WO2001083293A1 - Auto-respirateur subaquatique a rechargement manuel integre - Google Patents

Auto-respirateur subaquatique a rechargement manuel integre Download PDF

Info

Publication number
WO2001083293A1
WO2001083293A1 PCT/FR2001/001328 FR0101328W WO0183293A1 WO 2001083293 A1 WO2001083293 A1 WO 2001083293A1 FR 0101328 W FR0101328 W FR 0101328W WO 0183293 A1 WO0183293 A1 WO 0183293A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
air
bottle
pump
contained underwater
Prior art date
Application number
PCT/FR2001/001328
Other languages
English (en)
Inventor
André-Pierre SAURAT
Philippe Michel
Original Assignee
Salomon S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salomon S.A. filed Critical Salomon S.A.
Priority to DE60110173T priority Critical patent/DE60110173D1/de
Priority to AU56446/01A priority patent/AU5644601A/en
Priority to EP01929760A priority patent/EP1189806B1/fr
Priority to AT01929760T priority patent/ATE293563T1/de
Publication of WO2001083293A1 publication Critical patent/WO2001083293A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B33/00Pumps actuated by muscle power, e.g. for inflating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply
    • B63C11/22Air supply carried by diver
    • B63C2011/2272Pumps specially adapted for filling breathing air into tanks for compressed air, e.g. manual pumps

Definitions

  • the present invention relates to an autonomous underwater breathing system comprising in particular a bottle of compressed air which incorporates its own means of recharging air using a manually driven pump.
  • the diver can be supplied with compressed air either from the surface as in the case of a helmet and cable suit, or by means of a bottle of compressed air carried by the diver.
  • the systems for re-inflating diving compressed air cylinders use compressors with powerful thermal or electric motors which allow the internal pressure of the cylinder to be brought to around 200 bars. This has the advantage of offering significant breathing autonomy in immersion, but has very restrictive counterparts:
  • the bottle must be used within a specified period after having been re-inflated, otherwise the air quality deteriorates.
  • the present invention relates to the inflation of the compressed air bottle.
  • the aim being to free from the disadvantages presented above.
  • the present invention provides an underwater self-breathing device of the aforementioned type. It is particularly characterized in that the bottle can be pressurized with air using an integrated manual pump. Located inside the bottle, it allows the latter to be pressurized to approximately ten bars. " ⁇ This bottle also has a charge and discharge valve. This device is fitted with a holding assembly that fits on the back of the plunger. The pressurized air from the bottle is transmitted to the diver through '' a flexible conduit and a one-stage regulator that regulates the suction pressure to the ambient water pressure.
  • the underwater self-breathing device has a mass substantially equal to its volume multiplied by the density of the water in which it is immersed.
  • the main advantage of the self-contained underwater respirator according to the invention lies in the fact that it makes it possible to re-inflate the bottle with compressed air without having to use a compressor.
  • the diver wishing to perform a dive will pump for a few minutes to charge the bottle with compressed air at a pressure of 5 to 15 bars. It will have an autonomy of ten minutes in immersion, variable depending on the depth and its air consumption.
  • the bottle will be of cylindrical shape.
  • the lower end will allow, by its flared shape, to stabilize said bottle in a vertical position; the upper end will have a large circular hole which allows the pump to be inserted and fixed on it.
  • Said bottle must be able to withstand the external pressure of the water as well as the internal pressure of the air.
  • the pump integrated in the bottle is a high performance pump which allows an inflation power of several tens of bars to be achieved without abnormal effort.
  • the pump is fixed to the upper part of the bottle using a flange. Said pump is actuated vertically using a handle.
  • the pump comprises a circular plate which associates at least one pump body; said plate is positioned on the upper orifice of the bottle, the seal between the orifice and the plate is ensured by an O-ring.
  • the plate is kept pressed against the orifice thanks to a circular flange screwed on the outer contour of the orifice.
  • the pump is characterized in that it comprises: a primary chamber and a secondary chamber arranged geometrically parallel to each other, each chamber receiving a simultaneously mobile piston.
  • Each piston is actuated by a rod itself connected to a single operating handle.
  • the piston rod of the primary chamber is hollow to allow the admission of air under the piston.
  • the end connected to the handle of said rod has at least one transverse orifice in order to allow the admission of air into the hollow rod.
  • the longitudinal positioning on the rod of said orifice is substantially at or below the gasket when the pump is in the locked position to prevent water from entering this hole during diving, so the pump must be locked before immersion.
  • the two chambers communicate at their upper ends by one or more orifices or channels in order to allow the transfer of air from the primary chamber to the secondary chamber.
  • the secondary chamber has a lower orifice fitted with a non-return valve allowing the injection of air into the bottle.
  • the movable piston in the primary chamber is oriented so as to allow admission into this primary chamber and its discharge into the secondary chamber, while the movable piston in the chamber secondary is oriented to allow the admission of air from the primary chamber and its discharge into the bottle through the non-return valve.
  • the handle which connects and makes it possible to simultaneously actuate the two rods of the pistons must make it possible, on the one hand to inflate the bottle with two hands and on the other hand to comfortably carry the bottle.
  • a locking system allows the handle to be locked in the low position.
  • the double body pump system improves the ratio between the number of pump strokes and the forces to be exerted on the handle compared to a single body pump.
  • a single-body pump will be used, provided with a seal between the cover of the bottle and the piston rod.
  • the air intake will be based on the same principle of hollow rod but the lower orifice of which should open out above the piston.
  • the self-contained underwater respirator will include a depth clamping system which will reduce the air flow from the regulator from a determined depth.
  • the self-contained underwater respirator will be equipped with a waterproof manometer making it possible to follow the variation in air pressure in the bottle both during immersion and during inflation.
  • This pressure gauge is either fixed on the bottle or is detachably connected to the charge and discharge valve via a flexible cord.
  • This pressure gauge informs the diver of the remaining air autonomy which allows him to anticipate the moment of his ascent to the surface.
  • the self-contained underwater respirator is equipped with a regulator making it possible to deliver to the diver a breathing air pressure substantially equal to the ambient pressure of the water while the pressure inside of the bottle varies during the dive from ten bars to 1 bar.
  • This regulator is also of the standard second stage type which is used on traditional diving tanks in addition to a first stage regulator.
  • the low internal pressure of the bottle does not justify the use of a first stage regulator, the regulator is connected directly to the compressed air bottle with a quick connector and a flexible hose.
  • the internal pressure of the bottle is substantially equal to the ambient pressure of the water, breathing becomes more difficult, which indicates to the diver that he must return to the surface.
  • the self-contained underwater respirator comprises a back support assembly of the “braces” type consisting on the one hand of two straps fixed at the two ends of the bottle ensuring the vertical maintenance thereof on the back of the diver and on the other hand a ventral strap "belt” allowing the horizontal stability of the bottle.
  • the compressed air bottle is fixed on a vest used to hold on the back of the plunger. Said vest consists of one or more inflatable pockets allowing to act on the buoyancy of the diver.
  • the compressed air bottle comprises a support foot allowing the stabilization of said bottle during inflation.
  • the diver can thus by placing his feet on these appendages keep the bottle pressed to the ground.
  • these appendages are either folded inside a support so as not to hinder the diver in his movements, or folded along the bottle.
  • Figure 1 is a schematic view of the main elements constituting the self-inflating self-breathing.
  • Figure 2 is a sectional view of the double body pump placed inside the bottle.
  • Figure 3 is a sectional view of the single-body pump placed inside the bottle.
  • Figure 4 is a schematic sectional view of the self-ventilator provided with an alternative embodiment of the double body pump.
  • FIGS. 5A to 5D illustrate different stages of operation of the pump illustrated in FIG. 5, in a first operating mode of the pump.
  • FIGS. 6A to 6D illustrate different stages of operation of the pump of FIG. 5, in a second operating mode of the pump.
  • the self-contained underwater respirator comprising a bottle (1) of compressed air, at the top of which is connected, using a quick connector (9) , an air supply pipe (10), at the end of which is connected the regulator (12) placed in the mouth by the plunger at the time of immersion.
  • bottle is meant any form of pressurized air tank " intended to be carried underwater by the diver during his dive.
  • a charge and discharge valve (8) is attached to the top of the bottle.
  • a support foot consisting of a support (27) inside which are two telescopic or folding appendages (13), (14), this in order to give the bottle greater stability in the vertical position when reloading the cylinder with air with the pump.
  • two vertical straps 32a, 32b which form a carrying system allowing the diver to carry the bottle on the back during the dive.
  • the pump comprises two parallel bodies (18) and (19) of equal lengths arranged side by side. These bodies are obstructed in the upper part by an upper plate (5) which also constitutes the stopper of the bottle.
  • the lower end of the primary pump body (18) is completely obstructed while that of the secondary pump body (19) has a lower air injection port provided with a non-return valve (20).
  • the two pump bodies (18), (19) are thus secured to the bottle (1) by means of the plate (5).
  • the pump body (18) constitutes a primary chamber CP, while the pump body (19) constitutes a secondary chamber CS, the two chambers can have different sections.
  • the primary chamber CP receives a piston generally indicated at (17) of the cup type comprising a deformable lip (17a) which is fitted at the end of a piston-carrying rod (4) passing through the upper plate (5).
  • a seal (23) and a guide ring (21) are housed in the upper plate (5) to seal and guide it between the latter and the piston-carrying rod (4).
  • the secondary chamber CS also receives a piston (16) with a cup comprising a deformable lip (16 a) which is fixed at the end of a piston-carrying rod (3) passing through the upper plate (5), a seal (22) as well as 'a guide ring (21) are housed in the upper plate (5) for sealing and guiding between the latter and the piston holder rod (3).
  • the pistons (16) and (17) are substantially at the same level inside each of the chambers, so that they are both together at a low point or at a high point, but the lips (16a) and (17a) cups are oriented in opposition; more precisely the lip (17a) of the piston (17) of the primary chamber CP is directed upwards, that is to say, towards the plate (5), while the lip (16a) of the piston (16 ) of the secondary chamber CS is directed downwards, that is to say towards the bottom of the body (19).
  • the two chambers CP and CS are in communication in the upper part for example by means of a channel (24), while in the lower part the chamber CS is in communication with the interior of the bottle by a lower orifice (20) fitted with a non-return valve.
  • the rod (4) which carries the piston of the primary chamber is hollow over its entire length, its lower orifice opens out under the piston (17) while its end upper is blocked. In this way, the two chambers (CP, CS) are arranged functionally in series.
  • the air intake takes place through a transverse orifice (26) which is positioned at or below the seal when the pump is locked in the low position, but above the seal when the rod ( 4) is moved upwards, so as to put the primary chamber in communication with the atmosphere.
  • the plate (5) is pressed against the orifice of the bottle (1) by means of a circular flange (6) screwed on the external contour of the orifice, the seal between the orifice and the plate (5) is ensured by an O-ring (25).
  • the cups (16a, 17a) of the two pistons (16, 17) therefore divide the interior of the pump body into three compartments whose respective volumes vary depending on the position of the pistons.
  • the first compartment is the one (forming an outlet cavity) delimited below the cup (17a) in the primary chamber (CP).
  • the second compartment includes the upper portions (or transfer cavities) of the primary and secondary chambers, that is to say those located above the corresponding cups (16a, 17a). These two portions are in fact connected by the channel (24) so as to form a single compartment in which the pressure is always uniform.
  • the third compartment is the one located below the cup (16a) of the secondary chamber (CS) (and forming an outlet cavity for the secondary chamber).
  • the volume of the second compartment increases.
  • the air previously included in the first compartment may, due to the orientation of the lip of the cup (17a), be transferred to the second compartment.
  • the outside air can also be admitted into the second compartment during this phase, the outside air passing through the hollow shaft (4), by the first compartment and by the cup (17a).
  • the volume of the third compartment decreases, which performs a second stage of compression of the air contained in this third compartment.
  • a limit pressure which is a function of the pressure in the bottle and the setting of the non-return valve, the pressurized air is evacuated, without possibility of return, towards the inside of the bottle through the lower opening (20).
  • the double piston construction therefore allows compression to be carried out in two stages.
  • the compression ratio of the first stage can be modified by modifying the respective volumes of the primary and secondary chambers.
  • a secondary chamber of smaller diameter than the primary chamber a higher compression ratio is obtained for the first compression stage.
  • the pumping system with double compression stage which is used here is particularly advantageous because it makes it possible to reduce the time necessary for refilling the bottle.
  • a pumping system with multiple compression stages can be provided, comprising for example a pump provided with as many successive bodies as desired compression stages.
  • the pump comprises a single body (37) obstructed in the upper part by a plate (29) which also constitutes the stopper of the bottle.
  • the lower end of the pump body (37) is obstructed but has an air injection orifice provided with a non-return valve (36).
  • the pump body (37) receives a piston (34) of the cup type comprising a deformable lip (34a) which is fitted at the end of a piston-carrying rod (31) passing through the plate (29).
  • a seal (33) and a guide ring (32) are housed in the plate (29) to seal and guide it between the latter and the piston-carrying rod.
  • the deformable lip (34a) of the piston (34) is directed towards the bottom of the pump body in order to be able to push the air in this direction.
  • the aforementioned piston-carrying rod (31) is beyond the plate (29) coupled to a single operating handle (2).
  • the rod (31) is hollow over its entire length, its lower orifice (27) is transverse to the rod and opens just above the piston (34) while its upper end is blocked.
  • the air intake takes place through a transverse orifice (28) substantially positioned below the seal when the pump is locked in the low position.
  • outside air is admitted into the upper portion of the pump body when the piston (34) is brought from its high position to its low position. It is then transferred to the lower portion of the pump body, by crossing the cup (34a), when the piston (34) is brought from its low position to its high position.
  • the piston is again brought to its lower position, the air contained in the lower portion is compressed, and, beyond a limit pressure, it is transferred to the interior of the bottle.
  • This embodiment of the pumping system offers only one pumping stage, but it offers the advantage of being very simple and very inexpensive.
  • the auto-respirator according to the invention comprises an improved pumping system. Indeed, like the embodiment of Figure 2, it is a two-body pumping system capable of performing two-stage compression. However, the embodiment of Figure 2 has only one outlet cavity (that is to say a cavity in which the air undergoes a final compression before being expelled to the tank) while in this third mode.
  • the pumping system comprises two outlet cavities which can be activated simultaneously or one of which can be deactivated.
  • the pump comprises two cylindrical primary (CP) and secondary (CS) chambers arranged geometrically parallel to each other, each chamber receiving a piston (46, 48) mounted at the end of a rod (42, 44) movable axially, the two rods being actuated by a common handle (40).
  • CP primary
  • CS secondary
  • the mounting of the pump bodies inside the bottle is identical to that described above.
  • each chamber thus comprises an air outlet cavity (50, 52) which, in the exemplary embodiment, consists of the lower portion of each of the two chambers and which comprises an air outlet orifice (54, 56 ) opening into the bottle.
  • Each outlet orifice (54, 56) is associated with a non-return system (58, 60), such as a valve, allowing the passage of air only from the corresponding outlet cavity towards the interior of the bottle.
  • each of the two chambers in this case the upper portions, constitutes a transfer cavity (62, 64).
  • the two transfer cavities are connected to each other, as before, by a connecting channel (66) to form a transfer compartment similar to the second compartment of the embodiment of Figure 2.
  • the transfer compartment has an air intake inlet (65) which is made through a non-return valve (67). This air inlet (65) opens for example in the connecting channel (66).
  • the outlet cavity (50) of the primary chamber (CP) is connected to a duct (68) which allows the admission of air into the outlet cavity (50), through a non-return valve (70 ) preventing air from coming out.
  • This conduit also comprises, between the valve (70) and the outlet cavity (50), a bypass (72) which is provided with a shut-off valve (74) and which allows, when the shut-off valve ( 74) is open, put the outlet cavity (50) in permanently in communication with the atmosphere. In this configuration, the outlet cavity (50) of the primary chamber (CP) becomes inoperative.
  • the non-return valves (67, 70) which allow the admission of air into the transfer compartment and into the outlet cavity (50) of the primary chamber (CP) are connected to the atmosphere by a cut-off valve.
  • common (80) which makes it possible to isolate them from the water during the dive, thus preventing water from being able to enter the pump bodies. This valve (80) must be opened when the pump is used to refill the bottle.
  • the transfer cavity 64 of the secondary chamber is connected to the outlet cavity (52) of this same chamber by a transfer tube (76) in which is interposed a non-return valve (78) not allowing passage air only from the transfer compartment to the outlet cavity (52).
  • This tubing (76) with non-return valve, associated with the sealed piston (48), fulfills the same role as the cup piston (16a) of the embodiment of FIG. 2.
  • FIGS. 5 A to 5D the operation of the pumping system of the self-breathing device of FIG. 5 has been illustrated according to a first operating mode in which the shut-off valve (74) is closed.
  • the outlet cavity of the primary chamber is active and it can be noted that it operates independently of the other parts of the pump.
  • the piston (46) rises from its low position to its high position, the outlet cavity (50) of the primary chamber fills with air at atmospheric pressure through the valve (70).
  • the piston (46) moves in the other direction, the compressed air in the outlet cavity (50) cannot escape through the duct (68) which is closed, and the air is therefore expelled towards the inside the bottle through the valve (58) and the outlet (54).
  • the secondary chamber has a volume which is substantially half that of the primary chamber, so that the air which has just been transferred to the outlet cavity (52) is under pressure absolute of almost 3 bars, thus achieving a first compression stage.
  • the piston (48) descends downward, this air is further compressed in the outlet cavity (52) before being expelled towards the interior of the bottle.
  • the pump expels at each round trip of the pistons an amount of air which corresponds, at atmospheric pressure, to a volume which is close to 2.5 times the volume of the primary chamber.
  • shut-off valve (74) It is then possible to open the shut-off valve (74) and be in an operating mode of the pump in which the outlet cavity (50) of the primary chamber (CP) is inactivated. It therefore no longer offers resistance to the downward movement of the piston, so that the force to be overcome (when the pistons descend) is then only that corresponding to the compression of the air in the outlet cavity of the secondary chamber (CS), which has a smaller section.
  • the transfer compartment and the outlet cavity (52) of the secondary chamber continue to operate as described above.
  • This operating mode makes it possible to transfer approximately 1.5 times the volume of the primary chamber each time the pistons are returned, and, above all, it makes it possible to reach pressures in the reservoir of nearly twenty bars.
  • this second operating mode is almost identical to that described in relation to the embodiment of FIG. 2, with the only difference that the air which is admitted into the transfer compartment is no longer through the intermediary from the outlet cavity of the primary chamber, but via the air inlet (65).
  • FIGS. 2 and 4 are therefore particularly well suited for filling an air tank intended for the practice of scuba diving, including a tank intended to remain on the surface of the water as in the case of "hookah" type devices. Indeed, they allow (thanks to the two bodies) to recharge the tank between two dives in a very short time and at the cost of a moderate effort. In addition, they make it possible to obtain a sufficiently high pressure in the tank (thanks to the two compression stages) to store in the tank a large amount of air, allowing the diver to stay longer underwater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Engineering & Computer Science (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Catching Or Destruction (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Telephone Function (AREA)

Abstract

La présente invention concerne un appareil individuel de plongée subaquatique à rechargement autonome. Cet appareil est constitué d'une bouteille (1) mise sous pression en air à l'aide d'une pompe manuelle intégrée dans la bouteille (1) ou d'une valve de remplissage (8) . Cet appareil comporte un ensemble de maintien (32a,32b) qui s'adapte sur le dos du plongeur. L'air sous pression de la bouteille (1) est transmis au plongeur par l'intermédiaire d'un conduit flexible (10) et d'un détendeur (12) à un étage qui régule la pression d'aspiration à la pression ambiante de l'eau. La pompe intégrée à la bouteille(1) une pompe à haute performance qui permet d'atteindre un pouvoir de gonflage de plusieurs dizaines de bars sans efforts anormaux. Cette pompe à main à deux chambres (18,19) améliore de manière conséquente le rapport entre la pression, le débit d'air, et l'effort exercé sur la poignée (2) de la pompe par rapport à une pompe classique à un seul corps (37).

Description

Auto-respirateur subaquatique à rechargement manuel intégré La présente invention est relative à un système respiratoire subaquatique autonome comportant notamment une bouteille d'air comprimé qui intègre son propre moyen de rechargement en air à l'aide d'une pompe entraînée manuellement.
Dans les systèmes respiratoires subaquatiques connus, le plongeur peut être alimenté en air comprimé soit de la surface comme dans le cas d'un scaphandre à casque et à câble, soit grâce à une bouteille d'air comprimé portée par le plongeur.
Les systèmes de regonflage des bouteilles d'air comprimé de plongée utilisent des compresseurs à moteurs thermique ou électrique puissants qui permettent de porter la pression interne de la bouteille aux environs de 200 bars. Cela présente l'avantage d'offrir une importante autonomie de respiration en immersion, mais possède des contreparties très contraignantes :
- Obligation de regonfler la bouteille après environ 40 minutes de plongée.
- De nombreux endroits dans le monde ne sont pas équipés de compresseur ce qui rend cette technique inopérante.
- Le plongeur doit porter sur lui un matériel lourd et encombrant.
- Il faut utiliser la bouteille dans un délai déterminé après l'avoir regonflée sinon la qualité de l'air se détériore.
- Selon la réglementation relative aux appareils à pression, la pression élevée à l'intérieur des bouteilles de plongée impose un contrôle annuel de celles-ci.
La présente invention porte sur le gonflage de la bouteille d'air comprimé. Le but visé étant de libérer des inconvénients présentés ci-dessus.
Pour atteindre cet objectif, la présente invention prévoit un auto-respirateur subaquatique du type précité. Il se caractérise notamment en ce que la bouteille peut être mise sous pression en air à l'aide d'une pompe manuelle intégrée. Située à l'intérieur de la bouteille elle permet de pressuriser cette dernière à sensiblement une dizaine de bars. "~ Cette bouteille comporte en outre une valve de charge et décharge. Cet appareil est équipé d'un ensemble de maintien s'adaptant sur le dos du plongeur. L'air sous pression de la bouteille est transmis au plongeur par l'intermédiaire d'un conduit flexible et d'un détendeur à un étage qui régule la pression d'aspiration à la pression ambiante de l'eau.
Pour faciliter l'immersion du plongeur, l'auto respirateur subaquatique possède une masse sensiblement égale à son volume multiplié par la masse volumique de l'eau dans laquelle il est immergé.
Le principal avantage de l'auto respirateur subaquatique selon l'invention, réside dans le fait qu'il permet de regonfler la bouteille en air comprimé sans avoir recours à un compresseur.
Il trouvera ainsi son utilité d'une part dans les lieux non équipés de compresseurs tel que plage, piscine ou à bord d'un bateau (vérification de la coque, décrochage de l'ancre à faible profondeur), et d'autre part en complément de l'équipement de plongée actuel dans le but d'effectuer des plongées « loisir » à faible profondeur.
Ainsi le plongeur souhaitant effectuer une plongée pompera quelques minutes pour charger en air comprimé la bouteille à une pression de 5 à 15 bars. Il disposera d'une autonomie d'une dizaine de minutes en immersion, variable en fonction de la profondeur et de sa consommation d'air.
Selon un mode de réalisation de la présente invention, la bouteille sera de forme cylindrique. L'extrémité inférieure permettra de par sa forme évasée de stabiliser en position verticale ladite bouteille ; l'extrémité supérieure comportera un large orifice circulaire qui permet d'introduire la pompe et de la fixer sur celui-ci. Ladite bouteille doit pouvoir résister à la pression extérieure de l'eau ainsi qu'à la pression intérieure de l'air.
La pompe intégrée à la bouteille est une pompe à haute performance qui permet d'atteindre un pouvoir de gonflage de plusieurs dizaines de bars sans effort anormal.
Selon un mode de réalisation de la présente invention la pompe est fixée à la partie supérieure de la bouteille à l'aide d'une bride. Ladite pompe est actionnée dans le sens vertical à l'aide d'une poignée.
La pompe comprend une platine de forme circulaire qui associe au moins un corps de pompe ; ladite platine se positionne sur l'orifice supérieur de la bouteille, l'étanchéité entre l'orifice et la platine est assurée par un joint torique. La platine est maintenue plaquée contre l'orifice grâce à une bride circulaire vissée sur le contour extérieur de l'orifice.
Selon un premier mode de réalisation de la présente invention, la pompe se caractérise en ce qu'elle comprend : une chambre primaire et une chambre secondaire disposées géométriquement parallèlement l'une à l'autre, chaque chambre recevant un piston simultanément mobile. Chaque piston est actionné par une tige elle-même reliée à une poignée de manœuvre unique. La tige du piston de la chambre primaire est creuse afin de permettre l'admission d'air sous le piston.
"~ L'extrémité reliée à la poignée de ladite tige comporte au moins un orifice transversal afin de permettre l'admission d'air dans la tige creuse. Le positionnement longitudinal sur la tige dudit orifice se trouve sensiblement au niveau ou au-dessous du joint d'étanchéité lorsque la pompe se trouve en position verrouillée afin d'éviter l'entrée d'eau par cet orifice lors de la plongée. De ce fait la pompe doit être verrouillée avant l'immersion.
Les deux chambres communiquent à leurs extrémités supérieures par un ou plusieurs orifices ou canaux afin de permettre le transfert de l'air de la chambre primaire vers la chambre secondaire.
La chambre secondaire comporte un orifice inférieur muni d'un clapet anti-retour permettant l'injection de l'air dans la bouteille. Le piston mobile dans la chambre primaire est orienté de manière à permettre l'admission dans cette chambre primaire et son refoulement dans la chambre secondaire, tandis que le piston mobile dans la chambre secondaire est orienté pour permettre l'admission d'air provenant de la chambre primaire et son refoulement dans la bouteille à travers le clapet anti-retour.
Selon un mode de réalisation de la présente invention la poignée qui relie et permet d'actionner simultanément les deux tiges des pistons doit permettre, d'une part de gonfler la bouteille avec les deux mains et d'autre part de porter confortablement la bouteille. Un système de verrouillage permet de bloquer la poignée en position basse.
Le système de pompe double corps permet d'améliorer le rapport entre le nombre de coups de pompe et les efforts à exercer sur la poignée par rapport à une pompe à un seul corps.
Selon un autre mode de réalisation de la présente invention on utilisera une pompe à un seul corps munie d'un joint d'étanchéité entre le couvercle de la bouteille et la tige du piston. L'admission d'air reposera sur le même principe de tige creuse mais dont l'orifice inférieur devra déboucher au-dessus du piston.
Selon un mode de réalisation de l'invention l'auto respirateur subaquatique comportera un système de bridage de la profondeur qui réduira le débit d'air du détendeur à partir d'une profondeur déterminée.
Selon un mode de réalisation l'auto respirateur subaquatique sera équipé d'un manomètre étanche permettant de suivre la variation de pression de l'air dans la bouteille tant en immersion que durant le gonflage. Ce manomètre est soit fixé sur la bouteille soit relié de manière amovible à la valve de charge et décharge par l'intermédiaire d'un cordon flexible.
Ce manomètre permet d'informer le plongeur de l'autonomie d'air restante ce qui lui permet d'anticiper le moment de sa remontée en surface.
Selon un mode de réalisation de la présente invention, l'auto respirateur subaquatique est équipé d'un détendeur permettant de délivrer au plongeur une pression d'air respirable sensiblement égale à la pression ambiante de l'eau alors que la pression à l'intérieur de la bouteille varie au cours de la plongée d'une dizaine de bars à 1 bar. "~ Aussi ce détendeur est de type deuxième étage standard qui s'utilise sur les bouteilles de plongées traditionnelles en complément avec un détendeur premier étage.
La faible pression interne de la bouteille ne justifiant pas l'utilisation d'un détendeur premier étage, le détendeur est relié directement sur la bouteille d'air comprimé avec un raccord rapide et un tuyau flexible. Lorsque la pression interne de la bouteille est sensiblement égale à la pression ambiante de l'eau, la respiration devient plus difficile ce qui indique au plongeur qu'il doit regagner la surface.
Selon un mode de réalisation de la présente invention, l'auto respirateur subaquatique comporte un ensemble de maintien dorsal de type « bretelles » constitué d'une part de deux sangles fixées aux deux extrémités de la bouteille assurant le maintien vertical de celle-ci sur le dos du plongeur et d'autre part d'une sangle ventrale « ceinture » permettant la stabilité horizontale de la bouteille. Selon un mode de réalisation de la présente invention, la bouteille d'air comprimé est fixée sur un gilet servant au maintien sur le dos du plongeur. Ledit gilet est constitué d'une ou plusieurs poches gonflables permettant d'agir sur la flottabilité du plongeur.
Selon un mode de réalisation de la présente invention la bouteille d'air comprimé comprend un pied de maintien permettant la stabilisation de la dite bouteille lors du gonflage. Le plongeur peut ainsi en posant ses pieds sur ces appendices maintenir la bouteille plaquée au sol. En plongée ces appendices sont soit repliés à l'intérieur d'un support afin de ne pas gêner le plongeur dans ses mouvements, soit repliés le long de la bouteille.
Les dessins annexés illustrent l'invention :
La figure 1 est une vue schématique des principaux éléments constituant l'auto respirateur à regonflage intégré.
La figure 2 est une vue en coupe de la pompe double corps placée à l'intérieur de la bouteille.
La figure 3 est une vue en coupe de la pompe à un seul corps placée à l'intérieur de la bouteille.
La figure 4 est une vue schématique en coupe de l'auto respirateur munie d'une variante de réalisation de la pompe à double corps.
Les figures 5A à 5D illustrent différentes étapes de fonctionnement de la pompe illustrée à la figure 5, dans un premier mode opératoire de la pompe.
Les figures 6A à 6D illustrent différentes étapes de fonctionnement de la pompe de la figure 5, dans un second mode opératoire de la pompe.
Dans la représentation générale de la figure 1, nous avons schématisé l'auto respirateur subaquatique (15) comprenant une bouteille (1) d'air comprimé, au sommet de laquelle est relié, à l'aide d'un raccord rapide (9), un tuyau d'alimentation d'air (10), à l'extrémité duquel se trouve raccordé le détendeur (12) mis en bouche par le plongeur au moment de l'immersion. Par bouteille, on entend toute forme de réservoir d'air sous pression "destiné à être emporté sous l'eau par le plongeur au cours de sa plongée.
Un système de bridage (11) de la profondeur, qui, par exemple, réduira le débit d'air du détendeur à partir d'une profondeur déterminée, est fixé sur le conduit d'alimentation en air. •
Une valve de charge et décharge (8) est fixée à la partie supérieure de la bouteille.
La fixation en position rentrée dans les corps de pompe (18) et (19) des tiges porte piston (3) et (4) est assurée par un système de verrouillage (30) qui permet de solidariser lorsque cela est nécessaire la poignée (2) avec la platine (5).
A la base de la bouteille (1) se trouve un pied de maintien constitué d'un support (27) à l'intérieur duquel se trouvent deux appendices télescopiques ou rabattables (13), (14), ceci afin de donner à la bouteille une plus grande stabilité en position verticale lors du rechargement en air de la bouteille avec la pompe. Au sommet et à la base de la bouteille (1) se trouvent fixées deux sangles verticales (32a, 32b) qui forment un système de portage permettant au plongeur de porter la bouteille sur le dos lors de la plongée.
Dans la forme de réalisation selon la figure 2, la pompe comprend deux corps parallèles (18) et (19) d'égales longueurs disposés côte à côte. Ces corps sont obstrués en partie haute par une platine (5) supérieure qui par ailleurs constitue le bouchon de la bouteille
(1).
L'extrémité inférieure du corps de pompe primaire (18) est complètement obstruée alors que celle du corps de pompe secondaire (19) comporte un orifice inférieur d'injection de l'air muni d'un clapet anti-retour (20).
Les deux corps de pompe (18), (19) sont ainsi solidarisés à la bouteille (1) par l'intermédiaire de la platine (5).
Le corps de pompe (18) constitue une chambre primaire CP, tandis que le corps de pompe (19) constitue une chambre secondaire CS, les deux chambres peuvent présenter des sections différentes.
La chambre primaire CP reçoit un piston indiqué globalement en (17) du genre à coupelle comprenant une lèvre déformable (17a) qui est adaptée en bout d'une tige porte piston (4) traversant la platine supérieure (5). Un joint (23) ainsi qu'une bague de guidage (21) sont logés dans la platine supérieure (5) pour réaliser l'étanchéité et le guidage entre cette dernière et la tige porte piston (4).
La chambre secondaire CS reçoit également un piston (16) à coupelle comprenant une lèvre déformable (16 a) qui est fixé en bout d'une tige porte piston (3) traversant la platine supérieure (5), un joint (22) ainsi qu'une bague de guidage (21) sont logés dans la platine supérieure (5) pour réaliser l'étanchéité et le guidage entre cette dernière et la tige porte piston (3).
Les tiges porte piston précitées (3), (4) sont au-delà de la platine supérieure (5) "attelées à une poignée unique de manœuvre (2); les pistons (16) et (17) sont donc entraînés simultanément en va et vient à l'intérieur des chambres CP et CS.
Les pistons (16) et (17) sont sensiblement à un même niveau à l'intérieur de chacune des chambres, de sorte qu'ils sont tous deux ensembles à un point bas ou à un point haut, mais les lèvres (16a) et (17a) des coupelles sont orientées en opposition; plus précisément la lèvre (17a) du piston (17) de la chambre primaire CP est dirigée, vers le haut, c'est-à-dire, vers la platine (5), tandis que la lèvre (16a) du piston (16) de la chambre secondaire CS est dirigée vers le bas, c'est-à-dire vers le fond du corps (19).
Les deux chambres CP et CS sont en communication en partie supérieure par exemple au moyen d'un canal (24), tandis qu'en partie inférieure la chambre CS est en communication avec l'intérieur de la bouteille par un orifice inférieur (20) muni d'un clapet anti-retour. La tige (4) qui porte le piston de la chambre primaire est creuse sur toute sa longueur, son orifice inférieur débouche sous le piston (17) alors que son extrémité supérieure est bouchée. De la sorte, les deux chambres (CP, CS) sont disposées fonctionnellement en série.
L'entrée d'air se réalise par un orifice transversal (26) qui est positionné au niveau ou en dessous du joint d'étanchéité lorsque la pompe est verrouillée en position basse, mais au- dessus du joint d'étanchéité lorsque la tige (4) est déplacée vers le haut, de manière à mettre la chambre primaire en communication avec l'atmosphère.
La platine (5) est plaquée sur l'orifice de la bouteille (1) grâce à une bride circulaire (6) vissée sur le contour extérieur de l'orifice, l'étanchéité entre l'orifice et la platine (5) est assurée par un joint torique (25).
Dans le mode de réalisation de la figure 2, les coupelles (16a, 17a) des deux pistons (16, 17) divisent donc l'intérieur du corps de pompe en trois compartiments dont les volumes respectifs varient en fonction de la position des pistons. Le premier compartiment est celui (formant cavité de sortie) délimité en dessous de la coupelle (17a) dans la chambre primaire (CP). Le deuxième compartiment comprend les portions supérieures (ou cavités de transfert) des chambres primaire et secondaire, c'est-à-dire celles situées au-dessus des coupelles (16a, 17a) correspondantes. Ces deux portions sont en effet reliées par le canal (24) de manière à ne former qu'un seul compartiment dans lequel la pression est toujours uniforme. Le troisième compartiment est celui situé en dessous de la coupelle (16a) de la chambre secondaire (CS) (et formant cavité de sortie pour la chambre secondaire).
Lorsque les pistons (16, 17) sont remontés vers le haut, c'est-à-dire lorsque le volume du premier compartiment augmente, l'air provenant de l'extérieur est admis dans le premier compartiment, au travers de la tige creuse (4).
Lorsque les pistons (16, 17) sont actionnés vers le bas, c'est le volume du deuxième compartiment qui augmente. L'air précédemment compris dans le premier compartiment peut, du fait de l'orientation de la lèvre de la coupelle (17a), se transférer vers le deuxième compartiment. Comme le volume final du deuxième compartiment est sensiblement le double 'du volume initial du premier compartiment, de l'air extérieur peut aussi être admis dans le deuxième compartiment au cours de cette phase, cet air extérieur transitant par la tige creuse (4), par le premier compartiment et par la coupelle (17a).
Lorsque les pistons (16, 17) sont commandés de nouveau vers le haut, le volume du deuxième compartiment diminue, donc la pression de l'air qui y est contenu a tendance à augmenter. Nu l'orientation des coupelles (16a, 17a), qui forment un système anti-retour, l'air ne peut pas retourner vers le premier compartiment, lequel se rempli d'air frais provenant de l'extérieur comme cela a été expliqué plus haut. Ainsi, au fur et à mesure de la remontée des pistons, l'air compris dans le deuxième compartiment est chassé vers le troisième compartiment, ce qui est permis par l'orientation de la lèvre de la coupelle (16a). Toutefois, le volume final du troisième compartiment est sensiblement deux fois moindre que le volume initial du deuxième compartiment. Il en résulte que lorsque les pistons atteignent leur position haute, la pression de l'air contenu dans le troisième compartiment est supérieure à la pression initiale. Au cours de la remontée des pistons, il se produit donc un premier étage de compression lors du transfert de l'air du deuxième au troisième compartiment.
Lors de la descente des pistons, le volume du troisième compartiment diminue, ce qui effectue un second étage de compression de l'air contenu dans ce troisième compartiment. Lorsque la pression dans le troisième compartiment excède une pression limite, qui est fonction de la pression dans la bouteille et du tarage du clapet anti-retour, l'air sous pression est évacué, sans possibilité de retour, vers l'intérieur de la bouteille au travers de l'orifice inférieur (20).
La construction à doubles pistons permet donc d'effectuer une compression en deux étages. Le rapport de compression du premier étage peut être modifié en modifiant les volumes respectifs des chambres primaire et secondaire. Ainsi, avec une chambre secondaire de plus petit diamètre que la chambre primaire, on obtient un rapport de compression plus élevé pour le premier étage de compression. Le système de pompage à double étage de compression qui est utilisé ici est particulièrement avantageux car il permet de diminuer le temps nécessaire à la recharge de la bouteille. Bien entendu, un système de pompage à étages de compression multiples peut être prévu, comportant par exemple une pompe munie d'autant de corps successifs que d'étages de compression souhaités.
Dans la forme de réalisation selon la figure 3, la pompe comprend un seul corps (37) obstrué en partie haute par une platine (29) qui par ailleurs constitue le bouchon de la bouteille.
L'extrémité inférieure du corps de pompe (37) est obstruée mais comporte un orifice d'injection de l'air muni d'un clapet anti-retour (36).
Le corps de pompe (37) reçoit un piston (34) du genre à coupelle comprenant une lèvre déformable (34a) qui est adaptée en bout d'une tige porte piston (31) traversant la platine (29). Un joint (33) ainsi qu'une bague de guidage (32) sont logés dans la platine (29) pour réaliser l'étanchéité et le guidage entre cette dernière et la tige porte piston. "~ La lèvre déformable (34a) du piston (34) est dirigée vers le fond du corps de pompe afin de pouvoir repousser l'air dans cette direction.
La tige porte piston précitée (31) est au-delà de la platine (29) attelée à une poignée unique de manœuvre (2).
La tige (31) est creuse sur toute sa longueur, son orifice inférieur (27) est transversal à la tige et débouche juste au-dessus du piston (34) alors que son extrémité supérieure est bouchée.
L'entrée d'air se réalise par un orifice transversal (28) sensiblement positionné en dessous du joint d'étanchéité lorsque la pompe est verrouillée en position basse.
Dans ce second mode de réalisation, l'air extérieur est admis dans la portion supérieure du corps de pompe lorsque le piston (34) est amené de sa position haute à sa position basse. Il est ensuite transféré vers la portion basse du corps de pompe, en franchissant la coupelle (34a), lorsque le piston (34) est amené de sa position basse à sa position haute. Lorsque le piston est de nouveau amené vers sa position basse, l'air contenu dans la portion basse est comprimé, et, au-delà d'une pression limite, il est transféré vers l'intérieur de la bouteille.
Ce mode de réalisation du système de pompage n'offre qu'un seul étage de pompage, mais il offre l'avantage d'être très simple et très peu coûteux.
Dans le mode de réalisation des figures 4, 5 A à 5D et 6A à 6D, l'auto respirateur selon l'invention comporte un système de pompage perfectionné. En effet, comme le mode de réalisation de la figure 2, il s'agit d'un système de pompage à deux corps capable d'effectuer une compression à deux étages. Toutefois, le mode de réalisation de la figure 2 ne comporte qu'une cavité de sortie (c'est à dire une cavité dans laquelle l'air subit une dernière compression avant d'être expulsé vers le réservoir) alors que dans ce troisième mode de réalisation, le système de pompage comporte deux cavités de sortie qui peuvent être activées simultanément ou dont l'une peut être désactivée.
Comme dans le mode de réalisation de la figure 2, la pompe comporte deux chambres primaire (CP) et secondaire (CS) cylindriques disposées géométriquement parallèlement l'une à l'autre, chaque chambre recevant un piston (46, 48) monté à l'extrémité d'une tige (42, 44) mobile axialement, les deux tiges étant actionnées par une poignée commune (40). Le montage des corps de pompe à l'intérieur de la bouteille est identique à celui décrit plus haut.
Contrairement au mode de réalisation de la figure 2, les pistons (46, 48) sont des pistons étanches qui ne permettent aucun passage d'air entre les portions de chambre qu'ils délimitent. Chaque chambre comporte ainsi une cavité de sortie d'air (50, 52) qui, dans l'exemple de réalisation, est constituée par la portion inférieure de chacune des deux chambres et qui comporte un orifice de sortie d'air (54, 56) débouchant dans la bouteille. Chaque orifice de sortie (54, 56) est associé à un système anti-retour (58, 60), tel qu'un clapet, ne permettant le passage de l'air que de la cavité de sortie correspondante vers intérieur de la bouteille.
L'autre portion de chacune des deux chambres, en l'occurrence les portions supérieures, constitue une cavité de transfert (62, 64). Les deux cavités de transfert sont reliées l'une à l'autre, comme précédemment, par un canal de liaison (66) pour former un compartiment de transfert analogue au deuxième compartiment du mode de réalisation de la figure 2. Dans ce mode de réalisation, le compartiment de transfert comporte une entrée d'admission d'air (65) qui se fait au travers d'un clapet anti-retour (67). Cette entrée d'air (65) débouche par exemple dans le canal de liaison (66).
La cavité de sortie (50) de la chambre primaire (CP) est reliée à un conduit (68) qui permet l'admission d'air dans la cavité de sortie (50), au travers d'un clapet anti-retour (70) empêchant l'air de ressortir. Ce conduit comporte par ailleurs, entre le clapet (70) et la cavité de sortie (50), une dérivation (72) qui est munie d'une vanne d'obturation (74) et qui permet, lorsque la vanne d'obturation (74) est ouverte, de mettre la cavité de sortie (50) en permanence en communication avec l'atmosphère. Dans cette configuration, la cavité de sortie (50) de la chambre primaire (CP) devient inopérante.
Les clapets anti-retour (67, 70) qui permettent l'admission d'air dans le compartiment de transfert et dans la cavité de sortie (50) de la chambre primaire (CP) sont reliés à l'atmosphère par une valve de coupure commune (80) qui permet de les isoler de l'eau au cour de la plongée, évitant ainsi que de l'eau ne puisse entrer dans les corps de pompe. Cette valve (80) doit être ouverte lorsqu'on utilise la pompe pour recharger la bouteille.
Par ailleurs, la cavité de transfert 64 de la chambre secondaire est reliée à la cavité de sortie (52) de cette même chambre par une tubulure de transfert (76) dans laquelle est interposée un clapet anti-retour (78) ne permettant le passage de l'air que du compartiment de transfert vers la cavité de sortie (52). Cette tubulure (76) avec clapet anti-retour, associée au piston (48) étanche, rempli le même rôle que le piston à coupelle (16a) du mode de réalisation de la figure 2.
Aux figure 5 A à 5D, on a illustré le fonctionnement du système de pompage de l'auto respirateur de la figure 5 selon un premier mode opératoire dans lequel la vanne d'obturation (74) est fermée.
Dans ce mode opératoire, la cavité de sortie de la chambre primaire est active et on peut remarquer qu'elle fonctionne de manière indépendante des autre parties de la pompe. En effet, lorsque le piston (46) remonte de sa position basse vers sa position haute, la cavité de sortie (50) da la chambre primaire se remplit d'air à la pression atmosphérique au travers du clapet (70). Lorsque le piston (46) se déplace dans l'autre sens, l'air comprimé dans la cavité de sortie (50) ne peut s'échapper par le conduit (68) qui est fermé, et l'air est donc expulsé vers l'intérieur de la bouteille au travers de du clapet (58) et de l'orifice de sortie (54).
Dans le même temps, lorsque les pistons descendent vers leur position basse, le compartiment de transfert se remplit d'air, par le clapet (67) et, lorsque les pistons (46, 48) remontent, le gaz précédemment contenu dans le compartiment de transfert est transféré, par la tubulure (76), vers la cavité de sortie (52) de la chambre secondaire (CS).
Dans ce mode de réalisation, la chambre secondaire présente un volume qui est sensiblement la moitié de celui de la chambre primaire, de sorte que l'air est qui vient d'être transféré vers la cavité de sortie (52) se trouve sous une pression absolue de près de 3 bars, réalisant ainsi un premier étage de compression. Lorsque le piston (48) redescend vers le bas, cet air est encore comprimé dans la cavité de sortie (52) avant d'être expulsé vers l'intérieur de la bouteille.
Dans cette configuration, la pompe expulse à chaque aller-retour des pistons une quantité d'air qui correspond, à la pression atmosphérique, à un volume qui est proche de 2,5 fois le volume de la chambre primaire. On a ainsi un remplissage rapide de la bouteille, au moins tant que la pression dans la bouteille n'est pas trop importante. En effet, lorsque la pression atteint un certain seuil, la force à vaincre pour comprimer l'air dans la cavité de sortie (50) de la chambre primaire devient trop importante, ceci du fait de la superficie importante de la section de la chambre primaire.
On peut alors ouvrir la vanne d'obturation (74) et se trouver dans un mode de fonctionnement de la pompe dans lequel la cavité de sortie (50) de la chambre primaire (CP) se trouve inactivée. Elle n'offre donc plus de résistance au mouvement descendant du piston, de telle sorte que la force à vaincre (à la descente des pistons) n'est alors plus que celle correspondant à la compression de l'air dans la cavité de sortie de la chambre secondaire (CS), laquelle présente une section plus faible. Dans cette configuration, le compartiment de transfert et la cavité de sortie (52) de la chambre secondaire continuent de fonctionner comme décrit précédemment. Ce mode opératoire permet de transférer environ 1,5 fois le volume de la chambre primaire à chaque aller-retour des pistons, et, surtout, il permet d'atteindre des pressions dans le réservoir de près de vingt bars.
On remarquera que ce second mode opératoire est quasi identique à celui décrit en relation avec le mode de réalisation de la figure 2, à la seule différence que l'air qui est admis dans le compartiment de transfert ne l'est plus par l'intermédiaire de la cavité de sortie de la chambre primaire, mais par l'intermédiaire de l'entrée d'air (65).
Les systèmes de pompage des figures 2 et 4 sont donc particulièrement bien adaptés au remplissage d'un réservoir d'air destiné à la pratique de la plongée sous-marine, y compris d'un réservoir destiné à rester en surface de l'eau comme dans le cas des appareils de type « narguilé ». En effet, ils permettent (grâce aux deux corps) de recharger le réservoir entre deux plongées en un temps très court et au prix d'un effort modéré. De plus, ils permettent d'obtenir une pression suffisamment élevée dans le réservoir (grâce aux deux étapes de compression) pour stocker dans le réservoir une quantité d'air importante, permettant au plongeur de rester plus longtemps sous l'eau.

Claims

REVENDICATIONS
1 - Auto respirateur subaquatique (15) comprenant une bouteille (1) et un système de portage destiné à s'adapter notamment sur le dos d'un plongeur, caractérisé en ce qu'il comporte un système de pompe manuelle intégrée dans la bouteille (1).
2 - Auto respirateur subaquatique (15) selon la revendication 1, caractérisé en ce que la pompe manuelle intégrée comporte un seul corps (37).
3 - Auto respirateur subaquatique (15) selon la revendication 2, caractérisé en ce que l'admission d'air dans le corps de pompe (37) s'effectue à travers la tige porte piston (31) grâce à un premier orifice (27) débouchant au-dessus du piston (34) et un second orifice (28) positionné sensiblement à l'extrémité supérieure de la tige et réalisant l'entrée d'air.
4 - Auto respirateur subaquatique (15) selon la revendication 1, caractérisé en ce que la pompe manuelle intégrée est une pompe à étages de compression multiples.
5 - Auto respirateur subaquatique (15) selon la revendication 4, caractérisé en ce que la pompe manuelle intégrée comporte deux corps délimitant une chambre primaire (18) et une chambre secondaire (19) dont chacune reçoit un piston (17, 16).
6 - Auto respirateur subaquatique (15) selon la revendication 5, caractérisé en ce que les pistons sont entraînés simultanément en va-et-vient à l'intérieur des chambres primaire (CP) et secondaire (CS).
7 - Auto respirateur subaquatique, caractérisé en ce que la chambre primaire (CP) et la chambre secondaire (CS) sont disposées fonctionnellement en série.
8 - Auto respirateur subaquatique (15) selon la revendication 7, caractérisé en ce que l'admission d'air dans la chambre primaire (18) s'effectue à travers la tige porte piston (4) qui est creuse et qui possède un orifice inférieur débouchant sous le piston (17) et un orifice supérieur (26), réalisant l'entrée d'air, positionné sensiblement à son extrémité supérieure.
9 - Auto respirateur subaquatique (15) selon la revendication 8, caractérisé en ce que les deux chambres primaire (CP) et secondaire (CS) sont en communication par leur extrémité supérieure.
10 - Auto respirateur subaquatique (15) selon l'une des revendications 3 ou 8, caractérisé en ce que l'orifice supérieur (26, 28) d'entrée d'air est positionné sur la tige porte- piston (4, 31) au niveau ou au-dessous d'un joint d'étanchéité (23, 32) lorsque la tige (4, 31) est complètement rentrée dans le corps de pompe (18, 37).
11 - Auto respirateur subaquatique (15) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une valve de charge et décharge (8).
12 - Auto respirateur subaquatique (15) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un système de pieds (13) et (14) telescopiques ou rabattables.
13 - Auto respirateur subaquatique (15) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un système de verrouillage (30) de la pompe.
14 - Auto respirateur sous-marin (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un tuyau d'alimentation d'air (10) relié à la bouteille (1) par un raccord rapide (9) et en ce que le tuyau (10) est raccordé, à son autre extrémité, à un détendeur (12).
15 - Auto respirateur sous-marin (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un instrument de mesure (7) de la pression interne à la bouteille (1).
16. Auto respirateur sous-marin (1) selon la revendication 1, caractérisé en ce que le système de portage comporte des bretelles (32a, 32b).
17. Auto respirateur sous-marin (1) selon la revendication 1, caractérisé en ce qu'il comprend un dispositif de bridage de la profondeur qui réduit le débit d'air du détendeur à partir d'une profondeur déterminée.
18. Auto respirateur selon la revendication 6, caractérisé en ce que les pistons (46, 48) délimitent dans chacune des deux chambres (CP, CS) une cavité de sortie (50, 52) et une cavité de transfert (62, 64), et en ce que chacune des deux chambres comporte un orifice de sortie d'air (54, 56) qui est aménagé dans la cavité de sortie (50, 52), qui débouche dans la bouteille.
19 Auto respirateur selon la revendication 18, caractérisé en ce que chaque orifice de sortie (54, 56) est associé à un système anti-retour (58, 60) ne permettant le passage de l'air que de la cavité de sortie (50, 52) vers l'intérieur de la bouteille.
20. Auto respirateur selon l'une des revendications 18 ou 19, caractérisé en ce que la cavité de sortie (50) de la chambre primaire (CP) comporte un conduit de mise à l'air libre (72) pourvu de moyens d'obturation (74).
21. Auto-respirateur selon l'une des revendications 18 à 20, caractérisé en ce que la cavité de sortie (50) de la chambre primaire (CP) comporte un conduit d'admission d'air (68) qui est relié à l'extérieur et qui est associé à un système anti-retour (70) ne permettant le passage de l'air que de l'extérieur vers la cavité de sortie (50).
22. Auto respirateur selon l'une quelconque des revendications 18 à 21, caractérisé en ce que les cavités de transfert (62, 64) des deux chambres (CP, CS) sont reliées par un canal de liaison pour former un compartiment de transfert.
23. Auto respirateur selon la revendication 22, caractérisé en ce que le compartiment de transfert comporte une entrée d'admission d'air (65) qui est reliée à l'extérieur et qui est associée à un système anti-retour (67) ne permettant le passage de l'air que de l'extérieur vers le compartiment de transfert.
24. Auto respirateur selon l'une quelconque des revendications 18 à 23, caractérisé en ce que la chambre secondaire (CS) comporte des moyens (16a, 76, 78) permettant le passage unidirectionnel de l'air de sa cavité de transfert (64) vers sa cavité de sortie (52).
25. Auto respirateur selon l'une quelconque des revendications 18 à 24, caractérisé en ce que la pompe comporte deux étages de compression.
26. Auto respirateur selon l'une quelconque des revendications 18 à 25, caractérisé en ce qu'elle comporte des moyens pour désactiver l'une des cavités de sortie.
PCT/FR2001/001328 2000-05-04 2001-04-27 Auto-respirateur subaquatique a rechargement manuel integre WO2001083293A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60110173T DE60110173D1 (de) 2000-05-04 2001-04-27 Unabhängiges unterwasser- atemgerät mit integrierter, manueller befüllung
AU56446/01A AU5644601A (en) 2000-05-04 2001-04-27 Automatic underwater breathing membrane with integrated manual recharge
EP01929760A EP1189806B1 (fr) 2000-05-04 2001-04-27 Auto-respirateur subaquatique a rechargement manuel integre
AT01929760T ATE293563T1 (de) 2000-05-04 2001-04-27 Unabhängiges unterwasser- atemgerät mit integrierter, manueller befüllung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0005737A FR2808500B1 (fr) 2000-05-04 2000-05-04 Autorespirateur subaquatique a rechargement manuel integre
FR00/05737 2000-05-04

Publications (1)

Publication Number Publication Date
WO2001083293A1 true WO2001083293A1 (fr) 2001-11-08

Family

ID=8849912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001328 WO2001083293A1 (fr) 2000-05-04 2001-04-27 Auto-respirateur subaquatique a rechargement manuel integre

Country Status (7)

Country Link
US (1) US20020134387A1 (fr)
EP (1) EP1189806B1 (fr)
AT (1) ATE293563T1 (fr)
AU (1) AU5644601A (fr)
DE (1) DE60110173D1 (fr)
FR (1) FR2808500B1 (fr)
WO (1) WO2001083293A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207100A1 (fr) * 2000-11-13 2002-05-22 Salomon S.A. Bloc de plongée autonome avec pompe à action humaine intégrée

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865978B (zh) * 2011-07-07 2015-12-09 中国人民解放军海军医学研究所 一种潜水呼吸器控制阀测试装置
USD802293S1 (en) 2016-01-13 2017-11-14 Dgm Creations Llc Hydration sleeve
AU2017208000A1 (en) 2016-01-14 2018-08-02 Dgm Creations Llc Hydration sleeve and bladder and related systems and methods
USD802294S1 (en) 2016-08-29 2017-11-14 Dgm Creations Llc Hydration sleeve
USD809285S1 (en) 2016-08-29 2018-02-06 Dgm Creations Llc Disposable hydration bladder
USD822952S1 (en) 2016-08-29 2018-07-17 Dgm Creations Llc Garment with integrated hydration system
US11364981B2 (en) 2018-10-09 2022-06-21 Alireza Payravi Underwater breathing and motion apparatus
CN111076081B (zh) * 2019-12-25 2021-08-17 特佳星能源科技有限公司 防残留负压储氢装置
US11787519B2 (en) * 2020-09-17 2023-10-17 Zachary William Rupp Underwater breathing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE191244C (fr) *
US1157655A (en) * 1913-04-16 1915-10-19 Life Saving Devices Company Resuscitating appliance.
FR918008A (fr) * 1945-11-27 1947-01-28 Appareil respiratoire pour nageurs explorant les fonds sous-marins
US2906263A (en) * 1958-09-05 1959-09-29 Stanley Axelrod Swimming and diving aid
DE2532533A1 (de) * 1975-07-21 1977-02-10 Dieter Meinhardt Kurzzeit-tauchgeraet
FR2432104A1 (fr) * 1978-07-28 1980-02-22 Poutrait Morin Ets Pompe a main a deux etages
DE4341910A1 (de) * 1993-12-06 1994-05-26 Dieter Markfort Leichttauchgerät

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE461591A (fr) * 1944-03-16

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE191244C (fr) *
US1157655A (en) * 1913-04-16 1915-10-19 Life Saving Devices Company Resuscitating appliance.
FR918008A (fr) * 1945-11-27 1947-01-28 Appareil respiratoire pour nageurs explorant les fonds sous-marins
US2906263A (en) * 1958-09-05 1959-09-29 Stanley Axelrod Swimming and diving aid
DE2532533A1 (de) * 1975-07-21 1977-02-10 Dieter Meinhardt Kurzzeit-tauchgeraet
FR2432104A1 (fr) * 1978-07-28 1980-02-22 Poutrait Morin Ets Pompe a main a deux etages
DE4341910A1 (de) * 1993-12-06 1994-05-26 Dieter Markfort Leichttauchgerät

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207100A1 (fr) * 2000-11-13 2002-05-22 Salomon S.A. Bloc de plongée autonome avec pompe à action humaine intégrée

Also Published As

Publication number Publication date
EP1189806B1 (fr) 2005-04-20
US20020134387A1 (en) 2002-09-26
EP1189806A1 (fr) 2002-03-27
ATE293563T1 (de) 2005-05-15
FR2808500A1 (fr) 2001-11-09
AU5644601A (en) 2001-11-12
DE60110173D1 (de) 2005-05-25
FR2808500B1 (fr) 2002-08-16

Similar Documents

Publication Publication Date Title
EP1189806B1 (fr) Auto-respirateur subaquatique a rechargement manuel integre
EP0242377A1 (fr) Dispositif de production d'eau douce a partir d'eau de mer par osmose inverse.
FR2666645A1 (fr) Fusil a eau jouet a gachette a pincement et a double reservoir.
FR2596353A1 (fr) Vetement de protection avec alimentation en air respiratoire
BE839651A (fr) Appareil de controle de flottabilite pour plongeurs
EP1045814B1 (fr) Limiteur de remplissage pour cuve de stockage d'un liquide
EP0861188B1 (fr) Appareillage de plongee autonome
EP2879806B1 (fr) Dispositif de production de mousse rechargeable
EP1470041B1 (fr) Systeme de plongee transportable
WO2012168637A1 (fr) Système de recharge d'un récipient reutilisable, par un liquide contenu dans ce récipient et expulsable au moyen d'un gaz propulseur
WO1991002677A1 (fr) Appareillage individuel de plongee
EP1207100A1 (fr) Bloc de plongée autonome avec pompe à action humaine intégrée
FR2948093A1 (fr) Gilet d'equilibrage pour la plongee sous-marine.
FR2940622A1 (fr) Equipement de frappe pour l'entrainement et la pratique de sports de combat
EP2222547B1 (fr) Dispositif de flottabilité réglable
EP1186528A1 (fr) Dispositif de mouillage submersible muni de moyens de dègonflage propres
FR2822129A1 (fr) Dispositif respiratoire subaquatique alternativement flottant ou submersible
EP1528254A1 (fr) Dispositif pour la mise en rotation d'un corps circulaire sur lui-même
FR2826334A1 (fr) Systeme de plongee a flotteur detachable
EP0178963A1 (fr) Système de stabilisation perfectionné pour radeaux pneumatiques
BE418513A (fr)
FR2546126A1 (fr) Appareil respiratoire de plongee a circuit semi-ferme
WO2003018399A1 (fr) Systeme de plongee sous-marine
FR2818612A1 (fr) Bloc de plongee autonome avec pompe manuelle integree
FR2824282A1 (fr) Pompe pulverisatrice manuelle a jet continu

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001929760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09926753

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001929760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001929760

Country of ref document: EP