the data. (Thickness calculation step).
  • the detection signal obtained by detecting the interference light by the photodetector 15 is input to the raw thickness value calculation unit 16b via the signal processing circuit 16a of the thickness calculation unit 16.
  • the detection signal from the photodetector 15 provides a light intensity of the interference light.
  • the angle signal of the galvanometer 14 e (glass substrate 14 d) from the reference light path length control unit 17 is also transmitted to the raw thickness value calculation unit 16 b via the signal processing circuit 16 a. Has been entered. From this angle signal, the reference optical path length in the reference optical path 14b or the amount of change in the optical path length can be obtained.
  • the raw thickness value calculation unit 16b at each measurement time, the change in the light intensity of the interference light due to the reference light path length (correlation) from the light intensity data and the reference light path length data. Is created. Then, in the obtained light intensity distribution, a plurality of light intensity peaks are specified as those having the peak intensity exceeding the set threshold intensity, and two light intensity peaks selected from the light intensity peaks are identified.
  • the raw thickness value of the semiconductor wafer W is calculated using the peak (raw thickness value calculation step).
  • the raw thickness value calculated by the raw thickness value calculation unit 16 b is further calculated by the statistical thickness value calculation unit 1
  • a thickness change straight line is determined by a linear approximation calculation with respect to the time change of a plurality of raw thickness values, and a statistical thickness value is calculated (statistical thickness value calculation step).
  • the wet etching apparatus B performs wet etching of one surface (the upper surface in FIG. 1; hereinafter, referred to as an etching surface) of a semiconductor wafer W to be subjected to the etching process (the measurement object of the thickness measuring device A) by an etching solution. It is composed of
  • the semiconductor wafer W is fixed on a turntable 22 while being held by a holding substrate 21 made of a glass substrate or the like disposed on the side opposite to the etching surface.
  • the turntable 22 is driven to rotate by a rotation drive unit 23, whereby the semiconductor wafer W is rotated during the gate wake-up.
  • the semiconductor wafer W is provided with a pattern, the surface with the pattern is the holding substrate 21 side, and the wet etching is performed with the surface opposite to the pattern as the etching surface.
  • the supply of the etching liquid to the etching surface of the semiconductor wafer W is performed by the etching liquid supply unit 24.
  • the etching liquid supply unit 24 supplies and stops an etching liquid to the semiconductor wafer W, or supplies cleaning water.
  • the etching liquid is supplied from the nozzle 24 a to the etching surface of the rotating semiconductor wafer W by the etching liquid supply unit 24, the supplied etching liquid is supplied to the semiconductor wafer W.
  • Ten A thin etching liquid layer E is formed on the surface of W, and the surface of the semiconductor wafer W is etched by the etching liquid layer E.
  • the rotation table 22, the holding substrate 21 placed on the rotation table 22, and the rotation of the semiconductor wafer W by the rotation drive section 23, and the etching liquid supply section 24 to etch the semiconductor wafer W on the etching surface Supply and stop of the solution or the cleaning solution are controlled by the etching control unit 25.
  • the probe head 13 of the thickness measuring device A is positioned at a position facing a predetermined portion of the etching surface of the semiconductor wafer W mounted on the turntable 22 together with the holding substrate 21, and at a position corresponding to the etching surface. It is installed so that the optical path of the measurement light irradiated toward it is almost perpendicular to the etching surface. At this time, the reflected light, in which the vertically irradiated measurement light is reflected by the semiconductor wafer W or the like, is efficiently input to the probe head 13 again.
  • the probe head 13 be provided with a transparent sheet such as a salted vinyl, which is resistant to an etching solution, as a protective film. .
  • a cylinder may be attached to the tip of the probe head 13 and the inside thereof may be pressurized to prevent the etchant from adhering.
  • the semiconductor wafer W held on the holding substrate 21 is placed on the turntable 22. Then, the rotation drive of the turntable 22 is started based on the instruction signal from the etching control unit 25. Subsequently, the supply of the etchant to the etching surface of the semiconductor wafer W is instructed to the etchant supply unit 24, and the etching of the semiconductor wafer W is started (etching start step).
  • the thickness of the semiconductor wafer W is measured by the thickness measuring device A and the thickness measuring method described above (thickness measuring step). Thickness measurement is performed at the measurement time specified by the operator or at a preset time interval.
  • the raw thickness value is calculated in the raw thickness value calculation unit 16b.
  • the statistical thickness value calculation unit 16c calculates the time change of the thickness from the raw thickness value calculated at each measurement time. And a statistical thickness value subjected to statistical processing is calculated.
  • the thickness of the semiconductor wafer W and its time change in the wet etching process being performed are evaluated from the thickness change straight line and the statistical thickness value.
  • the thickness can be automatically evaluated in the thickness calculating unit 16 of the thickness measuring device A.
  • a configuration may be adopted in which a display device (display) is connected to the thickness calculator 16 and the display device displays the thickness data, and the operator evaluates based on the displayed data. .
  • the supply of the etching liquid by the etching liquid supply unit 24 is stopped by the instruction signal from the etching control unit 25. Subsequently, cleaning water is supplied to the etched surface of the semiconductor wafer W for a predetermined time, and the semiconductor wafer W is cleaned. After the supply of the cleaning water is stopped and the cleaning of the semiconductor wafer W is completed, the turntable 22 is driven to rotate for a predetermined time to remove the cleaning water from the etched surface of the semiconductor wafer W. Then, when the removal of the cleaning water is completed, the rotation of the turntable 22 by the rotation drive unit 23 is stopped, and the entire etching process of the semiconductor wafer W is completed (etching end step).
  • the end time of the wet etching may be determined based on the etching time or the etching rate data given in advance, but the raw thickness value measured by the thickness measuring device A may be determined. It is preferable to calculate and use the end time at which the set end point thickness is obtained from the thickness change line obtained overnight (end time calculation step).
  • the calculation of the end time may be made automatically by the statistical thickness value calculator 16c, or may be determined by the operator based on the data displayed on the display device.
  • the etching control unit 25 can be configured to perform the end control of the gate etching based on the signal.
  • FIG. 2A and 2B are diagrams schematically showing a method for measuring the thickness of the semiconductor wafer W in the gate etching apparatus shown in FIG. 1, and FIG. 2A is a diagram showing the measurement on the semiconductor wafer W.
  • FIG. 2B is a side cross-sectional view showing light irradiation and re-input of reflected light to the probe head 13, and FIG. 2B is a graph showing a light intensity distribution of interference light obtained in the photodetector 15.
  • FIG. 2A the optical path of the measurement light applied to the semiconductor wafer W and the optical path of the reflected light to the probe head 13 are shown with their positions shifted for the sake of clarity. It is.
  • the measurement light L ⁇ branched from the optical power bra 12 and output from the probe head 13 passes through the etchant layer E, the semiconductor wafer W, and the holding substrate 21 sequentially, and A part of the measurement light L0 is reflected at each interface between the adjacent layers. That is, the reflected light L1 from the surface of the etchant layer E, the reflected light L2 from the upper surface of the semiconductor wafer W, the reflected light L3 from the lower surface of the semiconductor wafer W, and the reflected light L3 from the lower surface of the holding substrate 21.
  • the light L4 is reflected respectively, returned to the probe 13 and returned to the probe.
  • the re-input reflected lights L 1 to L 4 are passing through different reflected light path lengths depending on the reflected surface as shown in FIG.
  • the timing of input to the photodetector 15 via the bra 12 differs.
  • the reference light generation unit 14 periodically changes the optical path length of the reference light path 14b as described above, and the reference light path length (the evening of the reference light with respect to the reflected light) is scanned. On.
  • the optical path length from the optical power blur 12 to each interface where the reflected light L1 to L4 is reflected and the optical path length from the optical power blur 12 to the reflection mirror 14c match, the optical path The reflected light and the reference light having the same length and timing are strengthened by interference, and the photodetector 15 detects interference light having a large light intensity.
  • FIG. 2B shows a light intensity distribution showing a correlation between the reference light path length (optical path length change amount) obtained by scanning the light path length and the interference light intensity in correspondence with the cross-sectional view of FIG. 2A.
  • one axis indicates the optical path length change amount of the scanned reference optical path 14b, and the other axis indicates the light intensity of the interference light detected by the photodetector 15.
  • the reference optical path length (optical path length change amount) and the optical path length difference do not necessarily correspond to the respective thicknesses due to the difference in the refractive index of each of the etchant layer E, the semiconductor wafer W, and the holding substrate 21.
  • FIG. 2A and FIG. 2B for the sake of explanation, it is assumed that there is no difference in the refractive index, and the sectional view and the graph are shown in correspondence.
  • the optical path length range over which the light intensity peak is scanned can be set by the scan range of the optical path length in the reference optical path 14 b in the reference light generation unit 14.
  • an optical path length range used for specifying a light intensity peak may be selected and set from the scanned optical path length range. Such selection of the optical path length range may be given to the thickness calculating section 16 in advance, or the operator may select the optical path length range from the light intensity distribution displayed on the display device connected to the thickness calculating section 16. It is also possible to select and give an instruction by operating the mouse cursor.
  • a plurality of light intensity peaks are specified by applying the above-described condition of the threshold light intensity or the condition of the optical path length range to the obtained light intensity distribution. Then, from these light intensity peaks, two light intensity peaks corresponding to the reflected light from the upper surface and the lower surface of the wafer are selected based on a predetermined selection criterion.
  • the above light intensity peaks P 1 to P 4 their light intensity ratios and the like vary depending on the state of the semiconductor wafer W etching liquid layer E and the like, but the order with respect to the optical path length variation does not change.
  • the state of the etchant layer E changes depending on how the etchant flowing out of the nozzle 24a flows on the etching surface.
  • the angle of the etchant layer E surface with respect to the optical path of the measurement light is changed. Therefore, the light intensity of the reflected light L1 reaching the probe 13 from the surface of the etching solution layer E to the probe also changes.
  • the light intensity ratio also varies depending on the material used as the semiconductor wafer W (such as Si, GaAs, and DopSi), and the material of the holding substrate 21.
  • the order of the light intensity peaks P1 to P4 with respect to the optical path length does not change. Accordingly, by selecting two light intensity peaks for the obtained light intensity peaks using the order of the light intensity peaks as a selection criterion, the light intensity peaks P corresponding to the upper and lower surfaces of the wafer are obtained. 2, P3 can be selected.
  • the optical path length difference between the second light intensity peak P 2 and the third light intensity peak P 3 from the smaller reference optical path length is the same as that of the semiconductor wafer W. This corresponds to the optical path length difference from the upper surface to the lower surface. Therefore, these two
  • the raw thickness value of the thickness of the semiconductor wafer W can be calculated from the optical path length difference between the light intensity peaks P2 and P3 of FIG.
  • the measurement method using the two light intensity peaks P 2 and P 3 as described above reduces the thickness of the semiconductor wafer W. It can measure more directly and correctly. Further, the thickness measurement during the execution of the wet etching in which the etching liquid is flowing on the etching surface of the semiconductor wafer W becomes possible regardless of the presence of the etching liquid.
  • the optical path length difference between the light intensity peaks P 2 and P 3 described above corresponds to the optical thickness of the semiconductor wafer W. Therefore, the final green thickness value is obtained by dividing the obtained optical path length difference by the refractive index of the semiconductor wafer.
  • the value of the refractive index of the semiconductor wafer w used for calculating the raw thickness value the value may be used if the refractive index is known. If necessary, it is preferable to measure the refractive index in advance on a wafer whose thickness has been measured by another method using a micro gauge, a microscope, or the like, and use that value.
  • some selection methods can be applied. For example, there is a method of setting the optical path length range used for calculating the raw thickness value to the range R1 or R2 (FIG. 2B), and selecting the second and third light intensity peaks from the top. Alternatively, there is a method of setting the optical path length range to the range: R 1 (range R 2) and selecting the first and second from the bottom (second and third from the bottom).
  • the reflected light L4 may not be detected with a sufficient intensity due to a long optical path length due to the thickness of the holding substrate 21 and the like.
  • the light path length range R1 excluding the light path length range where the light intensity peak P4 is detected is changed to the light intensity peak selection. It is preferable to set it. Further, even when the holding substrate 21 is not used, the optical path length range R 1 is set in the same manner.
  • a non-contact type thickness measuring device capable of measuring the thickness of the semiconductor wafer W during the execution of the gate etching, and a liquid jet etching device and a liquid jet etching method including the same are obtained.
  • the state of the etching solution layer E changes as described above, and the thickness thereof also changes with time similarly to the surface angle.
  • the optical path length from the probe head 13 to the semiconductor wafer W changes. Therefore, the peak positions of the light intensity peaks P 2 and P 3 are similarly shifted.
  • the light intensity distribution corresponding to the portion below the upper surface of the semiconductor wafer W shifts by the same amount as a whole, and thus the optical path lengths of the light intensity peaks P2 and P3.
  • Each optical path length difference such as the difference is not affected by the shift of the peak position.
  • the thickness at each part of the pattern is larger than the pattern. Also, if the beam diameter is large, an average thickness within the beam range can be obtained. Further, in the wet etching apparatus shown in FIG. 1, since the semiconductor wafer W is rotated during the etching, the average thickness is measured in the thickness measurement in this case.
  • the thickness value (raw thickness value) of the semiconductor wafer W calculated by the thickness measurement at each of a plurality of measurement times at predetermined time intervals is as follows: (1) statistical variation (statistical variation); 2) There is a value variation due to two causes: variation due to measurement error (error variation). Among them, (1) Statistical variation is inevitable even in the thickness measurement performed correctly, and the variation in the raw thickness value is within the allowable range as a whole.
  • the angle of the surface of the etching liquid layer E with respect to the measurement light changes depending on the flow of the etching liquid as described above, and accordingly, the light intensity of the reflected light L1 from the surface of the etching liquid layer E changes. .
  • the angle of the reflected light L1 with respect to the measurement light increases, so that the reflected light L1 is not input to the probe head 13.
  • the wafer upper surface peak P2 and the wafer lower surface peak P3 may not be similarly specified as the light intensity peak.
  • the raw thickness value is incorrectly calculated.
  • a measurement error occurs in which the thickness of the holding substrate 21 is calculated as the raw thickness value.
  • the thickness of the etching solution layer E or the total thickness of the etching solution layer E and the semiconductor wafer W is determined by the raw thickness.
  • a measurement error calculated as a value occurs.
  • a peak due to a noise signal exceeding the threshold level Pt occurs between the light intensity peaks P1 to P4, the noise peak is regarded as the above light intensity peak, and an incorrect thickness is obtained.
  • the thickness measurement method and the etching method in the etching apparatus shown in FIG. Eliminating or reducing the effect of each value variation by selecting the data by applying the tolerance range in the evening and determining the thickness change line by performing a linear approximation calculation on the selected raw thickness value data I have.
  • the effect of error variation is removed by selecting raw thickness value data, and the effect of statistical variation is reduced by linear approximation calculation.
  • FIG. 3 is a flowchart showing one embodiment of a thickness measuring method and a wet etching method in the wet etching apparatus shown in FIG.
  • the thickness is measured at each of a plurality of measurement times t at predetermined time intervals.
  • the measurement is performed (Step S101).
  • the time interval for instructing the measurement time is set appropriately according to the etching time and the etching rate, for example, a 5 Hz time interval for the entire etching time of 1 to 2 minutes, and automatically set at each measurement time. It is preferable to perform the thickness measurement at first. In addition, a fixed time interval may be used for the entire etching time, or a different time interval may be used.
  • each data from the photodetector 15 and the reference optical path length control unit 17 is generated via the signal processing circuit 16 a of the thickness calculation unit 16.
  • the value is input to the thickness value calculator 16b.
  • the light thickness distribution (see FIGS. 2A and 2B) is created in the raw thickness value calculation unit 16b, and the raw light intensity distribution at the measurement time t is calculated using the two selected light intensity peaks.
  • the thickness value RTh (t) is calculated (S102).
  • the number of identified peaks is less than 3, one of the light intensity peaks P1, P2, and P3 on the liquid surface, wafer upper surface, and wafer lower surface is detected. This corresponds to the case where an unmeasured error occurs, and it is highly likely that an incorrect raw thickness value is obtained. Therefore, by performing the above-described classification based on the number of peaks, it is possible to exclude at least a part of the raw thickness value accompanying the measurement error and reduce the influence of the error variation. Such classification based on the number of peaks is particularly effective when the thickness of the liquid layer E and the thickness of the wafer W are almost the same, and it is difficult to judge the occurrence of measurement errors by applying the selection numerical range and the allowable numerical range described later. effective.
  • the specified time is a time for judging whether or not a statistical score sufficient for the raw thickness value of the semiconductor wafer W to be evaluated has been obtained, and the elapsed time (time width) from the first measurement time. It is preferable to specify the Alternatively, it is also possible to specify the specified time based on the number of statistical points at which the thickness was measured. In the following, the specified time is specified by the time width regardless of the statistical score, and the time width Tc from the first measurement time is defined as the specified time.
  • the allowable numerical range for the raw thickness value is set (S106). If the allowable numerical value range is not set, the allowable numerical value range is set since the time is the first measurement time after the specified time Tc has elapsed from the first measurement time.
  • 5 is a graph showing an example of the above.
  • the first de-night selection calculation is performed for the time change of the effective raw thickness value RTh (t) indicated by the black circle in Fig. 4 (S107).
  • a linear approximation calculation for example, fitting calculation such as a least squares method
  • This thickness change straight line FTh 1 (t) is a straight line for overnight selection.
  • the first selection numerical range DTh1 from the thickness change line FTh1 (t) for selection is set.
  • a variation value 1 of the raw thickness value RTh (t) is calculated with respect to the thickness change straight line F T1 (t).
  • a screening constant D D The 1 for obtaining the screening numerical range DTh 1 is set in advance.
  • the variation 1 of the raw thickness value for example, a standard deviation value from a thickness change straight line for selection in the raw thickness value can be used.
  • the first de-sorting for the raw thickness value is performed. That is, the raw thickness value within the range from the thickness change straight line FThl (t) to the soil DThl (in FIG. 5, two broken lines sandwiching the thickness change straight line FTh 1 (t) for sorting from above and below)
  • the data shall remain valid, and the data of the raw thickness value outside this range (the 5 day data points indicated by white circles in Fig. 5) shall be deasserted.
  • a second data selection calculation is performed for the time change of the effective raw thickness value R Th (t) indicated by a black circle in FIG. 5 (S108).
  • the method of data selection calculation is almost the same as the first one. That is, a straight-line approximation calculation is performed on the raw thickness value RTh (t) to determine a second thickness change straight line FTh2 (t) for the second sorting, which is an approximate line.
  • the second selection numerical range DTh2 from the thickness change straight line F Tli 2 (t) for selection is similarly set as DTh2 and 2 xDThc 2 from the variation value 2 and the selection constant DThc 2. .
  • the value of the raw thickness value within the range of soil DTh2 from the thickness change straight line FTh2 (t) remains valid, and the value of the raw thickness value outside this range (shown by a white circle in Fig. 6). Is invalidated). This is the end of the overnight selection calculation of the raw thickness value in the present embodiment.
  • the allowable numerical value range DTh is set as shown in FIG. 7 (S109).
  • a straight-line approximation was made to the raw thickness values that were validated in the first and second de-night selection calculations (the 8 de-night points indicated by black circles in Figures 6 and 7).
  • the calculation is executed to determine a thickness change straight line FTh tn (t) which is an approximate straight line indicating a time change of the raw thickness value.
  • the subscript tn indicates that the thickness change straight line is the thickness change straight line determined at the measurement time tn.
  • an allowable numerical range DTh from the thickness change straight line FTh tn (t) is set.
  • the allowable numerical range DTh set here is used to determine whether the raw thickness value is valid or invalid at each subsequent measurement time (the second or later measurement time after the specified time Tc has elapsed from the first measurement time). Used. After the determination of the thickness change line F Th tn (t) at the measurement time tn and the setting of the allowable numerical value range DTh are completed, the process proceeds to execution of the next thickness measurement and calculation of the raw thickness value.
  • the allowable numerical value range has already been set, so the above-mentioned data selection and the (re) setting of the allowable numerical value range are not performed. Perform judgments inside and outside the allowable range.
  • the determination method (S110 to S112) of the inside and outside of the allowable range at the second and subsequent measurement times will be described with reference to the graphs schematically shown in FIGS.
  • the thickness change straight line FTh tn (t) determined at the previous measurement time tn is excluded (dotted line), and the expected thickness FT h tn (tm) at the current measurement time tm is obtained. Then, the raw thickness value RTh (tm) obtained by the thickness measurement performed at the measurement time tm is in the range from FTh tn (tm) to the soil DTh (in FIG. 8, the thickness change straight line FTh t
  • the thickness change straight line FThtm (t) for the current measurement time tm is determined (S111).
  • Thickness measuring device thickness measuring method, and wet etching using the same
  • the reflected light generated from the measurement light and the interference light of the reference light are detected, and the light intensity peaks corresponding to the upper surface and the lower surface of the semiconductor wafer are specified by the light intensity distribution with respect to the change in the optical path length.
  • Select and calculate the raw thickness value from the optical path length difference can be measured during the gate etching regardless of the presence of the etching solution. Also, since two light intensity peaks from both the upper and lower surfaces of the wafer are used, the thickness of the semiconductor wafer can be accurately measured even when the state of the etching liquid layer changes.
  • a preliminary linear approximation calculation for data selection, setting of the selection numerical range, and data including data selection are performed.
  • the thickness change line is determined and the allowable numerical value range is set based on the raw thickness value that is valid after the end of the overnight selection calculation.
  • the raw thickness value is determined from the set allowable numerical value range and the previous thickness change line, and a new straight-line approximation calculation is performed only when the raw thickness value is valid. By doing so, efficient calculation of statistical thickness values has been realized.
  • the setting of the permissible numerical value range and the selection numerical value range reflects the state of the data of the actual raw thickness value that is the target, so it is possible to set a numerical value range suitable for the data it can.
  • the dispersion of the raw thickness value decreases every time the selection is performed, so that the allowable numerical value range is usually set to a smaller value range than the selection numerical value range. That is, in the above-described example, the first selection numerical range DTh1, the second selection numerical range DTh2, and the allowable numerical range DTh usually satisfy DThl> DTh2> DTh. However, since the magnitude relation of such a numerical range is mainly determined by the variation value, such a magnitude relation is not always obtained by the allowable constant and the sorting constant excluding the variation value.
  • the permissible numerical value range and the selected numerical value range if the variation value is predicted in advance, the operator, etc., directly specifies the numerical value range without specifying the allowable constant and the selection constant. May be set. Even in this case, it is preferable that the respective numerical ranges are set so as to satisfy the magnitude relation described above. Also, if necessary, set some numerical ranges (for example, the second screening numerical range and the final allowable numerical range) equal, or set the allowable numerical range slightly wider than the screening numerical range. Is also good. ,
  • the raw thickness value before the specified time range from the measurement time is invalidated and is not used for determining the straight line.
  • Such a range setting is effective in responding to the time change when the etching rate changes over time during wet etching, etc., and ensures a more accurate score while securing a sufficient number of statistics.
  • the thickness change line and the statistical thickness value can be obtained.
  • the raw thickness value from the first measurement time may always be used. In this case, as the time elapses, the statistical score of the raw thickness value used for the statistical processing increases.
  • the etching control section 25 is based on the thickness variation straight line and the statistical thickness value obtained by the statistical thickness calculating section 16c. Through this, it is possible to appropriately control the end of the etching by stopping the supply of the etching liquid by the etching liquid supply unit 24 or the change of the etching rate.
  • the end time is determined based on the thickness change line and the statistical thickness value and the preset end thickness, so that the end thickness can be calculated from the end thickness. This can suppress variations in the semiconductor device, and can improve the efficiency of semiconductor device manufacturing and improve the yield.
  • the measurement time is set to the end time, and the thickness calculation unit 16 (statistical thickness value calculation unit 16 c ) Outputs an end instruction signal to the etching control section 25 to end the etching.
  • the end time is predicted using the thickness change straight line. That is, as shown in FIG. 9, the thickness change line FT h tm (t) is extended (extended) to find an intersection with the straight line indicating the end point thickness, and the time te at the intersection is defined as the end time. Can be predicted. When the end time is predicted in advance in this way, it is possible to control the end of the etching based on the predicted end time.
  • the thickness measuring apparatus, the thickness measuring method, the wet etching apparatus and the wet etching method using the same according to the present invention are not limited to the above-described embodiments, and various modifications of the configuration and change of the process are possible.
  • the holding substrate 21 is for maintaining the mechanical strength of the thinly etched semiconductor wafer W.
  • the etching can be performed without using the holding substrate. It is.
  • the probe head 13 which is the light output means is shared in the above embodiment, but the light input means is separate from the light output means. May be installed.
  • the reflected light is input to an optical fiber different from the optical fin 13a to the probe head 13 so that another optical power bra provided in addition to the optical power bra 12 is used.
  • the reflected light and the reference light are coupled by using the light coupling means.
  • the etching rate of the etching does not necessarily have to be constant. For example, based on the time variation of the thickness of the semiconductor wafer W obtained by the thickness measurement, if the etching is controlled so that the etching rate becomes slower as the end point thickness (etching end time) approaches, more fine control of the thickness can be achieved. Becomes possible. In this case, it is also possible to divide the time range of the raw thickness value from which the time change of the thickness is obtained, and to obtain the thickness change straight lines before and after the time when the etching rate is changed.
  • each calculation of the statistical process for calculating the thickness change straight line and the statistical thickness value may be variously modified in addition to the above-described embodiment. For example, at the first measurement time after the lapse of the specified time, the de-night selection calculation performed before the determination of the thickness change line is performed twice in the above embodiment. Overnight
  • the screening may be done only once or three or more times.
  • a thickness measuring apparatus, a thickness measuring method, a wet etching apparatus using the same, and a wet etching method according to the present invention include two lights selected from a light intensity distribution of interference light that combines reflected light and reference light.
  • statistical processing including judgment outside the allowable numerical value range and determination of the thickness change straight line, in particular, at the first measurement time after the specified time has elapsed, Performing statistical processing, including overnight selection calculations and determination of the thickness change line, makes it possible to measure the thickness of semiconductor wafers irrespective of the presence of an etchant.
  • the present invention can be used as a thickness measuring device and a method capable of obtaining a sufficiently reduced statistical thickness value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Weting (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)

Abstract

At each measuring time, a measuring light from a measuring light source (11) reflected from a semiconductor wafer (W) is combined with a reference light from a reference light generating section (14), and the interference light detected by a photodetector (15). A calculated thickness calculating section (16b) calculates a calculated thickness value by selecting two light intensity peaks corresponding to the upper and lower surfaces of the wafer (W) from the light intensity distribution of the intensity of interference light and the optical path length. A statistic thickness value calculating section (16c) determines a statistic thickness value by performing statistic processings including data selection, judgment if the calculated thickness is in an allowable value range, and determination of thickness variation line. A method and an apparatus for measuring the thickness of a semiconductor wafer during wet etching regardless of presence of etching liquid are realized along with a wet etching apparatus and a wet etching method utilizing them.

Description

発明の開示 Disclosure of the invention
従来の半導体ウェハの厚み計測装置としては、 接触式の厚み計や、 マイケルソ ン干渉計型の厚み計などがある。 これらの厚み計のうち、 接触式の厚み計は、 ィ ンサイチュでの計測に適用することができない。 また、 接触するためにウェハに 傷がつく場合があり、 高速での計測ができず、 あるいは、 保持基板やフィルムな どがついている場合にはウェハのみでの厚みの計測ができないなどの問題点があ る。  Conventional thickness measuring devices for semiconductor wafers include a contact type thickness gauge and a Michelson interferometer type thickness gauge. Of these thickness gauges, the contact type thickness gauge cannot be applied to in-situ measurement. In addition, the wafer may be damaged due to contact, and high-speed measurement cannot be performed, or when a holding substrate or film is attached, the thickness cannot be measured using only the wafer. There is.
一方、 マイケルソン干渉計型の厚み計は、 非接触で半導体ウェハの厚みを計測 する厚み計である。 このような厚み計としては、 特開平 5— 2 4 8 8 1 7号公報 に示されている装置があるが、 この装置では、 半導体ウェハに計測光を照射し、 ウェハ表面からの反射光の反射タイミング変化によって厚みの時間変化を計測し ている。 しかしながら、 この場合には、 表面の位置のみを計測していることにな るので、 厚みを求めるために裏面の位置などの厚みの初期条件を与えてやる必要 がある。 また、 ェヅチング液を用いたウエットエッチング工程では、 ウェハ表面 上にあるェヅチング液で計測光が反射されてしまうため、 半導体ウェハの厚みを 計測することができない。  On the other hand, a Michelson interferometer-type thickness gauge measures the thickness of a semiconductor wafer without contact. As such a thickness gauge, there is an apparatus disclosed in Japanese Patent Application Laid-Open No. H5-2488817. In this apparatus, a semiconductor wafer is irradiated with measurement light to reflect reflected light from the wafer surface. The time change of the thickness is measured by the change of the reflection timing. However, in this case, since only the position of the front surface is measured, it is necessary to give initial conditions of the thickness such as the position of the back surface in order to obtain the thickness. Further, in a wet etching process using an etching liquid, the measurement light is reflected by the etching liquid on the wafer surface, so that the thickness of the semiconductor wafer cannot be measured.
本発明は、 以上の問題点を解決するためになされたものであり、 ウエットエツ チングの実行中に半導体ウェハの厚みを計測することが可能な厚み計測装置、 厚 み計測方法、 及びそれを用いたゥェヅトエツチング装置、 ウエットェヅチング方 法を提供することを目的とする。  The present invention has been made to solve the above problems, and has been made in consideration of the above circumstances, and provides a thickness measuring apparatus, a thickness measuring method, and a thickness measuring method capable of measuring the thickness of a semiconductor wafer during execution of wet etching. The purpose of the present invention is to provide a wet etching apparatus and a wet etching method.
このような目的を達成するために、 本発明による厚み計測装置は、 エッチング 液を用いたウエットエッチングの実行中に半導体ウェハの厚みを計測するための 厚み計測装置であって、 ( 1 )所定の時間間隔をおいた複数の計測時刻のそれぞれ で、計測光を供給する計測光源と、 (2 )計測光源からの計測光を分岐させる光分 岐手段と、 ( 3 )光分岐手段で分岐された計測光の一方を、計測対象である半導体 ウェハに対して出力させて、 エッチング液が供給されているエッチング面側から 照射する光出力手段と、 (4 )光出力手段から照射された計測光がェヅチング液ま たは半導体ウェハによって反射された反射光を入力させる光入力手段と、 (5 )光 分岐手段で分岐された計測光の他方を、 光路長が可変に構成された参照用光路を 通過させて、 参照光路長が設定された参照光を生成する参照光生成手段と、 (6 ) 光入力手段からの反射光と、 参照光生成手段からの参照光とを結合させて干渉光 とする光結合手段と、 (7 ) 光結合手段からの干渉光を検出する光検出手段と、 ( 8 )計測時刻のそれぞれにおいて、参照光生成手段で設定された参照光路長と、 光検出手段で検出された干渉光の光強度との相関を示す光強度分布を用い、 設定 された閾値よりも大きい光強度を有する複数の光強度ピークから選択された 2本 の光強度ピーク間での参照光路長の光路長差に基づいて、 半導体ウェハの生厚み 値を算出する生厚み値算出手段と、 (9 )最初の計測時刻から規定時間が経過した 後の計測時刻のそれぞれにおいて、 設定された許容数値範囲内にあって有効とさ れている複数の生厚み値の時間変化に対して、 直線近似計算による厚み変化直線 の決定を行って、厚み変化直線から統計厚み値を算出する統計厚み値算出手段と、 を備え、 ( 1 0 )統計厚み値算出手段は、最初の計測時刻から規定時 が経過した 後の 1回目の計測時刻で、 その計測時刻までの有効な生厚み値の時間変化に対し て、 直線近似計算による選別用の厚み変化直線の決定と、 選別用の厚み変化直線 からの選別数値範囲の設定と、 選別数値範囲外にある生厚み値を無効とするデー 夕の選別とを含むデ一夕選別計算を行った後、 選別後に有効とされている生厚み 値の時間変化に対して、直線近似計算による厚み変化直線の決定を行うとともに、 厚み変化直線からの許容数値範囲を設定することを特徴とする。 In order to achieve such an object, a thickness measuring apparatus according to the present invention is a thickness measuring apparatus for measuring the thickness of a semiconductor wafer during execution of wet etching using an etching solution, wherein: At each of a plurality of measurement times separated by a time interval, a measurement light source that supplies measurement light, (2) a light branching unit that branches the measurement light from the measurement light source, and (3) a light branching unit that is branched by the light branching unit One of the measurement lights is output to the semiconductor wafer to be measured, from the etching surface side where the etching solution is supplied. A light output means for irradiating; (4) a light input means for inputting reflected light reflected by an etching liquid or a semiconductor wafer; and (5) a measuring light irradiated from the light output means is branched by a light branching means. The other of the measurement light passing through a reference optical path having a variable optical path length to generate reference light having a set reference optical path length; and (6) reflection from the light input means. (7) a light detecting means for detecting the interference light from the light coupling means, and (8) a measuring time. Using a light intensity distribution indicating a correlation between the reference light path length set by the reference light generation means and the light intensity of the interference light detected by the light detection means, and using a light intensity distribution having a light intensity larger than the set threshold value. Light intensity peaks selected from the two light intensity peaks A raw thickness value calculating means for calculating a raw thickness value of the semiconductor wafer based on a difference in optical path length of a reference optical path length between peaks, (9) a measurement time after a specified time has elapsed from the first measurement time; In each case, the thickness change line is determined by linear approximation calculation for the time change of multiple raw thickness values that are valid within the set allowable numerical value range, and the statistical thickness is calculated from the thickness change line. And (10) the statistical thickness value calculating means is the first measuring time after a specified time has elapsed from the first measuring time, and is effective up to the measuring time. For the time change of the raw thickness value, the thickness change line for selection is determined by linear approximation calculation, the selection numerical range is set from the thickness change line for selection, and the raw thickness value outside the selection numerical value range is calculated. Invalidation date, including evening selection After performing the overnight selection calculation, determine the thickness change line by linear approximation calculation for the time change of the raw thickness value that is valid after the selection, and set the allowable numerical range from the thickness change line It is characterized by the following.
また、 本発明による厚み計測方法は、 エッチング液を用いたウエットェヅチン グの実行中に半導体ウェハの厚みを計測するための厚み計測方法であって、 ( 1 ) 所定の時間間隔をおいた複数の計測時刻のそれぞれで、 計測光源から計測光を供 給する計測光供給ステップと、 ( 2 )計測光源からの計測光を分岐させる光分岐ス テツプと、 (3 )光分岐ステップで分岐された計測光の一方を、計測対象である半 導体ウェハに対して出力させて、 ェヅチング液が供給されているェヅチング面側 から照射する光出力ステヅプと、 ( 4 )光出力ステヅプで照射された計測光がェッ チング液または半導体ウェハによって反射された反射光を入力させる光入力ステ ップと、 ( 5 )光分岐ステップで分岐された計測光の他方を、光路長が可変に構成 された参照用光路を通過させて、 参照光路長が設定された参照光を生成する参照 光生成ステツプと、 ( 6 )光入カステツプで入力された反射光と、参照光生成ステ ヅプで生成された参照光とを結合させて干渉光とする光結合ステヅプと、 ( 7 )光 結合ステヅプで結合された干渉光を検出する光検出ステヅプと、 ( 8 )計測時刻の それぞれにおいて、 参照光生成ステップで設定された参照光路長と、 光検出ステ ップで検出された干渉光の光強度との相関を示す光強度分布を用い、 設定された 閾値よりも大きい光強度を有する複数の光強度ピークから選択された 2本の光強 度ピーク間での参照光路長の光路長差に基づいて、 半導体ウェハの生厚み値を算 出する生厚み値算出ステツプと、 ( 9 )最初の計測時刻から規定時間が経過した後 の計測時刻のそれぞれにおいて、 設定された許容数値範囲内にあって有効とされ ている複数の生厚み値の時間変化に対して、 直線近似計算による厚み変化直線の 決定を行って、 厚み変化直線から統計厚み値を算出する統計厚み値算出ステップ と、 を備え、 ( 1 0 )統計厚み値算出ステップ.において、最初の計測時刻から規定 時間が経過した後の 1回目の計測時刻で、 (1 1 )その計測時刻までの有効な生厚 み値の時間変化に対して、 直線近似計算による選別用の厚み変化直線の決定と、 選別用の厚み変化直線からの選別数値範囲の設定と、 選別数値範囲外にある生厚 み値を無効とするデ一夕の選別とを含むデ一夕選別計算を行った後、 選別後に有 効とされている生厚み値の時間変化に対して、 直線近似計算による厚み変化直線 の決定を行うとともに、 厚み変化直線からの許容数値範囲を設定することを特徴 とする。 Further, the thickness measuring method according to the present invention is a thickness measuring method for measuring the thickness of a semiconductor wafer during the execution of wet etching using an etching solution, wherein (1) a plurality of measuring methods at predetermined time intervals. A measuring light supply step for supplying measuring light from the measuring light source at each time; (2) an optical branching step for branching the measuring light from the measuring light source; and (3) a measuring light branched in the optical branching step. One of the half An optical output step for outputting to the conductive wafer and irradiating from the etching surface side to which the etching liquid is supplied; and (4) a measuring light irradiated in the optical output step is reflected by the etching liquid or the semiconductor wafer. (5) The reference light path length is set by passing the other of the measurement light branched in the light branching step through the reference light path having a variable optical path length. A reference light generating step for generating the reference light, and (6) an optical coupling for combining the reflected light input in the light input step with the reference light generated in the reference light generating step to generate interference light (7) a light detection step for detecting the interference light combined in the light coupling step; and (8) a reference light path length set in the reference light generation step and a light detection step for each of the measurement times. Using the light intensity distribution showing the correlation with the light intensity of the interference light detected in step 2, the light intensity distribution between two light intensity peaks selected from a plurality of light intensity peaks having a light intensity larger than the set threshold value is calculated. The raw thickness value calculation step for calculating the raw thickness value of the semiconductor wafer based on the optical path length difference of the reference optical path length, and (9) setting at each of the measurement times after the specified time has elapsed from the first measurement time Statistical calculation that determines the thickness change straight line by linear approximation calculation for the time change of multiple raw thickness values that are valid within the specified allowable numerical value range and calculates the statistical thickness value from the thickness change straight line In the (10) statistical thickness value calculation step, the first measurement time after a specified time has elapsed from the first measurement time, and (1 1) valid until the measurement time Time of raw thickness Of the thickness change line for sorting by linear approximation calculation, setting of the numerical range for sorting from the thickness changing line for sorting, and a method of invalidating the raw thickness value outside the numerical range for sorting. After performing the overnight selection calculation including evening selection, the thickness change line is determined by linear approximation calculation for the time change of the raw thickness value that is valid after the selection, and the thickness change line is determined. The feature is to set the allowable numerical range from.
上記した厚み計測装置及び厚み計測方法においては、 半導体ウェハに計測光を 照射して反射されてきた反射光と、 計測光から分岐され所定の光路を通過して反  In the thickness measuring apparatus and the thickness measuring method described above, the reflected light reflected by irradiating the semiconductor wafer with the measuring light and the reflected light that is branched from the measuring light and passes through a predetermined optical path are used as the light.
4 射光の光路長に対して参照光路長が設定された参照光とを結合し、 生成された干 渉光を検出する。 そして、 その干渉光の光強度分布において生じる複数の光強度 ピークから、 ゥェヅトエッチング中の半導体ウェハの厚みを計測している。 このとき、 半導体ウェハに照射した計測光は、 エッチング液表面、 半導体ゥェ ハの上面(エッチング面)、及び下面などで反射され、 光強度分布では、 それらの 面にそれぞれ対応した光強度ピークが得られる。 したがって、 所定の選択基準に よって選択された半導体ウェハの上面及び下面に対応する 2本の光強度ピークを 利用することによって、 エッチング液の存在にかかわらず、 ウエットエッチング 中に半導体ウェハの厚み、 あるいはその時間変化を計測することが可能となる。 また、 ウェハ上面からの反射光と基準となる初期条件とから厚みを求めるのでは なく、 ウェハ上面及び下面の両方からの反射光を用いているので、 半導体ウェハ やエッチング液の状態が変化しても、 常に正しく半導体ウェハの厚みを計測する ことができる。 Four The generated interference light is detected by combining the emitted light with the reference light having the reference light path length set. Then, the thickness of the semiconductor wafer during gate etching is measured from a plurality of light intensity peaks generated in the light intensity distribution of the interference light. At this time, the measurement light applied to the semiconductor wafer is reflected on the surface of the etching solution, the upper surface (etched surface) of the semiconductor wafer, the lower surface, and the like. In the light intensity distribution, light intensity peaks corresponding to those surfaces are respectively obtained. can get. Therefore, by utilizing the two light intensity peaks corresponding to the upper and lower surfaces of the semiconductor wafer selected according to a predetermined selection criterion, the thickness of the semiconductor wafer during wet etching regardless of the presence of the etchant, or The time change can be measured. In addition, since the thickness is not determined from the reflected light from the upper surface of the wafer and the initial conditions used as the reference, the reflected light from both the upper surface and the lower surface of the wafer is used. In addition, the thickness of the semiconductor wafer can always be accurately measured.
また、 あらかじめ与えられた規定時間が経過して充分なデ一夕数の生厚み値が 得られた後の厚み計測においては、 その時間変化を直線近似するフィ ヅティング 計算を行い、 得られた厚み変化直線から統計厚み値を算出している。 これによつ て、 生厚み値の持つ統計的ばらつきの影響を低減することができる。 また、 厚み の計測においては、 統計的ばらつきとは別に、 エッチング液面からの光強度ピー クが検出されないなどの計測エラ一によるばらつきを生じる場合がある。 これに 対して、 厚み変化直線の決定に用いる生厚み値を所定の許容数値範囲内の生厚み 値に限定することによって、 計測エラーを生じた生厚み値を除外して、 エラ一ば らつきの影響を低減することができる。  In addition, in the thickness measurement after a predetermined time has elapsed and a sufficient raw thickness value has been obtained, a fitting calculation that approximates the time change with a straight line is performed, and the obtained thickness is calculated. The statistical thickness value is calculated from the change line. As a result, it is possible to reduce the influence of the statistical variation of the raw thickness value. In addition, in the measurement of the thickness, in addition to the statistical variation, there may be a variation due to a measurement error such that a light intensity peak from the etching liquid level is not detected. On the other hand, by limiting the raw thickness value used to determine the thickness change straight line to the raw thickness value within the predetermined allowable numerical range, the raw thickness value that caused a measurement error is excluded, and the error The effect can be reduced.
さらに、 規定時間経過後、 最初に厚み変化直線を決定するときに、 デ一夕選別 のためのフィッティング計算と、 厚み変化直線の決定のためのフィヅティング計 算とによる生厚み値デ一夕の統計処理を実行している。 ここで、 この規定時間経 過後 1回目の計測時刻での統計処理によって選別される生厚み値と、 決定される  In addition, when the thickness change straight line is determined for the first time after the lapse of the specified time, the fitting calculation for selecting the thickness change line and the statistics of the raw thickness value by the fitting calculation for determining the thickness change line are performed. Processing is being performed. Here, the raw thickness value selected by statistical processing at the first measurement time after the specified time has elapsed is determined
5 厚み変化直線とは、 2回目以降の計測時刻においては、 それそれでの統計処理の 初期条件となる。 Five The thickness change line is the initial condition for statistical processing at the second and subsequent measurement times.
したがって、上記のようにデ一夕選別の めの予備的な直線近似計算を行って、 選別用の厚み変化直線及び選別数値範囲を用いて計測エラ一を生じた生厚み値を 無効として統計処理から除外した後に、 再び直線近似計算を含む統計処理を行つ て厚み変化直線及び許容数値範囲を設定する構成とすることによって、 規定時間 経過後の各計測時刻において、 エラーばらつきなどの影響を効率的に低減するこ とが可能となる。 なお、 選別用の厚み変化直線を用いたデータ選別計算について は、 1回に限らず、 複数回繰り返し行って、 計測エラーを生じた生厚み値などの 余分な生厚み値データの除外を、 さらに確実に行っても良い。  Therefore, a preliminary straight-line approximation calculation for data selection is performed as described above, and the raw thickness value that caused measurement errors is invalidated using the thickness change straight line for selection and the selection numerical range, and statistical processing is performed. After performing the statistical processing including the straight-line approximation calculation again, the thickness change straight line and the allowable numerical range are set, so that the effects of error variation etc. can be efficiently reduced at each measurement time after the specified time has elapsed. It is possible to reduce the cost. Note that the data selection calculation using the thickness change line for selection is not limited to one time, but it is repeated several times to exclude extra raw thickness values such as raw thickness values that have caused measurement errors. You may go without fail.
また、 このような厚み計測装置及び方法を適用したゥェヅトエツチング装置及 び方法によれば、 ゥエツトエッチング中の半導体ウェハに対して得られた厚み値 に基づいて、 ェヅチング制御手段を介して、 エッチング液の供給の停止によるゥ エツトエッチングの終了、 あるいは、 エッチングレートの変更などを適宜制御す ることが可能である。  Further, according to the jet etching apparatus and method to which such a thickness measuring device and method are applied, the thickness is obtained via the etching control means on the basis of the thickness value obtained for the semiconductor wafer during the wet etching. Accordingly, it is possible to appropriately control the end of the wet etching by stopping the supply of the etching solution, or the change of the etching rate.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 厚み計測装置、 及び厚み計測装置を備えるウエットエッチング装置の 一実施形態を示す構成図である。  FIG. 1 is a configuration diagram showing one embodiment of a thickness measuring device and a wet etching device provided with the thickness measuring device.
図 2 A及び図 2 Bは、 図 1に示したウエットェヅチング装置における半導体ゥ ェハの厚みの計測方法について示す図である。  2A and 2B are views showing a method for measuring the thickness of the semiconductor wafer in the wet etching apparatus shown in FIG.
図 3は、 厚み計測方法及ぴゥエツトエッチング方法の一実施形態を示すフロー チヤ一トである。  FIG. 3 is a flowchart showing an embodiment of the thickness measuring method and the etching method.
図 4は、 規定時間までに算出された生厚み値の一例を模式的に示すグラフであ る o  Fig. 4 is a graph schematically showing an example of the raw thickness value calculated up to the specified time.o
図 5は、 1回目のデータ選別計算について示すグラフである。  FIG. 5 is a graph showing the first data selection calculation.
図 6は、 2回目のデータ選別計算について示すグラフである。 図 7は、 許容数値範囲の設定について示すグラフである。 FIG. 6 is a graph showing the second data selection calculation. FIG. 7 is a graph showing the setting of the allowable numerical value range.
図 8は、 生厚み値の許容数値範囲内外の判定について示すグラフである。  FIG. 8 is a graph showing the determination of the raw thickness value within the allowable numerical value range.
図 9は、厚み変化直線の決定及び統計厚み値の算出について示すグラフである。 発明を実施するための最良の形態  FIG. 9 is a graph showing determination of a thickness change line and calculation of a statistical thickness value. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面とともに本発明による厚み計測装置、 厚み計測方法、 及びそれを用 いたゥエツトエッチング装置、 ゥエツトェヅチング方法の好適な実施形態につい て詳細に説明する。 なお、 図面の説明においては同一要素には同一符号を付し、 重複する説明を省略する。 また、 図面の寸法比率は、 説明のものと必ずしも一致 していない。  Hereinafter, preferred embodiments of a thickness measuring apparatus, a thickness measuring method, an etching apparatus using the same, and an etching method using the same will be described in detail with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. Also, the dimensional ratios in the drawings do not always match those described.
最初に、 本発明による厚み計測装置及びウエットエッチング装置の構成につい て、 対応する厚み計測方法の各ステップとともに説明する。 図 1は、 厚み計測装 置、及びそれを備えるウエットェヅチング装置の一実施形態を示す構成図である。 このウエットエッチング装置は、 厚み計測装置 Aと、 厚み計測装置 Aを除く通常 のゥェヅトエッチング装置 B (以下、 この装置部分を単にウエットエッチング装 置 Bという) とを備えて構成されている。  First, the configurations of the thickness measuring apparatus and the wet etching apparatus according to the present invention will be described together with the corresponding steps of the thickness measuring method. FIG. 1 is a configuration diagram showing an embodiment of a thickness measuring device and a wet etching device including the same. This wet etching apparatus is configured to include a thickness measuring apparatus A and a normal wet etching apparatus B except for the thickness measuring apparatus A (hereinafter, this apparatus portion is simply referred to as a wet etching apparatus B). .
厚み計測装置 Aは、 計測対象である半導体ウェハ Wに計測光を照射し、 半導体 ウェハ Wからの反射光及び参照光の干渉光の光強度変化を利用して半導体ウェハ Wの厚みを計測するように構成された非接触式の厚み計である。 厚み計測に用い る計測光は、 所定の時間間隔をおいた複数の計測時刻のそれぞれにおいて、 計測 光源 1 1から供給され(計測光供給ステップ)、計測光源 1 1から出力された計測 光は、 入力用光ファイバ 1 1 aを介してファイバ力ブラからなる光力ブラ 1 2に 入力される。 計測光源 1 1としては、 低コヒ一レンス光源 (例えば波長 1 . 3 mの光を発生させる S L Dなど) を用いることが好ましい。 計測光の波長として は、 半導体ウェハ Wやエッチング液などを充分に透過する波長を選択する。  The thickness measuring device A irradiates the semiconductor wafer W to be measured with measurement light, and measures the thickness of the semiconductor wafer W by using the light intensity change of the reflected light from the semiconductor wafer W and the interference light of the reference light. Is a non-contact type thickness gauge configured as described above. The measurement light used for thickness measurement is supplied from the measurement light source 11 (measurement light supply step) at each of a plurality of measurement times at predetermined time intervals, and the measurement light output from the measurement light source 11 is The light is input to an optical power blur 12 composed of a fiber power blur via an input optical fiber 11a. As the measurement light source 11, it is preferable to use a low coherence light source (for example, an SLD that generates light having a wavelength of 1.3 m). As the wavelength of the measurement light, a wavelength that sufficiently transmits the semiconductor wafer W, the etchant, and the like is selected.
光力ブラ 1 2は、 計測光源 1 1からの計測光を分岐させる光分岐手段として機 能し、 光力ブラ 1 2に入力された計測光は、 計測用光路に向かう計測用光フアイ ノ 1 3 a、 及び参照用光路に向かう参照用光ファイバ 1 4 aに分岐される (光分 岐ステップ)。分岐された計測光は、それぞれ厚みを計測するためのプローブへヅ ド 1 3、 及び参照光を生成するための参照光生成部 1 4に入力される。 The optical power bra 12 functions as an optical branching unit for branching the measuring light from the measuring light source 11, and the measuring light input to the optical power bra 12 is used as a measuring optical fiber toward the measuring optical path. No. 13a and a reference optical fiber 14a directed to the reference optical path are branched (light branching step). The branched measurement lights are input to a probe head 13 for measuring the thickness and a reference light generation unit 14 for generating the reference light, respectively.
プローブへッド 1 3は、 計測光を半導体ウェハ Wへと照射するための光出力手 段、 及び半導体ウェハ Wまたはェッチング液などによつて計測光が反射された反 射光を再び入力するための光入力手段として機能する光入出力手段である。 光力 ブラ 1 2で分岐された光のうち、 光ファイバ 1 3 a側に分岐された計測光は、 プ ローブへヅド 1 3から半導体ウェハ Wへと出力され、 半導体ウェハ Wに対して上 面側のェヅチング面から照射される (光出力ステップ )。 この計測光には、上記し たように半導体ウェハ Wなどを充分に透過する波長の光が用いられているが、 そ の一部は各界面において反射されて、 その反射光が再びプローブへッド 1 3に到 達して入力される(光入力ステヅプ)。プロ一ブへヅド 1 3に到達して再入力され た反射光は、 光ファイバ 1 3 aを介して光力ブラ 1 2に入力される。  The probe head 13 is a light output means for irradiating the measurement light onto the semiconductor wafer W, and a light output means for re-inputting the reflection light which is reflected by the semiconductor wafer W or the etching liquid. This is an optical input / output unit that functions as an optical input unit. Of the light branched by the optical power blur 12, the measurement light branched to the optical fiber 13 a side is output from the probe head 13 to the semiconductor wafer W and is directed upward to the semiconductor wafer W. Light is emitted from the etching surface on the surface side (light output step). As the measurement light, light having a wavelength sufficiently transmitting through the semiconductor wafer W or the like is used as described above, but part of the light is reflected at each interface, and the reflected light is returned to the probe again. The data arrives at input 13 and is input (optical input step). The reflected light that has reached the probe 13 and has been re-input is input to the optical power bra 12 via the optical fiber 13 a.
一方、 参照光生成部 1 4においては、 半導体ウェハ Wなどからの反射光との干 渉光によって厚み (光路長) を測定するための参照光が生成される (参照光生成 ステップ)。光力ブラ 1 2で光ファイノ 1 4 a側に分岐された計測光は、光フアイ バ 1 4 aの出力端と、 反射ミラ一 1 4 cとの間に配置された光路長変調光学系か らなる参照用光路 1 4 bを通過して、 半導体ウェハ Wなどからの反射光の光路長 (反射光路長) に対する参照光の光路長 (参照光路長) が設定された参照光とな る。  On the other hand, in the reference light generation section 14, reference light for measuring the thickness (optical path length) is generated by interference light with the reflected light from the semiconductor wafer W or the like (reference light generation step). The measurement light branched to the optical fin 14a by the optical power bra 12 is transmitted to the optical path length modulation optical system disposed between the output end of the optical fiber 14a and the reflection mirror 14c. The reference light passes through the reference optical path 14b and becomes the reference light in which the optical path length (reference optical path length) of the reference light with respect to the optical path length (reflected optical path length) of the reflected light from the semiconductor wafer W or the like is set.
本実施形態においては、 光ファイバ 1 4 aの出力端から出力された計測光は、 平行平面ガラス基板 1 4 dを透過し、 反射ミラ一 1 4 cに到達して反射される。 反射ミラー 1 4 cからの反射光は、 再びガラス基板 1 4 dを逆方向に透過して、 適当な参照光路長が設定された参照光として、 光ファイノ 1 4 aを介して光力プ ラ 1 2に入力される。  In the present embodiment, the measurement light output from the output end of the optical fiber 14a transmits through the parallel flat glass substrate 14d, reaches the reflection mirror 14c, and is reflected. The reflected light from the reflecting mirror 14c again passes through the glass substrate 14d in the reverse direction, and is used as a reference light having an appropriate reference optical path length set through the optical fin 14a. Entered in 1 2
上記の参照光生成部 1 4は、 参照用光路 1 4 bの光路長が可変に構成されてい る。 すなわち、 参照用光路 1 4 b上にあるガラス ¾f反 1 4 dは、 ガルバノメータ 1 4 eに取り付けられている。 ガルバノメータ 1 4 eは、 参照光路長制御部 1 7 からの周期的な信号に基づいて動作し、 これによつて、 参照用光路 1 4 bに対す るガラス基板 1 4 dの傾きが周期的に変化する。 このとき、 参照用光路 1 4 bの 方向で見たガラス基板 1 4 dの厚さが変化するので、 これによつて、 参照用光路 1 4 bの光路長が周期的に変化して、 反射光路長に対する参照光路長 (反射光に 対する参照光のタイミング) が周期的にスキャンされる。 The above-described reference light generator 14 is configured such that the optical path length of the reference optical path 14 b is variable. You. That is, the glass 14f on the reference optical path 14b is attached to the galvanometer 14e. The galvanometer 14 e operates based on a periodic signal from the reference optical path length control unit 17, whereby the inclination of the glass substrate 14 d with respect to the reference optical path 14 b periodically changes. Change. At this time, since the thickness of the glass substrate 14 d as viewed in the direction of the reference optical path 14 b changes, the optical path length of the reference optical path 14 b periodically changes, and the reflection occurs. The reference optical path length with respect to the optical path length (the timing of the reference light with respect to the reflected light) is periodically scanned.
光力ブラ 1 2は、 上記したように計測光源 1 1からの計測光を分岐させる光分 岐手段であるとともに、 プローブへヅド 1 3からの反射光、 及び参照光生成部 1 4からの参照光を結合させる光結合手段としても機能する。 半導体ウェハ Wなど で反射されてプローブへッド 1 3に戻って入力された反射光、 及び参照光生成部 1 4において参照光路長が設定された参照光は、 光力ブラ 1 2で結合されて干渉 光となり (光結合ステップ)、出力用光ファイバ 1 5 aを介してフォトダイオード ( P D ) などの光検出器 1 5に入力されて検出される (光検出ステップ)。  The optical power bra 12 is a light branching means for branching the measurement light from the measurement light source 11 as described above, and also reflects the reflected light from the probe head 13 and the light from the reference light generation unit 14. It also functions as an optical coupling means for coupling the reference light. The reflected light reflected by the semiconductor wafer W and the like and returned to the probe head 13 and input thereto, and the reference light having the reference light path length set in the reference light generation unit 14 are combined by the optical power blur 12. The light becomes interference light (optical coupling step), and is input to a photodetector 15 such as a photodiode (PD) via an output optical fiber 15a and detected (light detection step).
計測時刻のそれそれにおいて、光検出器 1 5で検出された干渉光のデ一夕等は、 厚み算出部 1 6において処理され、 それらのデ一夕に基づいて半導体ウェハ Wの 厚みが算出される (厚み算出ステップ)。  At each measurement time, the data of the interference light detected by the photodetector 15 is processed by the thickness calculator 16 and the thickness of the semiconductor wafer W is calculated based on the data. (Thickness calculation step).
光検出器 1 5によって干渉光を検出して得られた検出信号は、 厚み算出部 1 6 の信号処理回路 1 6 aを介して生厚み値算出部 1 6 bに入力される。 この光検出 器 1 5からの検出信号によって、 干渉光の光強度のデ一夕が得られる。 また、 参 照光路長制御部 1 7からのガルバノメ一夕 1 4 e (ガラス基板 1 4 d ) の角度信 号も、 同様に信号処理回路 1 6 aを介して生厚み値算出部 1 6 bに入力されてい る。 この角度信号から、 参照用光路 1 4 bにおける参照光路長、 またはその光路 長変化量のデ一夕が得られる。  The detection signal obtained by detecting the interference light by the photodetector 15 is input to the raw thickness value calculation unit 16b via the signal processing circuit 16a of the thickness calculation unit 16. The detection signal from the photodetector 15 provides a light intensity of the interference light. Similarly, the angle signal of the galvanometer 14 e (glass substrate 14 d) from the reference light path length control unit 17 is also transmitted to the raw thickness value calculation unit 16 b via the signal processing circuit 16 a. Has been entered. From this angle signal, the reference optical path length in the reference optical path 14b or the amount of change in the optical path length can be obtained.
生厚み値算出部 1 6 bにおいては、 各計測時刻において、 これらの光強度デ一 夕、及び参照光路長デ一夕から、干渉光の光強度の参照光路長による変化(相関) を示す光強度分布が作成される。 そして、 得られた光強度分布において、 そのピ ーク強度が設定されている閾値強度を超えるものとして複数の光強度ピークが特 定され、 それらの光強度ピークから選択された 2本の光強度ピークを用いて、 半 導体ウェハ Wの生厚み値が算出される (生厚み値算出ステップ)。 In the raw thickness value calculation unit 16b, at each measurement time, the change in the light intensity of the interference light due to the reference light path length (correlation) from the light intensity data and the reference light path length data. Is created. Then, in the obtained light intensity distribution, a plurality of light intensity peaks are specified as those having the peak intensity exceeding the set threshold intensity, and two light intensity peaks selected from the light intensity peaks are identified. The raw thickness value of the semiconductor wafer W is calculated using the peak (raw thickness value calculation step).
生厚み値算出部 1 6 bで算出された生厚み値は、 さらに、 統計厚み値算出部 1 The raw thickness value calculated by the raw thickness value calculation unit 16 b is further calculated by the statistical thickness value calculation unit 1
6 cに入力される。 統計厚み値算出部 1 6 cにおいては、 複数の生厚み値の時間 変化に対して、 直線近似計算によって厚み変化直線が決定されて、 統計厚み値が 算出される (統計厚み値算出ステップ)。 6 Entered in c. In the statistical thickness value calculation unit 16c, a thickness change straight line is determined by a linear approximation calculation with respect to the time change of a plurality of raw thickness values, and a statistical thickness value is calculated (statistical thickness value calculation step).
なお、 半導体ウェハ Wなどからの反射光、 それに対応して生成される光強度分 布の光強度ピーク、 及び生厚み値、 統計厚み値の算出方法の詳細については、 後 述する。  The details of the method of calculating the reflected light from the semiconductor wafer W and the like, the light intensity peak of the light intensity distribution generated corresponding thereto, the raw thickness value, and the statistical thickness value will be described later.
ウエットエッチング装置 Bは、 ェヅチング処理の対象 (厚み計測装置 Aの計測 対象) である半導体ウェハ Wの一方の表面 (図 1中の上面、 以下、 ェヅチング面 という) を、 エッチング液によってウエットエッチングするように構成されてい る。  The wet etching apparatus B performs wet etching of one surface (the upper surface in FIG. 1; hereinafter, referred to as an etching surface) of a semiconductor wafer W to be subjected to the etching process (the measurement object of the thickness measuring device A) by an etching solution. It is composed of
半導体ウェハ Wは、 エッチング面とは反対の面側に配置されたガラス基板など からなる保持基板 2 1によって保持された状態で、 回転台 2 2上に固定される。 回転台 2 2は、 回転駆動部 2 3によって回転駆動され、 これによつて、 ゥェヅ ト ェヅチング中に半導体ウェハ Wが回転される。 半導体ウェハ Wがパ夕一ン付であ る場合には、 パターンのある面が保持基板 2 1側とされ、 パターンとは反対側の 面をエツチング面としてウエットエツチングが行われる。  The semiconductor wafer W is fixed on a turntable 22 while being held by a holding substrate 21 made of a glass substrate or the like disposed on the side opposite to the etching surface. The turntable 22 is driven to rotate by a rotation drive unit 23, whereby the semiconductor wafer W is rotated during the gate wake-up. When the semiconductor wafer W is provided with a pattern, the surface with the pattern is the holding substrate 21 side, and the wet etching is performed with the surface opposite to the pattern as the etching surface.
半導体ウェハ Wのェヅチング面へのェヅチング液の供給は、 エツチング液供給 部 2 4によって行われる。 エッチング液供給部 2 4は、 半導体ウェハ Wに対する ェヅチング液の供給及び停止、 または洗浄水の供給などを行う。 このエッチング 液供給部 2 4によって、 回転している半導体ウェハ Wのエッチング面にノズル 2 4 aからエッチング液が供給されると、 供給されたエッチング液は半導体ウェハ  The supply of the etching liquid to the etching surface of the semiconductor wafer W is performed by the etching liquid supply unit 24. The etching liquid supply unit 24 supplies and stops an etching liquid to the semiconductor wafer W, or supplies cleaning water. When the etching liquid is supplied from the nozzle 24 a to the etching surface of the rotating semiconductor wafer W by the etching liquid supply unit 24, the supplied etching liquid is supplied to the semiconductor wafer W.
10 Wの表面上で薄いェヅチング液層 Eを形成し、 このエツチング液層 Eによって、 半導体ウェハ Wの表面がゥェヅトェヅチングされる。 Ten A thin etching liquid layer E is formed on the surface of W, and the surface of the semiconductor wafer W is etched by the etching liquid layer E.
回転台 2 2、 回転台 2 2上に載置された保持基板 2 1、 及び半導体ウェハ Wの 回転駆動部 2 3による回転と、 エッチング液供給部 2 4による半導体ウェハ Wの エッチング面へのエッチング液または洗浄液の供給及び停止は、 エッチング制御 部 2 5によって制御される。  The rotation table 22, the holding substrate 21 placed on the rotation table 22, and the rotation of the semiconductor wafer W by the rotation drive section 23, and the etching liquid supply section 24 to etch the semiconductor wafer W on the etching surface Supply and stop of the solution or the cleaning solution are controlled by the etching control unit 25.
厚み計測装置 Aのプローブへヅド 1 3は、 回転台 2 2上に保持基板 2 1ととも に載置された半導体ウェハ Wのエッチング面の所定部位に対向する位置に、 ェヅ チング面に向けて照射される計測光の光路がエッチング面に対して略垂直になる ように設置される。 このとき、 垂直に照射された計測光が半導体ウェハ Wなどに よって反射された反射光が、 効率的にプローブへッド 1 3に再入力される。  The probe head 13 of the thickness measuring device A is positioned at a position facing a predetermined portion of the etching surface of the semiconductor wafer W mounted on the turntable 22 together with the holding substrate 21, and at a position corresponding to the etching surface. It is installed so that the optical path of the measurement light irradiated toward it is almost perpendicular to the etching surface. At this time, the reflected light, in which the vertically irradiated measurement light is reflected by the semiconductor wafer W or the like, is efficiently input to the probe head 13 again.
なお、 飛散したエッチング液によるレンズ等の腐食を防止するため、 プロ一ブ へッド 1 3にはェヅチング液に耐性のある塩ィ匕ビニルなどの透明シートを保護膜 として設けておくことが好ましい。 または、 プローブヘッド 1 3の先端に円筒を 取り付け、その内部を加圧することによってエッチング液の付着を防いでも良い。 ここで、 厚み計測装置 A及びゥエツトェヅチング装置 Bからなる図 1のゥエツ トェヅチング装置を用 、た半導体ウェハ Wのウエットエツチング方法について、 一例をあげて説明しておく。  In addition, in order to prevent corrosion of the lens and the like due to the scattered etching solution, it is preferable that the probe head 13 be provided with a transparent sheet such as a salted vinyl, which is resistant to an etching solution, as a protective film. . Alternatively, a cylinder may be attached to the tip of the probe head 13 and the inside thereof may be pressurized to prevent the etchant from adhering. Here, a description will be given of an example of a wet etching method of a semiconductor wafer W using the etching apparatus of FIG. 1 including the thickness measuring apparatus A and the etching apparatus B.
まず、保持基板 2 1に保持された半導体ウェハ Wを、回転台 2 2上に載置する。 そして、 ェヅチング制御部 2 5からの指示信号に基づいて回転台 2 2の回転駆動 が開始される。 続いて、 エッチング液供給部 2 4に対して半導体ウェハ Wのェヅ チング面へのエッチング液の供給が指示されて、 半導体ウェハ Wのゥェヅトェヅ チングが開始される (エッチング開始ステップ)。  First, the semiconductor wafer W held on the holding substrate 21 is placed on the turntable 22. Then, the rotation drive of the turntable 22 is started based on the instruction signal from the etching control unit 25. Subsequently, the supply of the etchant to the etching surface of the semiconductor wafer W is instructed to the etchant supply unit 24, and the etching of the semiconductor wafer W is started (etching start step).
ゥエツトエッチングが開始されたら、 上述した厚み計測装置 A及び厚み計測方 法によって半導体ウェハ Wの厚みが計測される(厚み計測ステヅプ)。厚み計測は、 操作者から指示された計測時刻、 または、 あらかじめ設定されている時間間隔の  When the etching starts, the thickness of the semiconductor wafer W is measured by the thickness measuring device A and the thickness measuring method described above (thickness measuring step). Thickness measurement is performed at the measurement time specified by the operator or at a preset time interval.
11 計測時刻で自動的に行われる。 そして、 それぞれの計測時刻で取得された厚みデ 一夕から、 生厚み値算出部 1 6 bにおいて、 生厚み値が算出される。 また、 規定 時間が経過して充分な回数の厚み計測が実行された以降の厚み計測では、 各計測 時刻で算出された生厚み値から、 統計厚み値算出部 1 6 cにおいて、 厚みの時間 変化を示す厚み変化直線、 及び統計処理がされた統計厚み値が算出される。 11 It is performed automatically at the measurement time. Then, from the thickness data obtained at each measurement time, the raw thickness value is calculated in the raw thickness value calculation unit 16b. In addition, in the thickness measurement after a sufficient number of thickness measurements have been performed after the specified time has elapsed, the statistical thickness value calculation unit 16c calculates the time change of the thickness from the raw thickness value calculated at each measurement time. And a statistical thickness value subjected to statistical processing is calculated.
そして、 これらの厚み変化直線及び統計厚み値から、 実行中のウエットエッチ ング工程における半導体ウェハ Wの厚み及びその時間変化が評価される。 厚みの 評価については、 例えば厚み計測装置 Aの厚み算出部 1 6において自動的に評価 を行うことが可能である。 または、 厚み算出部 1 6に表示装置 (ディスプレイ) を接続しておき、 この表示装置に厚みデ一夕を表示させて、 表示されたデ一夕に 基づいて操作者が評価する構成としても良い。  Then, the thickness of the semiconductor wafer W and its time change in the wet etching process being performed are evaluated from the thickness change straight line and the statistical thickness value. Regarding the evaluation of the thickness, for example, the thickness can be automatically evaluated in the thickness calculating unit 16 of the thickness measuring device A. Alternatively, a configuration may be adopted in which a display device (display) is connected to the thickness calculator 16 and the display device displays the thickness data, and the operator evaluates based on the displayed data. .
ゥエツトエッチングの終了時刻となったら、 エッチング制御部 2 5からの指示 信号によって、ェヅチング液供給部 2 4によるエツチング液の供給が停止される。 続いて、 所定時間にわたって洗浄水が半導体ウェハ Wのエッチング面に供給され て、 半導体ウェハ Wが洗浄される。 洗浄水の供給を停止して半導体ウェハ Wの洗 浄が終了した後、 さらに所定時間、 回転台 2 2を回転駆動して半導体ウェハ Wの エッチング面から洗浄水を除去する。 そして、 洗浄水の除去が終了したら、 回転 駆動部 2 3による回転台 2 2の回転が停止されて、 半導体ウェハ Wのゥエツトェ ヅチングの全工程を終了する (ェヅチング終了ステヅプ)。  At the end time of the etching, the supply of the etching liquid by the etching liquid supply unit 24 is stopped by the instruction signal from the etching control unit 25. Subsequently, cleaning water is supplied to the etched surface of the semiconductor wafer W for a predetermined time, and the semiconductor wafer W is cleaned. After the supply of the cleaning water is stopped and the cleaning of the semiconductor wafer W is completed, the turntable 22 is driven to rotate for a predetermined time to remove the cleaning water from the etched surface of the semiconductor wafer W. Then, when the removal of the cleaning water is completed, the rotation of the turntable 22 by the rotation drive unit 23 is stopped, and the entire etching process of the semiconductor wafer W is completed (etching end step).
このとき、 ウエットエッチングの終了時刻としては、 あらかじめ与えられたェ ヅチング時間やェヅチングレートのデ一夕に基づいて決定しても良いが、 厚み計 測装置 Aによつて計測された生厚み値のデ一夕から得られた厚み変化直線から、 設定されている終点厚みになる終了時刻を算出して用いることが好ましい (終了 時刻算出ステップ)。  At this time, the end time of the wet etching may be determined based on the etching time or the etching rate data given in advance, but the raw thickness value measured by the thickness measuring device A may be determined. It is preferable to calculate and use the end time at which the set end point thickness is obtained from the thickness change line obtained overnight (end time calculation step).
この終了時刻の算出については、 統計厚み値算出部 1 6 cで自動的に求める構 成としても良いし、 表示装置に表示されたデ一夕から操作者が判断することも可  The calculation of the end time may be made automatically by the statistical thickness value calculator 16c, or may be determined by the operator based on the data displayed on the display device.
12 能である。 なお、 統計厚み値算出部 1 6 cにおいて終了時刻が求められる場合に は、 終了時刻を指示する終了指示信号を厚み算出部 1 6の統計厚み値算出部 1 6 cから出力し、 その終了指示信号に基づいてエッチング制御部 2 5がゥェヅトェ ヅチングの終了制御を行う構成とすることができる。 12 Noh. When the end time is obtained by the statistical thickness value calculating section 16c, an end instruction signal indicating the end time is output from the statistical thickness value calculating section 16c of the thickness calculating section 16 and the end instruction is given. The etching control unit 25 can be configured to perform the end control of the gate etching based on the signal.
上記した実施形態の厚み計測装置 A及び厚み計測方法による、 各計測時刻での 半導体ウェハ Wの生厚み値の計測及び算出方法について説明する。 図 2 A及び図 2 Bは、 図 1に示したゥェヅトエッチング装置における半導体ウェハ Wの厚みの 計測方法について模式的に示した図であり、 図 2 Aは、 半導体ウェハ Wへの計測 光の照射、及びプロ一ブへッド 1 3への反射光の再入力について示す側面断面図、 図 2 Bは、 光検出器 1 5において得られる干渉光の光強度分布を示すグラフであ る。 なお、 図 2 Aにおいては、 図の見易さのため、 半導体ウェハ Wに照射される 計測光の光路、 及びプローブへッド 1 3への反射光の光路を、 それぞれ位置をず らして示してある。  A method of measuring and calculating a raw thickness value of the semiconductor wafer W at each measurement time by the thickness measuring device A and the thickness measuring method of the above embodiment will be described. 2A and 2B are diagrams schematically showing a method for measuring the thickness of the semiconductor wafer W in the gate etching apparatus shown in FIG. 1, and FIG. 2A is a diagram showing the measurement on the semiconductor wafer W. FIG. 2B is a side cross-sectional view showing light irradiation and re-input of reflected light to the probe head 13, and FIG. 2B is a graph showing a light intensity distribution of interference light obtained in the photodetector 15. You. In FIG. 2A, the optical path of the measurement light applied to the semiconductor wafer W and the optical path of the reflected light to the probe head 13 are shown with their positions shifted for the sake of clarity. It is.
光力ブラ 1 2で分岐されてプローブへッド 1 3から出力された計測光 L◦は、 エッチング液層 E、 半導体ウェハ W、 及び保持基板 2 1を順次透過していくとと もに、 それらの隣接する層の各界面において計測光 L 0の一部がそれぞれ反射さ れる。 すなわち、 エッチング液層 Eの表面から反射光 L 1が、 半導体ウェハ Wの 上面から反射光 L 2が、 半導体ウェハ Wの下面から反射光 L 3が、 また、 保持基 板 2 1の下面から反射光 L 4がそれぞれ反射され、 プローブへヅド 1 3へと戻つ て再入力される。  The measurement light L◦ branched from the optical power bra 12 and output from the probe head 13 passes through the etchant layer E, the semiconductor wafer W, and the holding substrate 21 sequentially, and A part of the measurement light L0 is reflected at each interface between the adjacent layers. That is, the reflected light L1 from the surface of the etchant layer E, the reflected light L2 from the upper surface of the semiconductor wafer W, the reflected light L3 from the lower surface of the semiconductor wafer W, and the reflected light L3 from the lower surface of the holding substrate 21. The light L4 is reflected respectively, returned to the probe 13 and returned to the probe.
再入力された反射光 L 1〜L 4は、 図 2 Aに示されているように反射された界 面によってそれそれ異なる反射光路長を通過しており、 プローブへッド 1 3から 光力ブラ 1 2を介して光検出器 1 5に入力されるタイミングが異なる。 これに対 して、 参照光生成部 1 4において参照用光路 1 4 bの光路長を上述したように周 期的に変化させて、 参照光路長 (参照光の反射光に対する夕イミング) をスキヤ ンする。  The re-input reflected lights L 1 to L 4 are passing through different reflected light path lengths depending on the reflected surface as shown in FIG. The timing of input to the photodetector 15 via the bra 12 differs. On the other hand, the reference light generation unit 14 periodically changes the optical path length of the reference light path 14b as described above, and the reference light path length (the evening of the reference light with respect to the reflected light) is scanned. On.
13 このとき、 光力ブラ 1 2から反射光 L 1〜L 4が反射された各界面までの光路 長と、 光力ブラ 1 2から反射ミラー 1 4 cまでの光路長とがー致すると、 光路長 及びタイミングが一致した反射光と参照光とが干渉によって強め合い、 光検出器 1 5において大きい光強度の干渉光が検出される。 13 At this time, if the optical path length from the optical power blur 12 to each interface where the reflected light L1 to L4 is reflected and the optical path length from the optical power blur 12 to the reflection mirror 14c match, the optical path The reflected light and the reference light having the same length and timing are strengthened by interference, and the photodetector 15 detects interference light having a large light intensity.
このように光路長をスキャンして得られる参照光路長 (光路長変化量) と干渉 光強度の相関を示す光強度分布を、 図 2 Aの断面図と対応させて図 2 Bに示す。 このグラフにおいて、 一方の軸はスキャンされた参照用光路 1 4 bの光路長変ィ匕 量、 他方の軸は光検出器 1 5によって検出された干渉光の光強度を示している。 なお、 参照光路長 (光路長変化量) 及び光路長差は、 エッチング液層 E、 半導体 ウェハ W、 及び保持基板 2 1のそれぞれにおける屈折率の違いによって必ずしも それぞれの厚みにはそのままは対応しないが、 図 2 A及び図 2 Bにおいては、 説 明のために屈折率の違いがないものとして、 断面図及びグラフを対応させて図示 している。  FIG. 2B shows a light intensity distribution showing a correlation between the reference light path length (optical path length change amount) obtained by scanning the light path length and the interference light intensity in correspondence with the cross-sectional view of FIG. 2A. In this graph, one axis indicates the optical path length change amount of the scanned reference optical path 14b, and the other axis indicates the light intensity of the interference light detected by the photodetector 15. Note that the reference optical path length (optical path length change amount) and the optical path length difference do not necessarily correspond to the respective thicknesses due to the difference in the refractive index of each of the etchant layer E, the semiconductor wafer W, and the holding substrate 21. In FIG. 2A and FIG. 2B, for the sake of explanation, it is assumed that there is no difference in the refractive index, and the sectional view and the graph are shown in correspondence.
このグラフに示されているように、光路長変化量を小さい方から大きくする(参 照光路長を大きくする) 方向にスキャンしていくと、 エッチング液層 E表面から の反射光 L 1に対応する光強度ピーク P 1 (液面ピーク P 1 )、半導体ウェハ Wの 上面 (エッチング面) からの反射光 L 2に対応する光強度ピーク P 2 (ウェハ上 面ピーク P 2 )、半導体ウェハ Wの下面からの反射光 L 3に対応する光強度ピーク P 3 (ウェハ下面ピーク P 3 )、及び保持基板 2 1の下面からの反射光 L 4に対応 する光強度ピーク P 4 (基板下面ピーク P 4 ) が順次得られる。  As shown in this graph, scanning in the direction of increasing the optical path length change amount from the smaller one (increase the reference optical path length) corresponds to the reflected light L1 from the surface of the etchant layer E. Light intensity peak P 1 (liquid level peak P 1), light intensity peak P 2 corresponding to the reflected light L 2 from the upper surface (etched surface) of semiconductor wafer W (wafer upper surface peak P 2), and semiconductor wafer W The light intensity peak P 3 corresponding to the light L 3 reflected from the lower surface (peak P 3 on the lower surface of the wafer) and the light intensity peak P 4 corresponding to the light L 4 reflected from the lower surface of the holding substrate 21 (peak P 4 on the lower surface of the substrate). ) Are sequentially obtained.
これらの光強度ピーク: P 1〜P 4は、 光強度分布に対して適当な光強度の閾値 (スレヅショルド) を設定しておき、 ノイズ信号による小さい光強度ピークなど の余分なピークを除外して特定される。 図 2 Bにおいては、 そのような閾値強度 として、 光強度 P tを点線で示してある。  These light intensity peaks: For P1 to P4, set an appropriate light intensity threshold (threshold) for the light intensity distribution, and exclude extra peaks such as small light intensity peaks due to noise signals. Specified. In FIG. 2B, the light intensity Pt is indicated by a dotted line as such a threshold intensity.
また、 光強度ピークがスキャンされる光路長範囲は、 参照光生成部 1 4におけ る参照用光路 1 4 bでの光路長のスキャン範囲によって設定することができるが、  Also, the optical path length range over which the light intensity peak is scanned can be set by the scan range of the optical path length in the reference optical path 14 b in the reference light generation unit 14.
14 必要があれば、 さらにスキャンされた光路長範囲から光強度ピークの特定に用い る光路長範囲を選択して設定しても良い。 このような光路長範囲の選択は、 厚み 算出部 1 6にあらかじめ与えておいても良いし、 または、 厚み算出部 1 6に接続 された表示装置に表示された光強度分布から、 操作者がマウス力一ソルの操作な どによって選択して指示することも可能である。 14 If necessary, an optical path length range used for specifying a light intensity peak may be selected and set from the scanned optical path length range. Such selection of the optical path length range may be given to the thickness calculating section 16 in advance, or the operator may select the optical path length range from the light intensity distribution displayed on the display device connected to the thickness calculating section 16. It is also possible to select and give an instruction by operating the mouse cursor.
厚み計測においては、 得られた光強度分布に対して、 上記した閾値光強度の条 件、 あるいはさらに光路長範囲の条件等を適用して、 複数の光強度ピークを特定 する。 そして、 それらの光強度ピークから、 所定の選択基準でウェハ上面及び下 面からの反射光に対応する 2本の光強度ピークを選択する。  In the thickness measurement, a plurality of light intensity peaks are specified by applying the above-described condition of the threshold light intensity or the condition of the optical path length range to the obtained light intensity distribution. Then, from these light intensity peaks, two light intensity peaks corresponding to the reflected light from the upper surface and the lower surface of the wafer are selected based on a predetermined selection criterion.
ここで、 上記した光強度ピーク P 1〜P 4については、 それそれの光強度比等 は半導体ウェハ Wゃェヅチング液層 Eなどの状態によって変化するが、 その光路 長変化量に対する順番は変化しない。 例えば、 エッチング液層 Eの状態はノズル 2 4 aから流出されているエッチング液のエッチング面上での流れ方によって変 化するが、 このとき、 計測光の光路に対するエッチング液層 E表面の角度が変わ るので、 エッチング液層 E表面からプローブへヅド 1 3に到達する反射光 L 1の 光強度も変化する。 また、 半導体ウェハ Wとして用いられている物質 (S i、 G a A s、 D o p e d S iなど)や、保持基板 2 1の材質などによっても光強度比 は異なってくる。  Here, as for the above light intensity peaks P 1 to P 4, their light intensity ratios and the like vary depending on the state of the semiconductor wafer W etching liquid layer E and the like, but the order with respect to the optical path length variation does not change. . For example, the state of the etchant layer E changes depending on how the etchant flowing out of the nozzle 24a flows on the etching surface. At this time, the angle of the etchant layer E surface with respect to the optical path of the measurement light is changed. Therefore, the light intensity of the reflected light L1 reaching the probe 13 from the surface of the etching solution layer E to the probe also changes. The light intensity ratio also varies depending on the material used as the semiconductor wafer W (such as Si, GaAs, and DopSi), and the material of the holding substrate 21.
一方で、 光路長については、 上記のように光強度などの状態が変化した場合で も、 光強度ピーク P 1〜P 4の光路長に対する順番は変わらない。 したがって、 得られた複数の光強度ピークに対して、 光強度ピークの順番などを選択基準に用 いて 2本の光強度ピークを選択することによって、 ウェハ上面及び下面に対応す る光強度ピーク P 2、 P 3を選択することができる。  On the other hand, regarding the optical path length, even when the state such as the light intensity changes as described above, the order of the light intensity peaks P1 to P4 with respect to the optical path length does not change. Accordingly, by selecting two light intensity peaks for the obtained light intensity peaks using the order of the light intensity peaks as a selection criterion, the light intensity peaks P corresponding to the upper and lower surfaces of the wafer are obtained. 2, P3 can be selected.
そして、 図 2 Bに示す光強度分布において、 参照光路長が小さい方から 2番目 の光強度ピーク P 2と、 3番目の光強度ピーク P 3との間の光路長差は、 半導体 ウェハ Wの上面から下面までの光路長差に相当している。 したがって、 この 2本  Then, in the light intensity distribution shown in FIG. 2B, the optical path length difference between the second light intensity peak P 2 and the third light intensity peak P 3 from the smaller reference optical path length is the same as that of the semiconductor wafer W. This corresponds to the optical path length difference from the upper surface to the lower surface. Therefore, these two
15 の光強度ピーク P 2、 P 3の間の光路長差から、 半導体ウェハ Wの厚みの生厚み 値を算出することができる。 Fifteen The raw thickness value of the thickness of the semiconductor wafer W can be calculated from the optical path length difference between the light intensity peaks P2 and P3 of FIG.
特に、 1つの光強度ピークに対する光路長とその時間変化を計測するのではな く、 上記のように 2本の光強度ピーク P 2、 P 3を用いる計測方法によって、 半 導体ウェハ Wの厚みをより直接的に正しく計測できる。 さらに、 半導体ウェハ W のェヅチング面上にェヅチング液が流れているウエットェヅチングの実行中での 厚み計測が、 エツチング液の存在にかかわらず可能となる。  In particular, rather than measuring the optical path length and its time change with respect to one light intensity peak, the measurement method using the two light intensity peaks P 2 and P 3 as described above reduces the thickness of the semiconductor wafer W. It can measure more directly and correctly. Further, the thickness measurement during the execution of the wet etching in which the etching liquid is flowing on the etching surface of the semiconductor wafer W becomes possible regardless of the presence of the etching liquid.
上記した光強度ピーク P 2、 P 3の光路長差は、 半導体ウェハ Wの光学的厚み に相当する。 したがって、 最終的な生厚み値は、 得られた光路長差を半導体ゥェ ハの屈折率で割ることによって求められる。 この生厚み値の算出に用いられる半 導体ウェハ wの屈折率の値は、 屈折率が既知のものであれば、 その値を用いれば 良い。 また、 必要があれば、 マイクロゲージや顕微鏡などを用いた他の方法で厚 みが計測されたウェハであらかじめ屈折率を測定しておき、 その値を用いること が好ましい。  The optical path length difference between the light intensity peaks P 2 and P 3 described above corresponds to the optical thickness of the semiconductor wafer W. Therefore, the final green thickness value is obtained by dividing the obtained optical path length difference by the refractive index of the semiconductor wafer. As the value of the refractive index of the semiconductor wafer w used for calculating the raw thickness value, the value may be used if the refractive index is known. If necessary, it is preferable to measure the refractive index in advance on a wafer whose thickness has been measured by another method using a micro gauge, a microscope, or the like, and use that value.
ウェハ上面及び下面に対応する 2本の光強度ピーク P 2、 P 3を選択するため の所定の選択基準と I ^ては、 具体的にはいくつかの選択方法が適用可能である。 例えば、 生厚み値の算出に用いる光路長範囲を範囲 R 1または R 2 (図 2 B ) に 設定するとともに、 上から 2番目及び 3番目の光強度ピークを選択する方法があ る。 あるいは、 光路長範囲を範囲: R 1 (範囲 R 2 ) に設定するとともに、 下から 1番目及び 2番目 (下から 2番目及び 3番目) を選択する方法がある。  As the predetermined selection criterion and I ^ for selecting the two light intensity peaks P2 and P3 corresponding to the upper and lower surfaces of the wafer, specifically, some selection methods can be applied. For example, there is a method of setting the optical path length range used for calculating the raw thickness value to the range R1 or R2 (FIG. 2B), and selecting the second and third light intensity peaks from the top. Alternatively, there is a method of setting the optical path length range to the range: R 1 (range R 2) and selecting the first and second from the bottom (second and third from the bottom).
なお、 基板下面に対応する光強度ピーク P 4については、 保持基板 2 1の厚み 等によって、 光路長が長くなつて反射光 L 4が充分な強度で検出されないことが ある。 このような場合には、 安定して光強度ピークの特定を行うため、 光強度ピ ーク P 4が検出される光路長範囲が除外された光路長範囲 R 1を、 光強度ピーク の選択のために設定することが好ましい。 また、 保持基板 2 1が用いられていな い場合にも、 同様に光路長範囲 R 1が設定される。  Regarding the light intensity peak P4 corresponding to the lower surface of the substrate, the reflected light L4 may not be detected with a sufficient intensity due to a long optical path length due to the thickness of the holding substrate 21 and the like. In such a case, in order to stably identify the light intensity peak, the light path length range R1 excluding the light path length range where the light intensity peak P4 is detected is changed to the light intensity peak selection. It is preferable to set it. Further, even when the holding substrate 21 is not used, the optical path length range R 1 is set in the same manner.
16 以上により、 ゥェヅトエッチングの実行中において半導体ウェハ Wの厚みの計 測が可能な非接触式の厚み計測装置、及びそれを備えるゥエツトエツチング装置、 ゥエツトエツチング方法が得られる。 16 As described above, a non-contact type thickness measuring device capable of measuring the thickness of the semiconductor wafer W during the execution of the gate etching, and a liquid jet etching device and a liquid jet etching method including the same are obtained.
なお、 エッチング液層 Eの状態は上記したように変化し、 その厚みも表面の角 度と同様に時間とともに変動する。 これによつて、 光強度ピーク P l、 P 2の光 路長差が変化するが、 このとき、 光強度ピーク P 1のピーク位置がシフトするだ けでなく、 ェヅチング液層 Eが持つ屈折率のため、 プロ一ブへッド 1 3から半導 体ウェハ Wまでの光路長が変化する。 したがって、 光強度ピーク P 2、 P 3など も同様にそのピーク位置がシフトする。 この場合においても、 半導体ウェハ Wの 上面よりも下方 (半導体ウェハ W及び保持基板 2 1 ) に相当する光強度分布は全 体として同じだけシフトするので、 光強度ピーク P 2、 P 3の光路長差などの各 光路長差は、 ピーク位置のシフトには影響されない。  Note that the state of the etching solution layer E changes as described above, and the thickness thereof also changes with time similarly to the surface angle. This changes the optical path length difference between the light intensity peaks Pl and P2. At this time, not only does the peak position of the light intensity peak P1 shift, but also the refractive index of the etching liquid layer E. As a result, the optical path length from the probe head 13 to the semiconductor wafer W changes. Therefore, the peak positions of the light intensity peaks P 2 and P 3 are similarly shifted. Also in this case, the light intensity distribution corresponding to the portion below the upper surface of the semiconductor wafer W (the semiconductor wafer W and the holding substrate 21) shifts by the same amount as a whole, and thus the optical path lengths of the light intensity peaks P2 and P3. Each optical path length difference such as the difference is not affected by the shift of the peak position.
また、 半導体ウェハ Wのエッチング面とは反対の面にパターンが付いている場 合には、 パターンよりも計測光のビーム径が小さければ各パ夕一ン部位での厚み が、 また、 パターンよりもビーム径が大きければビーム範囲内での平均的な厚み が求められる。 また、 図 1に示したウエットェヅチング装置では、 エッチング中 には半導体ウェハ Wが回転されているため、 この場合、 厚み計測では平均的な厚 みを計測することになる。  When a pattern is formed on the surface of the semiconductor wafer W opposite to the etched surface, if the beam diameter of the measurement light is smaller than the pattern, the thickness at each part of the pattern is larger than the pattern. Also, if the beam diameter is large, an average thickness within the beam range can be obtained. Further, in the wet etching apparatus shown in FIG. 1, since the semiconductor wafer W is rotated during the etching, the average thickness is measured in the thickness measurement in this case.
上記した厚みの計測方法及び生厚み値の算出方法によって得られた生厚み値の デ一夕に対する統計処理等について説明する。 所定の時間間隔をおいた複数の計 測時刻のそれぞれでの厚み計測で算出された半導体ウェハ Wの厚みの値 (生厚み 値) は、 ( 1 ) 統計的なばらつき (統計ばらつき)、 及び (2 ) 計測エラーによる ばらつき (エラ一ばらつき) の 2つの原因による値のばらつきを有する。 このう ち、 ( 1 )統計ばらつきは正しく行われた厚み計測においても必然的に生じるもの であり、 この生厚み値のばらつきはデ一夕として許容される範囲である。  Statistical processing of the raw thickness value obtained by the above-described thickness measurement method and raw thickness value calculation method will be described. The thickness value (raw thickness value) of the semiconductor wafer W calculated by the thickness measurement at each of a plurality of measurement times at predetermined time intervals is as follows: (1) statistical variation (statistical variation); 2) There is a value variation due to two causes: variation due to measurement error (error variation). Among them, (1) Statistical variation is inevitable even in the thickness measurement performed correctly, and the variation in the raw thickness value is within the allowable range as a whole.
一方、 (2 )エラーばらつきは、例えば次のような原因によって発生する。すな  On the other hand, (2) error variation occurs due to, for example, the following causes. sand
17 わち、 エッチング液層 E表面の計測光に対する角度は、 上記したようにェヅチン グ液の流れ方によって変化し、 それによつてェヅチング液層 Eの表面からの反射 光 L 1の光強度が変化する。 特に、 その表面の波立ちによって液面の傾きが大き くなってくると、 反射光 L 1の計測光に対する角度が大きくなって、 プローブへ ッド 1 3に入力されなくなる。 17 That is, the angle of the surface of the etching liquid layer E with respect to the measurement light changes depending on the flow of the etching liquid as described above, and accordingly, the light intensity of the reflected light L1 from the surface of the etching liquid layer E changes. . In particular, when the surface of the liquid rises due to the undulation of the surface, the angle of the reflected light L1 with respect to the measurement light increases, so that the reflected light L1 is not input to the probe head 13.
このとき、 図 2 Bの光強度分布において、 液面ピーク P 1の光強度が閾値 P t よりも小さくなつて、 光強度ピークとして特定されない。 また、 計測条件によつ ては、 ウェハ上面ピーク P 2、 ウェハ下面ピーク P 3についても、 同様に光強度 ピークとして特定されないことがあり得る。  At this time, in the light intensity distribution of FIG. 2B, if the light intensity of the liquid level peak P1 is smaller than the threshold value Pt, it is not specified as the light intensity peak. Also, depending on the measurement conditions, the wafer upper surface peak P2 and the wafer lower surface peak P3 may not be similarly specified as the light intensity peak.
このような場合には、 各光強度ピークが各面に誤って割り当てられることとな るので、 生厚み値が誤って算出される。 例えば、 光路長範囲 R 2で上から 2番目 及び 3番目の光強度ピークを選択する場合には、 保持基板 2 1の厚みが生厚み値 として算出される計測エラーが生じる。 また、 光路長範囲 R 1で下から 1番目及 び 2番目の光強度ピークを選択する場合には、 エッチング液層 Eの厚み、 または エッチング液層 E及び半導体ウェハ Wを合わせた厚みが生厚み値として算出され る計測エラ一が生じる。 また、 各光強度ピーク P 1〜P 4の間に閾値レベル P t を超えるノィズ信号によるピークが発生した場合にも、 そのノイズピークが上記 した光強度ピークとされてしまい、 誤つた厚みが求められる。  In such a case, since each light intensity peak is incorrectly assigned to each surface, the raw thickness value is incorrectly calculated. For example, when selecting the second and third light intensity peaks from the top in the optical path length range R2, a measurement error occurs in which the thickness of the holding substrate 21 is calculated as the raw thickness value. When selecting the first and second light intensity peaks from the bottom in the optical path length range R1, the thickness of the etching solution layer E or the total thickness of the etching solution layer E and the semiconductor wafer W is determined by the raw thickness. A measurement error calculated as a value occurs. Also, when a peak due to a noise signal exceeding the threshold level Pt occurs between the light intensity peaks P1 to P4, the noise peak is regarded as the above light intensity peak, and an incorrect thickness is obtained. Can be
これらの統計ばらつき及びエラ一ばらつきによる生厚み値のばらつきに対して、 図 1に示したゥエツトエッチング装置における厚み計測方法及ぴゥエツトェヅチ ング方法では、 以下に述べるように、 生厚み値のデ一夕に対する許容範囲の適用 によるデータ選択と、 選択された生厚み値のデータに対して直線近似計算を行う ことによる厚み変化直線の決定とによって、 それそれの値ばらつきの影響を除去 または低減している。 すなわち、 生厚み値データの選択によってエラ一ばらつき の影響を除去するとともに、 直線近似計算によって統計ばらつきの影響を低減し ている。  With respect to the variation of the raw thickness value due to these statistical variations and error variations, the thickness measurement method and the etching method in the etching apparatus shown in FIG. Eliminating or reducing the effect of each value variation by selecting the data by applying the tolerance range in the evening and determining the thickness change line by performing a linear approximation calculation on the selected raw thickness value data I have. In other words, the effect of error variation is removed by selecting raw thickness value data, and the effect of statistical variation is reduced by linear approximation calculation.
18 以下、 計測時刻のそれぞれで算出された生厚み値からの厚み変ィヒ直線の決定方 法、 統計厚み値の算出方法、 及びウエットエッチングの終了時刻の決定方法につ いて具体的に説明する。 図 3は、 図 1に示したゥェヅトエッチング装置における 厚み計測方法及びゥエツトエッチング方法の一実施形態を示すフローチヤ一卜で ある。 18 Hereinafter, a method of determining a thickness variation straight line from the raw thickness values calculated at each measurement time, a method of calculating a statistical thickness value, and a method of determining the end time of wet etching will be specifically described. FIG. 3 is a flowchart showing one embodiment of a thickness measuring method and a wet etching method in the wet etching apparatus shown in FIG.
本ゥェヅトエッチング装置においては、 ゥエツトェヅチング装置 Bで半導体ゥ ェハ Wに対するゥエツトエッチングが開始されたら、 所定の時間間隔をおいた複 数の計測時刻 tのそれぞれで、厚み計測が行われる (ステヅプ S 101)。計測時 刻を指示する時間間隔としては、 例えば、 全体のエッチング時間 1〜2分に対し て 5Hzの時間間隔など、 エッチング時間やエッチングレートに応じて適宜設定 して、 その各計測時刻で自動的に厚み計測を実行することが好ましい。 また、 ェ ツチング時間の全体に対して一定の時間間隔でも良いし、 異なる時間間隔として も良い。  In the present etching apparatus, when the etching of the semiconductor wafer W is started by the etching apparatus B, the thickness is measured at each of a plurality of measurement times t at predetermined time intervals. The measurement is performed (Step S101). The time interval for instructing the measurement time is set appropriately according to the etching time and the etching rate, for example, a 5 Hz time interval for the entire etching time of 1 to 2 minutes, and automatically set at each measurement time. It is preferable to perform the thickness measurement at first. In addition, a fixed time interval may be used for the entire etching time, or a different time interval may be used.
計測光源 11から計測光が供給されて、 厚み計測が実行されたら、 光検出器 1 5及び参照光路長制御部 17からの各データが、 厚み算出部 16の信号処理回路 16 aを介して生厚み値算出部 16 bに入力される。  When the measurement light is supplied from the measurement light source 11 and the thickness measurement is performed, each data from the photodetector 15 and the reference optical path length control unit 17 is generated via the signal processing circuit 16 a of the thickness calculation unit 16. The value is input to the thickness value calculator 16b.
次に、 生厚み値算出部 16 bにおいて、 光強度分布 (図 2 A及び図 2 B参照) が作成されるとともに、 選択された 2本の光強度ピークを用いて、 その計測時刻 tにおける生厚み値 RTh (t)が算出される (S 102)。 ここで、 光強度分布 で特定された光強度ピークが 2本未満の場合は、 生厚み値を算出できないので、 RTh (t) =0 mとして、 その生厚み値を無効とする。  Next, the light thickness distribution (see FIGS. 2A and 2B) is created in the raw thickness value calculation unit 16b, and the raw light intensity distribution at the measurement time t is calculated using the two selected light intensity peaks. The thickness value RTh (t) is calculated (S102). Here, if the number of light intensity peaks specified in the light intensity distribution is less than two, the raw thickness value cannot be calculated, so that RTh (t) = 0 m and the raw thickness value is invalidated.
さらに、 算出された生厚み値に対して、 特定された光強度ピークのピーク数に よる分類が ONになっているかどうかを判断し(S 103)、 〇Nの場合のみ、 ピ ーク数による分類を行う (S 104)。 このピーク数による分類では、算出された 生厚み値 RTh (t) のデ一夕のうち、 光強度分布に対して設定された光路長範 囲内で閾値より大きい光強度を有するピークとして特定された光強度ピークの数  Furthermore, it is determined whether or not the classification based on the number of the specified light intensity peaks is ON for the calculated raw thickness value (S103). Classification is performed (S104). In the classification based on the number of peaks, the light identified as a peak having a light intensity larger than a threshold value within the optical path length range set for the light intensity distribution, out of the calculated raw thickness value RTh (t). Number of intensity peaks
19 が 3本未満であった場合に、 その生厚み値を無効とする。 19 If there are less than three, the raw thickness value is invalidated.
特定されたピーク数が 3本未満である場合のデ一夕は、 液面、 ウェハ上面、 及 ぴウェハ下面の光強度ピ一ク P 1、 P 2、 及び P 3のうちのいずれかが検出され ない計測エラ一が発生した場合に相当し、 誤った生厚み値が得られている可會性 が高いデ一夕である。 したがって、 上記したピーク数による分類を行うことによ つて、 計測エラ一を伴う生厚み値の少なくとも一部を除外して、 エラ一ばらつき の影響を低減することができる。 このようなピーク数による分類は、 液層 E及び ウェハ Wの厚みが同程度で、 後述する選別数値範囲や許容数値範囲の適用によつ ては計測エラ一発生の判定が難しい場合に、 特に効果がある。  If the number of identified peaks is less than 3, one of the light intensity peaks P1, P2, and P3 on the liquid surface, wafer upper surface, and wafer lower surface is detected. This corresponds to the case where an unmeasured error occurs, and it is highly likely that an incorrect raw thickness value is obtained. Therefore, by performing the above-described classification based on the number of peaks, it is possible to exclude at least a part of the raw thickness value accompanying the measurement error and reduce the influence of the error variation. Such classification based on the number of peaks is particularly effective when the thickness of the liquid layer E and the thickness of the wafer W are almost the same, and it is difficult to judge the occurrence of measurement errors by applying the selection numerical range and the allowable numerical range described later. effective.
ただし、 ウェハ Wの厚みが液層 Eよりも充分に厚いときなど、 後述するデ一夕 選別などの統計処理で充分な効果が得られる場合には、 このようなピーク数によ る分類は行わなくても良い。 この場合、 光強度ピークの数が 2本未満で、 生厚み 値の算出が不可能なデータ以外の生厚み値は、 すべて有効とされる。  However, when a sufficient effect can be obtained by statistical processing such as data selection, which will be described later, such as when the thickness of the wafer W is sufficiently thicker than the liquid layer E, such classification based on the number of peaks is performed. You don't have to. In this case, all raw thickness values other than data for which the number of light intensity peaks is less than two and for which raw thickness values cannot be calculated are valid.
次に、 最初の計測時刻から経過した時間が規定時間以上となつたかどうかを判 断し( S 1 0 5 )、規定時間未満であれば、厚み計測の実行及び生厚み値の算出を 繰り返す。 一方、 規定時間に到達していれば、 生厚み値に対する統計処理を開始 する。 この規定時間は、 半導体ウェハ Wの厚み評価に充分な生厚み値デ一夕の統 計点数が得られたかどうかを判断するための時間であり、 最初の計測時刻からの 経過時間 (時間幅) によって指定しておくことが好ましい。 あるいは、 厚み計測 が行われた統計点数によって規定時間を指定することも可能である。 以下におい ては、 規定時間を統計点数によらず時間幅によって指定することとし、 最初の計 測時刻からの時間幅 T cを規定時間とする。  Next, it is determined whether or not the time elapsed from the first measurement time is equal to or longer than a specified time (S105), and if less than the specified time, the execution of the thickness measurement and the calculation of the raw thickness value are repeated. On the other hand, if the specified time has been reached, statistical processing on the raw thickness value is started. This specified time is a time for judging whether or not a statistical score sufficient for the raw thickness value of the semiconductor wafer W to be evaluated has been obtained, and the elapsed time (time width) from the first measurement time. It is preferable to specify the Alternatively, it is also possible to specify the specified time based on the number of statistical points at which the thickness was measured. In the following, the specified time is specified by the time width regardless of the statistical score, and the time width Tc from the first measurement time is defined as the specified time.
厚み計測の開始からの時間が規定時間 T cに到達していると判断されたら、 続 いて、 生厚み値に対する許容数値範囲が設定済みであるかどうかを判断する (S 1 0 6 )。許容数値範囲が設定されていなければ、最初の計測時刻から規定時間 T cが経過した後の 1回目の計測時刻であるので、許容数値範囲の設定を実行する。  If it is determined that the time from the start of the thickness measurement has reached the specified time Tc, then it is determined whether the allowable numerical range for the raw thickness value has been set (S106). If the allowable numerical value range is not set, the allowable numerical value range is set since the time is the first measurement time after the specified time Tc has elapsed from the first measurement time.
20 上記した 1回目の計測時刻での許容数値範囲の設定方法(S 107〜S 109) について、 図 4〜図 7に模式的に示すグラフを参照しつつ説明する。 ここで、 以 下に示す図 4〜図 9のグラフにおいては、 それそれ横軸はエッチング時間 t (= 計測時刻 t)を示し、縦軸は各時刻での半導体ウェハ Wの厚み Thを示している。 また、 各グラフ中に示す計測時刻 tのそれそれで算出された生厚み値 RTh20 The method of setting the allowable numerical value range at the first measurement time (S107 to S109) will be described with reference to graphs schematically shown in FIGS. Here, in the graphs of FIGS. 4 to 9 shown below, the horizontal axis represents the etching time t (= measurement time t), and the vertical axis represents the thickness Th of the semiconductor wafer W at each time. I have. Also, the raw thickness value RTh calculated at each measurement time t shown in each graph
(t) については、 それぞれのグラフの段階で有効となっているものを黒丸で図 示している。 一方、 無効となっているものについては、 白丸で図示するか、 ある いはグラフの見易さのため図示を省略している。 また、 ウエットエッチングの目 標としてあらかじめ設定された半導体ウェハ Wの終点厚み ThOを、 それそれ横 軸に平行な点線によって示してある。 As for (t), those that are valid at each stage of the graph are indicated by black circles. On the other hand, those that are invalid are shown in white circles, or are omitted from the graph for easy viewing. In addition, the end thickness ThO of the semiconductor wafer W set in advance as a target of wet etching is indicated by a dotted line parallel to the horizontal axis.
図 4は、 t n = T cとなつて規定時間 T cに到達した 1回目の計測時刻 t nに 対して、 その計測時刻 t nまでに計測及び算出が行われた生厚み値の分布及び時 間変化の一例を示すグラフである。 各計測時刻での生厚み値のデ一夕のうち、 R Th (t) =0〃mとなっている 3デ一夕点の生厚み値は、 特定された光強度ピ —クが 2本未満で無効とされているデ一夕 (白丸) である。 許容数値範囲の設定 は、 それ以外の有効とされているデータ (黒丸) を用いて実行される。  Fig. 4 shows the distribution and time change of the raw thickness value measured and calculated up to the measurement time tn at the first measurement time tn when tn = Tc and the specified time Tc was reached. 5 is a graph showing an example of the above. Of the raw thickness values at each measurement time, among the raw thickness values at R Th (t) = 0〃m, the raw thickness values at three days are two identified light intensity peaks. It is a night (white circle) that is invalid for less than one day. The setting of the permissible numerical value range is performed using other valid data (black circles).
図 4に黒丸で示された有効な生厚み値 RTh (t) の時間変化に対して、 図 5 に示すように、 1回目のデ一夕選別計算を行う (S 107)。 まず、 それらの生厚 み値 RTh (t ) のデータに対して直線近似計算 (例えば最小二乗法などのフィ ヅティング計算)を実行して、近似直線である 1回目の厚み変化直線 F Th l(t) を決定する。 この厚み変化直線 FTh 1 (t) は、 デ一夕選別用の直線である。 続いて、 この選別用の厚み変化直線 FT h 1 (t) からの 1回目の選別数値範 囲 D T h 1を設定する。本実施形態においては、まず、厚み変化直線 F T 1 (t ) に対して、 生厚み値 RTh (t) のばらつき値び 1を算出する。 一方、 選別数値 範囲 DTh 1を求めるための選別定数 D The 1があらかじめ設定されている。 これらの数値から選別数値範囲 D Thlは、 DThl =び lxDThc lとして  As shown in Fig. 5, the first de-night selection calculation is performed for the time change of the effective raw thickness value RTh (t) indicated by the black circle in Fig. 4 (S107). First, a linear approximation calculation (for example, fitting calculation such as a least squares method) is performed on the data of the thickness values RTh (t), and the first thickness change line FThl ( t) is determined. This thickness change straight line FTh 1 (t) is a straight line for overnight selection. Subsequently, the first selection numerical range DTh1 from the thickness change line FTh1 (t) for selection is set. In the present embodiment, first, a variation value 1 of the raw thickness value RTh (t) is calculated with respect to the thickness change straight line F T1 (t). On the other hand, a screening constant D The 1 for obtaining the screening numerical range DTh 1 is set in advance. The numerical range selected from these values, D Thl, is DThl = lxDThc l
21 設定される。 なお、 生厚み値のばらつき値び 1としては、 例えば生厚み値デ一夕 の選別用の厚み変化直線からの標準偏差の値を用いることができる。 twenty one Is set. As the variation 1 of the raw thickness value, for example, a standard deviation value from a thickness change straight line for selection in the raw thickness value can be used.
設定された選別数値範囲 D T h 1によって、 生厚み値に対する 1回目のデ一夕 選別を行う。 すなわち、 厚み変化直線 FThl (t) から土 DThlの範囲 (図 5中、 選別用の厚み変化直線 FTh 1 (t) を上下から挟む 2本の破線で示され ている) 内にある生厚み値のデ一夕については、 引き続き有効とするとともに、 この範囲外にある生厚み値のデ一夕 (図 5中に白丸で示されている 5デ一夕点) を無交力とする。  According to the set sorting numerical range D Th1, the first de-sorting for the raw thickness value is performed. That is, the raw thickness value within the range from the thickness change straight line FThl (t) to the soil DThl (in FIG. 5, two broken lines sandwiching the thickness change straight line FTh 1 (t) for sorting from above and below) In addition to the above, the data shall remain valid, and the data of the raw thickness value outside this range (the 5 day data points indicated by white circles in Fig. 5) shall be deasserted.
次に、図 5に黒丸で示された有効な生厚み値 R Th(t)の時間変化に対して、 図 6に示すように、 2回目のデータ選別計算を行う (S 108)。データ選別計算 の方法については、 1回目とほぼ同様である。 すなわち、 生厚み値 RTh (t) のデ一夕に対して直線近似計算を実行して、 近似直線である 2回目の選別用の厚 み変化直線 FTh2 (t) を決定する。  Next, as shown in FIG. 6, a second data selection calculation is performed for the time change of the effective raw thickness value R Th (t) indicated by a black circle in FIG. 5 (S108). The method of data selection calculation is almost the same as the first one. That is, a straight-line approximation calculation is performed on the raw thickness value RTh (t) to determine a second thickness change straight line FTh2 (t) for the second sorting, which is an approximate line.
続いて、 この選別用の厚み変化直線 F Tli 2 (t) からの 2回目の選別数値範 囲 DTh2を、 同様にばらつき値び 2及び選別定数 DThc 2から、 DTh2二 び 2 xDThc 2として設定する。 そして、 厚み変化直線 FTh2 (t ) から土 DTh2の範囲内にある生厚み値のデ一夕を引き続き有効とし、 この範囲外にあ る生厚み値のデ一夕 (図 6中に白丸で示されている 3デ一夕点) を無効とする。 以上で、 本実施形態における生厚み値のデ一夕選別計算を終了する。  Subsequently, the second selection numerical range DTh2 from the thickness change straight line F Tli 2 (t) for selection is similarly set as DTh2 and 2 xDThc 2 from the variation value 2 and the selection constant DThc 2. . Then, the value of the raw thickness value within the range of soil DTh2 from the thickness change straight line FTh2 (t) remains valid, and the value of the raw thickness value outside this range (shown by a white circle in Fig. 6). Is invalidated). This is the end of the overnight selection calculation of the raw thickness value in the present embodiment.
次に、 上記したデー夕選別計算によって選別されて有効となっている生厚み値 Next, the raw thickness value that has been selected and validated by the data
RTh (t) のデータの時間変化から、 図 7に示すように、 許容数値範囲 DTh の設定を行う (S 109)。まず、 1回目及び 2回目のデ一夕選別計算で有効とさ れた生厚み値のデ一夕 (図 6及び図 7に黒丸で示されている 8デ一夕点) に対し て直線近似計算を実行して、 生厚み値の時間変化を示す近似直線である厚み変ィ匕 直線 FThtn (t ) を決定する。 ここで、 下付添字 tnは、 その厚み変化直線が 計測時刻 t nで決定された厚み変化直線であることを示している。 From the time change of the data of RTh (t), the allowable numerical value range DTh is set as shown in FIG. 7 (S109). First, a straight-line approximation was made to the raw thickness values that were validated in the first and second de-night selection calculations (the 8 de-night points indicated by black circles in Figures 6 and 7). The calculation is executed to determine a thickness change straight line FTh tn (t) which is an approximate straight line indicating a time change of the raw thickness value. Here, the subscript tn indicates that the thickness change straight line is the thickness change straight line determined at the measurement time tn.
22 続いて、 この厚み変化直線 FThtn (t)からの許容数値範囲 DThを設定す る。 本実施形態における許容数値範囲 DThの設定方法は、 上記した選別数値範 囲 DThl、 DTh2の設定方法とほぼ同様である。 すなわち、 まず、 厚み変化 直線 FTli.tn (t)に対して、 この段階で有効とされている生厚み値 RTh (t) の標準偏差などのばらつき値びを算出する。 一方、 許容数値範囲 DThを求める ための許容定数 D T h cがあらかじめ設定されている。 これらの数値から許容数 値範囲 DThは、 DTh =び xDTh cとして設定される。 twenty two Subsequently, an allowable numerical range DTh from the thickness change straight line FTh tn (t) is set. The method of setting the allowable numerical value range DTh in the present embodiment is almost the same as the method of setting the above-described selection numerical value ranges DThl and DTh2. That is, first, the thickness changes linearly FTli. Relative tn (t), calculates the variation value beauty, such as the standard deviation of effective and has been and raw thickness value RTh (t) at this stage. On the other hand, an allowable constant DT hc for obtaining the allowable numerical range DTh is set in advance. From these values, the allowable value range DTh is set as DTh = xDThc.
ここで設定された許容数値範囲 DThは、 以後の各計測時刻 (最初の計測時刻 から規定時間 T cが経過した後の 2回目以降の計測時刻) における生厚み値の有 効または無効の判定に用いられる。計測時刻 t nでの厚み変化直線 F Thtn(t) の決定、 及び許容数値範囲 DThの設定が終了したら、 次の厚み計測の実行及び 生厚み値の算出に移行する。 The allowable numerical range DTh set here is used to determine whether the raw thickness value is valid or invalid at each subsequent measurement time (the second or later measurement time after the specified time Tc has elapsed from the first measurement time). Used. After the determination of the thickness change line F Th tn (t) at the measurement time tn and the setting of the allowable numerical value range DTh are completed, the process proceeds to execution of the next thickness measurement and calculation of the raw thickness value.
最初の計測時刻から規定時間 T cが経過した後の 2回目以降の計測時刻では、 許容数値範囲が設定済みであるので、 上記したデ一夕選別及び許容数値範囲の (再) 設定を行わず、 許容範囲内外の判定等を実行する。 この 2回目以降の計測 時刻での許容範囲内外の判定方法等 (S 110〜S 112) について、 図 8、 図 9に模式的に示すグラフを参照しつつ説明する。  At the second and subsequent measurement times after the specified time Tc has elapsed from the first measurement time, the allowable numerical value range has already been set, so the above-mentioned data selection and the (re) setting of the allowable numerical value range are not performed. Perform judgments inside and outside the allowable range. The determination method (S110 to S112) of the inside and outside of the allowable range at the second and subsequent measurement times will be described with reference to the graphs schematically shown in FIGS.
2回目以降の計測時刻 tmで算出された生厚み値 RTh (tm) について、 図 8に示すように、許容範囲内外の判定を行う (S 110)。許容範囲内または範囲 外のいずれにあるかは、 具体的には、 前回の計測時刻 (ここでは、 計測時刻 tn とする) で決定された厚み変化直線 FT htn (t) から許容数値範囲 DTh内に あるかどうかによって判定される。 With respect to the raw thickness value RTh (tm) calculated at the second and subsequent measurement times tm, as shown in FIG. 8, a judgment is made as to whether the raw thickness value is outside the allowable range (S110). Whether it is within the allowable range or outside the range is determined from the thickness change straight line FT h tn (t) determined at the previous measurement time (here, measurement time tn). It is determined by whether it is within.
すなわち、 前回の計測時刻 t nで決定された厚み変化直線 FThtn (t) を外 揷 (点線) して、 今回の計測時刻 tmでの厚みの期待値 FT htn (tm) を求め る。 そして、 この計測時刻 tmで実行された厚み計測による生厚み値 RTh (t m) が、 FThtn (tm) から土 DThの範囲 (図 8中、 厚み変化直線 FTht That is, the thickness change straight line FTh tn (t) determined at the previous measurement time tn is excluded (dotted line), and the expected thickness FT h tn (tm) at the current measurement time tm is obtained. Then, the raw thickness value RTh (tm) obtained by the thickness measurement performed at the measurement time tm is in the range from FTh tn (tm) to the soil DTh (in FIG. 8, the thickness change straight line FTh t
23 n (t ) を上下から挟む 2本の破線で示されている) 内にあれば、 その生厚み値 RTh (tm) のデ一夕を有効とする。 一方、 範囲外であれば、 その生厚み値の デ一夕を無効とする。 そして、 その判定結果に基づいて、 今回の計測時刻 tmに 対する厚み変化直線 FT htm (t) の決定を行う (S 111)。 twenty three n (t) is shown by the two broken lines sandwiching it from above and below), the value of the raw thickness value RTh (tm) is validated. On the other hand, if it is out of the range, the value of the raw thickness value is invalidated. Then, based on the determination result, the thickness change straight line FThtm (t) for the current measurement time tm is determined (S111).
図 8のグラフにおいては、 生厚み値 RTh (tm) が、 前回の厚み変化直線 F In the graph of Fig. 8, the raw thickness value RTh (tm) is
Thtn (t)から許容数値範囲 DThの範囲内にある場合を示している。 このと き、 生厚み値 RTh (tm) は有効とされる。 そして、 図 9に示すように、 この 生厚み値 RTh (tm) を含み、 計測時刻 tmから規定時間 T cの時間範囲内に ある有効な生厚み値のデータ (黒丸) に対して、 直線近似計算を実行して、 新た な厚み変化直線 FT htm (t ) を決定する。 This shows a case where the value is within the allowable numerical range DTh from Th tn (t). At this time, the raw thickness value RTh (tm) is valid. Then, as shown in Fig. 9, a straight-line approximation is performed on the data of the effective raw thickness value (black circle) that includes this raw thickness value RTh (tm) and is within the time range of the specified time Tc from the measurement time tm. Perform the calculation to determine a new thickness change line, FThtm (t).
一方、 生厚み値 RTh (tm)が、 前回の厚み変化直線 FT htn (t) から許 容数値範囲 DThの範囲外であった場合には、 生厚み値; Th (tm) は無効と される。 このとき、 直線近似計算を実行せず、 前回の厚み変化直線をそのまま、 今回の計測時刻 tmでの厚み変化直線 FT htm (t) =FThtn (t)に決定す る。 On the other hand, if the raw thickness value RTh (tm) is out of the allowable numerical range DTh from the previous thickness change line FT h tn (t), the raw thickness value; Th (tm) is invalidated. You. In this case, without performing the linear approximation calculation, as it is the last thickness change linearly, that determine the current measurement time thickness variation in tm linear FT h tm (t) = FTh tn (t).
厚み変化直線 FThtm (t)が決定されたら、 計測時刻 tmでの統計厚み値 S Th (tm) を、 STh (tm) =FThtm ( t m) によって算出して (S 11 2)、その計測時刻 tmにおけるデ一夕の統計処理を終了する。そして、算出され た統計厚み値 STh (tm) が終点厚み ThOに到達しているかどうかを判断す る (S 113)。統計厚み値 STh (tm)があらかじめ設定されているゥェヅト エッチングの終点厚み ThO以下となっていたら、 厚み算出部 16 (統計厚み値 算出部 16 c) からエッチング制御部 25に終了指示信号を出力して、 ゥェヅト エッチングを終了する。 一方、 図 9に示すように、 終点厚み ThOに到達してい なければ、 ウエットエッチング工程を継続するとともに、 次の厚み計測を実行す る。 When the thickness change linearly FTH tm (t) is determined, the statistical thickness value S Th at the measurement time tm the (tm), is calculated by STh (tm) = FTh tm ( tm) (S 11 2), the measurement The statistical processing of the day at time tm is ended. Then, it is determined whether or not the calculated statistical thickness value STh (tm) has reached the end-point thickness ThO (S113). If the statistical thickness value STh (tm) is equal to or less than the preset gate etching end thickness ThO, the end signal is output from the thickness calculating unit 16 (statistical thickness calculating unit 16c) to the etching control unit 25. To complete the gate etching. On the other hand, as shown in FIG. 9, if the end point thickness ThO has not been reached, the wet etching process is continued and the next thickness measurement is performed.
上記した厚み計測装置、 厚み計測方法、 及びそれを用いたウエットエッチング  Thickness measuring device, thickness measuring method, and wet etching using the same
24 装置、 ウエットエッチング方法においては、 計測光からそれぞれ生成された反射 光及び参照光の干渉光を検出し、 光路長変化に対する光強度分布で半導体ウェハ の上面及び下面に相当する光強度ピークを特定、 選択して、 それらの光路長差か ら生厚み値を算出する。 これによつて、 エッチング液の存在にかかわらず、 ゥェ ヅトエッチングの実行中に半導体ウェハの厚みを計測することができる。 また、 ウェハ上面及び下面の両方からの 2本の光強度ピークを用いているため、 エッチ ング液層の状態などが変化しても、 正しく半導体ウェハの厚みを計測することが 可能である。 twenty four In the apparatus and the wet etching method, the reflected light generated from the measurement light and the interference light of the reference light are detected, and the light intensity peaks corresponding to the upper surface and the lower surface of the semiconductor wafer are specified by the light intensity distribution with respect to the change in the optical path length. Select and calculate the raw thickness value from the optical path length difference. Thus, the thickness of the semiconductor wafer can be measured during the gate etching regardless of the presence of the etching solution. Also, since two light intensity peaks from both the upper and lower surfaces of the wafer are used, the thickness of the semiconductor wafer can be accurately measured even when the state of the etching liquid layer changes.
また、 規定時間経過後で充分な生厚み値デ一夕の統計点数がある計測時刻にお いて、 許容数値範囲内外の判定、 及び直線近似計算による厚み変化直線の決定を 含む統計処理を行っている。 これによつて、 エラ一ばらつき及び統計ばらつきの 影響が充分に低減された統計厚み値を、 その計測時刻における半導体ウェハ Wの 厚みとして算出することができる。  In addition, at the measurement time when there is a sufficient number of statistics of the raw thickness value after the specified time has elapsed, statistical processing including determination of outside the allowable numerical value range and determination of the thickness change line by straight-line approximation calculation is performed. I have. Thereby, the statistical thickness value in which the influence of the error variation and the statistical variation is sufficiently reduced can be calculated as the thickness of the semiconductor wafer W at the measurement time.
特に、規定時間経過後で 1回目の計測時刻では、厚み変ィ匕直線を決定する前に、 データ選別のための予備的な直線近似計算、 選別数値範囲の設定、 及びデータの 選別を含むデ一夕選別計算を実行した後、 デ一夕選別計算の終了後に有効とされ ている生厚み値によって、 厚み変ィ匕直線の決定及び許容数値範囲の設定を行って いる。 これによつて、 厚み変ィヒ直線及び統計厚み値からエラ一ばらつき等の影響 を充分かつ効率的に除外して、 より正確に半導体ウェハ Wの厚みを得ることが可 能となる。 また、 2回目以降の計測時刻では、 設定されている許容数値範囲及び 前回の厚み変化直線から、 生厚み値について判定を行い、 生厚み値が有効とされ た場合のみ新たな直線近似計算を行うこととすることによって、 効率的な統計厚 み値の算出を実現している。  In particular, at the first measurement time after the lapse of the specified time, before determining the thickness change straight line, a preliminary linear approximation calculation for data selection, setting of the selection numerical range, and data including data selection are performed. After the overnight selection calculation is performed, the thickness change line is determined and the allowable numerical value range is set based on the raw thickness value that is valid after the end of the overnight selection calculation. As a result, it is possible to obtain the thickness of the semiconductor wafer W more accurately by efficiently and efficiently excluding the influence of error variation and the like from the thickness variation line and the statistical thickness value. At the second and subsequent measurement times, the raw thickness value is determined from the set allowable numerical value range and the previous thickness change line, and a new straight-line approximation calculation is performed only when the raw thickness value is valid. By doing so, efficient calculation of statistical thickness values has been realized.
規定時間経過後で 1回目の計測時刻における許容数値範囲及び選別数値範囲の 設定については、 いずれも、 その段階で有効な生厚み値の厚み変化直線からのば らつき値と、 あらかじめ決められた許容定数及び選別定数とに基づいて設定して  Regarding the setting of the permissible numerical value range and the selection numerical value range at the first measurement time after the lapse of the specified time, in both cases, the variation value from the thickness change straight line of the raw thickness value effective at that stage was determined in advance. Set based on the allowable constant and the selection constant
25 いる。 これによつて、 許容数値範囲及び選別数値範囲の設定において、 対象とな つている実際の生厚み値のデータの状態が反映されるので、 そのデ一夕に適した 数値範囲を設定することができる。 twenty five I have. As a result, the setting of the permissible numerical value range and the selection numerical value range reflects the state of the data of the actual raw thickness value that is the target, so it is possible to set a numerical value range suitable for the data it can.
ここで、 デ一夕選別を行うごとに生厚み値のデ一夕のばらつきは小さくなつて いくため、 許容数値範囲は、 通常は選別数値範囲よりも狭い数値範囲に設定され る。 すなわち、 上記した例においては、 1回目の選別数値範囲 D T h 1、 2回目 の選別数値範囲 D T h 2、 及び許容数値範囲 D T hは、 通常は D T h l > D T h 2 > D T hとなる。 ただし、 このような数値範囲の大小関係は主にばらつき値に よって決まるので、 ばらつき値を除いた許容定数、 選別定数では、 必ずしもこの ような大小関係とはならない。  Here, the dispersion of the raw thickness value decreases every time the selection is performed, so that the allowable numerical value range is usually set to a smaller value range than the selection numerical value range. That is, in the above-described example, the first selection numerical range DTh1, the second selection numerical range DTh2, and the allowable numerical range DTh usually satisfy DThl> DTh2> DTh. However, since the magnitude relation of such a numerical range is mainly determined by the variation value, such a magnitude relation is not always obtained by the allowable constant and the sorting constant excluding the variation value.
なお、 許容数値範囲及ぴ選別数値範囲については、 デ一夕のばらつき値があら かじめ予測されている場合には、 許容定数、 選別定数を指定することなく、 操作 者等が直接に数値範囲を設定しても良い。この場合でも、それぞれの数値範囲は、 上記した大小関係を満たすように設定しておくことが好ましい。 また、 必要があ れば、 いくつかの数値範囲 (例えば 2回目の選別数値範囲と最終的な許容数値範 囲) を等しく設定したり、 許容数値範囲を選別数値範囲よりもやや広く設定して も良い。 ,  Regarding the permissible numerical value range and the selected numerical value range, if the variation value is predicted in advance, the operator, etc., directly specifies the numerical value range without specifying the allowable constant and the selection constant. May be set. Even in this case, it is preferable that the respective numerical ranges are set so as to satisfy the magnitude relation described above. Also, if necessary, set some numerical ranges (for example, the second screening numerical range and the final allowable numerical range) equal, or set the allowable numerical range slightly wider than the screening numerical range. Is also good. ,
規定時間経過後で 2回目以降の計測時刻での直線近似計算においては、 その計 測時刻から規定時間の範囲よりも前にある生厚み値を無効として、 直線決定に用 いないこととしている。 このような範囲設定は、 エッチングレートがウエットェ ヅチング中に時間とともに変ィ匕していく場合などに、 その時間変化に対応する上 で有効であり、 充分な統計点数を確保しつつ、 より正確な厚み変化直線及び統計 厚み値を得ることができる。 ただし、 エッチングレートの変化等が問題とならな い場合には、 常に最初の計測時刻からの生厚み値を使用するようにしても良い。 この場合、 時間の経過とともに、 統計処理に用いる生厚み値デ一夕の統計点数が 増加する。  In the straight-line approximation calculation at the second and subsequent measurement times after the specified time has elapsed, the raw thickness value before the specified time range from the measurement time is invalidated and is not used for determining the straight line. Such a range setting is effective in responding to the time change when the etching rate changes over time during wet etching, etc., and ensures a more accurate score while securing a sufficient number of statistics. The thickness change line and the statistical thickness value can be obtained. However, if the change in the etching rate is not a problem, the raw thickness value from the first measurement time may always be used. In this case, as the time elapses, the statistical score of the raw thickness value used for the statistical processing increases.
26 上記した厚み計測装置を適用した図 1のゥエツトエッチング装置及びゥエツト エッチング方法では、 統計厚み値算出部 1 6 cで得られた厚み変ィヒ直線及び統計 厚み値に基づき、 ェヅチング制御部 2 5を介して、 ェヅチング液供給部 2 4によ るエッチング液の供給の停止によるゥェヅトェヅチングの終了、 あるいはェヅチ ングレートの変更などを適宜制御することが可能である。 特に、 ウエットエッチ ング終了後に得られる半導体ウェハの厚みについては、 厚み変化直線及び統計厚 み値と、 あらかじめ設定された終点厚みとに基づいて終了時刻を求めることとし ておくことによって、 終点厚みからのばらつきを抑制することができ、 半導体装 置製造の効率化と歩留まりの向上を実現することができる。 26 In the jet etching apparatus and the jet etching method of FIG. 1 to which the above-described thickness measuring apparatus is applied, the etching control section 25 is based on the thickness variation straight line and the statistical thickness value obtained by the statistical thickness calculating section 16c. Through this, it is possible to appropriately control the end of the etching by stopping the supply of the etching liquid by the etching liquid supply unit 24 or the change of the etching rate. In particular, regarding the thickness of the semiconductor wafer obtained after the end of wet etching, the end time is determined based on the thickness change line and the statistical thickness value and the preset end thickness, so that the end thickness can be calculated from the end thickness. This can suppress variations in the semiconductor device, and can improve the efficiency of semiconductor device manufacturing and improve the yield.
より具体的には、 上記の例では、 算出された統計厚み値が終点厚み以下となつ ていたら、 その計測時刻を終了時刻とするとともに、 厚み算出部 1 6 (統計厚み 値算出部 1 6 c ) からエッチング制御部 2 5に終了指示信号を出力して、 ゥエツ トェヅチングを終了している。  More specifically, in the above example, if the calculated statistical thickness value is equal to or less than the end point thickness, the measurement time is set to the end time, and the thickness calculation unit 16 (statistical thickness value calculation unit 16 c ) Outputs an end instruction signal to the etching control section 25 to end the etching.
また、 上記以外にも、 厚み変化直線を用いて終了時刻を予測する構成が可能で ある。すなわち、 図 9に示すように、厚み変化直線 F T h t m ( t ) を外揷(延長) して、 終点厚みを示す直線との交点を求め、 その交点での時刻 t eを終了時刻と して予測することができる。このように終了時刻をあらかじめ予測した場合には、 その予測された終了時刻に基づいてゥエツトエッチングの終了制御を行うことが 可能である。 In addition to the above, a configuration is also possible in which the end time is predicted using the thickness change straight line. That is, as shown in FIG. 9, the thickness change line FT h tm (t) is extended (extended) to find an intersection with the straight line indicating the end point thickness, and the time te at the intersection is defined as the end time. Can be predicted. When the end time is predicted in advance in this way, it is possible to control the end of the etching based on the predicted end time.
例えば、 終了指示信号によってエッチング液供給部 2 4からのェヅチング液の 供給が停止されてから、 洗浄水によってエツチング面上のェヅチング液が除去さ れるまでには、 ある程度のタイムラグがある。 そのため、 終点厚み以下となった 時刻を終了時刻とする制御方法では、 オーバーエッチを起こす可能性がある。 こ れに対して、 厚み変ィ匕直線によってあらかじめ予測された終了時刻を用い、 その 終了時刻よりもタイムラグの分だけ早い時刻にエッチング液の供給を停止すれば、 オーバ一ェツチを起こすことがなくなり、 半導体ウェハ Wの終点厚みを正確に制  For example, there is a certain time lag from when the supply of the etching liquid from the etching liquid supply unit 24 is stopped by the end instruction signal to when the etching liquid on the etching surface is removed by the cleaning water. Therefore, in the control method in which the time when the thickness becomes equal to or smaller than the end point thickness is set as the end time, overetching may occur. On the other hand, if the end time predicted in advance by the thickness change line is used and the supply of the etchant is stopped at a time earlier than the end time by the time lag, the overetching does not occur. Accurately control the end thickness of semiconductor wafer W
27 御することができる。 27 You can control.
本発明による厚み計測装置、 厚み計測方法、 及びそれを用いたウエットエッチ ング装置、 ウエットエッチング方法は、 上記した実施形態に限られるものではな く、 様々な構成の変形や工程の変更が可能である。例えば、 保持基板 2 1は、 薄 'くエッチングされる半導体ウェハ Wの機械的強度を維持するためのものであり、 半導体ウェハ Wの厚みによっては保持基板を用いずにエッチングを行うことも可 能である。  The thickness measuring apparatus, the thickness measuring method, the wet etching apparatus and the wet etching method using the same according to the present invention are not limited to the above-described embodiments, and various modifications of the configuration and change of the process are possible. is there. For example, the holding substrate 21 is for maintaining the mechanical strength of the thinly etched semiconductor wafer W. Depending on the thickness of the semiconductor wafer W, the etching can be performed without using the holding substrate. It is.
また、 半導体ウェハ Wからの反射光を取り込む光入力手段については、 上記し た実施形態では光出力手段であるプローブへッド 1 3を共用しているが、 光出力 手段とは別に光入力手段を設置する構成としても良い。 この場合、 反射光はプロ —ブへヅド 1 3への光ファイノ 1 3 aとは別の光ファイバに入力されるので、 光 力ブラ 1 2に加えて設けられた他の光力ブラなどを光結合手段として、 反射光と 参照光の結合が行われる。 また、 光入力/出力手段あるいは光分岐 Z結合手段の 一方のみを単一の光入出力手段あるいは光力ブラとし、 他方は別々とする構成も 可能である。  Further, as for the light input means for taking in the reflected light from the semiconductor wafer W, the probe head 13 which is the light output means is shared in the above embodiment, but the light input means is separate from the light output means. May be installed. In this case, the reflected light is input to an optical fiber different from the optical fin 13a to the probe head 13 so that another optical power bra provided in addition to the optical power bra 12 is used. The reflected light and the reference light are coupled by using the light coupling means. Further, it is also possible to adopt a configuration in which only one of the optical input / output means or the optical branching and Z-coupling means is used as a single optical input / output means or optical power blur, and the other is separated.
ゥエツトエッチングのエッチングレートについては、 必ずしも一定のレートと しなくても良い。 例えば、 厚み計測によって得られた半導体ウェハ Wの厚みの時 間変化に基づいて、 終点厚み (エッチングの終了時刻) が近づくにつれてエッチ ングレートが遅くなるようにエツチングを制御すれば、 さらに細かい厚みの制御 が可能となる。 この場合、 厚みの時間変化を求める生厚み値のデ一夕の時間範囲 を区分して、 エッチングレートを変更した時刻の前後で別々に厚み変化直線を求 めることも可能である。  エ ッ チ ン グ The etching rate of the etching does not necessarily have to be constant. For example, based on the time variation of the thickness of the semiconductor wafer W obtained by the thickness measurement, if the etching is controlled so that the etching rate becomes slower as the end point thickness (etching end time) approaches, more fine control of the thickness can be achieved. Becomes possible. In this case, it is also possible to divide the time range of the raw thickness value from which the time change of the thickness is obtained, and to obtain the thickness change straight lines before and after the time when the etching rate is changed.
また、 厚み変化直線及び統計厚み値を算出するための統計処理の各計算につい ても、 上記した実施形態以外にも様々に変形して良い。 例えば、 規定時間経過後 の 1回目の計測時刻において、 厚み変化直線の決定前に行われるデ一夕選別計算 については、 上記の実施形態では 2回のデ一夕選別を行っているが、 このデ一夕  In addition, each calculation of the statistical process for calculating the thickness change straight line and the statistical thickness value may be variously modified in addition to the above-described embodiment. For example, at the first measurement time after the lapse of the specified time, the de-night selection calculation performed before the determination of the thickness change line is performed twice in the above embodiment. Overnight
28 選別については、 1回のみ、 または 3回以上としても良い。 28 The screening may be done only once or three or more times.
産業上の利用可能性 Industrial applicability
本発明による厚み計測装置、 厚み計測方法、 及びそれを用いたウエットエッチ ング装置、 ウエットエッチング方法は、 反射光と参照光とを結合させた干渉光の 光強度分布から選択された 2本の光強度ピークの光路長差から半導体ウェハ Wの 生厚み値を算出するとともに、 許容数値範囲内外の判定及び厚み変化直線の決定 を含む統計処理、 特に規定時間経過後で 1回目の計測時刻では、 デ一夕選別計算 及び厚み変化直線の決定を含む統計処理を行うことによって、 エッチング液の存 在にかかわらず半導体ウェハの厚みを計測することが可能となるとともに、 エラ —ばらつき及び統計ばらつきの影響が充分に低減された統計厚み値を得ることが 可能な厚み計測装置及び方法等として利用することが可能である。  A thickness measuring apparatus, a thickness measuring method, a wet etching apparatus using the same, and a wet etching method according to the present invention include two lights selected from a light intensity distribution of interference light that combines reflected light and reference light. In addition to calculating the raw thickness value of the semiconductor wafer W from the difference in the optical path length of the intensity peak, statistical processing including judgment outside the allowable numerical value range and determination of the thickness change straight line, in particular, at the first measurement time after the specified time has elapsed, Performing statistical processing, including overnight selection calculations and determination of the thickness change line, makes it possible to measure the thickness of semiconductor wafers irrespective of the presence of an etchant. The present invention can be used as a thickness measuring device and a method capable of obtaining a sufficiently reduced statistical thickness value.
このような厚み計測を利用すれば、 それそれのウエットエツチング工程での現 実のエッチングレートやその時間変化などのエッチング条件を実測によって知る ことが可能となる。 したがって、 ウエットエッチングの終了後に、 得られた半導 体ウェハの厚みを計測する検査段階でゥエツトェツチングの良否を判断するので はなく、 エツチング中に厚みの時間変化を判断しつつウエットエツチングを制御 することができ、 半導体装置製造の効率化やその歩留まりの向上が実現される。  By using such thickness measurement, it is possible to know the actual etching rate and the etching conditions such as its time change in each wet etching process by actual measurement. Therefore, after the end of the wet etching, it is not necessary to judge the quality of the etching at the inspection stage for measuring the thickness of the obtained semiconductor wafer, but to perform the wet etching while judging the time change of the thickness during the etching. As a result, the efficiency of semiconductor device manufacturing and the yield can be improved.
29 29

Claims

請求の範囲 The scope of the claims
1 . エッチング液を用いたゥェヅトエッチングの実行中に半導体ウェハ の厚みを計測するための厚み計測装置であって、  1. A thickness measuring device for measuring the thickness of a semiconductor wafer during gate etching using an etching solution,
所定の時間間隔をおいた複数の計測時刻のそれそれで、 計測光を供給する計測 光源と、  A measurement light source for supplying a measurement light at each of a plurality of measurement times at predetermined time intervals;
前記計測光源からの前記計測光を分岐させる光分岐手段と、  Light branching means for branching the measurement light from the measurement light source,
前記光分岐手段で分岐された前記計測光の一方を、 計測対象である前記半導体 ウェハに対して出力させて、 前記ェヅチング液が供給されているェヅチング面側 から照射する光出力手段と、  A light output unit that outputs one of the measurement lights branched by the light branching unit to the semiconductor wafer to be measured, and irradiates the semiconductor wafer from the etching surface side to which the etching liquid is supplied;
前記光出力手段から照射された前記計測光が前記ェッチン 液または前記半導 体ウェハによって反射された反射光を入力させる光入力手段と、  Light input means for inputting reflected light of the measurement light irradiated from the light output means reflected by the etching liquid or the semiconductor wafer;
前記光分岐手段で分岐された前記計測光の他方を、 光路長が可変に構成された 参照用光路を通過させて、 参照光路長が設定された参照光を生成する参照光生成 手段と、  The other of the measurement light branched by the light branching unit, the reference light generation means for generating a reference light having a reference light path length set by passing a reference light path having a variable optical path length,
前記光入力手段からの前記反射光と、 前記参照光生成手段からの前記参照光と The reflected light from the light input unit; and the reference light from the reference light generation unit.
' を結合させて干渉光とする光結合手段と、 'An optical coupling means for coupling
前記光結合手段からの前記干渉光を検出する光検出手段と、  Light detection means for detecting the interference light from the light coupling means,
前記計測時刻のそれぞれにおいて、 前記参照光生成手段で設定された前記参照 光路長と、 前記光検出手段で検出された前記干渉光の光強度との相関を示す光強 度分布を用い、 設定された閾値よりも大きい光強度を有する複数の光強度ピーク から選択された 2本の光強度ピーク間での前記参照光路長の光路長差に基づいて、 前記半導体ウェハの生厚み値を算出する生厚み値算出手段と、  At each of the measurement times, it is set by using a light intensity distribution indicating a correlation between the reference light path length set by the reference light generation means and the light intensity of the interference light detected by the light detection means. Calculating a raw thickness value of the semiconductor wafer based on an optical path length difference of the reference optical path length between two light intensity peaks selected from a plurality of light intensity peaks having a light intensity greater than the threshold value. Thickness value calculating means,
最初の前記計測時刻から規定時間が経過した後の前記計測時刻のそれぞれにお いて、 設定された許容数値範囲内にあって有効とされている複数の前記生厚み値 の時間変化に対して、 直線近似計算による厚み変化直線の決定を行って、 前記厚 み変化直線から統計厚み値を算出する統計厚み値算出手段と、 を備え、  At each of the measurement times after a specified time has elapsed from the first measurement time, with respect to the time change of the plurality of raw thickness values that are valid within the set allowable numerical value range, Statistical thickness value calculating means for determining a thickness change line by a straight line approximation calculation and calculating a statistical thickness value from the thickness change line,
30 前記統計厚み値算出手段は、 最初の前記計測時刻から前記規定時間が経過した 後の 1回目の前記計測時刻で、 30 The statistical thickness value calculating means, at the first measurement time after the specified time has elapsed from the first measurement time,
その前記計測時刻までの有効な前記生厚み値の時間変化に対して、 直線近似計 算による選別用の厚み変化直線の決定と、 前記選別用の厚み変化直線からの選別 数値範囲の設定と、 前記選別数値範囲外にある前記生厚み値を無効とするデータ の選別とを含むデータ選別計算を行つた後、 選別後に有効とされている前記生厚 み値の時間変化に対して、 前記直線近似計算による前記厚み変化直線の決定を行 うとともに、 前記厚み変化直線からの前記許容数値範囲を設定することを特徴と する厚み計測装置。  For the time change of the effective raw thickness value up to the measurement time, determination of a thickness change straight line for sorting by a linear approximation calculation, setting of a selection numerical value range from the thickness change straight line for sorting, After performing the data selection calculation including the selection of the data that invalidates the raw thickness value that is outside the selection numerical range, the linear change is performed with respect to the time change of the raw thickness value that is valid after the selection. A thickness measuring device, wherein the thickness change line is determined by an approximate calculation, and the allowable numerical range is set from the thickness change line.
2 . 前記統計厚み値算出手段は、最初の前記計測時刻から前記規定時間 が経過した後の 2回目以降の前記計測時刻のそれぞれで、  2. The statistical thickness value calculating means, for each of the second and subsequent measurement times after the specified time has elapsed from the first measurement time,
その前記計測時刻で算出された前記生厚み値が、 前回の前記計測時刻で決定さ れた前記厚み変化直線から前記許容数値範囲の範囲内または範囲外にあるかによ つて、 その生厚み値の有効または無効を判定するとともに、  Depending on whether the raw thickness value calculated at the measurement time is within or outside the allowable numerical range from the thickness change line determined at the previous measurement time, the raw thickness value To determine the validity or invalidity of
前記生厚み値が前記許容数値範囲内にあって有効とされた場合には、 その前記 生厚み値を含む有効な複数の前記生厚み値の時間変化に対して、 前記直線近似計 算による前記厚み変化直線の決定を行って、 前記厚み変化直線から前記統計厚み 値を算出し、  When the raw thickness value is within the allowable numerical value range and is valid, with respect to a time change of a plurality of valid raw thickness values including the raw thickness value, the linear approximation calculation is used. Determine the thickness change line, calculate the statistical thickness value from the thickness change line,
前記生厚み値が前記許容数値範囲外にあって無効とされた場合には、 前回の前 記計測時刻で決定された前記厚み変化直線を、 そのまま今回の前記厚み変化直線 に決定して、 前記厚み変化直線から前記統計厚み値を算出することを特徴とする 請求項 1記載の厚み計測装置。  When the raw thickness value is out of the permissible numerical range and is invalid, the thickness change line determined at the previous measurement time is determined as the current thickness change line as it is, 2. The thickness measuring device according to claim 1, wherein the statistical thickness value is calculated from a thickness change straight line.
3 . 前記統計厚み値算出手段は、最初の前記計測時刻から前記規定時間 が経過した後の 1回目の前記計測時刻で、  3. The statistical thickness value calculating means performs the first measurement time after the specified time has elapsed from the first measurement time,
前記許容数値範囲を、 前記選別数値範囲よりも狭い数値範囲に設定することを 特徴とする請求項 1または 2記載の厚み計測装置。  3. The thickness measuring device according to claim 1, wherein the allowable numerical value range is set to a numerical value range narrower than the selected numerical value range.
31 31
4 . 前記統計厚み値算出手段は、最初の前記計測時刻から前記規定時間 が経過した後の 1回目の前記計測時刻で、 4. The statistical thickness value calculating means performs the first measurement time after the specified time has elapsed from the first measurement time,
前記選別数値範囲を、 選別の対象となつている前記生厚み値の前記選別用の厚 み変化直線からのばらつき値と、 あらかじめ決められた選別定数とに基づいて設 定するとともに、  The selection numerical range is set based on a variation value of the raw thickness value to be selected from the thickness change straight line for selection and a predetermined selection constant,
前記許容数値範囲を、 選別後に有効とされている前記生厚み値の前記厚み変化 直線からのばらつき値と、 あらかじめ決められた許容定数とに基づいて設定する ことを特徴とする請求項 1〜 3のいずれか一項記載の厚み計測装置。  The said permissible numerical value range is set based on a variation value from the said thickness change straight line of the raw thickness value validated after sorting, and a predetermined permissible constant. The thickness measuring device according to any one of claims 1 to 4.
5 . 前記統計厚み値算出手段は、前記計測時刻のそれそれで、前記光強 度ピークの数が 3本未満であった場合に、 その前記生厚み値を無効とすることを 特徴とする請求項 1〜 4のいずれか一項記載の厚み計測装置。  5. The statistical thickness value calculating means invalidates the raw thickness value when the number of the light intensity peaks is less than three at each of the measurement times. The thickness measuring device according to any one of claims 1 to 4.
6 . 前記統計厚み値算出手段は、最初の前記計測時刻から前記規定時間 が経過した後の 2回目以降の前記計測時刻のそれぞれで、  6. The statistical thickness value calculating means performs the measurement at each of the second and subsequent measurement times after the specified time has elapsed from the first measurement time,
その前記計測時刻から前記規定時間の範囲外にある前記生厚み値を無効とする ことを特徴とする請求項 1〜 5のいずれか一項記載の厚み計測装置。  The thickness measuring device according to any one of claims 1 to 5, wherein the raw thickness value outside the range of the specified time from the measurement time is invalidated.
7 . 請求項 1〜 6のいずれか一項記載の厚み計測装置を備えるウエット エッチング装置であって、  7. A wet etching apparatus comprising the thickness measuring apparatus according to any one of claims 1 to 6,
前記ゥエツトエツチングの対象となる前記半導体ウェハの前記ェッチング面に、 前記ェッチング液を供給するエツチング液供給手段と、  An etching liquid supply unit configured to supply the etching liquid to the etching surface of the semiconductor wafer to be subjected to the etching;
前記ェヅチング液供給手段による前記ェヅチング液の供給を制御するエツチン グ制御手段と  Etching control means for controlling the supply of the etching liquid by the etching liquid supply means;
を備えることを特徴とするゥェヅトェヅチング装置。 A cutting device, comprising:
8 . 前記厚み計測装置の前記統計厚み値算出手段は、决定された前記厚 み変化直線から、 あらかじめ設定された終点厚みに基づいて前記ゥエツトエッチ ングの終了時刻を求めて、 前記終了時刻を指示する終了指示信号を出力し、 前記ェッチング制御手段は、 前記終了指示信号に基づいて、 前記ェッチング液  8. The statistical thickness value calculating means of the thickness measuring device obtains an end time of the etching from the determined thickness change line based on a preset end point thickness, and indicates the end time. Outputting an end instruction signal, wherein the etching control means, based on the end instruction signal,
32 供給手段による前記ェッチング液の供給を停止させることを特徴とする請求項 7 記載のウエットエツチング装置。 32 8. The wet etching apparatus according to claim 7, wherein the supply of the etching liquid by a supply unit is stopped.
9 . エッチング液を用いたゥェヅトエッチングの実行中に半導体ウェハ の厚みを計測するための厚み計測方法であつて、  9. A thickness measurement method for measuring the thickness of a semiconductor wafer during gate etching using an etchant,
所定の時間間隔をおいた複数の計測時刻のそれぞれで、 計測光源から計測光を 供給する計測光供給ステツプと、  A measuring light supply step for supplying measuring light from a measuring light source at each of a plurality of measuring times at predetermined time intervals;
前記計測光源からの前記計測光を分岐させる光分岐ステヅプと、  An optical branching step for branching the measurement light from the measurement light source;
前記光分岐ステップで分岐された前記計測光の一方を、 計測対象である前記半 導体ウェハに対して出力させて、 前記ェヅチング液が供給されているェヅチング 面側から照射する光出力ステップと、  A light output step of outputting one of the measurement lights branched in the light branching step to the semiconductor wafer to be measured and irradiating the semiconductor wafer from the etching surface side to which the etching liquid is supplied;
前記光出力ステップで照射された前記計測光が前記ェッチング液または前記半 導体ウェハによって反射された反射光を入力させる光入力ステップと、  A light input step of inputting reflected light reflected by the etching liquid or the semiconductor wafer to the measurement light irradiated in the light output step;
前記光分岐ステツプで分岐された前記計測光の他方を、 光路長が可変に構成さ れた参照用光路を通過させて、 参照光路長が設定された参照光を生成する参照光 生成ステップと、  A reference light generating step of passing the other of the measurement light branched in the light branching step through a reference optical path having a variable optical path length to generate reference light having a set reference optical path length;
前記光入力ステップで入力された前記反射光と、 前記参照光生成ステヅプで生 成された前記参照光とを結合させて干渉光とする光結合ステヅプと、  An optical coupling step in which the reflected light input in the optical input step and the reference light generated in the reference light generation step are combined into interference light;
前記光結合ステップで結合された前記干渉光を検出する光検出ステップと、 前記計測時刻のそれぞれにおいて、 前記参照光生成ステツプで設定された前記 参照光路長と、 前記光検出ステップで検出された前記干渉光の光強度との相関を 示す光強度分布を用い、 設定された閾値よりも大きい光強度を有する複数の光強 度ピークから選択された 2本の光強度ピーク間での前記参照光路長の光路長差に 基づいて、 前記半導体ウェハの生厚み値を算出する生厚み値算出ステップと、 最初の前記計測時刻から規定時間が経過した後の前記計測時刻のそれそれにお いて、 設定された許容数値範囲内にあって有効とされている複数の前記生厚み値 の時間変化に対して、 直線近似計算による厚み変化直線の決定を行って、 前記厚  A light detecting step of detecting the interference light combined in the light combining step; at each of the measurement times, the reference light path length set in the reference light generating step; and the light detected in the light detecting step. The reference optical path length between two light intensity peaks selected from a plurality of light intensity peaks having a light intensity greater than a set threshold value using a light intensity distribution indicating a correlation with the light intensity of the interference light. A raw thickness value calculating step of calculating a raw thickness value of the semiconductor wafer based on the optical path length difference of the semiconductor wafer; and setting of each of the measurement times after a specified time has elapsed from the first measurement time With respect to the time change of the plurality of raw thickness values that are valid within the allowable numerical range, a thickness change straight line is determined by linear approximation calculation, and the thickness change line is determined.
33 み変化直線から統計厚み値を算出する統計厚み値算出ステップと、 を備え、 前記統計厚み値算出ステツプにおいて、 最初の前記計測時刻から前記規定時間 が経過した後の 1回目の前記計測時刻で、 33 A statistical thickness value calculating step of calculating a statistical thickness value from the change line.In the statistical thickness value calculating step, at the first measurement time after the specified time has elapsed from the first measurement time,
その前記計測時刻までの有効な前記生厚み値の時間変化に対して、 直線近似計 算による選別用の厚み変化直線の決定と、 前記選別用の厚み変化直線からの選別 数値範囲の設定と、 前記選別数値範囲外にある前記生厚み値を無効とするデ一夕 の選別とを含むデータ選別計算を行った後、 選別後に有効とされている前記生厚 み値の時間変化に対して、 前記直線近似計算による前記厚み変化直線の決定を行 うとともに、 前記厚み変化直線からの前記許容数値範囲を設定することを特徴と する厚み計測方法。  For the time change of the effective raw thickness value up to the measurement time, determination of a thickness change straight line for sorting by a linear approximation calculation, setting of a selection numerical value range from the thickness change straight line for sorting, After performing data selection calculation including data selection that invalidates the raw thickness value that is out of the selected numerical value range, with respect to a time change of the raw thickness value that is valid after the selection, A thickness measurement method comprising: determining the thickness change line by the straight line approximation calculation; and setting the allowable numerical range from the thickness change line.
1 0 . 前記統計厚み値算出ステツプにおいて、最初の前記計測時刻から 前記規定時間が経過した後の 2回目以降の前記計測時刻のそれそれで、  10. In the statistical thickness value calculation step, each of the second and subsequent measurement times after the specified time has elapsed from the first measurement time,
その前記計測時刻で算出された前記生厚み値が、 前回の前記計測時刻で決定さ れた前記厚み変化直線から前記許容数値範囲の範囲内または範囲外にあるかによ つて、 その生厚み値の有効または無効を判定するとともに、  Depending on whether the raw thickness value calculated at the measurement time is within or outside the allowable numerical range from the thickness change line determined at the previous measurement time, the raw thickness value To determine the validity or invalidity of
前記生厚み値が前記許容数値範囲内にあって有効とされた場合には、 その前記 生厚み値を含む有効な複数の前記生厚み値の時間変化に対して、 前記直線近似計 算による前記厚み変化直線の決定を行って、 前記厚み変化直線から前記統計厚み 値を算出し、  When the raw thickness value is within the allowable numerical value range and is valid, with respect to a time change of a plurality of valid raw thickness values including the raw thickness value, the linear approximation calculation is used. Determine the thickness change line, calculate the statistical thickness value from the thickness change line,
前記生厚み値が前記許容数値範囲外にあって無効とされた場合には、 前回の前 記計測時刻で決定された前記厚み変化直線を、 そのまま今回の前記厚み変化直線 に決定して、 前記厚み変化直線から前記統計厚み値を算出することを特徴とする 請求項 9記載の厚み計測方法。  If the raw thickness value is out of the permissible numerical value range and is invalid, the thickness change line determined at the previous measurement time is determined as the current thickness change line as it is, 10. The thickness measurement method according to claim 9, wherein the statistical thickness value is calculated from a thickness change straight line.
1 1 . 前記統計厚み値算出ステツプにおいて、最初の前記計測時刻から 前記規定時間が経過した後の 1回目の前記計測時刻で、  11. In the statistical thickness value calculation step, at the first measurement time after the specified time has elapsed from the first measurement time,
前記許容数値範囲を、 前記選別数値範囲よりも狭い数値範囲に設定することを  Setting the permissible numerical range to a numerical range narrower than the selected numerical range.
34 特徴とする請求項 9または 1 0記載の厚み計測方法。 34 The thickness measuring method according to claim 9 or 10, wherein the thickness is measured.
1 2 . 前記統計厚み値算出ステ、ップにおいて、最初の前記計測時刻から 前記規定時間が経過した後の 1回目の前記計測時刻で、  1 2. In the statistical thickness value calculation step, at the first measurement time after the specified time has elapsed from the first measurement time,
前記選別数値範囲を、 選別の対象となつている前記生厚み値の前記選別用の厚 み変化直線からのばらつき値と、 あらかじめ決められた選別定数とに基づいて設 定するとともに、  The selection numerical range is set based on a variation value of the raw thickness value to be selected from the thickness change straight line for selection and a predetermined selection constant,
前記許容数値範囲を、 選別後に有効とされている前記生厚み値の前記厚み変化 直線からのばらつき値と、 あらかじめ決められた許容定数とに基づいて設定する ことを特徴とする請求項 9〜 1 1のいずれか一項記載の厚み計測方法。  The said allowable numerical value range is set based on the variation value from the said thickness change straight line of the raw thickness value validated after sorting, and a predetermined allowable constant. 3. The thickness measuring method according to any one of the above items 1.
1 3 . 前記統計厚み値算出ステツプにおいて、前記計測時刻のそれぞれ で、 前記光強度ピークの数が 3本未満であった場合に、 その前記生厚み値を無効 とすることを特徴'とする請求項 9〜 1 2のいずれか一項記載の厚み計測方法。  13. In the statistical thickness value calculating step, when the number of the light intensity peaks is less than 3 at each of the measurement times, the raw thickness value is invalidated. Item 13. The thickness measuring method according to any one of Items 9 to 12.
1 4 . 前記統計厚み値算出ステツプにおいて、最初の前記計測時刻から 前記規定時間が経過した後の 2回目以降の前記計測時刻のそれそれで、  14. In the statistical thickness value calculation step, each of the second and subsequent measurement times after the specified time has elapsed from the first measurement time,
その前記計測時刻から前記規定時間の範囲外にある前記生厚み値を無効とする ことを特徴とする請求項 9〜 1 3のいずれか一項記載の厚み計測方法。  The thickness measuring method according to any one of claims 9 to 13, wherein the raw thickness value outside the range of the specified time from the measurement time is invalidated.
1 5 . 請求項 9〜 1 4のいずれか一項記載の厚み計測方法を含むゥエツ トエツチング方法であって、  15. An etching method including the thickness measuring method according to any one of claims 9 to 14, wherein
前記ゥエツトエッチングの対象となる前記半導体ウェハの前記エッチング面に、 前記ェッチング液を供給して前記ウエットエッチングを開始するエツチング開始 ステップと、  An etching start step of supplying the etching solution to the etching surface of the semiconductor wafer to be subjected to the wet etching to start the wet etching;
前記ェッチング開始ステップで開始された前記ゥェットエツチングの実行中に、 前記時間間隔をおいた複数の前記計測時刻のそれぞれで、 前記厚み計測方法によ つて前記半導体ウェハの厚みを計測する厚み計測ステップと、  A thickness measurement step of measuring the thickness of the semiconductor wafer by the thickness measurement method at each of the plurality of measurement times at the time intervals during the execution of the wet etching started in the etching start step; When,
前記エッチング液の供給を停止して前記ゥエツトエッチングを終了するエッチ ング終了ステップと  An etching ending step of stopping the supply of the etching solution and ending the etching.
35 を有することを特徴とするゥエツトエツチング方法。 35 (2) An etching method.
1 6 . 前記厚み計測ステップで決定された前記厚み変化直線から、あら かじめ設定された終点厚みに基づいて前記ゥエツトエツチングの終了時刻を求め る終了時刻算出ステップをさらに有し、  16. An end time calculating step of obtaining the end time of the etching based on the preset end point thickness from the thickness change line determined in the thickness measuring step,
前記ェツチング終了ステップにおいて、 前記終了時刻算出ステツプで求められ た前記終了時刻に基づいて前記ェッチング液の供給を停止することを特徴とする 請求項 1 5記載のゥエツトエッチング方法。  16. The method according to claim 15, wherein, in the etching ending step, the supply of the etching liquid is stopped based on the ending time obtained in the ending time calculating step.
1 7 . 前記終了時刻算出ステップにおいて、前記厚み変化直線から算出 された前記統計厚み値が前記終点厚み以下となつた前記計測時刻を前記終了時刻 とすることを特徴とする請求項 1 6記載のゥエツトエッチング方法。  17. The end time calculation step, wherein the measurement time at which the statistical thickness value calculated from the thickness change straight line is equal to or less than the end point thickness is set as the end time.ゥ Etching method.
1 8 . 前記終了時刻算出ステップにおいて、前記厚み変ィヒ直線を用いて 前記終了時刻を予測することを特徴とする請求項 1 6記載のゥエツトエッチング 方法。  18. The jet etching method according to claim 16, wherein in the end time calculating step, the end time is predicted using the thickness variation straight line.
36 36
PCT/JP2001/000351 2000-05-01 2001-01-19 Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them WO2001084620A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/275,136 US6768552B2 (en) 2000-05-01 2001-01-19 Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
AU2001227075A AU2001227075A1 (en) 2000-05-01 2001-01-19 Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
EP01901468A EP1296367B1 (en) 2000-05-01 2001-01-19 Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
DE60127673T DE60127673T2 (en) 2000-05-01 2001-01-19 THICKNESS MEASURING DEVICE, THICKNESS MEASUREMENT METHOD AND NUTRITIONING APPARATUS AND WET ASSAY PROCESS THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000132607A JP4486217B2 (en) 2000-05-01 2000-05-01 Thickness measuring apparatus, wet etching apparatus using the same, and wet etching method
JP2000-132607 2000-05-01

Publications (1)

Publication Number Publication Date
WO2001084620A1 true WO2001084620A1 (en) 2001-11-08

Family

ID=18641274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000351 WO2001084620A1 (en) 2000-05-01 2001-01-19 Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them

Country Status (7)

Country Link
US (1) US6768552B2 (en)
EP (1) EP1296367B1 (en)
JP (1) JP4486217B2 (en)
AT (1) ATE358892T1 (en)
AU (1) AU2001227075A1 (en)
DE (1) DE60127673T2 (en)
WO (1) WO2001084620A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091659A1 (en) * 2002-04-25 2003-11-06 Hamamatsu Photonics K.K. Thickness measuring device
JPWO2020071109A1 (en) * 2018-10-05 2021-02-15 三菱電機株式会社 Machine tool and electric discharge machining equipment
US11234213B2 (en) 2010-11-19 2022-01-25 Iot Holdings, Inc. Machine-to-machine (M2M) interface procedures for announce and de-announce of resources
CN117968545A (en) * 2024-03-28 2024-05-03 钛玛科(北京)工业科技有限公司 Thickness measuring method and system for foam cotton with patterns

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897964B2 (en) * 2000-01-21 2005-05-24 Hamamatsu Photonics K.K. Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
GB2404787B (en) * 2000-07-05 2005-04-13 Metryx Ltd Apparatus and method for investigating semiconductor wafers
GB0016562D0 (en) 2000-07-05 2000-08-23 Metryx Limited Apparatus and method for investigating semiconductor wafers
JP2003307458A (en) * 2002-04-15 2003-10-31 Akifumi Ito Method and apparatus for measurement of temperature of substrate
US7116429B1 (en) * 2003-01-18 2006-10-03 Walecki Wojciech J Determining thickness of slabs of materials by inventors
US7256104B2 (en) 2003-05-21 2007-08-14 Canon Kabushiki Kaisha Substrate manufacturing method and substrate processing apparatus
JP4364242B2 (en) * 2004-03-22 2009-11-11 三益半導体工業株式会社 Process management method and spin etching apparatus in spin etching
DE102004045956B4 (en) * 2004-09-22 2008-12-11 Universität des Saarlandes Etch mount for a substrate and etch system with an etch mount
US7502121B1 (en) * 2004-11-24 2009-03-10 Ahbee 1, L.P. Temperature insensitive low coherence based optical metrology for nondestructive characterization of physical characteristics of materials
FR2892188B1 (en) 2005-10-14 2007-12-28 Nanotec Solution Soc Civ Ile METHOD AND DEVICE FOR MEASURING PATTERN HEIGHTS
JP2008012542A (en) * 2006-07-03 2008-01-24 Hamamatsu Photonics Kk Laser beam machining method
JP4939304B2 (en) * 2007-05-24 2012-05-23 東レエンジニアリング株式会社 Method and apparatus for measuring film thickness of transparent film
GB0719469D0 (en) 2007-10-04 2007-11-14 Metryx Ltd Measurement apparatus and method
GB0719460D0 (en) 2007-10-04 2007-11-14 Metryx Ltd Measurement apparatus and method
DE102007048295A1 (en) 2007-10-08 2009-04-16 Precitec Optronik Gmbh Apparatus and method for thickness measurement
JP5112930B2 (en) * 2008-03-28 2013-01-09 浜松ホトニクス株式会社 Thickness measuring device
IT1391719B1 (en) * 2008-11-17 2012-01-27 Marposs Spa METHOD, STATION AND EQUIPMENT FOR THE OPTICAL MEASUREMENT BY INTERFEROMETRY OF THE THICKNESS OF AN OBJECT
GB2478590A (en) * 2010-03-12 2011-09-14 Precitec Optronik Gmbh Apparatus and method for monitoring a thickness of a silicon wafer
IT1399875B1 (en) * 2010-05-18 2013-05-09 Marposs Spa METHOD AND EQUIPMENT FOR THE OPTICAL MEASUREMENT BY INTERFEROMETRY OF THE THICKNESS OF AN OBJECT
EP2571655B1 (en) 2010-05-18 2014-04-23 Marposs Societa' Per Azioni Method and apparatus for optically measuring by interferometry the thickness of an object
IT1399876B1 (en) * 2010-05-18 2013-05-09 Marposs Spa METHOD AND EQUIPMENT FOR THE OPTICAL MEASUREMENT BY INTERFEROMETRY OF THE THICKNESS OF AN OBJECT
JP5853382B2 (en) * 2011-03-11 2016-02-09 ソニー株式会社 Semiconductor device manufacturing method and electronic device manufacturing method
GB2489722B (en) * 2011-04-06 2017-01-18 Precitec Optronik Gmbh Apparatus and method for determining a depth of a region having a high aspect ratio that protrudes into a surface of a semiconductor wafer
DE102011051146B3 (en) 2011-06-17 2012-10-04 Precitec Optronik Gmbh Test method for testing a bonding layer between wafer-shaped samples
JP2013130417A (en) * 2011-12-20 2013-07-04 Nippon Electric Glass Co Ltd Warpage measuring method for glass pane and manufacturing method of glass pane
CN202601580U (en) * 2012-03-31 2012-12-12 北京京东方光电科技有限公司 Etching time detection apparatus and etching apparatus
DE102012111008B4 (en) 2012-11-15 2014-05-22 Precitec Optronik Gmbh Optical measuring method and optical measuring device for detecting a surface topography
TWI638131B (en) 2013-06-17 2018-10-11 普雷茨特光電有限公司 Optical measuring device for acquiring differences in distance and optical measuring method
JP6289930B2 (en) * 2014-02-18 2018-03-07 株式会社ディスコ Wet etching equipment
WO2016179023A1 (en) * 2015-05-01 2016-11-10 Adarza Biosystems, Inc. Methods and devices for the high-volume production of silicon chips with uniform anti-reflective coatings
TWI629720B (en) * 2015-09-30 2018-07-11 東京威力科創股份有限公司 Method and apparatus for dynamic control of the temperature of a wet etch process
US10207489B2 (en) * 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
JP2018024571A (en) * 2016-08-05 2018-02-15 旭硝子株式会社 Manufacturing method of glass substrate having pores
US10234265B2 (en) 2016-12-12 2019-03-19 Precitec Optronik Gmbh Distance measuring device and method for measuring distances
DE112017007219B4 (en) 2017-03-10 2022-09-29 Mitsubishi Electric Corporation Semiconductor manufacturing apparatus and semiconductor manufacturing method
DE102017126310A1 (en) 2017-11-09 2019-05-09 Precitec Optronik Gmbh Distance measuring device
DE102018130901A1 (en) 2018-12-04 2020-06-04 Precitec Optronik Gmbh Optical measuring device
JP7166966B2 (en) * 2019-03-15 2022-11-08 株式会社Screenホールディングス Processing condition selection method, substrate processing method, substrate product manufacturing method, processing condition selection device, computer program, and storage medium
EP3786574A1 (en) * 2019-08-26 2021-03-03 Sturm Maschinen- & Anlagenbau GmbH Sensor device
CN110690134B (en) * 2019-09-12 2022-07-01 长江存储科技有限责任公司 Method and device for detecting gas leakage of multi-station deposition process and readable storage medium
CN114038777B (en) * 2022-01-11 2022-04-08 江苏卓远半导体有限公司 Semiconductor wafer thickness measuring equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220405A (en) * 1991-12-20 1993-06-15 International Business Machines Corporation Interferometer for in situ measurement of thin film thickness changes
US5392124A (en) * 1993-12-17 1995-02-21 International Business Machines Corporation Method and apparatus for real-time, in-situ endpoint detection and closed loop etch process control
EP0905476A2 (en) * 1997-09-25 1999-03-31 Siemens Aktiengesellschaft Method of end point detection for a wet etch process
JPH11354489A (en) * 1998-06-05 1999-12-24 Toshiba Corp Production system of semiconductor and etching method for semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490849A (en) * 1990-07-13 1996-02-13 Smith; Robert F. Uniform-radiation caustic surface for photoablation
DE69208413T2 (en) * 1991-08-22 1996-11-14 Kla Instr Corp Device for automatic testing of photomask
US6282309B1 (en) * 1998-05-29 2001-08-28 Kla-Tencor Corporation Enhanced sensitivity automated photomask inspection system
US6283829B1 (en) * 1998-11-06 2001-09-04 Beaver Creek Concepts, Inc In situ friction detector method for finishing semiconductor wafers
US6160336A (en) * 1999-11-19 2000-12-12 Baker, Jr.; Robert M. L. Peak power energy storage device and gravitational wave generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220405A (en) * 1991-12-20 1993-06-15 International Business Machines Corporation Interferometer for in situ measurement of thin film thickness changes
US5392124A (en) * 1993-12-17 1995-02-21 International Business Machines Corporation Method and apparatus for real-time, in-situ endpoint detection and closed loop etch process control
EP0905476A2 (en) * 1997-09-25 1999-03-31 Siemens Aktiengesellschaft Method of end point detection for a wet etch process
JPH11354489A (en) * 1998-06-05 1999-12-24 Toshiba Corp Production system of semiconductor and etching method for semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091659A1 (en) * 2002-04-25 2003-11-06 Hamamatsu Photonics K.K. Thickness measuring device
US11234213B2 (en) 2010-11-19 2022-01-25 Iot Holdings, Inc. Machine-to-machine (M2M) interface procedures for announce and de-announce of resources
JPWO2020071109A1 (en) * 2018-10-05 2021-02-15 三菱電機株式会社 Machine tool and electric discharge machining equipment
CN117968545A (en) * 2024-03-28 2024-05-03 钛玛科(北京)工业科技有限公司 Thickness measuring method and system for foam cotton with patterns

Also Published As

Publication number Publication date
ATE358892T1 (en) 2007-04-15
AU2001227075A1 (en) 2001-11-12
US6768552B2 (en) 2004-07-27
DE60127673T2 (en) 2007-12-27
JP2001313279A (en) 2001-11-09
US20030121889A1 (en) 2003-07-03
JP4486217B2 (en) 2010-06-23
DE60127673D1 (en) 2007-05-16
EP1296367A1 (en) 2003-03-26
EP1296367B1 (en) 2007-04-04
EP1296367A4 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
WO2001084620A1 (en) Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
US6897964B2 (en) Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
KR100329891B1 (en) Chemical mechanical polishing in-situ end point system
US6110752A (en) Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6413147B1 (en) Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
KR100795616B1 (en) Endpoint detection with light beams of different wavelengths
TWI426574B (en) Monitoring device and method for in-situ measuring of wafer thicknesses for monitoring the thinning of semiconductor wafers as well as thinning device with a wet etching device and with a monitoring device
US6657737B2 (en) Method and apparatus for measuring film thickness
US10256104B2 (en) Film thickness measuring method, film thickness measuring apparatus, polishing method, and polishing apparatus
JP4347517B2 (en) Thickness measuring apparatus, wet etching apparatus using the same, and wet etching method
US11911867B2 (en) Polishing apparatus and polishing method
JP5762966B2 (en) Method, measuring apparatus, and measuring system for optically measuring the thickness of an object by interference analysis
JP4347484B2 (en) Thickness measuring apparatus, wet etching apparatus using the same, and wet etching method
KR101379915B1 (en) Detecting Device Of Endpoint And Etching Device Having The Same And Detecting Method Of Endpoint
TWI827805B (en) Polishing method and polishing apparatus
JP6650859B2 (en) Method for measuring thickness of surface film on semiconductor substrate
JPH09298174A (en) Polishing method and device therefor
JPH09298175A (en) Polishing method and device therefor
JP2000186917A (en) Detection method, detecting device and polishing device
JPH0915134A (en) Method and equipment for inspecting particle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10275136

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001901468

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001901468

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001901468

Country of ref document: EP