WO2001071047A1 - Procede pour la fabrication d'une bande en acier multiphase laminee a chaud. - Google Patents

Procede pour la fabrication d'une bande en acier multiphase laminee a chaud. Download PDF

Info

Publication number
WO2001071047A1
WO2001071047A1 PCT/BE2001/000015 BE0100015W WO0171047A1 WO 2001071047 A1 WO2001071047 A1 WO 2001071047A1 BE 0100015 W BE0100015 W BE 0100015W WO 0171047 A1 WO0171047 A1 WO 0171047A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
strip
ultra
slow
Prior art date
Application number
PCT/BE2001/000015
Other languages
English (en)
Inventor
Xavier Cornet
Jean-Claude Herman
Original Assignee
Centre De Recherches Metallurgiques, Association Sans But Lucratif
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre De Recherches Metallurgiques, Association Sans But Lucratif filed Critical Centre De Recherches Metallurgiques, Association Sans But Lucratif
Priority to EP01902179A priority Critical patent/EP1266041A1/fr
Priority to US10/221,170 priority patent/US6821364B2/en
Publication of WO2001071047A1 publication Critical patent/WO2001071047A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the present invention relates to a process for the manufacture of a hot-rolled multi-phase steel strip, having improved mechanical properties, in particular high strength and good ductility.
  • Such strips have a thickness of between 0.7 mm and 10 mm, and most often between 2 mm and 6 mm
  • High-strength steels have been known in the art for a long time and their uses are extremely diverse. In many cases, the mechanical properties of these steels are the result of an appropriate heat treatment, which often makes it possible to avoid the use of elements. generally expensive alloy
  • steels with fer ⁇ te / bainite or fer ⁇ te / martensite microstructure are obtained from a specific chemical composition and at the cost of severe control of the cooling conditions during hot rolling.
  • the microstructure and properties of these steels are influenced by the winding temperature, as well as by the cooling rates to which the steels are subjected
  • the chemical composition of the steel must be adapted as a function of the microstructures to be produced and also as a function of the cooling which may be applied. Under these conditions, it is practically not possible to vary the composition of the steel from specific way to improve certain mechanical properties such as resistance to fatigue or aging, the ability to expand holes, or weldability or surface condition
  • the object of the present invention is to provide a process for the manufacture of a hot-rolled multi-phase steel strip which has mechanical properties and in particular improved strength and ductility compared with the aforementioned state of the art.
  • a method for manufacturing a hot-rolled multiphase steel strip which comprises an ultra-rapid cooling operation is characterized in that said ultra-rapid cooling operation is carried out after a slow laminar cooling of the strip on the cooling table and before the final winding of the strip
  • the temperature at which the strips are rolled is equal to or higher than the transformation temperature Ar3, this temperature certainly varies according to the composition of the steel, but it is generally between approximately 800 ° C and 900 ° C
  • the hot-rolled steel strip is subjected, at the outlet of the finishing train, to a first slow cooling from the end of rolling temperature to a temperature, called intermediate temperature, of between approximately 750 ° C and 500 ° C, and preferably between approximately 750 ° C and 600 ° C, then ultra-rapid cooling from said intermediate temperature to a temperature, called winding temperature, between approximately 600 ° C and the temperature ambient, and finally to a second slow cooling from said winding temperature to ambient temperature
  • the first cooling takes place preferably on the conventional laminar cooling table, that is to say with water with a low cooling rate, it can however also be carried out in air II thus constitutes the first maintenance of the strip at high temperature, during which the ferrite can form under conditions close to equilibrium
  • the duration of this first cooling depends on the speed of the strip and the cooling rate applied, depending on the degree of transformation desired and therefore of the target intermediate temperature
  • the cooling speed being anyway low, it is not significantly influenced by the effect of the acceleration of the train
  • the sudden cooling is then preferably carried out by the ultra-rapid cooling process mentioned above.
  • this ultra-rapid cooling consists in watering the strip with water streams under a pressure of 4 to 5 bar.
  • this cooling can be regulated in cooling speed and in temperature by means of the water flow and the sprinkled length II allows to reach cooling speeds of 5 to 10 times higher than the conventional laminar cooling tables
  • said ultra-rapid cooling is carried out with a cooling speed such that the product of the thickness of the strip, in mm, by the cooling speed, in ° C / s, is greater than 600, and preferably still greater to 800
  • the abovementioned UFC cooling is advantageously carried out with a cooling rate greater than 150 ° C./s for a strip of a thickness 4mm sizer
  • the second slow cooling is carried out immediately after the sudden cooling, that is to say essentially during the winding of the strip.
  • This cooling is carried out from the winding temperature to a temperature where no further transformation takes place. of the microstructure, that is to say in practice down to room temperature
  • the transformation of the residual austenite generally takes place to form the second phase, bamite or martensite, depending on the temperature of winding. It can however happen in certain cases that this transformation occurs before the slow cooling, that is to say during the sudden cooling.
  • the respective proportions of the phases required in the steel are first determined, as a function of the properties desired; the duration of the first slow cooling is deduced therefrom, as well as the intermediate temperature leading to the required fraction of the first phase; the winding temperature leading to the required second phase is also deduced therefrom; finally, said duration and temperature values are applied for the adjustment of the stages of first slow cooling and of ultra-fast cooling respectively.
  • steel 1 can lead to a two-phase microstructure (ferrite-bainite but not ferrite-martensite).
  • Steel 2 is not intended to form a multiphase microstructure, because of the high niobium and titanium contents, which cause a very rapid transformation of the austenite into fer ⁇ te and perlite, thereby counteracting the formation of bainite and / or martensite.
  • steel 3 in principle allows the formation of a dual phase microstructure (ferrite-martensite), thanks to its high manganese contents and to a judiciously chosen thermomechanical cycle.
  • such a transformation takes place only with difficulty on the laminar cooling table and results in a significant reduction in the productivity of the hot train,
  • Table 3 shows that ultra-rapid cooling of these same steels to a winding temperature equal to room temperature leads to the formation of martensite and therefore to increased strength while retaining good ductility.
  • winding temperature of 100 ° C corresponds to a slight reheating of the strip after cooling, which does not affect its resistance and even slightly improves its ductility
  • micro-alloyed steels were also subjected to a treatment cycle according to the invention. Their chemical compositions are given in Table 4
  • the cooling schemes are indicated in Tables 5 and 6, respectively for steels with fer ⁇ te / bainite microstructure (Table 5) and fer ⁇ te / martensite (Table 6).
  • Such cooling schemes allow hardening steels by precipitation of micro-alloying elements (Ti) in the form of carbides Such precipitation is generally impossible in conventional multiphase steel, because it requires a very slow first cooling ( ⁇ 20 ° C / s) at high temperature ( > 600 ° C)
  • Tables 5 and 6 also give the strength and ductility properties obtained with these steels
  • microstructures namely the fraction of ferrite on the one hand and the fraction as well as the nature of the second phase on the other hand
  • the microstructures of the two phases are in fact obtained by two completely independent cooling operations, which allow the temperatures leading to the desired microstructures to be managed and regulated separately
  • the first of these two cooling operations is carried out on the laminar cooling table, starting from the end of rolling temperature.
  • the cooling speed being HERE low, it is not very critical and is hardly influenced by the effect of the acceleration of the rolling mill
  • This operation makes it possible to adjust the percentage of ferrite formed, by varying the cooling conditions, in particular the number of sections sprayed, that is to say in fact the duration of cooling, to obtain the temperature desired intermediary
  • the second cooling operation is an abrupt, preferably ultra-rapid, cooling down to the winding temperature corresponding to the desired microstructure of the second phase, either bainite or martensite. This cooling has the effect of freezing the microstructure formed during the first cooling. slow to allow resumption of the transformation at the winding temperature
  • the microstructures being controlled through the temperatures of the treatment cycle, it is possible to obtain different mechanical properties from the same grade of steel Similarly, the method of the invention makes it possible to create multiphase microstructures and to confer interesting properties on steel grades which were not previously provided for this purpose
  • the process of the invention is no longer limited to a limited number of chemical compositions determined for obtaining the desired microstructures.
  • these microstructures no longer depend on the chemical composition of the steel, but they are the result various possibilities of combining slow laminar cooling and the sudden cooling that follows It is therefore possible to more easily adapt the chemical composition of steels to improve their mechanical properties such as resistance to fatigue or aging ability to welding or the expansion of the surface finish or the cutting ability II can also result in a reduction in the production costs of the steel linked for example to a reduction in productivity or to operations such as 'ec ⁇ quage or stripping

Abstract

Dans un procédé pour la fabrication d'une bande en acier multiphase laminée à chaud comportant une opération de refroidissement ultra-rapide, on effectue cette opération de refroidissement ultra-rapide après un refroidissement laminaire de la bande sur la table de refroidissement conventionnelle du laminoir, et avant le bobinage final de la bande. Le refroidissement laminaire constitue un premier refroidissement lent, à la sortie du train finisseur, à partir de la température de fin de laminage jusqu'à une température intermédiaire d'environ 750 °C à 500 °C; ce premier refroidissement détermine la fraction de la première phase (ferrite) dans l'acier. Le refroidissement ultra-rapide (⊃ 150 °C/s), qui fige la structure ainsi obtenue, abaisse la température de la bande jusqu'à la température de bobinage, comprise entre environ 600 °C et la température ambiante, à laquelle on effectue un second refroidissement lent qui conduit à la formation de la seconde phase (bainite ou martensite).

Description

Procédé pour la fabrication d'une bande en acier multiphase laminée à chaud.
Domaine technique
La présente invention concerne un procédé pour la fabrication d'une bande en acier multiphase laminée à chaud, présentant des propriétés mécaniques améliorées, en particulier une haute résistance et une bonne ductilité Actuellement, de telles bandes présentent une épaisseur comprise entre 0,7 mm et 10 mm, et le plus souvent entre 2 mm et 6 mm
Etat de la technique
Les aciers à haute résistance sont connus depuis longtemps dans la technique et leurs utilisations sont extrêmement diversifiées Dans de nombreux cas, les propriétés mécaniques de ces aciers sont le résultat d'un traitement thermique approprié, qui permet souvent d'éviter le recours à des éléments d'alliage généralement coûteux
Certaines applications exigent cependant des bandes d'acier laminées à chaud, qui présentent à la fois une résistance élevée et de bonnes propriétés de mise en forme A l'heure actuelle, une telle combinaison de propriétés est extrêmement difficile à réaliser, elle n'est d'ailleurs généra- lement obtenue que par le biais d'aciers multiphases tels que des aciers à microstructure de ferπte/bainite ou de ferπte/martensite ou encore des aciers comportant trois phases Dans ces aciers, la ferrite constitue l'élément ductile et déformable, tandis que la seconde phase, bainite ou martensite, permet de renforcer l'acier Les propriétés mécaniques finales de l'acier sont influencées directement par les proportions respectives de ces phases, ainsi que par les températures auxquelles celles-ci se forment
Suivant la pratique conventionnelle, les aciers à microstructure de ferπte/bainite ou de ferπte/martensite sont obtenus au départ d'une composition chimique spécifique et au prix d'un sévère contrôle des conditions de refroidissement lors du laminage a chaud La microstructure et les propriétés de ces aciers sont influencées par la température de bobinage, ainsi que par les vitesses de refroidissement auxquelles les aciers sont soumis
Sur une table de refroidissement laminaire classique, il n'est pas possible de contrôler la vitesse de refroidissement de la bande laminée a chaud, car les débits spécifiques du liquide de refroidissement sont fixés Cette vitesse de refroidissement dépendra alors largement de la vitesse et de l'épaisseur de la bande, ainsi que de paramètres extérieurs tels que la température du liquide de refroidissement En particulier, elle varie sur la longueur de la bande a cause de l'augmentation de vitesse de celle-ci, consécutive à l'accélération du train de laminage entre le début et la fin d'une bande De façon connue, cette accélération est imposée par la nécessité de conserver une température de fin de laminage constante pour toute la bande II en resuite une incertitude sur la vitesse de refroidissement de l'acier, qui se repercute sur la microstructure et donc sur les propriétés de la bande, et qui peut finalement se traduire par de coûteux chutages et déclassements de bandes
En outre, la composition chimique de l'acier doit être adaptée en fonction des microstructures a réaliser et également en fonction du refroidissement qui pourra être appliqué Dans ces conditions, il n'est pratiquement pas possible de faire varier la composition de l'acier de façon spécifique pour améliorer certaines propriétés mécaniques comme la résistance à la fatigue ou au vieillissement, l'aptitude à l'expansion de trou, ou encore la soudabilite ou l'état de surface
On sait par ailleurs qu'il est possible de produire des aciers multiphases par un traitement de refroidissement dit a cycle casse D'une manière générale un tel traitement comprend un premier maintien de la bande a haute température pour assurer une transformation partielle de l'austenite en ferπte suivi d'un refroidissement brusque destine a figer la microstructure partiellement transformée et enfin d'un second maintien a une température plus basse pour transformer le reste de l'austenite en bainite ou en martensite Dans les trains a bande conventionnels, les tables de refroidissement ne disposent cependant pas de sections de refroidissement suffisamment puissantes pour assurer un tel refroidissement brusque
A cet égard, on connaît certes un procède de refroidissement ultra-rapide dit UFC ou Ultra Fast Cooling applique a une bande laminée a chaud immédiatement après sa sortie du train finisseur Ce refroidissement ultra-rapide est suivi par un refroidissement lent, dit refroidissement laminaire sur le refroidisseur usuel qui conduit aux bobineuses Ce procède permet assurément d'obtenir des aciers a haute limite d'élasticité par exemple des aciers a dispersoides De tels aciers présentent cependant une ductilité plus faible que celle développée par les structures multiphases de sorte qu'ils ne sont pas utilisables pour des applications nécessitant une ou plusieurs opérations de mise en forme
Présentation de l'invention
La présente invention a pour objet de proposer un procède pour la fabrication d une bande en acier multiphase laminée a chaud qui présente des propriétés mécaniques et en particulier une résistance et une ductilité améliorées par rapport a l'état de la technique précité
Conformément a la présente invention un procède pour la fabrication d'une bande en acier multiphase laminée a chaud qui comprend une opération de refroidissement ultra-rapide est caractérise en ce que I on effectue ladite opération de refroidissement ultra-rapide après un refroidissement laminaire lent de la bande sur la table de refroidissement et avant le bobinage final de la bande Dans les trains à bandes à chaud, la température de fin de laminage des bandes est égale ou supérieure à la température de transformation Ar3, cette température varie certes en fonction de la composition de l'acier, mais elle est en général comprise entre environ 800°C et 900°C
Selon l'invention, on soumet la bande d'acier laminée à chaud, à la sortie du train finisseur, à un premier refroidissement lent depuis la température de fin de laminage jusqu'à une température, dite température intermédiaire, comprise entre environ 750°C et 500°C, et de préférence entre environ 750°C et 600°C, ensuite à un refroidissement ultra-rapide depuis ladite température intermédiaire jusqu'à une température, dite température de bobinage, comprise entre environ 600°C et la température ambiante, et enfin à un second refroidissement lent a partir de ladite température de bobinage jusqu'à la température ambiante
Le premier refroidissement se déroule de préférence sur la table de refroidissement laminaire conventionnelle, c'est-à-dire à l'eau avec une faible vitesse de refroidissement, il peut cependant aussi être effectué à l'air II constitue ainsi le premier maintien de la bande a haute température, au cours duquel la ferrite peut se former dans des conditions proches de l'équilibre La durée de ce premier refroidissement dépend de la vitesse de la bande et de la vitesse de refroidissement appliquée, en fonction du degré de transformation désiré et donc de la température intermédiaire visée La vitesse de refroidissement étant de toutes manières faible, elle n'est pas influencée de façon notable par l'effet de l'accélération du train
Le refroidissement brusque est ensuite effectue de préférence par le procédé de refroidissement ultra-rapide mentionne plus haut On peut rappeler ICI que ce refroidissement ultra-rapide consiste en un arrosage de la bande par des filets d'eau sous une pression de 4 à 5 bar, ce refroidissement peut être régule en vitesse de refroidissement et en température au moyen du débit d'eau et de la longueur arrosée II permet d'atteindre des vitesses de refroidissement de 5 a 10 fois plus élevées que les tables de refroidissement laminaire conventionnelles De préférence, on effectue ledit refroidissement ultra-rapide avec une vitesse de refroidissement telle que le produit de l'épaisseur de la bande, en mm, par la vitesse de refroidissement, en °C/s, soit supérieur à 600, et de préférence encore supérieur à 800 A titre indicatif, le refroidissement UFC précité est avantageusement effectue avec une vitesse de refroidissement supérieure a 150°C/s pour une bande d'une épaisseur de 4 mm
Enfin, le second refroidissement lent est effectue immédiatement après le refroidissement brusque, c'est-a-dire essentiellement pendant le bobinage de la bande Ce refroidissement est opère depuis la température de bobinage jusqu'à une température ou il ne se produit plus de transformation de la microstructure, c'est-a-dire en pratique jusqu'à la température ambiante Au cours de ce refroidissement lent se produit généralement la transformation de l'austenite résiduelle pour former la seconde phase, bamite ou martensite, en fonction de la température de bobinage. Il peut cependant arriver dans certains cas que cette transformation se produise avant le refroidissement lent, c'est-à-dire pendant le refroidissement brusque.
Pour la mise en œuvre pratique de l'invention, on détermine en premier lieu les proportions respectives des phases requises dans l'acier, en fonction des propriétés désirées; on en déduit la durée du premier refroidissement lent ainsi que la température intermédiaire conduisant à la fraction requise de la première phase; on en déduit également la température de bobinage conduisant à la seconde phase requise; finalement, on applique lesdites valeurs de durée et de température pour le réglage respectivement des étapes de premier refroidissement lent et de refroidissement ultra-rapide.
Exemples
A titre d'exemples, le procédé de l'invention a été appliqué à une première série de nuances d'aciers, dont les compositions chimiques sont données dans le Tableau 1.
TABLEAU 1 - Composition chimique (sans précipitation)
Dans la pratique conventionnelle, l'acier 1 peut conduire à une microstructure biphasée (ferrite- bainite mais pas ferrite-martensite). L'acier 2 n'est pas destiné à former une microstructure multiphase, à cause des teneurs élevées en niobium et en titane, qui provoquent une transformation très rapide de l'austénite en ferπte et perlite, contrariant de ce fait le formation de bainite et/ou martensite. Enfin, l'acier 3 permet en principe la formation d'une microstructure dual phase (ferrite-martensite), grâce à ses hautes teneurs en manganèse et à un cycle thermomécanique judicieusement choisi. Une telle transformation ne se déroule cependant que difficilement sur la table de refroidissement laminaire et entraîne une importante diminution de la productivité du train à chaud,
A ces trois aciers, on a appliqué un cycle de traitement conforme à l'invention, dont les différentes étapes sont indiquées aux Tableaux 2 et 3, respectivement pour des aciers à microstructure de ferrite/bain ite (Tableau 2) et ferrite/martensite ou dual phase (Tableau 3) Ces deux tableaux donnent également les propriétés et les fractions de la seconde phase des aciers considérés. TABLEAU 2 Aciers Ferrite / Bainite
Ce Tableau 2 montre qu'il est possible d'obtenir des microstructures multiphases, avec des propriétés de résistance et de ductilité améliorées, à partir de chacune de ces trois nuances d'aciers Ce résultat est obtenu par un choix judicieux et un contrôle adéquat de la température intermédiaire et de la température de bobinage Le choix de la température de bobinage permet de régler la fraction de ferrite transformée et par conséquent aussi la fraction de la seconde phase, celui de la température de bobinage permet de déterminer la nature de cette seconde phase (bainite ou martensite) Si cette température de bobinage est bien étudiée, elle peut également permettre l'apparition d'une troisième phase C'est notamment le cas entre 200°C et 350°C, où une fraction de martensite peut apparaître au sein d'une microstructure ferπte/bamite
TABLEAU 3 - Aciers Dual Phase
Le Tableau 3 montre qu'un refroidissement ultra-rapide de ces mêmes aciers jusqu'à une température de bobinage égale à la température ambiante conduit à la formation de martensite et par conséquent à une résistance accrue tout en conservant une bonne ductilité La température de bobinage de 100°C correspond à un léger réchauffage de la bande après refroidissement, qui ne nuit pas à sa résistance et améliore même légèrement sa ductilité
Dans un deuxième exemple, des aciers micro-alliés ont également été soumis à un cycle de traitement suivant l'invention Leurs compositions chimiques sont données dans le Tableau 4
TABLEAU 4 - Composition chimique (avec précipitation)
Les schémas de refroidissement sont indiques dans les Tableaux 5 et 6, respectivement pour des aciers a microstructure de ferπte/bainite (Tableau 5) et ferπte/martensite (Tableau 6) De tels schémas de refroidissement, conformes à l'invention, permettent le durcissement des aciers par précipitation d'éléments de micro-alliage (Ti) sous forme de carbures Une telle précipitation est généralement impossible dans un acier multiphase conventionnel, car elle nécessite un premier refroidissement très lent (< 20°C/s) à haute température (> 600°C) Les Tableaux 5 et 6 donnent également les propriétés de résistance et de ductilité obtenues avec ces aciers
TABLEAU 5 - Aciers Ferrite / Bainite
TABLEAU 6 - Aciers Dual Phase
Le procédé de l'invention offre plusieurs avantages importants par rapport à la technique antérieure
En premier lieu, il permet de mieux maîtriser la formation des microstructures, à savoir la fraction de ferrite d'une part et la fraction ainsi que la nature de la seconde phase d'autre part Les microstructures des deux phases sont en effet obtenues par deux opérations de refroidissement totalement indépendantes, qui permettent de gérer et de réguler séparément les températures conduisant aux microstructures désirées
La première de ces deux opérations de refroidissement est effectuée sur la table de refroidissement laminaire, a partir de la température de fin de laminage La vitesse de refroidissement étant ICI peu élevée, elle est peu critique et n'est guère influencée par l'effet de l'accélération du laminoir Cette opération permet de régler le pourcentage de ferrite formée, en faisant varier les conditions de refroidissement, en particulier le nombre de sections arrosées, c'est-a-dire en fait la durée du refroidissement, pour obtenir la température intermédiaire désirée
La seconde opération de refroidissement est un refroidissement brusque, de préférence ultrarapide, jusqu'à la température de bobinage correspondant à la microstructure désirée de la seconde phase, soit bainite ou martensite Ce refroidissement a pour effet de figer la microstructure formée au cours du premier refroidissement lent afin de permettre la reprise de la transformation a la température de bobinage
De ce fait, les microstructures étant contrôlées par le biais des températures du cycle de traitement, il est possible d'obtenir différentes propriétés mécaniques au départ d'une même nuance d'acier De même, le procède de l'invention permet de créer des microstructures multiphases et de conférer des propriétés intéressantes a des nuances d'aciers qui n'étaient pas prévues antérieurement a cette fin
De plus, le procède de l'invention n'est plus limite a un nombre restreint de compositions chimiques déterminées pour l'obtention des microstructures désirées En effet ces microstructures ne dépendent plus de la composition chimique de l'acier, mais elles sont le résultat des diverses possibilités de combinaison du refroidissement laminaire lent et du refroidissement brusque qui le suit II est des lors possible d'adapter plus aisément la composition chimique des aciers pour améliorer leurs propriétés mécaniques telles que la résistance a la fatigue ou au vieillissement l'aptitude au soudage ou a l'expansion de trou l'état de surface ou encore l'aptitude au découpage II peut également en résulter une diminution des coûts de production de l'acier lies par exemple a une baisse de productivité ou a des opérations telles que l'ecπquage ou le décapage

Claims

REVENDICATIONS
1. Procédé pour la fabrication d'une bande en acier multiphase laminée à chaud, qui comprend une opération de refroidissement ultra-rapide, caractérisé en ce que l'on effectue ladite opération de refroidissement ultra-rapide après un refroidissement laminaire lent de la bande sur la table de refroidissement et avant le bobinage final de la bande.
2. Procédé suivant la revendication 1 , caractérisé en ce que l'on soumet la bande d'acier laminée à chaud, à la sortie du train finisseur, à un premier refroidissement lent depuis la température de fin de laminage jusqu'à une température, dite température intermédiaire, comprise entre environ 750°C et 500°C, ensuite à un refroidissement ultra-rapide depuis ladite température intermédiaire jusqu'à une température, dite température de bobinage, comprise entre environ 600°C et la température ambiante, et enfin à un second refroidissement lent à partir de ladite température de bobinage jusqu'à la température ambiante
3 Procédé suivant la revendication 2, caractérisé en ce que la température intermédiaire est comprise entre environ 750°C et 600°C.
4. Procédé suivant l'une ou l'autre des revendications 1 à 3, caractérisé en ce que l'on effectue ledit premier refroidissement lent sur une table de refroidissement laminaire conventionnelle disposée après la sortie du train finisseur
5. Procédé suivant l'une ou l'autre des revendications 1 à 4, caractérisé en ce que l'on effectue ledit refroidissement ultra-rapide avec une vitesse de refroidissement telle que le produit de l'épaisseur de la bande, en mm, par la vitesse de refroidissement, en °C/s, soit supérieur à
600
6 Procédé suivant la revendication 5, caractérisé en ce que l'on effectue ledit refroidissement ultra-rapide avec une vitesse de refroidissement telle que le produit de l'épaisseur de la bande, en mm, par la vitesse de refroidissement, en X/s, soit supérieur à 800
7. Procédé suivant l'une ou l'autre des revendications 1 à 6, caractérisé en ce que l'on détermine les proportions respectives des phases requises dans l'acier, en ce que l'on en déduit la durée du premier refroidissement lent et la température intermédiaire conduisant à la fraction requise de la première phase, en ce que l'on en déduit également la température de bobinage conduisant à la seconde phase requise et en ce que l'on applique lesdites valeurs de durée et de température pour le réglage respectivement du premier refroidissement lent et du refroidissement ultra-rapide
PCT/BE2001/000015 2000-03-22 2001-01-29 Procede pour la fabrication d'une bande en acier multiphase laminee a chaud. WO2001071047A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01902179A EP1266041A1 (fr) 2000-03-22 2001-01-29 Procede pour la fabrication d'une bande en acier multiphase laminee a chaud.
US10/221,170 US6821364B2 (en) 2000-03-22 2001-01-29 Method of making a multiphase hot-rolled steel strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2000/0214A BE1013359A3 (fr) 2000-03-22 2000-03-22 Procede pour la fabrication d'une bande en acier multiphase laminee a chaud.
BE2000/0214 2000-03-22

Publications (1)

Publication Number Publication Date
WO2001071047A1 true WO2001071047A1 (fr) 2001-09-27

Family

ID=3896465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE2001/000015 WO2001071047A1 (fr) 2000-03-22 2001-01-29 Procede pour la fabrication d'une bande en acier multiphase laminee a chaud.

Country Status (4)

Country Link
US (1) US6821364B2 (fr)
EP (1) EP1266041A1 (fr)
BE (1) BE1013359A3 (fr)
WO (1) WO2001071047A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603170A (zh) * 2016-02-15 2016-05-25 东北大学 一种超厚规格热轧卷板的超快冷工艺及卷取方法
CN106391727A (zh) * 2016-06-28 2017-02-15 东北大学 一种热轧带钢超快冷区域头部不冷控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325955A1 (de) * 2003-06-07 2004-12-23 Sms Demag Ag Verfahren und Anlage zum Erzeugen von Stahlprodukten mit bester Oberflächenqualität
CN107674954B (zh) * 2017-09-20 2019-04-09 武汉科技大学 利用热轧后形变亚结构提高多相钢综合性能的方法
CN109778076A (zh) * 2019-02-12 2019-05-21 唐山不锈钢有限责任公司 低裂纹敏感性s550mc热轧汽车结构钢带的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633428A (en) * 1979-08-28 1981-04-03 Sumitomo Metal Ind Ltd Manufacture of hot rolled high tensile steel sheet
EP0295500A1 (fr) * 1987-06-03 1988-12-21 Nippon Steel Corporation Tôle d'acier laminée à chaud à haute résistance à la traction et à formabilité excellente
EP0747495A1 (fr) * 1995-06-08 1996-12-11 Sollac S.A. TÔle d'acier laminée à chaud à haute résistance et haute emboutissabilité refermant du niobium, et ses procédés de fabrication
EP0881306A1 (fr) * 1997-05-12 1998-12-02 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Acier ductile à haute limite élastique et procédé de fabrication de cet acier
DE19833321A1 (de) * 1998-07-24 2000-01-27 Schloemann Siemag Ag Verfahren und Anlage zur Herstellung von Dualphasen-Stählen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735147B1 (fr) * 1995-06-08 1997-07-11 Lorraine Laminage Tole d'acier laminee a chaud a haute resistance et haute emboutissabilite renfermant du titane, et ses procedes de fabrication.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633428A (en) * 1979-08-28 1981-04-03 Sumitomo Metal Ind Ltd Manufacture of hot rolled high tensile steel sheet
EP0295500A1 (fr) * 1987-06-03 1988-12-21 Nippon Steel Corporation Tôle d'acier laminée à chaud à haute résistance à la traction et à formabilité excellente
EP0747495A1 (fr) * 1995-06-08 1996-12-11 Sollac S.A. TÔle d'acier laminée à chaud à haute résistance et haute emboutissabilité refermant du niobium, et ses procédés de fabrication
EP0881306A1 (fr) * 1997-05-12 1998-12-02 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Acier ductile à haute limite élastique et procédé de fabrication de cet acier
DE19833321A1 (de) * 1998-07-24 2000-01-27 Schloemann Siemag Ag Verfahren und Anlage zur Herstellung von Dualphasen-Stählen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUE N ET AL: "NEW COILING TEMPERATURE CONTROL ON HOT STRIP MILL", CAHIERS D'INFORMATIONS TECHNIQUES DE LA REVUE DE METALLURGIE,FR,REVUE DE METALLURGIE. PARIS, vol. 90, no. 3, 1 March 1993 (1993-03-01), pages 403 - 409, XP000369723, ISSN: 0035-1563 *
PATENT ABSTRACTS OF JAPAN vol. 005, no. 089 (C - 058) 10 June 1981 (1981-06-10) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603170A (zh) * 2016-02-15 2016-05-25 东北大学 一种超厚规格热轧卷板的超快冷工艺及卷取方法
CN106391727A (zh) * 2016-06-28 2017-02-15 东北大学 一种热轧带钢超快冷区域头部不冷控制方法

Also Published As

Publication number Publication date
EP1266041A1 (fr) 2002-12-18
US6821364B2 (en) 2004-11-23
US20030041933A1 (en) 2003-03-06
BE1013359A3 (fr) 2001-12-04

Similar Documents

Publication Publication Date Title
CA2617879C (fr) Procede de fabrication de toles d&#39;acier presentant une haute resistance et une excellente ductilite, et toles ainsi produites
EP1067203B1 (fr) &#34;Procédé de fabrication de bandes en alliage fer-carbone-manganèse, et bandes ainsi produites&#34;
WO2012127136A2 (fr) Tôle d&#39;acier laminée à chaud et procédé de fabrication associé
JP2008523243A5 (fr)
WO2016005811A1 (fr) Tôle d&#39;acier laminée à chaud et procédé de fabrication associé
FR2763960A1 (fr) Procede de fabrication de bandes minces d&#39;acier inoxydable ferritique, et bandes minces ainsi obtenues
FR2790485A1 (fr) Procede de coulee continue entre cylindres de bandes d&#39;acier inoxydable ferritique a haute ductilite, et bandes minces ainsi obtenues
FR2472022A1 (fr) Procede de production d&#39;une tole d&#39;acier laminee a deux phases dont une est formee par refroidissement rapide apres recuit continu
EP1427866A1 (fr) Procede de fabrication de tubes soudes et tube ainsi obtenu
EP1266041A1 (fr) Procede pour la fabrication d&#39;une bande en acier multiphase laminee a chaud.
BE1011149A3 (fr) Acier ductile a haute limite elastique et procede de fabrication de cet acier.
CA2325892C (fr) Procede de realisation d&#39;une bande de tole laminee a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l&#39;emboutissage
FR2477178A1 (fr) Procede pour fabriquer des toles d&#39;acier par laminage a chaud
BE1002093A6 (fr) Procede de fabrication d&#39;une bande mince en acier par laminage a chaud.
BE1010142A6 (fr) Procede pour la fabrication d&#39;une bande laminee a chaud en acier a haute resistance.
EP1070148B1 (fr) Procede de fabrication d&#39;une bande d&#39;acier laminee a chaud pour emboutissage
FR2495189A1 (fr) Tole d&#39;acier de haute resistance et son procede de fabrication
EP0748877A1 (fr) Procédé de réalisation d&#39;une bande de tÔle d&#39;acier laminée à chaud à très haute limite d&#39;élasticité et tÔle d&#39;acier obtenue
BE1010093A6 (fr) Procede pour fabriquer une bande laminee a chaud en acier a haute resistance.
BE1007790A6 (fr) Procede pour fabriquer une bande mince en acier doux laminee a froid pour l&#39;emboutissage.
CA2215570A1 (fr) Tole d&#39;acier lamine a chaud pour emboutissage profond
BE1011557A4 (fr) Acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
WO2002000947A1 (fr) Procede pour la fabrication d&#39;une bande d&#39;acier laminee a froid a haute resistance et haute formabilite
BE1005964A6 (fr) Procede de protection d&#39;un produit siderurgique lamine a chaud.
CA2337260A1 (fr) Produit plat, tel que tole, d&#39;un acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de ce produit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001902179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10221170

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001902179

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001902179

Country of ref document: EP