JP4939304B2 - Method and apparatus for measuring film thickness of transparent film - Google Patents

Method and apparatus for measuring film thickness of transparent film Download PDF

Info

Publication number
JP4939304B2
JP4939304B2 JP2007137967A JP2007137967A JP4939304B2 JP 4939304 B2 JP4939304 B2 JP 4939304B2 JP 2007137967 A JP2007137967 A JP 2007137967A JP 2007137967 A JP2007137967 A JP 2007137967A JP 4939304 B2 JP4939304 B2 JP 4939304B2
Authority
JP
Japan
Prior art keywords
transparent film
light
measurement
film thickness
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007137967A
Other languages
Japanese (ja)
Other versions
JP2008292296A (en
Inventor
克一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2007137967A priority Critical patent/JP4939304B2/en
Publication of JP2008292296A publication Critical patent/JP2008292296A/en
Application granted granted Critical
Publication of JP4939304B2 publication Critical patent/JP4939304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明膜で覆われたプラスチック・フィルム、ガラス基板などの測定対象物の膜厚を測定する透明膜の膜厚測定方法およびその装置に係り、特に、測定対象物の表面に部分的および不均一な高さに形成された透明膜の膜厚を短時間で精度よく求める技術に関する。   The present invention relates to a transparent film thickness measurement method and apparatus for measuring a film thickness of a measurement object such as a plastic film or a glass substrate covered with a transparent film, and in particular, partially on the surface of the measurement object. The present invention also relates to a technique for accurately obtaining the thickness of a transparent film formed at a non-uniform height in a short time.

従来のこの種の手段として、干渉計を利用して測定対象物である透過性を有する多層フィルムの膜厚を求めるものが提案されている。具体的には、フィルムに光を往復透過させるため、照射装置と非透過性のバックミラーとの間にフィルムを配置し、当該ミラーで反射してフィルムを往復透過する光と、参照ミラー側から反射して戻る反射光を合せて干渉を生じさせている。このときの干渉縞波形の包絡線を求め、そのピーク位置を検出し、さらにピークの位置情報とピーク間隔の時間を計数して多層フィルムの個々の膜厚を測定している。   As a conventional means of this type, an apparatus that uses an interferometer to determine the film thickness of a multilayer film having transparency that is an object to be measured has been proposed. Specifically, in order to transmit and receive light back and forth through the film, a film is disposed between the irradiation device and the non-transparent rearview mirror, the light reflected by the mirror and transmitted and received through the film, and the reference mirror side. The reflected light reflected and returned is combined to cause interference. The envelope of the interference fringe waveform at this time is obtained, the peak position is detected, and the peak position information and the peak interval time are counted to measure the individual film thicknesses of the multilayer film.

特開昭59−131106号公報JP 59-131106 A

しかしながら、従来の手段では、次のような問題がある。
すなわち、従来の手段は、フィルムの膜厚を求めるためバックミラーの表面高さなどの所定条件を予め取得しておく必要がある。すなわち、フィルムをセットして測定する前にバックミラーのみの予備測定と、フィルムセット後の実測定の2回を行う必要があり、測定が煩雑になるとともに、処理時間がかかるといった問題がある。また、2回の測定の間に生じたバックミラーの位置変動が測定誤差となり、正確な測定が困難になっている。
However, the conventional means has the following problems.
That is, the conventional means needs to acquire in advance a predetermined condition such as the surface height of the rearview mirror in order to obtain the film thickness of the film. That is, it is necessary to perform preliminary measurement of only the rearview mirror and actual measurement after setting the film before setting and measuring the film, and there is a problem that the measurement becomes complicated and processing time is required. In addition, the position variation of the rearview mirror that occurs between the two measurements becomes a measurement error, making accurate measurement difficult.

本発明はこのような事情に鑑みてなされたものであって、干渉計を利用して透過性を有する光学部材の表面に部分的に形成された透明膜の膜厚を短時間で精度よく測定することのできる透明膜の膜厚測定方法およびその装置を提供することを主たる目的としている。   The present invention has been made in view of such circumstances, and uses an interferometer to accurately measure the thickness of a transparent film partially formed on the surface of a transparent optical member in a short time. The main object of the present invention is to provide a method and apparatus for measuring the thickness of a transparent film.

この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、第1の発明は、干渉計を利用して測定対象物の表面に形成された透明膜の膜厚を測定する透明膜の膜厚測定方法であって、
前記測定対象物は、透過性を有する光学部材の表面に部分的に透明膜が形成された物であり、
前記測定対象物の測定面と参照面に光を照射したとき、前記光学部材の裏面と参照面からの反射光により生じる干渉縞波形のピークが発生する走査レンジを予め決定する過程と、
前記測定対象物の測定面および参照面に光を照射し、当該測定面と参照面との距離を相対的に変動させながら、両面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせながら測定面の画像を取得する過程と、
取得した複数枚の前記画像の各画素における干渉光の強度値群の変化を求める過程と、
求めた前記干渉光の強度値群から前記光学部材の裏面で生じる干渉縞波形のピークの位置情報を求める過程と、
前記位置情報から前記光学部材の裏面高さの分布を求める過程と、
前記透明膜の被覆部分と露出部分の裏面高さの偏差を求める過程と、
予め決められた前記透明膜の屈折率と前記裏面高さの偏差に基づいて透明膜の膜厚を求める過程と、
を備えたことを特徴とする。
In order to achieve such an object, the present invention has the following configuration.
That is, the first invention is a transparent film thickness measuring method for measuring the thickness of a transparent film formed on the surface of an object to be measured using an interferometer,
The measurement object is an object in which a transparent film is partially formed on the surface of a transparent optical member,
A process of predetermining a scanning range in which a peak of an interference fringe waveform generated by light reflected from the back surface and the reference surface of the optical member when irradiating light to the measurement surface and the reference surface of the measurement object;
Irradiate light to the measurement surface and the reference surface of the measurement object, and change the interference fringes by reflected light reflected from both surfaces and returning from the same optical path while relatively changing the distance between the measurement surface and the reference surface. A process of acquiring an image of the measurement surface while generating
A process of obtaining a change in the intensity value group of interference light at each pixel of the acquired plurality of images,
The process of obtaining the position information of the peak of the interference fringe waveform generated on the back surface of the optical member from the obtained intensity value group of the interference light,
The process of obtaining the distribution of the back surface height of the optical member from the position information;
The process of obtaining the deviation of the back surface height of the coating part and the exposed part of the transparent film,
A process of obtaining a film thickness of the transparent film based on a predetermined refractive index of the transparent film and a deviation of the height of the back surface;
It is provided with.

(作用・効果) この方法によれば、光学部材の裏面と参照面から反射して戻る両反射光によって干渉縞波形のピークが生じる走査レンジを予め決定し、その走査レンジで測定面の画像を取得することにより、画素単位で当該裏面のピーク位置情報が求められる。このピーク位置情報と撮像間隔である標本点間隔を利用することにより、測定面である光学部材の裏面の高さを求めることができる。   (Function / Effect) According to this method, the scanning range in which the peak of the interference fringe waveform is determined in advance by both reflected light reflected and returned from the back surface of the optical member and the reference surface, and an image of the measurement surface is obtained in the scanning range. By acquiring, the peak position information of the back surface is obtained for each pixel. By using the peak position information and the sample point interval that is the imaging interval, the height of the back surface of the optical member that is the measurement surface can be obtained.

また、測定対象物の所定領域において、透明膜の被覆部分と露出部分の裏面高さの偏差を求め、当該偏差を透明膜の表面高さに換算する。つまり、被覆部分は、透明膜の屈折率の影響で露出部分よりも光路長が長くなるので、被覆部分の裏面高さは、露出部分よりも低く現れる。そこで、この現象に基づいて露出部分を基準とし、被覆部分との偏差を求める。この偏差の絶対値を求めることにより、露出部分を基準として被覆部分である凸部の表面高さに換算することができる。   In addition, in a predetermined region of the measurement object, a deviation between the back surface height of the covered portion and the exposed portion of the transparent film is obtained, and the deviation is converted into the surface height of the transparent film. That is, since the coated portion has an optical path length longer than that of the exposed portion due to the influence of the refractive index of the transparent film, the back surface height of the coated portion appears lower than that of the exposed portion. Therefore, based on this phenomenon, the deviation from the covering portion is obtained with the exposed portion as a reference. By obtaining the absolute value of this deviation, it can be converted into the surface height of the convex portion which is the covering portion with the exposed portion as a reference.

さらに、求めた表面高さと透明膜の既知の屈折率から膜厚を求めることができる。以上のように、1回の測定で、光学部材の表面に形成された透明膜の表面高さおよび膜厚を精度よく、かつ高速に求めることができる。   Furthermore, the film thickness can be obtained from the obtained surface height and the known refractive index of the transparent film. As described above, the surface height and film thickness of the transparent film formed on the surface of the optical member can be determined accurately and at high speed by one measurement.

第2の発明は、第1の方法発明において、
前記参照面側の光の往復光路上に前記光学部材と同一試料からなる補償板を配備し、前記光学部材の屈折率と厚さの影響を補正することを特徴とする。
According to a second invention, in the first method invention,
A compensation plate made of the same sample as the optical member is disposed on the reciprocating optical path of the light on the reference surface side, and the influence of the refractive index and thickness of the optical member is corrected.

(作用・効果) この方法によれば、測定面からの反射光と参照面からの反射光は、同じ光学部材の屈折率と厚さの影響を受ける。すなわち、測定条件が同一になるので、光学部材の屈折率と厚さの影響をキャンセルすることができる。すなわち、測定精度の向上を図ることができる。   (Operation / Effect) According to this method, the reflected light from the measurement surface and the reflected light from the reference surface are affected by the refractive index and thickness of the same optical member. That is, since the measurement conditions are the same, the influence of the refractive index and thickness of the optical member can be canceled. That is, the measurement accuracy can be improved.

第3の発明は、透明膜覆われた測定対象物の測定面と参照面に光を照射する照明手段と、前記測定面と参照面との距離を変動させる変動手段と、光が照射された測定面と参照面との距離の変動に伴って両面とから反射して同一光路を戻る反射光によって干渉縞の変化を生じさせるとともに測定面を撮像する撮像手段と、撮像された測定面上の複数箇所における干渉光の強度値を取り込むサンプリング手段と、サンプリング手段によって取り込まれた箇所ごとの複数個の強度値である各干渉光強度値群を記憶する記憶手段と、記憶手段に記憶された各干渉光強度値群に基づいて特定箇所の透明膜の膜厚を求める演算手段とを備えた透明膜の膜厚測定装置であって、
前記測定対象物は、透過性を有する光学部材の表面に部分的に透明膜が形成された物であり、
前記測定対象物の測定面と参照面に光を照射したとき、前記光学部材の裏面と参照面からの反射光により生じる干渉縞波形のピークが発生する走査レンジを予め決定し、
前記サンプリング手段は、前記変動手段による測定面と参照面との距離の変動に伴って両面から反射して同一光路を戻る反射光によって生じた干渉縞の変化に応じた前記走査レンジの干渉光の強度値をサンプリング間隔で順次取込み、
前記記憶手段は、取り込まれた複数個の強度値である干渉光強度値群を記憶し、
前記演算手段は、測定面の透明膜の膜厚を以下の処理にしたがって求める
(1)取得した複数枚の前記画像の各画素における干渉光の強度値群の変化を求め、
(2)求めた前記干渉光の強度値群から前記光学部材の裏面で生じる干渉縞波形のピークの位置情報を求め、
(3)前記位置情報から前記光学部材の裏面高さの分布を求め、
(4)前記透明膜の被覆部分と露出部分の裏面高さの偏差を求め、
(5)予め決められた前記透明膜の屈折率と前記偏差に基づいて透明膜の膜厚を求める
ことを特徴とする。
According to a third aspect of the invention, illumination means for irradiating light to a measurement surface and a reference surface of a measurement object covered with a transparent film, variation means for changing the distance between the measurement surface and the reference surface, and light irradiation Reflection light reflected from both surfaces as the distance between the measurement surface and the reference surface changes, and interference fringes are changed by reflected light returning from the same optical path, and imaging means for imaging the measurement surface, and on the imaged measurement surface Sampling means for capturing the intensity values of interference light at a plurality of locations, storage means for storing a group of interference light intensity values that are a plurality of intensity values for each location captured by the sampling means, and each of the storage means stored in the storage means A film thickness measuring device for a transparent film, comprising a calculation means for obtaining the film thickness of the transparent film at a specific location based on the interference light intensity value group,
The measurement object is an object in which a transparent film is partially formed on the surface of a transparent optical member,
When the measurement surface and the reference surface of the measurement object are irradiated with light, the scanning range in which the peak of the interference fringe waveform generated by the reflected light from the back surface and the reference surface of the optical member is determined in advance,
The sampling means reflects interference light in the scanning range in accordance with a change in interference fringes caused by reflected light that is reflected from both surfaces and returns on the same optical path as the distance between the measurement surface and the reference surface is changed by the changing means. Intensity values are taken sequentially at sampling intervals,
The storage means stores an interference light intensity value group that is a plurality of captured intensity values,
The calculation means obtains the film thickness of the transparent film on the measurement surface according to the following process: (1) Obtains a change in the intensity value group of the interference light in each pixel of the obtained plurality of images,
(2) Find the position information of the peak of the interference fringe waveform generated on the back surface of the optical member from the obtained intensity value group of the interference light,
(3) Obtaining the distribution of the back surface height of the optical member from the position information,
(4) Find the deviation of the back surface height of the coating portion and the exposed portion of the transparent film,
(5) The thickness of the transparent film is obtained based on a predetermined refractive index of the transparent film and the deviation.

(作用・効果) この構成によれば、第1の方法発明を好適に実現することができる。   (Operation and Effect) According to this configuration, the first method invention can be suitably realized.

第4の発明は、第3に装置発明おいて、
前記参照面側の光の往復光路上に前記光学部材と同一試料からなる補償板を配備したことを特徴とする。
The fourth invention is the apparatus invention according to the third aspect,
A compensator made of the same sample as the optical member is disposed on the reciprocal optical path of the light on the reference surface side.

(作用・効果) この構成によれば、第2の方法発明を好適に実現することができる。   (Operation / Effect) According to this configuration, the second method invention can be suitably realized.

本発明に係る透明膜の透明膜の膜厚測定方法およびその装置によると、光学部材の表面に形成された透明膜の表面高さと膜厚を、干渉計を利用して1回の測定で求めることができる。   According to the transparent film thickness measuring method and apparatus therefor according to the present invention, the surface height and film thickness of the transparent film formed on the surface of the optical member are obtained by a single measurement using an interferometer. be able to.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の光学部材の表面に部分的に透明膜が形成された当該透明膜の膜厚を測定可能な表面形状測定装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a surface shape measuring apparatus capable of measuring the film thickness of a transparent film in which a transparent film is partially formed on the surface of the optical member of the present invention.

この表面形状測定装置は、プラスチック・フィルム、ガラス基板などの透過性を有する測定対象物30の表面を部分的に透明膜31で覆った表面に、例えば特定周波数帯域の白色光を照射する光学系ユニット1と、光学系ユニット1を制御する制御系ユニット2とを備えて構成されている。   This surface shape measuring apparatus is an optical system that irradiates, for example, white light in a specific frequency band onto a surface of a measuring object 30 having transparency, such as a plastic film or a glass substrate, partially covered with a transparent film 31. A unit 1 and a control system unit 2 for controlling the optical system unit 1 are provided.

光学系ユニット1は、測定対象物30および参照面15(参照ミラー)に照射する白色光を発生させる光源10と、光源10から白色光を平行光にするコリメートレンズ11と、コリメートレンズ11からの白色光を測定対象物30の方向に反射する一方、測定対象物30の方向からの白色光を通過させるハーフミラー13と、ハーフミラー13で反射されてきた白色光を集光する対物レンズ14と、対物レンズ14を通過してきた白色光を、参照面15へ反射させる参照光と、透明膜31へ通過させる測定光とに分けるとともに、参照面15で反射してきた参照光と測定対象物30側から反射してきた測定光とを再びまとめて、干渉縞を発生させるビームスプリッタ17と、参照光と測定光とがまとめられた白色光を結像する結像レンズ18と、干渉縞とともに測定対象物30の表面を撮像するCCDカメラ19とを備えて構成されている。   The optical system unit 1 includes a light source 10 that generates white light that irradiates the measurement target 30 and the reference surface 15 (reference mirror), a collimator lens 11 that converts the white light from the light source 10 into parallel light, and a collimator lens 11. A half mirror 13 that reflects white light in the direction of the measurement object 30 while allowing white light from the direction of the measurement object 30 to pass through, and an objective lens 14 that condenses the white light reflected by the half mirror 13. The white light that has passed through the objective lens 14 is divided into reference light that reflects to the reference surface 15 and measurement light that passes to the transparent film 31, and the reference light reflected on the reference surface 15 and the measurement object 30 side. The measuring beam reflected from the beam is again put together to generate an interference fringe, and the imaging lens 1 forms an image of white light in which the reference beam and the measuring beam are combined. When it is configured by a CCD camera 19 for imaging the surface of the measuring object 30 with the interference fringes.

光源10は、例えば白色光ランプなどであり、比較的広い周波数帯域の白色光を発生させる。この光源10から発生された白色光は、コリメートレンズ11によって平行光とされ、ハーフミラー13に到達する。なお、光源としては、光源10に限定されるものではなく、単色光であってもよい。光源10は、本発明の照明手段に相当する。   The light source 10 is, for example, a white light lamp, and generates white light having a relatively wide frequency band. The white light generated from the light source 10 is converted into parallel light by the collimating lens 11 and reaches the half mirror 13. In addition, as a light source, it is not limited to the light source 10, Monochromatic light may be sufficient. The light source 10 corresponds to the illumination means of the present invention.

ハーフミラー13は、コリメータレンズ13からの平行光となった白色光を測定対象物30の方向に向けて反射する一方、測定対象物30の方向から戻ってきた白色光を通過させるものである。このハーフミラー13で反射された白色光は、対物レンズ14に入射する。   The half mirror 13 reflects the white light that has become the parallel light from the collimator lens 13 toward the direction of the measurement object 30, while allowing the white light that has returned from the direction of the measurement object 30 to pass therethrough. White light reflected by the half mirror 13 enters the objective lens 14.

対物レンズ14は、入射してきた白色光を焦点に向けて集光するレンズである。この対物レンズ14によって集光される白色光は、参照面15を通過し、ビームスプリッタ17に到達する。   The objective lens 14 is a lens that condenses incident white light toward a focal point. The white light condensed by the objective lens 14 passes through the reference surface 15 and reaches the beam splitter 17.

ビームスプリッタ17は、対物レンズ14で集光される白色光を、参照面15で反射させるために、ビームスプリッタ17の例えば上面で反射させる参照光と、測定対象物30の測定面で反射させるために、ビームスプリッタ17を通過させる測定光とに分ける。また、参照光と測定光を再びまとめることによって、干渉縞を発生させるものである。ビームスプリッタ17に達した白色光は、ビームスプリッタ17の上面で反射された参照光と、ビームスプリッタ17を通過する測定光とに分けられる。参照光は参照面15に達し、測定光は測定面に達する。   The beam splitter 17 reflects the white light collected by the objective lens 14 on the reference surface 15, for example, the reference light reflected on the upper surface of the beam splitter 17 and the measurement surface of the measurement object 30. The beam is divided into measurement light that passes through the beam splitter 17. Further, interference fringes are generated by combining the reference light and the measurement light again. The white light reaching the beam splitter 17 is divided into reference light reflected by the upper surface of the beam splitter 17 and measurement light passing through the beam splitter 17. The reference light reaches the reference surface 15 and the measurement light reaches the measurement surface.

参照面15には、参照光をビームスプリッタ17の方向に反射させるためのミラーが取り付けられており、このミラーによって反射された参照光は、ビームスプリッタ17に達し、さらに、この参照光はビームスプリッタ17によって反射される。   A mirror for reflecting the reference light in the direction of the beam splitter 17 is attached to the reference surface 15, the reference light reflected by the mirror reaches the beam splitter 17, and this reference light is further reflected by the beam splitter. 17 is reflected.

ビームスプリッタ17を通過した測定光は、測定面である光学部材30の裏面30Aに向けて集光され、その裏面30Aで反射する。反射した各測定光は、ビームスプリッタ17に達して、そのビームスプリッタ17を通過する。   The measurement light that has passed through the beam splitter 17 is condensed toward the back surface 30A of the optical member 30 that is the measurement surface, and is reflected by the back surface 30A. Each reflected measurement light reaches the beam splitter 17 and passes through the beam splitter 17.

ビームスプリッタ17は、参照光と測定光とを再びまとめる。このとき、参照面15とビームスプリッタ17との間の距離L1と、ビームスプリッタ17と測定対象面30Aとの間の距離L2との、距離の違いによって光路差が生じる。この光路差に応じて、参照光と測定光とは干渉し合うことで、干渉縞が生じる。この干渉縞が生じた状態の白色光は、ハーフミラー13を通過し、結像レンズ18によって結像されて、CCDカメラ19に入射する。   The beam splitter 17 combines the reference light and the measurement light again. At this time, an optical path difference is generated due to the difference in distance between the distance L1 between the reference surface 15 and the beam splitter 17 and the distance L2 between the beam splitter 17 and the measurement target surface 30A. According to this optical path difference, the reference light and the measurement light interfere with each other, thereby generating interference fringes. The white light in the state where the interference fringes are generated passes through the half mirror 13, is imaged by the imaging lens 18, and enters the CCD camera 19.

CCDカメラ19は、干渉縞が生じた状態の白色光とともに、測定光によって映し出される測定面付近の画像を撮像する。この撮像した画像データは、制御系ユニット2によって収集される。また、後述で明らかになるが、本発明の変動手段に相当する制御系ユニット2の駆動部24によって、例えば光学系ユニット1が上下左右に変動される。特に、光学系ユニット1が上下方向に駆動されることによって、距離L1と距離L2との距離が変動される。これにより、距離L1と距離L2との距離の差に応じて、干渉縞が徐々に変化する。CCDカメラ19によって、後述する所定のサンプリング間隔ごとに、干渉縞の変化とともに表面の画像が撮像され、その画像データが制御系ユニット2によって収集される。CCDカメラ19は、本発明における撮像手段に相当する。   The CCD camera 19 captures an image in the vicinity of the measurement surface projected by the measurement light, together with white light in a state where interference fringes are generated. The captured image data is collected by the control system unit 2. Further, as will be apparent later, for example, the optical system unit 1 is vertically and horizontally changed by the drive unit 24 of the control system unit 2 corresponding to the changing means of the present invention. In particular, the distance between the distance L1 and the distance L2 is changed by driving the optical system unit 1 in the vertical direction. As a result, the interference fringes gradually change according to the difference in distance between the distance L1 and the distance L2. The CCD camera 19 captures an image of the surface along with a change in interference fringe at predetermined sampling intervals described later, and the image data is collected by the control system unit 2. The CCD camera 19 corresponds to the image pickup means in the present invention.

制御系ユニット2は、表面形状測定装置の全体を統括的に制御や、所定の演算処理を行うためのCPU20と、CPU20によって逐次収集された画像データやCPU20での演算結果などの各種のデータを記憶するメモリ21と、サンプリング間隔やその他の設定情報を入力するマウスやキーボードなどの入力部22と、測定面の画像などを表示するモニタ23と、CPU20の指示に応じて光学系ユニット1を上下左右に駆動する例えば3軸駆動型のサーボモータなどの駆動機構で構成される駆動部24とを備えるコンピュータシステムで構成されている。なお、CPU20は、本発明におけるサンプリング手段および演算手段に、メモリ21は本発明における記憶手段に、駆動部25は本発明における変動手段にそれぞれ相当する。   The control system unit 2 performs overall control of the entire surface shape measuring apparatus and CPU 20 for performing predetermined calculation processing, and various data such as image data sequentially collected by the CPU 20 and calculation results by the CPU 20. A memory 21 to be stored, an input unit 22 such as a mouse or a keyboard for inputting a sampling interval and other setting information, a monitor 23 for displaying an image of a measurement surface, and the optical system unit 1 up and down according to instructions from the CPU 20 For example, the computer system includes a drive unit 24 including a drive mechanism such as a three-axis drive type servo motor that drives right and left. The CPU 20 corresponds to sampling means and arithmetic means in the present invention, the memory 21 corresponds to storage means in the present invention, and the drive unit 25 corresponds to fluctuation means in the present invention.

CPU20は、いわゆる中央処理装置であって、CCDカメラ19、メモリ21および駆動部24を制御するとともに、CCDカメラ19で撮像した干渉縞を含む測定面の画像データに基づいて、光学部材30の裏面30A、透明膜31の膜厚などを求める種々の演算処理を行う。この処理については後で詳細に説明する。   The CPU 20 is a so-called central processing unit that controls the CCD camera 19, the memory 21, and the drive unit 24, and based on the image data of the measurement surface including the interference fringes imaged by the CCD camera 19, the back surface of the optical member 30. Various arithmetic processes for obtaining the thickness of 30A, the transparent film 31, and the like are performed. This process will be described later in detail.

さらに、CPU20には、モニタ23と、キーボードやマウスなどの入力部22とが接続されており、操作者は、モニタ23に表示される操作画面を観察しながら、入力部22から各種の設定情報の入力を行う。また、モニタ23には、透明膜31の測定終了後に、光学部材30の表面に形成され段差(凹凸形状)などを数値や画像として表示される。   Further, a monitor 23 and an input unit 22 such as a keyboard and a mouse are connected to the CPU 20, and the operator can observe various operation information displayed on the monitor 23 from the input unit 22. Input. On the monitor 23, after the measurement of the transparent film 31, the step (uneven shape) formed on the surface of the optical member 30 is displayed as a numerical value or an image.

駆動部24は、光学系ユニット1内の参照面15とビームスプリッタ17との間の固定された距離L1と、ビームスプリッタ17と測定対象面30Aとの間の可変の距離L2との距離の差を変化させるために、光学系ユニット1を直交3軸方向に変動させる装置であり、CPU20からの指示によって光学系ユニット1をX,Y,Z軸方向に駆動する例えば3軸駆動型のサーボモータを備える駆動機構で構成されている。なお、駆動部24は、本発明における変動手段に相当し、本発明における相対的距離とは、参照面15から測定対象面30Aまでの距離すなわち距離L1および距離L2を示す。本実施例では、光学系ユニット1を動作させるが、例えば測定対象物30が載置される図示していないテーブルを直交3軸方向に変動させるようにしてもよい。   The drive unit 24 has a difference in distance between a fixed distance L1 between the reference surface 15 in the optical system unit 1 and the beam splitter 17 and a variable distance L2 between the beam splitter 17 and the measurement target surface 30A. Is a device that varies the optical system unit 1 in three orthogonal axes, and drives the optical system unit 1 in the X, Y, and Z directions according to instructions from the CPU 20, for example, a three-axis drive type servo motor It is comprised with the drive mechanism provided with. The drive unit 24 corresponds to the changing means in the present invention, and the relative distance in the present invention indicates the distance from the reference surface 15 to the measurement target surface 30A, that is, the distance L1 and the distance L2. In this embodiment, the optical system unit 1 is operated. For example, a table (not shown) on which the measurement object 30 is placed may be varied in the three orthogonal axes.

以下、本実施例の表面形状測定装置全体で行なわれる処理を図2のフローチャートを参照しながら具体的に説明する。なお、本実施例では、ガラス基板である測定対象物30の表面に透明膜31としてレジスト膜を形成したものを用いたものとする。   Hereinafter, the processing performed by the entire surface shape measuring apparatus of the present embodiment will be specifically described with reference to the flowchart of FIG. In this embodiment, it is assumed that a resist film is formed as the transparent film 31 on the surface of the measurement object 30 which is a glass substrate.

<ステップS1> 条件設定
光学系ユニットを図1に示すz軸方向に移動させるための走査速度や走査レンジなどの種々の条件を設定する。本実施例の場合、例えば、走査速度、図3および図4に示す標本点間隔、走査レンジ、およびCCDカメラ19で取得する画像枚数などを設定する。なお、走査レンジは、光学部材30の厚み、および変動距離L1,L2に基づいて、光学部材30の裏面30Aからの反射光によって生じる干渉縞波形のピークを検出できるレンジに設定する。
<Step S1> Condition Setting Various conditions such as a scanning speed and a scanning range for moving the optical system unit in the z-axis direction shown in FIG. 1 are set. In this embodiment, for example, the scanning speed, the sampling point interval shown in FIGS. 3 and 4, the scanning range, and the number of images acquired by the CCD camera 19 are set. The scanning range is set to a range in which the peak of the interference fringe waveform generated by the reflected light from the back surface 30A of the optical member 30 can be detected based on the thickness of the optical member 30 and the fluctuation distances L1 and L2.

<ステップS2> 測定データ取得
光学系ユニット1は、光源10から発生される白色光を測定対象物30および参照面15に向けて照射する。
<Step S <b>2> Acquisition of Measurement Data The optical system unit 1 irradiates the measurement object 30 and the reference surface 15 with white light generated from the light source 10.

また、CPU20は、予め所定の測定場所に移動された光学系ユニット1をz軸方向に移動を開始させるための変動開始の指示を駆動部24に与える。駆動部24は、図示しないステッピングモータなどの駆動系を駆動して、光学系ユニット1をz軸方向に予め決められた距離だけ移動させる。これにより、参照面15と測定対象物側の両表面との距離L1,L2が変動される。   Further, the CPU 20 gives the drive unit 24 a change start instruction for starting movement of the optical system unit 1 that has been moved to a predetermined measurement location in the z-axis direction. The drive unit 24 drives a drive system such as a stepping motor (not shown) to move the optical system unit 1 by a predetermined distance in the z-axis direction. Thereby, the distances L1 and L2 between the reference surface 15 and both surfaces on the measurement object side are changed.

CPU20は、光学系ユニット1がサンプリング間隔だけ移動するたびに、CCDカメラ19で撮像される干渉縞を含む測定対象物30の表面および透明膜31の表面の両方を含む所定領域の測定面の画像データを収集してメモリ21に順次記憶する。光学系ユニット1が予め決められた操作レンジだけ移動することで、メモリ21には光学系ユニット1の移動距離およびサンプリング間隔によって決まる複数枚の画像データが記憶される。   Each time the optical system unit 1 moves by the sampling interval, the CPU 20 images the measurement surface in a predetermined area including both the surface of the measurement object 30 including the interference fringes imaged by the CCD camera 19 and the surface of the transparent film 31. Data is collected and sequentially stored in the memory 21. By moving the optical system unit 1 by a predetermined operation range, the memory 21 stores a plurality of pieces of image data determined by the moving distance and the sampling interval of the optical system unit 1.

<ステップS3> 特定箇所の干渉光強度値群を取得
例えば、操作者がモニタ23に表示される測定対対象の透明膜31を観察しながら、その透明膜31の膜厚を測定したい複数の特定箇所または全面を入力部22から入力設定する。CPU20は、入力設定された複数の特定箇所を把握して、複数の特定箇所に相当する画素の濃度値、すなわち特定箇所における干渉光の強度値を、ステップS2で記憶された複数枚の画像データからそれぞれ取込む。これにより、各特定箇所における複数個の強度値(干渉光強度値群)が得られる。
<Step S3> Acquire a group of interference light intensity values at a specific location. For example, while observing the transparent film 31 to be measured displayed on the monitor 23, the operator wants to measure the thickness of the transparent film 31. The part or the entire surface is input and set from the input unit 22. The CPU 20 grasps the plurality of specific locations that have been input and sets the density values of pixels corresponding to the plurality of specific locations, that is, the intensity values of the interference light at the specific locations, as a plurality of image data stored in step S2. From each. Thereby, a plurality of intensity values (interference light intensity value group) at each specific location are obtained.

<ステップS4> 強度値からピーク位置を求める
CPU20は、図3に示すように、離散的に取得した特定箇所における干渉光強度値群に基づいて、干渉光の強度値の平均値を求める。さらに、干渉光強度値群の各強度値から平均値を減算した各値(調整値群)を求める。
<Step S4> Obtaining the Peak Position from the Intensity Value As shown in FIG. 3, the CPU 20 obtains the average value of the intensity values of the interference light based on the interference light intensity value group at the specific location obtained discretely. Further, each value (adjustment value group) obtained by subtracting the average value from each intensity value of the interference light intensity value group is obtained.

調整値をさらに2乗し、図4に示すように、強度値をプラス側に強調した特性値を求める。   The adjustment value is further squared to obtain a characteristic value in which the intensity value is emphasized on the plus side as shown in FIG.

<ステップS5> 裏面高さ分布の算出
CPU20は、図4に示すピーク位置Pから光学部材30の裏面高さを算出する。つまり、裏面高さをSとすると、S=P×標本点間隔の式で画素ごとに裏面高さSが算出される。画素単位で算出した裏面高さSを、CCDカメラ19の撮像した所定範囲での分布データとして作成する。
<Step S5> Calculation of Back Surface Height Distribution The CPU 20 calculates the back surface height of the optical member 30 from the peak position P shown in FIG. That is, assuming that the back surface height is S, the back surface height S is calculated for each pixel by the equation S = P × sample point interval. The back surface height S calculated in pixel units is created as distribution data in a predetermined range captured by the CCD camera 19.

例えば、図5に示すように右側の略半分が透明膜31で被覆されている場合、図6に示す裏面高さSのプロファイルが作成される。つまり、透明膜31の被覆部分S2は、その屈折率nと膜厚tの影響で露出部分S1の領域に比べて(n−1)*tだけ光路長が長くなり、光路差が生じる。したがって、被覆部分S2の裏面高さSは、図5の二点鎖線に示すように、露出部分S2よりも低く現れる。   For example, when approximately half of the right side is covered with the transparent film 31 as shown in FIG. 5, the profile of the back surface height S shown in FIG. 6 is created. That is, the coated portion S2 of the transparent film 31 has an optical path length that is longer by (n−1) * t than the region of the exposed portion S1 due to the influence of the refractive index n and the film thickness t, and an optical path difference occurs. Therefore, the back surface height S of the covering portion S2 appears lower than the exposed portion S2, as indicated by a two-dot chain line in FIG.

<ステップS6> 光路差分布の算出
裏面高さSの分布が作成されると、露出部分S1を基準とし、当該露出部分S1と被覆部分S2の偏差(以下、適宜「段差」という)を算出し、その絶対値を求める。すなわち、図7に示すように、露出部分S1を基準としたときの被覆部分S2で生じる光路差に換算される。
<Step S6> Calculation of Optical Path Difference Distribution When the distribution of the back surface height S is created, a deviation (hereinafter referred to as “step” as appropriate) between the exposed portion S1 and the covered portion S2 is calculated with the exposed portion S1 as a reference. , Find its absolute value. That is, as shown in FIG. 7, it is converted into an optical path difference generated in the covering portion S2 when the exposed portion S1 is used as a reference.

<ステップS7> 膜厚の算出
算出された光路差は、透明膜31の屈折率nの影響を含むので、当該光学膜厚を既知の屈折率n(n=1.66)を利用してn−1で除算し、図8に示す屈折率の影響を除去した物理膜厚tを算出する。
<Step S7> Calculation of Film Thickness Since the calculated optical path difference includes the influence of the refractive index n of the transparent film 31, the optical film thickness is determined using the known refractive index n (n = 1.66). Dividing by −1, the physical film thickness t from which the influence of the refractive index shown in FIG. 8 is removed is calculated.

<ステップS8> 表示
CPU20は、図9に示すように、モニタ23に測定対象の透明膜31の物理膜厚の情報などを3次元画像で表示したりする。操作者は、これらの表示を観察することで、透明膜31の膜厚分布を把握することができる。
<Step S8> Display As shown in FIG. 9, the CPU 20 displays information on the physical film thickness of the transparent film 31 to be measured on the monitor 23 as a three-dimensional image. The operator can grasp the film thickness distribution of the transparent film 31 by observing these displays.

上述した実施例によれば、透過性を有する光学部材である測定対象物30を部分的に透明膜31が形成されている場合、干渉計を利用して両領域の画素ごとに光学部材の裏面30Aで生じる干渉縞波形のピークの位置情報のみを検出し、当該位置情報を利用することにより、光学部材の裏面高さSを求めることができる。また、透明膜31の被覆部分S2の裏面高さSは、透明膜31の屈折率の影響で露出部分S1よりも光路長が長くなるので、露出部分S1よりも低く現れる。この現象に基づいて、裏面高さSの値から光路差(偏差)を求めることができる。さらに、透明膜31の既知の屈折率と求めた光路差から透明膜31の屈折率の影響を除去した物理膜厚を求めることができる。   According to the embodiment described above, when the transparent object 31 is partially formed on the measuring object 30 that is an optical member having transparency, the back surface of the optical member is used for each pixel in both regions using an interferometer. By detecting only the position information of the peak of the interference fringe waveform generated at 30A and using the position information, the back surface height S of the optical member can be obtained. Further, the back surface height S of the covering portion S2 of the transparent film 31 appears lower than the exposed portion S1 because the optical path length becomes longer than the exposed portion S1 due to the influence of the refractive index of the transparent film 31. Based on this phenomenon, the optical path difference (deviation) can be obtained from the value of the back surface height S. Further, the physical film thickness obtained by removing the influence of the refractive index of the transparent film 31 from the known refractive index of the transparent film 31 and the obtained optical path difference can be obtained.

すなわち、光学部材の表面に形成された透明膜31の膜厚を1回の測定で精度よく求めることができる。   That is, the film thickness of the transparent film 31 formed on the surface of the optical member can be accurately obtained by one measurement.

なお、本発明は上述した実施例に限らず、次のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上記実施例は、光学部材の厚さと屈折率の影響を除去するために、図10に示すように、ビームスプリッタ17と参照面15の間の光路上に測定対象物30の光学部材と同じ部材の補償板40を挿入して測定することが好ましい。   (1) In the above embodiment, the optical member of the measuring object 30 is placed on the optical path between the beam splitter 17 and the reference surface 15 as shown in FIG. It is preferable to measure by inserting a compensation plate 40 of the same member as in FIG.

この構成によれば、測定対象物側の光学部材の厚さと屈折率の影響を除去した高精度な透明膜31の膜厚を測定することができる。   According to this configuration, it is possible to measure the thickness of the transparent film 31 with high accuracy in which the influence of the thickness and refractive index of the optical member on the measurement object side is removed.

(2)上記実施例では、撮像手段としてCCDカメラ19を用いたが、例えば、特定箇所の干渉光の強度値のみを撮像(検出)することに鑑みれば、一列または平面状に構成された受光素子など撮像手段を構成することもできる。   (2) In the above embodiment, the CCD camera 19 is used as the imaging means. However, in view of imaging (detecting) only the intensity value of the interference light at a specific location, for example, the light reception configured in a line or in a planar shape. An imaging means such as an element can also be configured.

(3)上記実施例は、光学系ユニット1の光源に単色光を出力可能な光源を利用してもよい。この場合には、干渉光強度値群から裏面高さ分布を求めるに際し、干渉波形の位相情報を検出し、より高精度な裏面高さ測定を実施することもできる。   (3) The above embodiment may use a light source capable of outputting monochromatic light as the light source of the optical system unit 1. In this case, when obtaining the back surface height distribution from the interference light intensity value group, it is possible to detect the phase information of the interference waveform and perform the back surface height measurement with higher accuracy.

本実施例に係る表面形状測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the surface shape measuring apparatus which concerns on a present Example. 表面形状測定装置における処理を示すフローチャートである。It is a flowchart which shows the process in a surface shape measuring apparatus. 特定関数のピーク位置を求める処理を説明するための説明図である。It is explanatory drawing for demonstrating the process which calculates | requires the peak position of a specific function. 特定関数のピーク位置を求める処理を説明するための説明図である。It is explanatory drawing for demonstrating the process which calculates | requires the peak position of a specific function. 測定対象物の測定領域の横断面図である。It is a cross-sectional view of the measurement region of the measurement object. 光学部材の裏面高さの分布を示す図である。It is a figure which shows distribution of the back surface height of an optical member. 算出した透明膜の表面高さの分布を示す図である。It is a figure which shows distribution of the surface height of the calculated transparent film. 算出した透明膜の膜厚を示す図である。It is a figure which shows the film thickness of the calculated transparent film. 測定対象物の表面段差の3次元画像を示す図である。It is a figure which shows the three-dimensional image of the surface level | step difference of a measuring object. 変形例装置の概略構成を示す図である。It is a figure which shows schematic structure of a modification apparatus.

符号の説明Explanation of symbols

1 … 光学系ユニット
2 … 制御系ユニット
10 … 光源
11 … コリメートレンズ
13 … ハーフミラー
14 … 対物レンズ
15 … 参照面
17 … ビームスプリッタ
18 … 結像レンズ
19 … CCDカメラ
20 … CPU
21 … メモリ
24 … 駆動部
30 … 測定対象物(光学部材)
31 … 透明膜
DESCRIPTION OF SYMBOLS 1 ... Optical system unit 2 ... Control system unit 10 ... Light source 11 ... Collimating lens 13 ... Half mirror 14 ... Objective lens 15 ... Reference surface 17 ... Beam splitter 18 ... Imaging lens 19 ... CCD camera 20 ... CPU
21 ... Memory 24 ... Drive unit 30 ... Measurement object (optical member)
31 ... Transparent film

Claims (4)

干渉計を利用して測定対象物の表面に形成された透明膜の膜厚を測定する透明膜の膜厚測定方法であって、
前記測定対象物は、透過性を有する光学部材の表面に部分的に透明膜が形成された物であり、
前記測定対象物の測定面と参照面に光を照射したとき、前記光学部材の裏面と参照面からの反射光により生じる干渉縞波形のピークが発生する走査レンジを予め決定する過程と、
前記測定対象物の測定面および参照面に光を照射し、当該測定面と参照面との距離を相対的に変動させながら、両面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせながら測定面の画像を取得する過程と、
取得した複数枚の前記画像の各画素における干渉光の強度値群の変化を求める過程と、
求めた前記干渉光の強度値群から前記光学部材の裏面で生じる干渉縞波形のピークの位置情報を求める過程と、
前記位置情報から前記光学部材の裏面高さの分布を求める過程と、
前記透明膜の被覆部分と露出部分の裏面高さの偏差を求める過程と、
予め決められた前記透明膜の屈折率と前記裏面高さの偏差に基づいて透明膜の膜厚を求める過程と、
を備えたことを特徴とする透明膜の膜厚測定方法。
A method for measuring a film thickness of a transparent film that measures the film thickness of a transparent film formed on the surface of an object to be measured using an interferometer,
The measurement object is an object in which a transparent film is partially formed on the surface of a transparent optical member,
A process of predetermining a scanning range in which a peak of an interference fringe waveform generated by light reflected from the back surface and the reference surface of the optical member when irradiating light to the measurement surface and the reference surface of the measurement object;
Irradiate light to the measurement surface and the reference surface of the measurement object, and change the interference fringes by reflected light reflected from both surfaces and returning from the same optical path while relatively changing the distance between the measurement surface and the reference surface. A process of acquiring an image of the measurement surface while generating
A process of obtaining a change in the intensity value group of interference light at each pixel of the acquired plurality of images,
The process of obtaining the position information of the peak of the interference fringe waveform generated on the back surface of the optical member from the obtained intensity value group of the interference light,
The process of obtaining the distribution of the back surface height of the optical member from the position information;
The process of obtaining the deviation of the back surface height of the coating part and the exposed part of the transparent film,
A process of obtaining a film thickness of the transparent film based on a predetermined refractive index of the transparent film and a deviation of the height of the back surface;
A method for measuring a film thickness of a transparent film, comprising:
請求項1に記載の透明膜の膜厚測定方法において、
前記参照面側の光の往復光路上に前記光学部材と同一試料からなる補償板を配備し、前記光学部材の屈折率と厚さの影響を補正する
ことを特徴とする透明膜の膜厚測定方法。
In the film thickness measuring method of the transparent film according to claim 1,
A film thickness measurement of a transparent film, wherein a compensation plate made of the same sample as the optical member is arranged on a reciprocal optical path of light on the reference surface side, and the influence of the refractive index and thickness of the optical member is corrected. Method.
透明膜覆われた測定対象物の測定面と参照面に光を照射する照明手段と、前記測定面と参照面との距離を変動させる変動手段と、光が照射された測定面と参照面との距離の変動に伴って両面とから反射して同一光路を戻る反射光によって干渉縞の変化を生じさせるとともに測定面を撮像する撮像手段と、撮像された測定面上の複数箇所における干渉光の強度値を取り込むサンプリング手段と、サンプリング手段によって取り込まれた箇所ごとの複数個の強度値である各干渉光強度値群を記憶する記憶手段と、記憶手段に記憶された各干渉光強度値群に基づいて特定箇所の透明膜の膜厚を求める演算手段とを備えた透明膜の膜厚測定装置であって、
前記測定対象物は、透過性を有する光学部材の表面に部分的に透明膜が形成された物であり、
前記測定対象物の測定面と参照面に光を照射したとき、前記光学部材の裏面と参照面からの反射光により生じる干渉縞波形のピークが発生する走査レンジを予め決定し、
前記サンプリング手段は、前記変動手段による測定面と参照面との距離の変動に伴って両面から反射して同一光路を戻る反射光によって生じた干渉縞の変化に応じた前記走査レンジの干渉光の強度値をサンプリング間隔で順次取込み、
前記記憶手段は、取り込まれた複数個の強度値である干渉光強度値群を記憶し、
前記演算手段は、測定面の透明膜の膜厚を以下の処理にしたがって求める
(1)取得した複数枚の前記画像の各画素における干渉光の強度値群の変化を求め、
(2)求めた前記干渉光の強度値群から前記光学部材の裏面で生じる干渉縞波形のピークの位置情報を求め、
(3)前記位置情報から前記光学部材の裏面高さの分布を求め、
(4)前記透明膜の被覆部分と露出部分の裏面高さの偏差を求め、
(5)予め決められた前記透明膜の屈折率と前記偏差に基づいて透明膜の膜厚を求める
ことを特徴とする透明膜の膜厚測定装置。
Illumination means for irradiating light to the measurement surface and the reference surface of the measurement object covered with the transparent film, fluctuating means for changing the distance between the measurement surface and the reference surface, and the measurement surface and the reference surface irradiated with light The interference fringe is changed by the reflected light that is reflected from both surfaces and returns on the same optical path as the distance varies, and the imaging means for imaging the measurement surface, and the interference light at multiple locations on the measured measurement surface Sampling means for capturing intensity values, storage means for storing each interference light intensity value group that is a plurality of intensity values for each location captured by the sampling means, and each interference light intensity value group stored in the storage means A film thickness measuring device for a transparent film comprising a calculation means for obtaining the film thickness of the transparent film at a specific location based on
The measurement object is an object in which a transparent film is partially formed on the surface of a transparent optical member,
When the measurement surface and the reference surface of the measurement object are irradiated with light, the scanning range in which the peak of the interference fringe waveform generated by the reflected light from the back surface and the reference surface of the optical member is determined in advance,
The sampling means reflects interference light in the scanning range in accordance with a change in interference fringes caused by reflected light that is reflected from both surfaces and returns on the same optical path as the distance between the measurement surface and the reference surface is changed by the changing means. Intensity values are taken sequentially at sampling intervals,
The storage means stores an interference light intensity value group that is a plurality of captured intensity values,
The calculation means obtains the film thickness of the transparent film on the measurement surface according to the following process: (1) Obtains a change in the intensity value group of the interference light in each pixel of the obtained plurality of images,
(2) Find the position information of the peak of the interference fringe waveform generated on the back surface of the optical member from the obtained intensity value group of the interference light,
(3) Obtaining the distribution of the back surface height of the optical member from the position information,
(4) Find the deviation of the back surface height of the coating portion and the exposed portion of the transparent film,
(5) A transparent film thickness measuring apparatus, wherein the film thickness of the transparent film is obtained based on a predetermined refractive index and the deviation of the transparent film.
請求項3に記載の透明膜の膜厚測定装置において、
前記参照面側の光の往復光路上に前記光学部材と同一試料からなる補償板を配備した
ことを特徴とする透明膜の膜厚測定装置。
In the transparent film thickness measuring apparatus according to claim 3,
An apparatus for measuring a film thickness of a transparent film, comprising a compensation plate made of the same sample as the optical member on a reciprocal optical path of light on the reference surface side.
JP2007137967A 2007-05-24 2007-05-24 Method and apparatus for measuring film thickness of transparent film Expired - Fee Related JP4939304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137967A JP4939304B2 (en) 2007-05-24 2007-05-24 Method and apparatus for measuring film thickness of transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137967A JP4939304B2 (en) 2007-05-24 2007-05-24 Method and apparatus for measuring film thickness of transparent film

Publications (2)

Publication Number Publication Date
JP2008292296A JP2008292296A (en) 2008-12-04
JP4939304B2 true JP4939304B2 (en) 2012-05-23

Family

ID=40167175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137967A Expired - Fee Related JP4939304B2 (en) 2007-05-24 2007-05-24 Method and apparatus for measuring film thickness of transparent film

Country Status (1)

Country Link
JP (1) JP4939304B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046186A1 (en) * 2008-11-06 2010-05-20 Kayaba Industry Co., Ltd. Solenoid actuator
JP5307517B2 (en) 2008-11-14 2013-10-02 カヤバ工業株式会社 solenoid
JP5461376B2 (en) * 2010-12-06 2014-04-02 國立中央大學 Thin film formation monitoring method using dynamic interferometer
US20140320866A1 (en) * 2011-12-07 2014-10-30 Konica Minolta, Inc Shape Measuring Apparatus
WO2013088871A1 (en) * 2011-12-16 2013-06-20 東レエンジニアリング株式会社 Film thickness measurement method and device by interference color model conformity
JP6025346B2 (en) * 2012-03-05 2016-11-16 キヤノン株式会社 Detection apparatus, exposure apparatus, and device manufacturing method
CN104154870B (en) * 2014-08-28 2016-08-31 青岛理工大学 A kind of method of bi-coloured light interferometry oil film thickness
KR101734088B1 (en) * 2015-09-15 2017-05-11 연세대학교 산학협력단 Thickness Measuring Machine for Transparent Plate, Thickness Measuring System Having the Same, and Operating Method Thereof
JP6333351B1 (en) * 2016-12-27 2018-05-30 Ntn株式会社 Measuring device, coating device, and film thickness measuring method
KR102092638B1 (en) * 2019-03-20 2020-03-24 (주)지엘테크 3d shape measurement device and method using the same optical path

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566481B2 (en) * 1975-06-28 1981-02-12
JPS5257843A (en) * 1975-11-07 1977-05-12 Hitachi Ltd Measuring device for thickness of film
US4147435A (en) * 1977-06-30 1979-04-03 International Business Machines Corporation Interferometric process and apparatus for the measurement of the etch rate of opaque surfaces
US4293224A (en) * 1978-12-04 1981-10-06 International Business Machines Corporation Optical system and technique for unambiguous film thickness monitoring
US4260259A (en) * 1978-12-29 1981-04-07 International Business Machines Corporation Metal etch rate analyzer
JPS58169009A (en) * 1982-03-31 1983-10-05 Fujitsu Ltd Film thickness measuring method
FI823028A0 (en) * 1982-09-01 1982-09-01 Kalevi Juhani Kalliomaeki FOERFARANDE FOER MAETNING AV KORTA STRAECKOR MED EN INTERFEROMETER SOM UTNYTTJAR ICKE-KOHERENT LJUS, SAMT FOER UTFOERANDE AV FOERFARANDET AVSEDD INTERFEROMETER
JPS6271804A (en) * 1985-09-26 1987-04-02 Nippon Kogaku Kk <Nikon> Film thickness measuring instrument
JPH01287406A (en) * 1988-05-13 1989-11-20 Toray Ind Inc Film thickness measuring method
JP2890588B2 (en) * 1990-01-22 1999-05-17 ソニー株式会社 Method of measuring film thickness
US5220405A (en) * 1991-12-20 1993-06-15 International Business Machines Corporation Interferometer for in situ measurement of thin film thickness changes
JP3428067B2 (en) * 1993-05-25 2003-07-22 住友金属鉱山株式会社 Displacement measuring method and displacement measuring device used therefor
JP2592211B2 (en) * 1993-06-04 1997-03-19 浜松ホトニクス株式会社 Interference film thickness measuring device
JPH074922A (en) * 1993-06-21 1995-01-10 Jasco Corp Apparatus and method for measurement of film thickness of semiconductor multilayer thin film
JPH0763676A (en) * 1993-08-27 1995-03-10 Mitsubishi Electric Corp Apparatus and method for inspection of performance of phase-shift reticle
JP3315231B2 (en) * 1993-12-29 2002-08-19 株式会社東芝 Position detection device
JP2937004B2 (en) * 1994-04-11 1999-08-23 東レ株式会社 Method and apparatus for measuring thin film thickness, method for producing optical filter, and method for producing polymer film
JP2624221B2 (en) * 1995-07-03 1997-06-25 東レ株式会社 Method for producing composite film and method for producing thin film
JPH09243332A (en) * 1996-03-07 1997-09-19 Hitachi Ltd Film thickness measuring device
JP3459327B2 (en) * 1996-06-17 2003-10-20 理化学研究所 Method and apparatus for measuring layer thickness and refractive index of laminated structure
JPH10122824A (en) * 1996-10-24 1998-05-15 Dainippon Screen Mfg Co Ltd Film thickness measuring method
JPH1123229A (en) * 1997-07-08 1999-01-29 Tokyo Seimitsu Co Ltd Measuring method for film thickness
JP3790628B2 (en) * 1998-08-20 2006-06-28 大塚電子株式会社 Method and apparatus for measuring film thickness and optical constant
JP2000241128A (en) * 1998-12-25 2000-09-08 Olympus Optical Co Ltd Plane-to-plane space measuring apparatus
JP4486217B2 (en) * 2000-05-01 2010-06-23 浜松ホトニクス株式会社 Thickness measuring apparatus, wet etching apparatus using the same, and wet etching method
JP3823745B2 (en) * 2001-03-14 2006-09-20 オムロン株式会社 Film thickness measuring method and film thickness sensor using the method
JP3861666B2 (en) * 2001-11-15 2006-12-20 セイコーエプソン株式会社 Shape measuring method and apparatus
JP2003222506A (en) * 2002-01-31 2003-08-08 Kobe Steel Ltd Thickness measuring device and thickness measuring method for transparent body, and thickness derivation device, thickness derivation method and thickness derivation program for transparent body
JP4056064B2 (en) * 2002-11-21 2008-03-05 株式会社リコー Coating layer thickness measuring method and thickness measuring apparatus for thin coated fine powder
JP4100330B2 (en) * 2003-11-10 2008-06-11 オムロン株式会社 Thin film measuring method and thin film measuring apparatus
JP2005195531A (en) * 2004-01-09 2005-07-21 Chi Mei Electronics Corp Inspection device and inspection method for transparent electrode
US7177030B2 (en) * 2004-04-22 2007-02-13 Technion Research And Development Foundation Ltd. Determination of thin film topography
US20060012582A1 (en) * 2004-07-15 2006-01-19 De Lega Xavier C Transparent film measurements
JP2006250826A (en) * 2005-03-11 2006-09-21 Yamagata Prefecture Measuring element, processing device and measuring method, and measuring element of refractive index
JP2007003456A (en) * 2005-06-27 2007-01-11 Sony Disc & Digital Solutions Inc Method and apparatus for measuring film thickness

Also Published As

Publication number Publication date
JP2008292296A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP6604769B2 (en) How to measure a high accuracy height map of a test surface
JP4710078B2 (en) Surface shape measuring method and apparatus using the same
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP5172040B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP5942847B2 (en) Height measuring method and height measuring apparatus
WO2013084557A1 (en) Shape-measuring device
US9372079B1 (en) Optical plate for calibration of coordinate measuring machines
JP2004340680A (en) Method for measuring surface profile and/or film thickness, and its apparatus
JP4192038B2 (en) Surface shape and / or film thickness measuring method and apparatus
JP4183089B2 (en) Surface shape and / or film thickness measuring method and apparatus
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
JP5057848B2 (en) Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film
JP6953673B2 (en) Optical measuring device and optical axis adjustment method
KR101333299B1 (en) 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
JP2010060420A (en) Surface shape and/or film thickness measuring method and its system
JP6293528B2 (en) Calibration method of reference mirror surface shape in interferometer
JP6047764B2 (en) White interferometer, image processing method, and image processing program
JP2006329807A (en) Image processing method and device using it
KR101423829B1 (en) 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
JP5518187B2 (en) Deformation measurement method
WO2018123398A1 (en) Measuring device, application device, and film thickness measuring method
JP5500354B2 (en) Membrane structure measuring method and surface shape measuring apparatus
US9581434B2 (en) Apparatus and method for measuring pattern of a grating device
JP2009145068A (en) Surface profile measuring method and interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees