WO2001068245A1 - Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid - Google Patents

Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid Download PDF

Info

Publication number
WO2001068245A1
WO2001068245A1 PCT/EP2001/002492 EP0102492W WO0168245A1 WO 2001068245 A1 WO2001068245 A1 WO 2001068245A1 EP 0102492 W EP0102492 W EP 0102492W WO 0168245 A1 WO0168245 A1 WO 0168245A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
oxygen
hollow cylindrical
volume
Prior art date
Application number
PCT/EP2001/002492
Other languages
English (en)
French (fr)
Inventor
Jens Weiguny
Sebastian Storck
Andreas Tenten
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP20010923638 priority Critical patent/EP1261424B1/de
Priority to AT01923638T priority patent/ATE268641T1/de
Priority to DE50102534T priority patent/DE50102534D1/de
Priority to US10/220,703 priority patent/US6812351B2/en
Priority to AU2001250362A priority patent/AU2001250362A1/en
Priority to JP2001566795A priority patent/JP4681197B2/ja
Publication of WO2001068245A1 publication Critical patent/WO2001068245A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/34Mechanical properties
    • B01J35/36Mechanical strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a catalyst for the production of maleic anhydride by heterogeneous gas-phase oxidation of a hydrocarbon having at least four carbon atoms, which comprises a catalytically active composition containing vanadium, phosphorus and oxygen and has a substantially hollow cylindrical structure.
  • the present invention further relates to a process for the preparation of maleic anhydride by heterogeneously catalyzed gas-phase oxidation of a hydrocarbon having at least four carbon atoms using the catalyst according to the invention.
  • Maleic anhydride is an important intermediate in the synthesis of ⁇ -butyrolactone, tetrahydrofuran and 1,4-butanediol, which in turn are used as solvents or are further processed, for example, into polymers such as polytetrahydrofuran or polyvinylpyrrolidone.
  • tablet-shaped catalysts i.e. so-called full cylinders are used, which contain phosphorus, vanadium and oxygen.
  • full cylinders Such catalysts are described, for example, in U.S. Patents 5,275,996 or 5,641,722.
  • the yield of maleic anhydride can also be increased by 5 to 7 by using the 5 mm x 8 mm x 5 mm rings ("hollow cylinder”) compared to 2.5 mm x 2.5 mm tablets ("full cylinder”) % increase.
  • 5 mm x 8 mm x 5 mm rings compared to 2.5 mm x 2.5 mm tablets
  • full cylinder full cylinder
  • US Pat. No. 4,283,307 describes a catalyst structure in the form of a hollow cylinder containing vanadium, phosphorus and oxygen, the outer diameter of which is 3.969 to 4.762 mm, the height of which is 3.969 to 4.762 mm and the inner diameter of which is 0.888 to 7.925 mm.
  • the diameter of the inner hole of the hollow cylinder is usually 30 to 50% of the outer diameter, the height and outer diameter preferably being the same.
  • a hollow cylindrical structure with the geometry of 3.969 mm ⁇ 3.969 mm ⁇ 1.587 mm is disclosed.
  • an increase in the yield of maleic anhydride of up to 24% was obtained when using the hollow cylinders.
  • U.S. Patent 5,168,090 discloses a catalyst structure for the production of maleic anhydride by heterogeneous gas phase oxidation of hydrocarbons which comprises at least one ordered cavity in the outer surface, a geometric volume V geo of 30 to 67% of the theoretical volume V overa ii 'that would have void-free, massive structure with the same outer diameter and the same height and a ratio of the geometric surface Ag eo to the geometric volume V geo of at least 20 cm -1 .
  • the hollow cylinders mentioned as a comparison example have a height of 4.76, 4.29 and 4.14 mm, an outer diameter of 4.76 mm and an inner diameter of 1.58 mm.
  • the object of the present invention was to find a catalyst for the production of maleic anhydride by heterogeneously catalyzed gas phase oxidation of hydrocarbons, which is easy to produce, has a low pressure drop with a sufficiently high mechanical stability and a high hydrocarbon compared to the catalysts according to the prior art -Loading of the catalyst enables and thereby enables high conversion, high selectivity, high yield and therefore a high space / time yield.
  • a catalyst for the production of maleic anhydride by heterogeneously catalyzed gas-phase oxidation of a hydrocarbon having at least four carbon atoms which comprises a catalytically active composition containing vanadium, phosphorus and oxygen and has a substantially hollow cylindrical structure, was found, which is characterized in that the hollow cylindrical Structure (a) has a ratio of the height h to the diameter of the through opening d of at most 1.5 and (b) has a ratio of the geometric surface A geo to the geometric volume V geo of at least 2 mm -1 .
  • An essentially hollow cylindrical structure is to be understood as a structure which essentially comprises a cylinder with an opening passing between the two cover surfaces.
  • the cylinder is characterized by two substantially parallel cover surfaces and a lateral surface, the cross section of the cylinder, i.e. parallel to the lid surfaces, is essentially circular in structure.
  • the cross section of the through opening, i.e. parallel to the top surfaces of the cylinder is essentially also of a circular structure.
  • the through opening is preferably located in the center of the cover surfaces, other spatial arrangements not being ruled out.
  • the term “essentially” indicates that deviations from the ideal geometry, such as, for example, slight deformations of the circular structure, non-plane-parallel cover surfaces, chipped corners and edges, surface roughness or notches in the outer surface, the cover surfaces or the inner surface of the ones passing through Bore are included in the catalyst of the invention.
  • circular cover surfaces, a circular cross section of the bore passing through, parallel cover surfaces and macroscopically smooth surfaces are preferred.
  • the substantially hollow cylindrical structure can be described by an outer diameter di, a height h as the distance between the two cover surfaces and a diameter of the inner hole (through opening) d.
  • the catalyst according to the invention has a ratio of the height h to the diameter of the through opening d 2 of at most 1.5.
  • the quotient h / d is preferably 0.5 to 1.5, particularly preferably 1.0 to 1.5.
  • the catalyst has a ratio of the geometric surface area Ag eo to the geometric volume V geo of at least 2 mm -1 .
  • the geometric surface A geo is to be understood as the arithmetic surface of all outer surfaces of the hollow cylinder, including the inner lateral surface of the opening passing through, on the basis of the above-mentioned variables d ⁇ h and d.
  • the geometric volume V geo is to be understood as the calculated volume of the hollow cylinder on the basis of the above-mentioned variables di, h and d. When calculating both sizes, pores are not taken into account, such as indentations or roughness of the outer surfaces.
  • the quotient Ag eo / W geo is preferably 2 to 3 mm -1 , particularly preferably 2 to 2.5 mm -1 .
  • the catalyst according to the invention is additionally characterized by the ratio of the geometric volume V geo of the hollow cylindrical structure to the theoretical volume V overa n of a corresponding full cylinder with the same height h and the same outer diameter di, which is at most 0.85.
  • the theoretical volume V overa n of a corresponding full cylinder with the same height h and the same outer diameter di is also to be determined arithmetically on the basis of the quantities di and h mentioned above.
  • the quotient V geo / V overa ⁇ is particularly preferably 0.3 to 0.85, very particularly preferably 0.6 to 0.85, in particular 0.7 to 0.85.
  • the outer diameter di of the catalyst according to the invention is preferably 3 to 10 mm, particularly preferably 4 to 8 mm, very particularly preferably 5 to 6 mm.
  • the height h is preferably 1 to 10 mm, particularly preferably 2 to 6 mm, very particularly preferably 2 to 3 mm.
  • the diameter of the through opening d is preferably 1 to 8 mm, particularly preferably 2 to 6 mm, very particularly preferably 2 to 3 mm.
  • the catalysts of the invention comprise, as the catalytically active composition, an oxygen-containing vanadium-phosphorus compound or mixtures of such compounds.
  • Suitable active compositions are described, for example, in the patents US 5,275,996, US 5,641,722, US 5,137,860, US 5,095,125 or US 4,933,312.
  • the catalysts of the invention may further contain so-called promoters.
  • the elements of the 1st to 15th group of the periodic table and their compounds are mentioned as suitable promoters.
  • Suitable promoters are described, for example, in the published documents WO 97/12674 and WO 95/26817 and in the patents US 5,137,860, US 5,296,436, US 5,158,923 and US 4,795,818.
  • Preferred promoters are compounds of cobalt, molybdenum, iron, zinc, hafnium, zirconium, lithium, titanium, chromium, manganese, nickel, copper, boron, silicon, antimony, tin, niobium and bismuth, particularly preferably molybdenum , Iron, zinc, antimony, bismuth, lithium.
  • the promoted catalysts according to the invention can contain one or more promoters.
  • the total amount of promoters in the finished catalyst is generally not more than about 5% by weight, calculated as oxide.
  • the catalysts of the invention can also contain so-called auxiliaries, such as tableting aids or pore formers.
  • Tableting aids are generally added when the shaping of the catalysts according to the invention is carried out by tableting.
  • Tableting aids are generally catalytically inert and improve the tabletting properties of the so-called precursor powder, an intermediate stage in catalyst production, for example by increasing the sliding and free-flowing properties.
  • Graphite may be mentioned as a suitable and preferred tabletting aid.
  • the tabletting aids added generally remain in the activated catalyst.
  • the content of tabletting aid in the finished catalyst is typically about 2 to 6% by weight.
  • Pore formers are substances that are used for the targeted adjustment of the pore structure in the macroporous area. In principle, they can be used regardless of the molding process. As a rule, these are compounds containing carbon, hydrogen, oxygen and / or nitrogen, which are added before the catalyst is shaped and are largely removed again during the subsequent activation of the catalyst with sublimation, decomposition and / or evaporation. The finished catalyst can nevertheless contain residues or decomposition products of the pore former.
  • the catalysts according to the invention can contain the active composition containing vanadium, phosphorus and oxygen, for example in pure, undiluted form as a so-called “full catalyst” or diluted with a preferably oxidic support material as a so-called “Mixed catalyst” included.
  • Suitable support materials for the mixed catalysts include aluminum oxide, silicon dioxide, aluminum silicates, zirconium dioxide, titanium dioxide or mixtures thereof.
  • the unsupported and mixed catalysts are preferred, the unsupported catalysts being particularly preferred.
  • the catalysts according to the invention preferably have a phosphorus / vanadium atomic ratio of 0.9 to 1.5, particularly preferably 0.9 to 1.2 and very particularly preferably 1.0 to 1.1.
  • the average oxidation state of the vanadium is preferably +3.9 to +4.4 and particularly preferably 4.0 to 4.3.
  • the catalysts of the invention preferably have a BET surface area of 10 to 50 m 2 / g and particularly preferably 15 to 30 m 2 / g. They preferably have a pore volume of 0.1 to 0.5 ml / g and particularly preferably 0.1 to 0.3 ml / g.
  • the bulk density of the catalysts according to the invention is preferably 0.5 to 1.5 kg / 1 and particularly preferably 0.5 to 1.0 kg / 1.
  • the catalysts according to the invention can be produced, for example, as described in the patents US 5,275,996 and US 5,641,722 or the published patent application WO 97/12674, the shaping naturally taking place in the hollow cylindrical structure according to the invention.
  • the shaping is preferably carried out by tableting.
  • an organic reducing solvent e.g. alcohol, such as isobutanol
  • a pentavalent phosphorus compound e.g. ortho- and / or pyrophosphoric acid
  • VPO precursor vanadium, phosphorus, oxygen-containing catalyst precursor
  • VPO precursor powder can now optionally be powdered carrier material and / or a so-called pore former, such as stearic acid, cellulose loose or paraffins can be mixed in. Further processing without the addition of a carrier material is preferred.
  • shaping by transfer into the essentially hollow cylindrical structure according to the invention.
  • the shaping is preferably carried out by tableting, advantageously with prior mixing of a so-called lubricant, such as graphite.
  • the mechanical and catalytic properties of the catalyst can be influenced by a suitable combination of temperatures, treatment times and gas atmospheres adapted to the respective catalyst system.
  • Extrusion may be mentioned as a less preferred alternative to tableting.
  • the VPO precursor obtained in (b) is pasted in order to obtain an extrudable mass. This can then be extruded into the hollow cylindrical structure according to the invention. After drying, the preforming can now be carried out analogously (e).
  • vanadium pentoxide powder V 2 Os is added to isobutanol and the mixture is mixed with the amount of phosphoric acid required for setting the desired phosphorus / vanadium atomic ratio.
  • the mixture is then heated, the VPO catalyst precursor being formed while reducing the vanadium and reacting with the phosphoric acid. This is isolated, for example by filtration, washed if necessary and dried at a temperature above 100 ° C. and optionally preformed.
  • the precursor powder obtained is then mixed with a lubricant, preferably graphite, and optionally a pore former, for example stearic acid, and converted into the hollow cylindrical structure with the geometric conditions according to the invention by tableting.
  • the moldings are then heated by heating in an atmosphere containing acid Preformed substance, nitrogen, noble gases, carbon dioxide, carbon monoxide and / or water vapor.
  • the catalysts according to the invention are notable for their special hollow cylindrical structure and the special geometric conditions. They are easy to manufacture from active compositions known per se and, when used in heterogeneous catalytic gas phase oxidation, have a low pressure drop with sufficiently high mechanical stability. They also have a large geometric surface area, based on their geometric volume, which leads to decisive advantages in terms of activity and selectivity. The through opening also saves active mass and reduces the bulk density.
  • the catalysts according to the invention have decisive advantages over the geometries described above, in particular compared to
  • the invention furthermore relates to a process for the production of maleic anhydride by heterogeneously catalyzed gas-phase oxidation of a hydrocarbon having at least four carbon atoms with gases containing oxygen using the catalyst according to the invention.
  • Tube bundle reactors are generally used as reactors.
  • a tube bundle reactor in turn consists of at least one reactor tube which is used for heating and / or cooling one Heat transfer medium is surrounded.
  • the tube bundle reactors used industrially contain a few hundred to several tens of thousands of reactor tubes connected in parallel.
  • the tube bundle reactors can contain one or more preheating zones which heat the incoming gas mixture.
  • a preheating zone integrated in a tube bundle reactor can be implemented, for example, by reactor tubes filled with inert material, which are also surrounded by heat transfer medium.
  • inert material which are also surrounded by heat transfer medium.
  • all moldings which are chemically inert, ie do not induce or catalyze a heterogeneous catalytic reaction, and which have a maximum pressure drop below the respective, maximum tolerable, system-specific value are suitable as inert material.
  • oxidic materials such as A1 2 0 3 , SiC or metallic materials such as stainless steel are suitable.
  • Bodies, tablets, hollow cylinders, rings, trilobes, tristars, wagon wheels, extrudates or randomly broken molded bodies may be mentioned as shaped bodies.
  • the hydrocarbons used are aliphatic and aromatic, saturated and unsaturated hydrocarbons having at least four carbon atoms, for example 1,3-butadiene, 1-butene, 2-cis-butene, 2-trans-butene, n-butane, C 4 Mix, 1,3-pentadiene, 1,4-pentadiene, 1-pentene, 2-cis-pentene, 2-trans-pentene, n-pentane, cyclopentadiene, dicyclopentadiene, cyclopentene, cyclopentane, Cs mixture , Hexenes, hexanes, cyclohexane and benzene.
  • n-butane 1-Butene, 2-cis-butene, 2-trans-butene, n-butane, benzene or mixtures thereof are preferably used.
  • the use of n-butane and n-butane-containing gases and liquids is particularly preferred.
  • the n-butane used can originate, for example, from natural gas, steam crackers or FCC crackers.
  • the hydrocarbon is generally added in a quantity-controlled manner, i.e. with constant specification of a defined quantity per unit of time.
  • the hydrocarbon can be metered in liquid or gaseous form. Dosing in liquid form with subsequent evaporation before entering the tube bundle reactor is preferred.
  • Gases containing oxygen such as, for example, air, synthetic air, an oxygen-enriched gas or so-called “pure”, ie, oxygen that originates from air separation, are used as oxidizing agents.
  • the oxygen-containing gas is also added in a quantity-controlled manner.
  • the gas to be passed through the tube bundle reactor generally contains inert gas.
  • the proportion of inert gas is usually 50 to 95% by volume at the start.
  • Inert gases are all gases that do not directly contribute to the formation of maleic anhydride, such as - for example nitrogen, noble gases, carbon monoxide, carbon dioxide, water vapor, oxygenated and non-oxygenated hydrocarbons with less than four carbon atoms (e.g.
  • the inert gas is introduced into the system via the oxygen-containing gas.
  • further inert gases can originate, for example, from the partial oxidation of the hydrocarbons, via a partial recycling of the reaction effluent that may have been prepared.
  • a volatile phosphorus compound is preferably added to the gas in the process according to the invention.
  • Their concentration at the beginning, ie at the reactor inlet is at least 0.2 ppm by volume, ie 0.2-10 ⁇ 6 parts by volume of the volatile phosphorus compounds, based on the total volume of the gas at the reactor inlet.
  • a content of 0.2 to 20 ppm by volume is preferred, particularly preferably 0.5 to 10 ppm by volume.
  • Volatile phosphorus compounds are to be understood as all those phosphorus-containing compounds which are present in the desired concentration in gaseous form under the conditions of use. For example, the general formulas (I) and (II) may be mentioned
  • X 1 , X 2 and X 3 independently of one another are hydrogen, halogen, Ci to C 6 alkyl, C 3 to C 6 cycloalkyl, C 6 to C 10 aryl, C 1 to C 6 alkoxy, C 3 -bis C ⁇ cycloalkoxy and C 6 - to C ⁇ o ⁇ Aroxy mean.
  • Compounds of the formula (III) are preferred
  • OR 2 (HD wherein R 1, R 2 and R 3 independently of one another are hydrogen, C ⁇ to ⁇ -alkyl, C 3 to C 6 cycloalkyl and C ⁇ - to Cio-aryl. Particularly preferred are the compounds of formula (III) in which R 1 , R 2 and R 3 independently of one another are C 1 -C 4 -alkyl, for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl , 2-methylpropyl and 1, 1-dimethylethyl. Trimethyl phosphate, triethyl phosphate and tri-propyl phosphate, in particular triethyl phosphate, are very particularly preferred.
  • the process according to the invention is generally carried out at a temperature of 350 to 480 ° C.
  • the temperature mentioned is understood to mean the temperature of the catalyst bed located in the Rorbund reactor which would be present in the absence of a chemical reaction if the process were carried out. If this temperature is not exactly the same at all points, the term means the number average of the temperatures along the reaction zone. In particular, this means that the true temperature present on the catalyst can also lie outside the stated range due to the exothermic nature of the oxidation reaction.
  • the process according to the invention is preferably carried out at a temperature of 380 to 460 ° C., particularly preferably 380 to 430 ° C.
  • the process according to the invention can be carried out at a pressure below normal pressure (e.g. up to 0.05 MPa abs) as well as above normal pressure (e.g. up to 10 MPa abs).
  • a pressure of 0.1 to 1 MPa abs is preferred, particularly preferably 0.1 to 0.5 MPa abs.
  • the tube bundle reactor is filled with the same catalyst bed.
  • the catalyst bed is understood to mean catalyst material which has the same composition and the same activity per unit volume.
  • a catalyst bed can be composed of the catalyst according to the invention, a mixture of at least one catalyst according to the invention and further catalysts according to the invention and / or not according to the invention, wherein the catalyst bed can also be mixed with an inert material, ie can be “diluted”.
  • two or more than two successive catalyst beds are used in the tube bundle reactor. It is thus possible and advantageous, for example, to use a less active catalyst bed in the vicinity of the reactor inlet and to pass it through direction behind using a more active catalyst bed.
  • the process according to the invention can be carried out in two preferred process variants, the variant with "straight passage” and the variant with "return”.
  • the process variant of the "straight pass” is characterized in that the conversion of hydrocarbons per reactor pass is 75 to 95% and maleic anhydride and possibly oxygenated hydrocarbon by-products are removed from the reactor discharge, the reaction gas passed through the reactor, especially the one not -converted hydrocarbons, no direct recycling is / are not supplied.
  • the total conversion of hydrocarbons per reactor pass is preferably 80 to 90%.
  • the remaining residual stream which contains inert gases, unreacted hydrocarbons and, if appropriate, further, non-separated components, is generally discharged from the plant.
  • the concentration of hydrocarbons is initially, i.e. at the reactor inlet, preferably 1.0 to 4.0 vol .-%, particularly preferably 1.5 to 3.0 vol .-%.
  • the concentration of oxygen is preferably 5 to 50 vol .-% at the beginning, particularly preferably 15 to 30 vol .-%.
  • the origin of the oxygen used is in principle insignificant for the process according to the invention, provided that no harmful impurities are present. Air is preferred as the oxygen source for simple technical considerations. In the simplest case, this can be used directly or preferably after particle cleaning. An enrichment of oxygen, for example by air liquefaction and subsequent distillation or pressure swing adsorption, is possible in principle.
  • the loading of the catalyst with hydrocarbons is generally at least 20 Nl / l-h, preferably at least 30 Nl / l-h, particularly preferably at least 35 Nl / l-h.
  • Maleic anhydride can be separated off, for example, by absorption in a suitable absorbent.
  • Suitable absorbents are, for example, water or organic liquids. When absorbed in water, maleic anhydride is hydrated to maleic acid.
  • Prefers is the absorption in an organic solvent.
  • Suitable organic solvents are, for example, the high-boiling solvents mentioned in WO 97/43242, such as tri-cresyl phosphate, dibutyl maleate, high-molecular wax, aromatic hydrocarbons with a boiling point above 140 ° C. or di-C 4 -C 8 -alkyl phthalates, such as dibutyl phthalate , Oxygenated hydrocarbon by-products are generally also absorbed in the solvents mentioned.
  • the absorption can be carried out, for example, at a temperature of 60 to 160 ° C. and a pressure of 0.1 to 0.5 MPa abs or above.
  • Suitable procedures are, for example, passing the gaseous, optionally cooled reactor discharge through a container filled with absorption liquid or spraying the absorption liquid in the gas stream.
  • Appropriate methods for washing out gas streams are known to the person skilled in the art.
  • the process variant of the "recycle” is characterized in that the conversion of hydrocarbons per reactor pass is 30 to 60%, maleic anhydride and optionally oxygenated hydrocarbon by-products are removed from the reactor discharge and at least part of the remaining stream or at least part of the not - Recycled, optionally separated hydrocarbons returned to the reaction zone.
  • the total conversion of hydrocarbons per reactor pass is preferably 40 to 50%.
  • the concentration of hydrocarbons at the beginning, ie at the reactor inlet, is preferably at least 2.0% by volume, particularly preferably at least 2.5% by volume.
  • the concentration of oxygen is preferably 5 to 60 vol .-% at the beginning, particularly preferably 15 to 50 vol .-%.
  • the origin of the oxygen used is in principle insignificant for the process according to the invention, provided that no harmful contaminants are present.
  • the oxygen used generally comes from the air, with the oxygen usually being enriched. It can be done, for example, by air liquefaction and subsequent distillation or pressure swing adsorption.
  • An oxygen-containing gas with a concentration of oxygen of 20 to 100 vol .-% is preferably used.
  • the loading of the catalyst with hydrocarbons is generally at least 20 Nl / lh, preferably at least 30 Nl / lh, particularly preferably at least 35 Nl / lh.
  • the integral total sales of hydrocarbons i.e. the conversion based on the entire plant is 80 to 100%, preferably 90 to 100%, in the process according to the invention in the variant with "recycling".
  • Maleic anhydride can be separated off, for example, as described under (a).
  • the gas stream remaining after separation of maleic anhydride or at least the unconverted hydrocarbons contained therein are at least partially returned to the reaction zones in the process variant with “recycle”.
  • the maleic anhydride obtained can be further processed to ⁇ -butyrolactone, tetrahydrofuran, 1, 4-butanediol or mixtures thereof, for example by direct hydrogenation of maleic anhydride in the gas phase, as described in WO 97/43234 or by Hydrogenation of a maleic acid diester in the gas phase, as described in WO 97/43242.
  • n-butane is used as the starting hydrocarbon and the heterogeneous catalytic gas phase oxidation is carried out “straight through” on the catalyst according to the invention.
  • Air as gas containing oxygen and inert gas is fed into the feed unit in a quantity-controlled manner.
  • the quantity of n-butane is also regulated, but is preferably supplied in liquid form via a pump and evaporated in the gas stream.
  • the ratio between the amounts of n-butane and oxygen supplied is generally adjusted according to the exothermic nature of the reaction and the desired space / time yield and is therefore dependent, for example, on the type and amount of the catalyst.
  • trialkyl phosphate is preferably added to the gas stream as a volatile phosphorus compound in a quantity-controlled manner.
  • the volatile phosphorus compound can be added, for example, undiluted or diluted in a suitable solvent, for example water.
  • the required amount of the phosphorus compound depends on various parameters, for example the type and amount of the catalyst or the temperatures and pressures in the system, and must be adapted for each system.
  • the gas stream is passed through a static mixer for thorough mixing and through a heat exchanger for heating.
  • the mixed and preheated gas stream is now passed to the tube bundle reactor in which the catalyst according to the invention is located.
  • the tube bundle reactor is tempered by a salt melt circuit. The temperature is set such that a conversion of 75 to 90% per reactor pass is preferably achieved.
  • the product gas stream originating from the tube bundle reactor is cooled down in a heat exchanger and fed to the unit for separating the maleic anhydride.
  • the unit contains at least one apparatus for the absorptive removal of the maleic anhydride and optionally the oxygenated hydrocarbon by-products. Suitable apparatuses are, for example, containers filled with an absorption liquid through which the cooled discharge gas is passed or apparatuses in which the absorption liquid is sprayed into the gas stream.
  • the maleic anhydride-containing solution is discharged from the plant for further processing or for isolation of the valuable product.
  • the remaining gas Electricity is also removed from the system and, if necessary, fed to a unit for recovering the unreacted n-butane.
  • the process according to the invention using the catalysts according to the invention enables a high hydrocarbon load on the catalyst with a high conversion, a high selectivity, a high yield and therefore also a high space / time yield of maleic anhydride.
  • V geo-geometric volume of the shaped bodies on the basis of the geometric sizes di, h and d [mm 3 ]
  • the powder was then tabletted into hollow cylinders with different geometries.
  • Forming in a muffle furnace is first heated in air at 7 ° C / min to 250 ° C and then at 2 ° C / min to 350 ° C.
  • the catalyst was left at this temperature for 10 minutes before the atmosphere was switched from air to N / H 2 0 (1: 1).
  • the mixture was heated to 425 ° C. under the N / H0 atmosphere (1: 1) and the system was left at this temperature for 3 hours. Finally, the mixture was cooled to room temperature under nitrogen.
  • Table 1 shows an overview of the geometrical and physico-chemical properties of the catalysts produced.
  • the test facility was equipped with a feed unit and a reactor tube.
  • the replacement of a tube bundle reactor by a reactor tube is very possible on a laboratory or pilot plant scale, provided the dimensions of the reactor tube are in the range of one technical reactor tube.
  • the plant was in the "straight
  • the hydrocarbon was added in a quantity-controlled manner in liquid form via a pump. Air was added in a quantity-controlled manner as the oxygen-containing gas. Triethyl phosphate (TEP) was also added in liquid form in a quantity-controlled manner.
  • TEP Triethyl phosphate
  • the tube bundle reactor unit consisted of a tube bundle reactor with a reactor tube.
  • the length of the reactor tube was 6.5 m, the inner diameter 22.3 mm.
  • a multi-thermocouple with 20 temperature measuring points was located in a protective tube inside the reactor tube.
  • the reactor tube was surrounded by a temperature-controlled heat transfer circuit and the reaction gas mixture flowed through it from top to bottom.
  • the upper 0.3 m of the reactor tube were filled with inert material and formed the preheating zone.
  • the reaction zone contained 2.2 l of catalyst.
  • a molten salt was used as the heat transfer medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Katalysator und Verfahren zur Herstellung von Maleinsäureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen mit Sauerstoff enthaltenden Gasen, wobei der Katalysator eine katalytisch aktive Masse enthaltend Vanadium, Phosphor und Sauerstoff umfasst, eine im wesentlichen hohlzylinderförmige Struktur aufweist und die hohlzylinderförmige Struktur (a) ein Verhältnis der Höhe h zum Durchmesser der hindurchgehenden Öffnung d2 von höchstens 1,5 und (b) ein Verhältnis der geometrischen Oberfläche Ageo zum geometrischen Volumen Vgeo von mindestens 2 mm-1 aufweist.

Description

HOHLZYLINDERFÖRMIGER KATALYSATOR UND VERFAHREN ZUR HERSTELLUNG VON MALEINSäUREANHYDRID
Beschreibung
Die vorliegende Erfindung betrifft einen Katalysator für die Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffato en, der eine katalytisch aktive Masse enthaltend Vanadium, Phosphor und Sauerstoff umfasst und eine im wesentlichen hohlzylinderförmige Struktur aufweist.
Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen unter Verwendung des erfindungsgemäßen Katalysators.
Maleinsaureanhydrid ist ein wichtiges Zwischenprodukt bei der Synthese von γ-Butyrolacton, Tetrahydrofuran und 1, 4-Butandiol, welche ihrerseits als Lösungsmittel eingesetzt werden oder beispielsweise zu Polymeren, wie Polytetrahydrofuran oder Polyvinyl- pyrrolidon weiterverarbeitet werden.
Zur Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation von Kohlenwasserstoffen werden im allgemeinen tablettenförmige Katalysatoren, d.h. sogenannte Vollzylin- der, eingesetzt, welche Phosphor, Vanadium und Sauerstoff enthaltenden. Derartige Katalysatoren sind beispielsweise beschrieben in den US-Patenten 5,275,996 oder 5,641,722.
In T.P. Wellauer et al., Chem. Eng. Sei., Vol. 41, No. 4, 1986, Seite 765 bis 772 wurde bei der Untersuchung der Partialoxidation von n-Butan zu Maleinsaureanhydrid an Phosphor, Vanadium und Sau- erstoff enthaltenden Katalysatoren erkannt, daß gegenüber den üblicherweise industriell eingesetzten 3 mm x 3 mm Tabletten (Durchmesser x Höhe) sogenannte Ringe mit der Geometrie 8 mm x 5 mm x 5 mm (äußerer Durchmesser x Höhe x Durchmesser des inneren Lochs) einen etwa um 65% höheren Wärmeaustrag aus dem Katalysa- torbett, bezogen auf eine Volumeneinheit, besitzen. Nach den beschriebenen Simulationen kann kann auch die Ausbeute an Maleinsaureanhydrid durch Einsatz der 5 mm x 8 mm x 5 mm Ringe ("Hohlzy- linder") gegenüber 2,5 mm x 2,5 mm Tabletten ("Vollzylinder") um 5 bis 7% erhöht werden. In einer Reihe von Veröffentlichungen zur Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation von Kohlenwasserstoffen ist der Einsatz von Phosphor, Vanadium und Sauerstoff enthaltenden Katalysatoren mit ringförmiger (hohlzy- linderförmiger) Struktur vorbeschrieben. So sind in US 4,713,464 Ringe der Geometrie 5 mm x 4 mm x 2 mm, in EP-A 0 593 646 Ringe der Geometrie 8 mm x 8 mm x 4 mm, in US 4,795,818 Ringe der Geometrie 6,35 mm x 3,18 mm x 3,18 mm und in US 5,296,436 Ringe der Geometrie 4,763 mm x 4,763 x 1,588 mm offenbart.
Im US-Patent 4,283,307 wird eine Vanadium, Phosphor und Sauerstoff enthaltende Katalysatorstruktur in Form eines Hohlzylinders beschrieben, deren äußerer Durchmesser 3,969 bis 4,762 mm, deren Höhe 3,969 bis 4,762 mm und deren innerer Durchmesser 0,888 bis 7,925 mm beträgt. Der Durchmesser des inneren Lochs des Hohlzylinders beträgt üblicherweise 30 bis 50% des äußeren Durchmessers, wobei Höhe und äußerer Durchmesser bevorzugt gleich sind. In den Beispielen ist eine Hohlzylinderstruktur mit der Geometrie 3,969 mm x 3,969 mm x 1,587 mm offenbart. Gegenüber 3,969 mm x 3,969 mm Tabletten mit identischer Aktivkomponente wurde bei Einsatz der Hohlzylinder eine Ausbeutesteigerung an Maleinsaureanhydrid von bis zu 24 rel.-% erhalten.
Das US-Patent 5,168,090 offenbart eine Katalysatorstruktur für die Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation von Kohlenwasserstoffen, welche mindestens einen geordneten Hohlraum in der äußeren Oberfläche umfaßt, ein geometrisches Volumen Vgeo von 30 bis 67% von dem theoretischen Volumen Voveraii' das die hohlraumfreie, massive Struktur mit gleichem Außendurchmesser und gleicher Höhe aufweisen würde und ein Verhältnis der geometrischen Oberfläche Ageo zum geometrischen Volumen Vgeo von mindestens 20 cm-1 aufweist. Die als Vergleichs - beispiel genannten Hohlzylinder besitzen eine Höhe von 4,76, 4,29 sowie 4,14 mm, einen äußeren Durchmesser von jeweils 4,76 mm und einen inneren Durchmesser von jeweils 1,58 mm.
Die Aufgabe der vorliegenden Erfindung bestand darin, einen Katalysator zur Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation von Kohlenwasserstoffen zu fin- den, welcher leicht herstellbar ist, einen geringen Druckverlust bei ausreichend hoher mechanischer Stabilität besitzt und gegenüber den Katalysatoren nach dem Stand der Technik eine hohe Kohlenwasserstoff-Belastung des Katalysators ermöglicht und dabei einen hohen Umsatz, eine hohe Selektivität, eine hohe Ausbeute und daher eine hohe Raum/Zeit-Ausbeute ermöglicht. Demgemäß wurde ein Katalysator für die Herstellung von Maleins ureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen, der eine katalytisch aktive Masse enthaltend Vanadium, Phosphor und Sauerstoff umfasst und eine im wesentlichen hohlzylinderförmige Struktur aufweist, gefunden, der dadurch gekennzeichnet ist, daß die hohlzylinderförmige Struktur (a) ein Verhältnis der Höhe h zum Durchmesser der hindurchgehenden Öffnung d von höchstens 1,5 und (b) ein Verhältnis der geometrischen Oberfläche Ageo zum geo- metrischen Volumen Vgeo von mindestens 2 mm-1 aufweist.
Unter einer im wesentlichen hohlzylinderförmigen Struktur ist eine Struktur zu verstehen, welche im wesentlichen einen Zylinder mit einer zwischen den beiden Deckelflächen hindurchgehenden Öff- nung umfaßt. Der Zylinder ist charakterisiert durch zwei im wesentlichen parallele Deckelflächen und einer Mantelfläche, wobei der Querschnitt des Zylinders, d.h. parallel zu den Deckelflächen, im wesentlichen von kreisförmiger Struktur ist. Der Querschnitt der hindurchgehenden Öffnung, d.h. parallel zu den Dek- keiflachen des Zylinders, ist im wesentlichen ebenfalls von kreisförmiger Struktur. Bevorzugt befindet sich die hindurchgehende Öffnung mittig zu den Deckelflächen, wobei andere räumliche Anordnungen damit nicht ausgeschlossen sind.
Der Begriff "im wesentlichen" weißt darauf hin, daß Abweichungen von der Idealgeometrie, wie beispielsweise leichte Deformationen der kreisförmigen Struktur, nicht planparallel ausgerichtete Dek- kelflächen, abgeplatzte Ecken und Kanten, Oberflächenrauhigkeit oder Einkerbungen in der Mantelfläche, den Deckelflächen oder der Innenfläche der hindurchgehenden Bohrung beim erfindungsgemäßen Katalysator mit umfaßt sind. Im Rahmen der Genauigkeit der Tablettierkunst sind kreisförmige Deckelflächen, ein kreisförmiger Querschnitt der hindurchgehenden Bohrung, parallel ausgerichtete Deckelflächen und makroskopisch glatte Oberflächen bevorzugt.
Die im wesentlichen hohlzylinderförmige Struktur kann beschrieben werden durch einen äußeren Durchmesser di, einer Höhe h als Abstand der beiden Deckelflächen und einem Durchmesser des inneren Lochs (hindurchgehende Öffnung) d . Bei den drei genannten Größen sind jeweils die gemittelten Werte des Hohlzylinders zu verstehen. Dies gilt insbesondere bei Abweichungen von der Idealgeometrie. Der erfindungsgemäße Katalysator weist ein Verhältnis von der Höhe h zum Durchmesser der hindurchgehenden Öffnung d2 von höchstens 1,5 auf. Bevorzugt beträgt der Quotient h/d 0,5 bis 1,5, besonders bevorzugt 1,0 bis 1,5.
Als weitere charakteristische Eigenschaft weist der Katalysator ein Verhältnis der geometrischen Oberfläche Ageo zum geometrischen Volumen Vgeo von mindestens 2 mm-1 auf . Unter der geometrischen Oberfläche Ageo ist die rechnerische Oberfläche aller Außenflächen des HohlZylinders, inklusive der inneren Mantelfläche der hindurchgehenden Öffnung unter Zugrundelegung der oben genannten Größen dχ h und d zu verstehen. Unter dem geometrischen Volumen Vgeo ist das rechnerische Volumen des Hohlzylinders unter Zugrundelegung der oben genannten Größen di, h und d zu verstehen. Bei der Berechnung beider Größen bleiben somit Poren ebenso unberücksichtigt wie etwa Einkerbungen oder Rauhigkeiten der Außenflächen. Bevorzugt beträgt der Quotient Ageo/Wgeo 2 bis 3 mm-1, besonders bevorzugt 2 bis 2,5 mm-1.
In einer bevorzugten Ausführungsform ist der erfindungsgemäße Katalysator zusätzlich charakterisiert durch das Verhältnis des geometrischen Volumens Vgeo der hohlzylinderförmigen Struktur zum theoretischen Volumen Voveran eines entsprechenden Vollzylinders mit gleicher Höhe h und gleichem äußeren Durchmesser di, welches höchstens 0,85 beträgt. Das theoretische Volumen Voveran eines entsprechenden Vollzylinders mit gleicher Höhe h und gleichem äußeren Durchmesser di ist dabei ebenfalls rechnerisch unter Zugrundelegung der oben genannten Größen di und h zu ermitteln. Besonders bevorzugt beträgt der Quotient Vgeo/Voveraιι 0,3 bis 0,85, ganz besonders bevorzugt 0,6 bis 0,85, insbesondere 0,7 bis 0,85.
Der äußere Durchmesser di des erfindungsgemäßen Katalysators beträgt bevorzugt 3 bis 10 mm, besonders bevorzugt 4 bis 8 mm, ganz besonders bevorzugt 5 bis 6 mm. Die Höhe h beträgt bevorzugt 1 bis 10 mm, besonders bevorzugt 2 bis 6 mm, ganz besonders bevorzugt 2 bis 3 mm. Der Durchmesser der hindurchgehenden Öffnung d beträgt bevorzugt 1 bis 8 mm, besonders bevorzugt 2 bis 6 mm, ganz besonders bevorzugt 2 bis 3 mm.
Die erfindungsgemäßen Katalysatoren umfassen als katalytisch aktive Masse eine sauerstoffhaltige Vanadium-Phosphor-Verbindung oder Gemische solcher Verbindungen. Geeignete Aktivmassen sind beispielsweise in den Patentschriften US 5,275,996, US 5,641,722, US 5,137,860, US 5,095,125 oder US 4,933,312 beschrieben. Die erfindungsgemäßen Katalysatoren können des weiteren sogenannte Promotoren enthalten. Als geeignete Promotoren sind die Elemente der 1. bis 15. Gruppe des Periodensystems sowie deren Verbindungen genannt. Geeignete Promotoren sind beispielsweise in den Offenlegungsschriften WO 97/12674 und WO 95/26817 sowie in den Patenten US 5,137,860, US 5,296,436, US 5,158,923 und US 4,795,818 beschrieben. Bevorzugt werden als Promotoren Verbindungen der Elemente Kobald, Molybdän, Eisen, Zink, Hafnium, Zir- kon, Lithium, Titan, Chrom, Mangan, Nickel, Kupfer, Bor, Sili- cium, Antimon, Zinn, Niob und Wismut, besonders bevorzugt Molybdän, Eisen, Zink, Antimon, Wismut, Lithium. Die promotierten erfindungsgemäßen Katalysatoren können einen oder mehrere Promotoren enthalten. Der Gehalt an Promotoren beträgt in Summe im fertigen Katalysator im allgemeinen nicht mehr als etwa 5 Gew.-%, jeweils als Oxid gerechnet.
Die erfindungsgemäßen Katalysatoren können auch sogenannte Hilfsmittel, wie etwa Tablettierhilfsmittel oder Porenbildner enthalten.
Tablettierhilfsmittel werden im allgemeinen zugesetzt, wenn die Formgebung der erfindungsgemäßen Katalysatoren über eine Tablettierung erfolgt. Tablettierhilfsmittel sind in der Regel kataly- tisch inert und verbessern die Tablettiereigenschaften des soge- nannten Precursorpulvers, einer Zwischenstufe in der Katalysator- herstellung, beispielsweise durch Erhöhung der Gleit- und Riesel- fähigkeit. Als geeignetes und bevorzugtes Tablettierhilfsmittel sei Graphit genannt. Die zugesetzten Tablettierhilfsmittel verbleiben in der Regel im aktivierten Katalysator. Typischerweise liegt der Gehalt an Tablettierhilfsmittel im fertigen Katalysator bei etwa 2 bis 6 Gew.-%.
Porenbildner sind Stoffe, welche zur gezielten Einstellung der Porenstruktur im Makroporenbereich eingesetzt werden. Sie können prinzipiell unabhängig vom Formgebungsverfahren eingesetzt werden. In der Regel handelt es sich um Kohlenstoff, Wasserstoff, Sauerstoff und/oder Stickstoff enthaltende Verbindungen, welche vor der Formgebung des Katalysator zugesetzt werden und bei der anschließenden Aktivierung des Katalysators unter Sublimation, Zersetzung und/oder Verdampfung zum überwiegenden Teil wieder entfernt werden. Der fertige Katalysator kann dennoch Rückstände oder Zersetzungsprodukte des Porenbildners enthalten.
Die erfindungsgemäßen Katalysatoren können die Vanadium, Phosphor und Sauerstoff enthaltende Aktivmasse beispielsweise in reiner, unverdünnter Form als sogenannter "Vollkatalysator" oder verdünnt mit einem bevorzugt oxidischen Trägermaterial als sogenannter "Mischkatalysator" enthalten. Als geeignete Trägermaterialien für die Mischkatalysatoren seien beispielsweise Aluminiumoxid, Sili- ciumdioxid, Alumosilikate, Zirkondioxid, Titandioxid oder Gemische davon genannt. Bevorzugt sind die Voll- und Mischkatalysato- ren, besonders bevorzugt die Vollkatalysatoren.
Die erfindungsgemäßen Katalysatoren besitzen bevorzugt ein Phosphor/Vanadium-Atomverhältnis von 0,9 bis 1,5, besonders bevorzugt von 0,9 bis 1,2 und ganz besonders bevorzugt von 1,0 bis 1,1. Die mittlere Oxidationsstufe des Vanadiums beträgt bevorzugt +3,9 bis +4,4 und besonders bevorzugt 4,0 bis 4,3. Die erfindungsgemäßen Katalysatoren besitzen bevorzugt eine BET-Oberfläche von 10 bis 50 m2/g und besonders bevorzugt von 15 bis 30 m2/g. Sie weisen bevorzugt ein Porenvolumen von 0,1 bis 0,5 ml/g und besonders be- vorzugt von 0,1 bis 0,3 ml/g auf. Die Schüttdichte der erfindungsgemäßen Katalysatoren beträgt bevorzugt 0,5 bis 1,5 kg/1 und besonders bevorzugt 0,5 bis 1,0 kg/1.
Die erfindungsgemäßen Katalysatoren können beispielsweise wie in den Patentschriften US 5,275,996 und US 5,641,722 oder der Offen- legungsschrift WO 97/12674 beschrieben hergestellt werden, wobei selbstverständlich die Formgebung in die erfindungsgemäße hohlzylinderförmige Struktur erfolgt. Die Formgebung erfolgt bevorzugt durch Tablettierung.
Die wesentlichen Schritte der bevorzugten Katalysatorherstellung unter Bildung eines sogenannten Precursorpulvers, Formgebung und anschließende Aktivierung sind im folgenden erläutert.
a) Umsetzung einer fünf ertigen Vanadiumverbindung (z.B. VOs) mit einem organischen, reduzierenden Lösungsmittel (z.B. Alkohol, wie etwa Isobutanol) in Gegenwart einer fünfwertigen Phosphorverbindung (z.B. Ortho- und/oder Pyrophosphorsäure) unter Erwärmen. Gegebenenfalls kann diese Stufe in Gegenwart eines dispergierten, pulverförmigen Trägermaterials durchgeführt werden. Bevorzugt ist die Umsetzung ohne Zusatz von Trägermaterial .
b) Isolierung des gebildeten Vanadium-, Phosphor-, Sauerstoff enthaltenden Katalysatorprecursors ("VPO-Precursor") , z.B. durch Filtration oder Eindampfung.
c) Trocknung des VPO-Precursors , gegebenenfalls beginnende Präformierung durch zusätzliche Wasserabspaltung aus dem VPO- Precursor. Dem getrockneten VPO-Precursor-Pulver kann nun gegebenenfalls pulverförmiges Trägermaterial und/oder ein sogenannter Porenbildner, wie beispielsweise Stearinsäure, Cellu- lose oder Paraffine untermischt werden. Bevorzugt ist die Weiterverarbeitung ohne Zusatz eines Trägermaterials.
d) Formgebung durch Überführung in die erfindungsgemäße, im we- sentlichen hohlzylinderförmige Struktur. Die Formgebung erfolgt bevorzugt durch Tablettierung, vorteilhafterweise unter vorheriger Untermischung eines sogenannten Gleitmittels, wie etwa Graphit.
e) Präformierung des geformten VPO-Precursors durch Erhitzen in einer Atmosphäre, welche Sauerstoff, Stickstoff, Edelgase, Kohlendioxid, Kohlenmonoxid und/oder Wasserdampf enthält. Durch geeignete, an das jeweilige Katalysatorsystem angepaßte Kombination von Temperaturen, Behandlungsdauern und Gasat- mosphären kann die machanische und katalytische Eigenschaft des Katalysators beeinflußt werden.
Als weniger bevorzugte Alternative zur Tablettierung sei beispielsweise die Extrusion genannt. Bei dieser Variante teigt man beispielsweise den in (b) erhaltenen VPO-Precursor an, um eine extrusionsfähige Masse zu erhalten. Diese kann dann in die erfindungsgemäße hohlzylinderförmige Struktur extrutiert werden. Nach der Trocknung kann nun die Präformierung analog (e) erfolgen.
Es ist auch möglich, zuerst das Pulver wie unter (a) bis (c) und (e) beschrieben zu behandeln und erst anschließend das präformierte Pulver anzuteigen und zu extrudieren. Nach der Extrusion werden die Formkörper getrocknet beziehungsweise erneut getempert.
In einer besonders bevorzugten Ausführungsform zur Herstellung des Katalysators gibt man Vanadiumpentoxidpulver V2Os in Isobuta- nol und versetzt die Mischung mit der für die Einstellung des gewünschten Phosphor/Vanadium-Atomverhältnisses erforderlichen Menge an Phosphorsäure. Anschließend erwärmt man die Mischung, wobei sich unter Reduktion des Vanadiums und der Umsetzung mit der Phosphorsäure der VPO-Katalysator-Precursor bildet. Dieser wird beispielsweise durch Filtration isoliert, gegebenenfalls gewaschen und bei einer Temperatur über 100°C getrocknet und gegebe- nenfalls vorformiert. Das erhaltene Precursor-Pulver wird nun mit einem Gleitmittel, bevorzugt Graphit, und gegebenenfalls einem Porenbildner, beispielsweise Stearinsäure, vermischt und durch Tablettierung in die hohlzylinderförmige Struktur mit den erfindungsgemäßen geometrischen Bedingungen überführt. Die Formkörper werden nun durch Erhitzen in einer Atmosphäre, enthaltend Sauer- Stoff, Stickstoff, Edelgase, Kohlendioxid, Kohlenmonoxid und/oder Wasserdampf präformiert.
Die erfindungsgemäßen Katalysatoren zeichnen sich durch ihre be- sondere hohlzylinderförmige Struktur und die besonderen geometrischen Bedingungen aus. Sie sind aus an sich bekannten Aktivmassen leicht herstellbar und besitzen bei ihrem Einsatz in der hetero- genkatalytischen Gasphasenoxidation einen geringen Druckverlust bei ausreichend hoher mechanischer Stabilität. Sie besitzen des weiteren, bezogen auf ihr geometrisches Volumen, eine große geometrische Oberfläche, was zu einem entscheidenden Vorteile in der Aktivität und Selektivität führt. Durch die hindurchgehende Öffnung wird des weiteren Aktivmasse eingespart und das Schüttgewicht verringert.
Gegenüber den vorbeschriebenen Geometrien besitzen die erfindungsgemäßen Katalysatoren entscheidende Vorteile, insbesondere gegenüber
Tabletten (Vollzylinder) : - weniger Aktivmasse
- geringeres Schüttgewicht
- höhere Aktivität
- höhere Selektivität
geringerer Druckverlust
Hohlzylinder vorbeschriebener Geometrien: höhere Aktivität
höhere Selektivität
Trilobes, Tristars: - einfachere Herstellung
- höhere Stabilität.
Weiterhin ist Gegenstand der Erfindung ein Verfahren zur Herstel- lung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen mit Sauerstoff enthaltenden Gasen unter Einsatz des erfindungsgemäßen Katalysators.
Als Reaktoren werden im allgemeinen Rohrbündelreaktoren eingesetzt. Ein Rohrbündelreaktor besteht wiederum aus mindestens einem Reaktorrohr, welches zur Beheizung und/oder Kühlung von einem Wärmeträgermedium umgeben ist. Im allgemeinen enthalten die technisch eingesetzten Rohrbündelreaktoren wenige hundert bis mehrere zehntausend parallel-geschaltete Reaktorrohre.
Die Rohrbündelreaktoren können eine oder mehrere Vorheizzonen enthalten, welche das eintretende Gasgemisch aufheizen. Eine in einem Rohrbündelreaktor integrierte Vorheizzone kann beispielsweise durch mit Inertmaterial gefüllte Reaktorrohre, welche ebenfalls von Wärmeträgermedium umgeben sind, realisiert werden. Als Inertmaterial sind prinzipiell alle Formkörper geeignet, welche chemisch inert sind, d.h. keine heterogenkatalytische Reaktion induzieren oder katalysieren, und welche einen maximalen Druckverlust unterhalb des jeweiligen, maximal tolerierbaren, anlagenspezifischen Wert aufweisen. Geeignet sind beispielsweise oxidi- sehe Materialen, wie etwa A1203, SiC oder metallische Materialien, wie etwa Edelstahl. Als Formkorper seien beispielsweise Kugeln, Tabletten, Hohlzylinder, Ringe, Trilobes, Tristars, Wagenräder, Extrudate oder regellos gebrochene Formkörper genannt.
Als Kohlenwasserstoffe sind im erfindungsgemäßen Verfahren ali- phatische und aromatische, gesättigte und ungesättigte Kohlenwasserstoffe mit mindestens vier Kohlenstoffatomen, beispielsweise 1, 3-Butadien, 1-Buten, 2-cis-Buten, 2-trans-Buten, n-Butan, C4-Ge- misch, 1, 3-Pentadien, 1,4-Pentadien, 1-Penten, 2-cis-Penten, 2-trans-Penten, n-Pentan, Cyclopentadien, Dicyclopentadien, Cy- clopenten, Cyclopentan, Cs-Gemisch, Hexene, Hexane, Cyclohexan und Benzol. Bevorzugt eingesetzt werden 1-Buten, 2-cis-Buten, 2-trans-Buten, n-Butan, Benzol oder deren Mischungen geeignet. Besonders bevorzugt ist der Einsatz von n-Butan und n-Butan-hal- tigen Gasen und Flüssigkeiten. Das verwendete n-Butan kann beispielsweise aus dem Erdgas, aus Steamcrackern oder FCC-Crackern stammen.
Die Zugabe des Kohlenwasserstoffs erfolgt im allgemeinen mengen- geregelt, d.h. unter stetiger Vorgabe einer definierten Menge pro Zeiteinheit. Der Kohlenwasserstoff kann in flüssiger oder gasförmiger Form dosiert werden. Bevorzugt ist die Dosierung in flüssiger Form mit anschließender Verdampfung vor Eintritt in den Rohrbündelreaktor.
Als Oxidationsmittel werden Sauerstoff enthaltende Gase, wie beispielsweise Luft, synthetische Luft, ein mit Sauerstoff angereichertes Gas oder auch sogenannter "reiner", d.h. z.B. aus der Luftzerlegung stammender Sauerstoff eingesetzt. Auch das Sauer- stoff-enthaltende Gas wird mengengeregelt zugegeben. Das durch den Rohrbündelreaktor zu leitende Gas enthält im allgemeinen Inertgas. Üblicherweise beträgt der Inertgasanteil zu Beginn 50 bis 95 Vol.-%. Inertgase sind alle Gase, welche nicht direkt zu einer Bildung an Maleinsaureanhydrid beitragen, wie bei - spielsweise Stickstoff, Edelgase, Kohlenmonoxid, Kohlendioxid, Wasserdampf, oxygenierte und nicht-oxygenierte Kohlenwasserstoffe mit weniger als vier Kohlenstoffatomen (z.B. Methan, Ethan, Pro- pan, Methanol, Formaldehyd, Ameisensäure, Ethanol, Acetyaldehyd, Essigsäure, Propanol, Propionaldehyd, Propionsäure, Acrolein, Crotonaldehyd) und deren Mischungen. Im allgemeinen wird das Inertgas über das Sauerstoff-enthaltende Gas in das System eingebracht. Es ist aber auch möglich, weitere Inertgase separat zuzuführen. Eine Anreicherung mit weiteren Inertgasen, welche beispielsweise aus der Partialoxidation der Kohlenwasserstoffe stam- men können, ist über eine partielle Rückführung des gegebenenfalls aufbereiteten Reaktionsaustrags möglich.
Zur Gewährung einer langen Katalysatorstandzeit und weiteren Erhöhung von Umsatz, Selektivität, Ausbeute, Katalysator-Belastung und Raum/Zeit-Ausbeute wird dem Gas beim erfindungsgemäßen Verfahren bevorzugt eine flüchtige Phosphorverbindung zugeführt. Ihre Konzentration beträgt zu Beginn, d.h. am Reaktoreingang, mindestens 0,2 Volumen-ppm, d.h. 0,2-10~6 Volumenanteile der flüchtigen Phosphorverbindungen bezogen auf das Gesamtvolumen des Gases am Reaktoreingang. Bevorzugt ist ein Gehalt von 0,2 bis 20 Volumen-ppm, besonders bevorzugt von 0,5 bis 10 Volumen-ppm. Als flüchtige Phosphorverbindungen sind all jene Phosphor-enthal - tende Verbindungen zu verstehen, welche in der gewünschten Konzentration unter den Einsatzbedingungen gasförmig vorliegen. Bei- spielsweise seien die allgemeinen Formeln (I) und (II) genannt
Figure imgf000011_0001
wobei X1, X2 und X3 unabhängig voneinander Wasserstoff, Halogen, Ci- bis C6-Alkyl, C3-bis C6-Cycloalkyl, C6- bis C10-Aryl, Cι~ bis Cß-Alkoxy, C3-bis Cδ-Cycloalkoxy und C6- bis Cιo~Aroxy bedeuten. Bevorzugt sind Verbindungen der Formel (III)
0
R-O- -p- -OR,
I
OR2 (HD wobei R1, R2 und R3 unabhängig voneinander Wasserstoff, Cι~ bis Cδ-Alkyl, C3-bis C6-Cycloalkyl und Cς- bis Cio-Aryl bedeuten. Besonders bevorzugt sind die Verbindungen der Formel (III) , bei denen R1, R2 und R3 unabhängig voneinander Cι~ bis C4-Alkyl bedeu- ten, beispielsweise Methyl, Ethyl, Propyl, 1-Methylethyl , Butyl, 1-Methylpropyl , 2-Methylpropyl und 1, 1-Dimethylethyl. Ganz besonders bevorzugt sind Trimethylphosphat, Triethylphosphat und Tri- propylphosphat, insbesondere Triethylphosphat.
Das erfindungsgemäße Verfahren wird im allgemeinen bei einer Temperatur von 350 bis 480°C durchgeführt. Unter der genannten Temperatur wird die Temperatur der im Rorbündelreaktor befindlichen Katalysatorschüttung verstanden, welche bei Ausübung des Verfahrens in Abwesenheit einer chemischen Reaktion vorliegen würde. Ist diese Temperatur nicht an allen Stellen exakt gleich, so meint der Begriff den Zahlenmittelwert der Temperaturen längs der Reaktionszone. Insbesondere bedeutet dies, daß die wahre, am Katalysator vorliegende Temperatur aufgrund der Exothermie der Oxidationsreaktion auch außerhalb des genannten Bereichs liegen kann. Bevorzugt wird das erfindungsgemäße Verfahren bei einer Temperatur von 380 bis 460°C, besonders bevorzugt 380 bis 430°C durchgeführt .
Das erfindungsgemäße Verfahren kann bei einem Druck unterhalb von Normaldruck (z.B. bis 0,05 MPa abs) als auch oberhalb von Normaldruck (z.B. bis 10 MPa abs) ausgeübt werden. Darunter ist der in der Rohrbündelreaktor-Einheit vorliegende Druck zu verstehen. Bevorzugt ist ein Druck von 0,1 bis 1 MPa abs, besonders bevorzugt 0,1 bis 0,5 MPa abs.
Bezüglich des Einsatzes des erfindungsgemäßen Katalystors im erfindungsgemäßen Verfahren sind verschiedene Varianten möglich. Im einfachsten Fall wird der Rohrbündelreaktor mit der gleichen Katalysatorschüttung befüllt. Unter Katalysatorschüttung ist Kata- lysatormaterial zu verstehen, welches pro Volumeneinheit im Mittel die gleiche Zusammensetzung und die gleiche Aktivität besitzt. Eine Katalysatorschüttung kann sich zusammensetzen aus dem erfindungsgemäßen Katalysator, einer Mischung aus mindestens einem erfindungsgemäßen Katalysator und weiteren erfindungsgemäßen und/oder nicht-erfindungsgemäßen Katalysatoren, wobei die Katalysatorschüttung auch mit einem Inertmaterial durchmischt, d.h. "verdünnt" sein kann. In einer anderen Variante werden zwei oder mehr als zwei aufeinanderfolgende Katalysatorschüttungen im Rohr- bündelreaktor eingesetzt. Es ist somit beispielsweise möglich und gegebenenfalls vorteilhaft, in der Nähe des Reaktoreingangs eine weniger aktive Katalysatorschüttung einzusetzen und in Durchlei- tungsrichtung dahinter, eine aktivere Katalysatorschüttung zu verwenden.
Das erfindungsgemäßen Verfahren kann in zwei bevorzugten Verfah- rensvarianten, der Variante mit "geradem Durchgang" und der Variante mit "Rückführung" durchgeführt werden.
a) "gerader Durchgang"
Die VerfahrensVariante des "geraden Durchgangs" ist dadurch gekennzeichnet, daß der Umsatz an Kohlenwasserstoffen pro Reaktordurchgang 75 bis 95% beträgt und man aus dem Reaktoraus - trag Maleinsaureanhydrid und gegebenenfalls oxygenierte Kohlenwasserstoff-Nebenprodukte entfernt, wobei das durch den Reaktor geleitete Reaktionsgas, insbesondere die nicht-umge- setzten Kohlenwasserstoffe, keiner direkten Rückführung zugeführt wird/werden. Bevorzugt beträgt der Gesamtumsatz an Kohlenwasserstoffen pro Reaktordurchgang 80 bis 90%. Der verbleibende Reststrom, welcher Inertgase, nicht-umgesetzte Koh- lenwasserstoffe sowie gegebenenfalls weitere, nicht-abge- trennte Komponenten enthält, wird im allgemeinen aus der Anlage ausgeschleust.
Die Konzentration an Kohlenwasserstoffen beträgt zu Beginn, d.h. am Reaktoreingang, bevorzugt 1,0 bis 4,0 vol.-%, besonders bevorzugt 1,5 bis 3,0 vol.-%. Die Konzentration an Sauerstoff beträgt zu Beginn bevorzugt 5 bis 50 vol.-%, besonders bevorzugt 15 bis 30 vol.-%. Die Herkunft des eingesetzten Sauerstoffs ist für das erfindungsgemäße Verfahren prin- zipiell unbedeutend, sofern keine schädlichen Verunreinigungen zugegen sind. Aus einfachen technischen Erwägungen ist als Sauerstoffquelle Luft bevorzugt. Diese kann im einfachsten Fall direkt oder bevorzugt nach einer Partikelreinigung eingesetzt werden. Eine Anreicherung von Sauerstoff, bei- spielsweise durch Luftverflüssigung und anschließender Destillation oder Druckwechseladsorption, ist prinzipiell möglich.
Die Belastung des Katalysators mit Kohlenwasserstoffen be- trägt im allgemeinen mindstens 20 Nl/l-h, bevorzugt mindestens 30 Nl/l-h, besonders bevorzugt mindestens 35 Nl/l-h.
Die Abtrennung von Maleinsaureanhydrid kann beispielsweise durch Absorption in einem geeigneten Absorptionsmittel erfol- gen. Geeignete Absorptionsmittel sind beispielsweise Wasser oder organische Flüssigkeiten. Bei Absorption in Wasser wird Maleinsaureanhydrid zu Maleinsäure hydratisiert . Bevorzugt ist die Absorption in einem organischen Lösungsmittel. Geeignete organische Lösungsmittel sind beispielsweise die in WO 97/43242 genannten hochsiedenden Lösungsmittel, wie Tri- kresylphosphat, Dibutylmaleat, hochmolekulares Wachs, aroma- tische Kohlenwasserstoffe mit einem Siedepunkt über 140°C oder Di-C4-C8-alkylphthalate, wie etwa Dibutylphthalat. In den genannten Lösungsmitteln werden im allgemeinen auch oxygenierte Kohlenwasserstoff-Nebenprodukte absorbiert. Die Absorption kann beispielsweise bei einer Temperatur von 60 bis 160°C und einem Druck von 0,1 bis 0,5 MPa abs oder darüber durchgeführt werden. Geeignete Verfahrensweisen sind etwa die Durchleitung des gasförmigen, gegebenenfalls abgekühlten Re- aktoraustrags durch einen mit Absorptionsflüssigkeit gefüllten Behälter oder das Versprühen der Absorptionsflüssigkeit im Gasstrom. Entsprechende Methoden zum Auswaschen von Gas- strömen sind dem Fachmann bekannt.
"Rückführung"
Die Verfahrensvariante der "Rückführung" ist dadurch gekennzeichnet, daß der Umsatz an Kohlenwasserstoffen pro Reaktor- durchgang 30 bis 60% beträgt, man aus dem Reaktoraustrag Maleinsaureanhydrid und gegebenenfalls oxygenierte Kohlenwasserstoff-Nebenprodukte entfernt und mindestens einen Teil des verbleibenden Stromes oder wenigstens einen Teil der nicht- umgesetzten, gegebenenfalls abgetrennten Kohlenwasserstoffe in die Reaktionszone rückführt. Bevorzugt beträgt der Gesamtumsatz an Kohlenwasserstoffen pro Reaktordurchgang 40 bis 50%.
Die Konzentration an Kohlenwasserstoffen beträgt zu Beginn, d.h. am Reaktoreingang, bevorzugt mindestens 2,0 vol.-%, besonders bevorzugt mindestens 2,5 vol.-%. Die Konzentration an Sauerstoff beträgt zu Beginn bevorzugt 5 bis 60 vol.-%, be- sonders bevorzugt 15 bis 50 vol.-%. Die Herkunft des eingesetzten Sauerstoffs ist für das erfindungsgemäße Verfahren prinzipiell unbedeutend, sofern keine schädlichen Verunreinigungen zugegen sind. Aus einfachen technischen Erwägungen stammt der eingesetzte Sauerstoff im allgemeinen aus der Luft, wobei üblicherweise eine Anreicherung des Sauerstoffs erfolgt. Sie kann beispielsweise durch Luftverflüssigung und anschließender Destillation oder einer Druckwechseladsorption erfolgen. Bevorzugt wird ein Sauerstoff-enthaltendes Gas mit einer Konzentration an Sauerstoff von 20 bis 100 vol.-% ver- wendet . Die Belastung des Katalysators mit Kohlenwasserstoffen beträgt im allgemeinen mindstens 20 Nl/l-h, bevorzugt mindestens 30 Nl/l-h, besonders bevorzugt mindestens 35 Nl/l-h.
Der integrale Gesamtumsatz an Kohlenwasserstoffen, d.h. der auf die gesamte Anlage bezogene Umsatz, beträgt beim erfindungsgemäßen Verfahren bei der Variante mit "Rückführung" 80 bis 100%, bevorzugt 90 bis 100%.
Die Abtrennung von Maleinsaureanhydrid kann beispielsweise wie unter (a) beschrieben erfolgen.
Der nach Abtrennung von Maleinsaureanhydrid verbleibende Gasstrom oder wenigstens die darin enthaltenen, nicht-umgesetzten Kohlen- Wasserstoffe werden bei der Verfahrenvariante mit "Rückführung" mindestens zum Teil zu den Reaktionszonen rückgeführt.
(i) Bei einer Rückführung des Gasstroms ohne Anreicherung der Kohlenwasserstoffe ist es vorteilhaft, einen Teil des Gasstroms aus der Anlage auszuschleusen (sogenannter Purge-Strom) , um einer Anreicherung von Verunreinigungen entgegenzusteuern. Der verbleibende Gasstrom kann im allgemeinen zu den Reaktionszonen rückgeführt werden. Die entsprechende Menge an verbrauchtem Kohlenwasserstoff und Sauerstoff wird wie üblich zugefügt.
(ii) Um beispielsweise die Menge an rückzuführendem Inertgas zu verringern ist es gegebenenfalls von Vorteil, die enthaltenen Kohlenwasserstoffe anzureichern. Je nach Art der eingesetzten Kohlenwasserstoffe können verschiedene Methoden in Betracht gezo- gen werden. Beispielsweise seien genannt das Auskondensieren oder die Adsorption an geeigneten Adsobentien (z.B. auch in Form einer Druckwechsel- oder Temperaturwechseladsorption) . So ist etwa zur Anreicherung von n-Butan eine Adsorption an Aktivkohle oder Zeo- lithe mit anschließender Desorption bei erniedrigtem Druck und/ oder erhöhter Temperatur möglich.
Die beiden beschreibenen Verfahrensvarianten "gerader Durchgang" und "Rückführung" stellen zwei bevorzugte Spezialfälle des erfindungsgemäßen Verfahrens dar. Sie wirken keinesfalls limitierend auf andere mögliche Varianten oder auf die als bevorzugt genannten Verfahrensparameter.
Das gewonnene Maleinsaureanhydrid kann weiterverarbeitet werden zu γ-Butyrolacton, Tetrahydrofuran, 1, 4-Butandiol oder Gemischen davon, zum Beispiel durch direkte Hydrierung von Maleinsaureanhydrid in der Gasphase, wie in WO 97/43234 beschrieben oder durch Hydrierung eines Maleinsäurediesters in der Gasphase, wie in WO 97/43242 beschrieben.
In einer besonders bevorzugten Ausführungsform zur Herstellung von Maleinsaureanhydrid setzt man n-Butan als Ausgangs-Kohlenwasserstoff ein und führt die heterogenkatalytische Gasphasenoxidation "geraden Durchgang" an dem erfindungsgemäßen Katalysator durch.
Luft als Sauerstoff- und Inertgas-enthaltendes Gas wird mengengeregelt in die Zufuhr-Einheit gegeben. n-Butan wird ebenfalls mengengeregelt, jedoch in bevorzugt flüssiger Form über eine Pumpe zugeführt und im Gasstrom verdampft. Das Verhältnis zwischen den zugeführten Mengen an n-Butan und Sauerstoff wird im allgemeinen entsprechend der Exothermie der Reaktion und der gewünschten Raum/Zeit-Ausbeute eingestellt und ist daher beispielsweise von der Art und Menge des Katalysators abhängig. Als weitere Komponente wird dem Gasstrom als flüchtige Phosphorverbindung bevorzugt Trialkylphosphat mengengeregelt zugegeben. Die flüchtige Phosphorverbindung kann beispielsweise unverdünnt oder verdünnt in einem geeigneten Lösungsmittel, beispielsweise Wasser, zugegeben werden. Die erforderliche Menge der Phosphor-Verbindung ist von verschiedenen Parametern, beispielsweise der Art und Menge des Katalysators oder den Temperaturen und Drücken in der Anlage, abhängig und für jedes System zu adaptieren.
Der Gasstrom wird zur innigen Durchmischung durch einen statischen Mischer und zur Aufheizung durch einen Wärmetauscher geleitet. Der durchmischte und vorgeheizte Gasstrom wird nun zum Rohr- bündelreaktor geleitet, in dem sich der erfindungsgemäße Katalysator befindet. Der Rohrbündelreaktor wird durch einen Salz- schmelzen-Kreislauf temperiert. Die Temperatur wird derart eingestellt, daß bevorzugt ein Umsatz pro Reaktordurchgang von 75 bis 90% erreicht wird.
Der aus dem Rohrbündelreaktor stammende Produktgasström wird in einem Wärmetauscher heruntergekühlt und der Einheit zur Abtrennung des Maleinsäureanhydrids zugeführt. Die Einheit enthält in der bevorzugten Ausführungsform mindestens einen Apparat zur ab- sorptiven Entfernung des Maleinsäureanhydrids und gegebenenfalls der oxygenierten Kohlenwasserstoff-Nebenprodukte. Geeignete Apparate sind beispielsweise mit einer Absorptionsflüssigkeit gefüllte Behälter, durch die das heruntergekühlte Austragsgas geleitet wird oder Apparate, in denen die Absorptionsflüssigkeit in den Gasstrom eingesprüht wird. Die Maleinsäureanhydrid-haltige Lösung wird zur weiteren Verarbeitung oder zur Isolierung des Wertprodukts aus der Anlage ausgeschleust. Der verbleibende Gas- Strom wird ebenfalls aus der Anlage ausgeschleust und gegebenenfalls einer Einheit zur Rückgewinnung des nicht-umgesetzten n-Bu- tans zugeführt.
Das erfindungsgemäße Verfahren unter Verwendung der erfindungsgemäßen Katalysatoren ermöglicht eine hohe Kohlenwasserstoff-Belastung des Katalysators bei einem hohen Umsatz, einer hohen Selektivität, einer hohen Ausbeute und daher auch einer hohen Raum/ Zeit-Ausbeute an Maleinsaureanhydrid.
Definitionen
Die in dieser S chrift verwendeten Größen sind, falls nicht anders erwähnt, wie folgt definiert:
Figure imgf000017_0001
geometrische Oberfläche Ageo — π + ( (ddιi ++ d2)πh
2
geometrisches Volumen Vgeo
Figure imgf000017_0002
A 2 theoretisches Volumen dl πh Vollzylinder Voveran
_ m Maleinsaureanhydrid
Raum/ Zeit -Ausbeute vKatalysator "
v Kohlenwasserstoff
Belastung
V Katalysator 't
Umsatz U = n KW, Reaktor, ein - nKW, Reaktor, aus n KW, Reaktor, ein
n MSA, Reaktor, aus
Selektivität n KW, Reaktor, ein - nκw, Reaktor, aus
Ausbeute A = U
dx äußerer Durchmesser des Hohlzylinders bzw. Vollzylinders [mm] h Höhe des Hohlzylinders bzw. Vollzylinders [mm]
d2 Durchmesser der hindurchgehenden Öffnung [mm]
Aeo geometrische Oberfläche der Formkörper unter Zugrundelegung der geometrischen Größen di, h und d2 [mm2]
V,geo geometrisches Volumen der Formkorper unter Zugrundelegung der geometrischen Größen di, h und d [mm3]
NDverall theoretisches Volumen eines entsprechenden Vollzylinders mit Höhe h und äußerem Durchmesser di [mm3]
^Maleinsaureanhydrid Masse an produziertem Maleinsaureanhydrid [g]
^Katalysator Schüttvolumen Katalysator, summiert über alle Reaktionszonen [1]
Zeiteinheit [h]
"Kohlenwassersto f auf 0°C und 0,1013 MPa normiertes Volumen des Kohlenwasserstoffs in der Gasphase [Nl] (Rechnerische Größe. Liegt ein Kohlenwasserstoff unter diesen Bedingungen in der Flüssigphase vor, so wird über das ideale Gasgesetz das hypothetische Gasvolumen berechnet.)
U Umsatz an Kohlenwasserstoffen pro Reaktordurchgang
Selektivität bzgl. Maleinsaureanhydrid pro Reaktordurchgang
Ausbeute an Maleinsaureanhydrid pro Reaktor- durchgang
n ( Reaktor, ein Stoffmengenstrom an Kohlenwasserstoffen am Reaktoreingang [mol/h]
nKW, Reaktor, aus Stoffmengenstrom an Kohlenwasserstoffen am Reaktorausgang [mol/h] nκw, Anlage, ein Stoffmengenstrom an Kohlenwasserstoffen am Eingang der Anlage [mol/h]
^KW, Anlage, aus Stoffmengenstrom an Kohlenwasserstoffen am Aus- gang der Anlage [mol/h]
UMSA, Reaktor, aus Stoffmengenstrom an Maleinsaureanhydrid am Reak¬ torausgang [mol/h]
nMSA, Anlage, aus Stoffmengenstrom an Maleinsaureanhydrid am Aus¬ gang der Anlage [mol/h]
Beispiele
Katalysatoren A bis F
In einem 240 1 Kessel wurden unter Rühren 11,8 kg 100%ige Ortho- phosphorsäure in 150 1 Isobutanol gelöst und anschließend 9,09 kg Vanadiumpentoxid zugegeben. Diese Suspension wurde 16 Stunden un- ter Rückfluß erhitzt und dann auf Raumtemperatur abgekühlt. Der entstandenen Niederschlag wurde abfiltriert, mit Isobutanol gewaschen und bei 150°C im Vakuum bei 8 kPa (80 mbar) getrocknet. Anschließend wurde das getrocknete Pulver 2 Stunden bei 250 bis 300°C in einem Drehrohr behandelt. Nach dem Abkühlen auf Raumtem- peratur wurden 3 Gew.-% Graphit zugegeben und innig vermischt.
Das Pulver wurde anschließend zu Hohlzylindern mit unterschiedlicher Geometrie tablettiert.
Die Hohlzylinder der verschiedenen Geometrien wurden nach der
Formgebung in einem Muffelofen zunächst unter Luft mit 7°C/min auf 250°C und anschließend mit 2°C/min auf 350°C erhitzt. Bei dieser Temperatur wurde der Katalysator für 10 Minuten belassen, bevor die Atmosphäre von Luft auf N/H20 (1:1) umgestellt wurde. Unter der N/H0-Atmosphäre (1:1) wurde auf 425°C erhitzt und das System für 3 Stunden bei dieser Temperatur belassen. Zum Schluß wurde unter Stickstoff auf Raumtemperatur abgekühlt.
Tabelle 1 zeigt eine Übersicht der geometrischen und physika- lisch-chemischen Eigenschaften der hergestellten Katalysatoren.
Anlage
Die Versuchsanlage war ausgestattet mit einer Zufuhr-Einheit und einem Reaktorrohr. Der Ersatz eines Rohrbündelreaktors durch ein Reaktorrohr ist im Labor- oder Technikumsmaßstab sehr gut möglich, sofern die Abmessungen des Reaktorrohres im Bereich eines technischen Reaktorrohres liegen. Die Anlage wurde im "geraden
Durchgang" betrieben.
Der Kohlenwasserstoff wurde mengengeregelt in flüssiger Form über eine Pumpe zugegeben. Als Sauerstoff-haltiges Gas wurde Luft mengengeregelt zugegeben. Triethylphosphat (TEP) wurde ebenfalls mengengeregelt, gelöst in Wasser, in flüssiger Form zugegeben.
Die Rohrbündelreaktor-Einheit bestand aus einem Rohrbündelreaktor mit einem Reaktorrohr. Die Länge des Reaktorrohrs betrug 6,5 m, der Innendurchmesser 22,3 mm. Innerhalb des Reaktorrohres befand sich in einem Schutzrohr ein Multi-Thermoelement mit 20 Temperaturmeßstellen. Das Reaktorrohr war von einem temperierbaren Wärmeträger-Kreislauf umgeben und wurde von dem Reaktionsgasgemisch von oben nach unten durchströmt. Die oberen 0,3 m des Reaktorrohres waren mit Inertmaterial gefüllt und bildeten die Vorheizzone. Die Reaktionszone enthielt 2,2 1 Katalysator. Als Wärmeträgermedium wurde eine Salzschmelze eingesetzt.
Direkt nach der Rohrbündelreaktor-Einheit wurde gasförmiges Produkt entnommen und der gaschromatographischen on-line Analytik zugeführt. Der Hauptstrom des gasförmigen Reaktoraustrags wurde aus der Anlage ausgeschleust.
Beispiele 1 bis 6
Alle Beispiele wurden mit n-Butan als Kohlenwasserstoff durchgeführt. Die erhaltenen Ergebnisse sind in Tabelle 2 zusammengefaßt.
Zur Vergleichbarkeit der Versuche wurde über die Salzbadtemperatur TSB ein Umsatz von etwa 85% eingestellt. Die Versuche zeigen, daß die Vergleichskatalysatoren E* und F* , welche durch ein Ageo/Vgeo-Verhältnis von kleiner 2 mm-1 (Vergleichskatalysator E*) beziehungsweise ein h/d-Verhältnis von größer 1,5 (Vergleichskatalysator F*) charakterisiert sind, zu einer deutlich niedrigeren Selektivität, Ausbeute und Raum/Zeit-Ausbeute führen als die erfindungsgemäßen Katalysatoren A bis D.
Figure imgf000021_0001
Tabelle 1: Übersicht der geometrischen und physikalisch-chemischen Eigenschaf en der hergestellten Katalysatoren
Figure imgf000021_0004
* Vergleichsbeispiel / Vergleichskatalysator n.b. : nicht bestimmt.
Es wurden folgende Abkürzungen verwendet: V,oχ. mittlere Oxidationsstufe des Vanadiums BET BET-Oberfläche Dichte Schüttdichte
Figure imgf000021_0002
Figure imgf000021_0003
Tabelle 2: Übersicht der geometrischen und katalytischen Eigenschaften der getesteten Katalysatoren
Figure imgf000022_0002
* Vergleichsbeispiel / Vergleichskatalysator n.b.: nicht bestimmt,
s wurden folgende Abkürzungen verwendet: TSB Temperatur des Salzbades
THP Temperatur des Heißpunktes (Hotspot)
Δp Druckverlust im Reaktor
ie Versuche wurden unter folgenden Bedingungen durchgeführt: Konzentration an n-Butan = 2,0 Vol.-?
GHSV = 2000 NL/lKatalygator • h Druck = 0,2 MPa abs Konzentration an Triethylphosphat (TEP) = 2 Volumen-ppm
Figure imgf000022_0001

Claims

Patentansprüche
1. Katalysator für die Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen, der eine kata- lytisch aktive Masse enthaltend Vanadium, Phosphor und Sauerstoff umfasst und eine im wesentlichen hohlzylinderförmige Struktur aufweist, dadurch gekennzeichnet, daß die hohlzylin- derförmige Struktur (a) ein Verhältnis der Höhe h zum Durchmesser der hindurchgehenden Öffnung d von höchstens 1,5 und (b) ein Verhältnis der geometrischen Oberfläche Ageo zum geometrischen Volumen Vgeo von mindestens 2 mm-1 aufweist.
2. Katalysator nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis des geometrischen Volumens Vgeo der hohlzylinder- förmigen Struktur zum theoretischen Volumen Voveran eines entsprechenden Vollzylinders mit gleicher Höhe h und gleichem äußeren Durchmesser di höchstens 0,85 beträgt.
3. Katalysator nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß der äußere Durchmesser di 3 bis 10 mm, die Höhe h 1 bis 10 mm und der Durchmesser der inneren Öffnung d 1 bis
8 mm beträgt.
4. Katalysator nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Phosphor/Vanadium-Atomverhältnis 0,9 bis 1,5, die mittlere Oxidationsstufe des Vanadiums +3,9 bis +4,4, die BET-Oberflache 10 bis 50 m2/g, das Porenvolumen 0,1 bis 0,5 ml/g und die Schüttdichte 0,5 bis 1,5 kg/1 beträgt.
5. Verfahren zur Herstellung von Maleinsaureanhydrid durch heterogenkatalytische Gasphasenoxidation eines Kohlenwasserstoffs mit mindestens vier Kohlenstoffatomen mit Sauerstoff enthal- tenden Gasen, dadurch gekennzeichnet, daß man einen Katalysator gemäß den Ansprüchen 1 bis 4 einsetzt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die heterogenkatalytische Gasphasenoxidation in einem Rohr- bündelreaktor bei einer Temperatur von 350 bis 480°C und einem Druck von 0,1 bis 1,0 MPa abs durchführt.
7. Verfahren nach den Ansprüchen 5 bis 6, dadurch gekennzeichnet, daß man als Kohlenwasserstoff n-Butan einsetzt. Verfahren nach den Ansprüchen 5 bis 7, dadurch gekennzeichnet, daß man die heterogenkatalytische Gasphasenoxidation in Gegenwart einer flüchtigen Phosphorverbindung durchführt.
PCT/EP2001/002492 2000-03-10 2001-03-06 Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid WO2001068245A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20010923638 EP1261424B1 (de) 2000-03-10 2001-03-06 Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid
AT01923638T ATE268641T1 (de) 2000-03-10 2001-03-06 Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid
DE50102534T DE50102534D1 (de) 2000-03-10 2001-03-06 Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid
US10/220,703 US6812351B2 (en) 2000-03-10 2001-03-06 Hollow cylindrical catalyst and a method for producing a maleic acid anhydride
AU2001250362A AU2001250362A1 (en) 2000-03-10 2001-03-06 Hollow cylindrical catalyst and a method for producing a maleic acid anhydride
JP2001566795A JP4681197B2 (ja) 2000-03-10 2001-03-06 中空円筒状触媒および無水マレインの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10011307A DE10011307A1 (de) 2000-03-10 2000-03-10 Katalysator und Verfahren zur Herstellung von Maleinsäureanhydrid
DE10011307.9 2000-03-10

Publications (1)

Publication Number Publication Date
WO2001068245A1 true WO2001068245A1 (de) 2001-09-20

Family

ID=7633989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002492 WO2001068245A1 (de) 2000-03-10 2001-03-06 Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid

Country Status (10)

Country Link
US (1) US6812351B2 (de)
EP (1) EP1261424B1 (de)
JP (1) JP4681197B2 (de)
KR (1) KR100684237B1 (de)
CN (1) CN1147358C (de)
AT (1) ATE268641T1 (de)
AU (1) AU2001250362A1 (de)
DE (2) DE10011307A1 (de)
MY (1) MY124824A (de)
WO (1) WO2001068245A1 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078059A1 (de) * 2002-03-15 2003-09-25 Basf Aktiengesellschaft Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
WO2003078057A1 (de) * 2002-03-15 2003-09-25 Basf Aktiengesellschaft Katalysator und verfahren zur herstellung von maleinsäureanhydrid
US7345167B2 (en) 2003-07-28 2008-03-18 Basf Aktiengesellschaft Method for the production of maleic anhydride
DE102007025869A1 (de) 2007-06-01 2008-07-03 Basf Se Verfahren der Wiederbeschickung der Reaktionsrohre eines Rohrbündelreaktors mit einem neuen Katalysatorfestbett
DE102007004961A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
DE102007017080A1 (de) 2007-04-10 2008-10-16 Basf Se Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
DE102008040093A1 (de) 2008-07-02 2008-12-18 Basf Se Verfahren zur Herstellung eines ringähnlichen oxidischen Formkörpers
DE102008040094A1 (de) 2008-07-02 2009-01-29 Basf Se Verfahren zur Herstellung eines oxidischen geometrischen Formkörpers
DE102008054586A1 (de) 2008-12-12 2010-06-17 Basf Se Verfahren zur kontinuierlichen Herstellung von geometrischen Katalysatorformkörpern K
WO2010072723A2 (de) 2008-12-22 2010-07-01 Basf Se Katalysator und verfahren zur herstellung von maleinsäureanhydrid
WO2010072721A2 (de) 2008-12-22 2010-07-01 Basf Se Katalysatorformkörper und verfahren zur herstellung von maleinsäureanhydrid
WO2011023646A1 (de) 2009-08-26 2011-03-03 Basf Se Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
DE102010040921A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Methanol und Essigsäure
WO2012035019A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrysläure aus ethanol und formaldehyd
US8546295B2 (en) 2007-01-19 2013-10-01 Basf Aktiengesellschaft Process for preparing shaped catalyst bodies whose active composition is a multielement oxide
DE102012012510A1 (de) 2012-06-22 2013-12-24 Clariant International Ag Graphithaltiger Katalysatorformkörper
WO2014184099A1 (de) 2013-05-14 2014-11-20 Basf Se Verfahren zur herstellung von acrylsäure mit hoher raum-zeit-ausbeute
WO2014197309A1 (en) 2013-06-05 2014-12-11 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
WO2014209633A2 (en) 2013-06-27 2014-12-31 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
DE102022004204A1 (de) 2022-11-12 2024-05-23 Hans-Jürgen Eberle Vefahren zur Herstellung von Maleinsäureanhydrid

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988337B2 (ja) * 1999-10-01 2007-10-10 株式会社日立製作所 燐・バナジン酸塩蛍光体およびそれを用いた表示装置並びに発光装置
US20070098784A1 (en) 2001-09-28 2007-05-03 Nutraceutix, Inc. Delivery system for biological component
JP2007022922A (ja) * 2005-07-12 2007-02-01 Tonen Chem Corp カルボニル化合物の製造法
DE102005035978A1 (de) * 2005-07-28 2007-02-01 Basf Ag Katalysator und Verfahren zur Herstellung von Maleinsäureanhydrid
US8481451B2 (en) * 2009-06-08 2013-07-09 Lg Chem, Ltd. Catalyst for hydrocarbon steam cracking, method of preparing the same and method of preparing olefin by using the same
KR101072177B1 (ko) * 2009-06-08 2011-10-10 주식회사 엘지화학 탄화수소 수증기 열분해용 촉매, 그의 제조방법 및 이를 이용한 올레핀의 제조방법
DE102010052126A1 (de) 2010-11-22 2012-05-24 Süd-Chemie AG Katalysatorformkörper für durchströmte Festbettreaktoren
JP5957005B2 (ja) 2010-12-29 2016-07-27 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド マルチローブ多孔質セラミック体およびその製造方法
US9573119B2 (en) 2011-09-16 2017-02-21 Eastman Chemical Company Process for preparing V—Ti—P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8883672B2 (en) 2011-09-16 2014-11-11 Eastman Chemical Company Process for preparing modified V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8765629B2 (en) 2011-09-16 2014-07-01 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8993801B2 (en) 2011-09-16 2015-03-31 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8785344B2 (en) 2012-02-20 2014-07-22 Basf Se Gas phase oxidation catalyst with low charge transport activation energy
EP2781262B1 (de) 2013-03-22 2020-05-27 Clariant International Ltd Entfernbare Schutzbeschichtung für die Aufnahme eines staubfreien Katalysators
US11547989B2 (en) 2018-02-12 2023-01-10 Huntsman Petrochemical Llc Cored round trilobe shaped catalyst for producing maleic anhydride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283307A (en) * 1980-06-02 1981-08-11 Denka Chemical Corporation Catalyst structure for the partial oxidation of n-butane to produce maleic anhydride
US4795818A (en) * 1984-09-04 1989-01-03 Scientific Design Company, Inc. Optimizing the yield of maleic anhydride catalyst
US5168090A (en) * 1990-10-04 1992-12-01 Monsanto Company Shaped oxidation catalyst structures for the production of maleic anhydride

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1177272B (it) 1984-11-20 1987-08-26 Alusuisse Italia Spa Catalizzatore per reazioni di ossidazione e procedimento per la sua produzione
US5095125A (en) 1989-01-17 1992-03-10 Amoco Corporation Maleic anhydride production
US4933312A (en) 1989-01-17 1990-06-12 Amoco Corporation Maleic anhydride catalysts and process for their manufacture
US5158923A (en) 1990-05-21 1992-10-27 Scientific Design Company, Inc. Phosphorous/vanadium oxidation catalyst
KR930702069A (ko) * 1990-10-04 1993-09-08 제임스 클리프튼 보울딩 말레산 무수물 제조를 위한 특수한 형상으로 된 산화촉매 구조물
US5137860A (en) 1991-06-27 1992-08-11 Monsanto Company Process for the transformation of vanadium/phosphorus mixed oxide catalyst precursors into active catalysts for the production of maleic anhydride
SK1994A3 (en) 1991-07-08 1994-09-07 Monsanto Co High productivity process for production of maleic anhydride
US5275996A (en) 1992-05-22 1994-01-04 Monsanto Company Phosphorous/vanadium oxide catalyst and process of preparation thereof
US5296436A (en) 1993-01-08 1994-03-22 Scientific Design Company, Inc. Phosphorous/vanadium oxidation catalyst
US5543532A (en) 1994-03-31 1996-08-06 E. I. Du Pont De Nemours And Company Catalyst and method for vapor phase oxidation of alkane hydrocarbons
US5641722A (en) 1994-09-15 1997-06-24 Huntsman Petrochemical Corporation High performance VPO catalyst and process of preparation thereof
US5945368A (en) 1995-10-02 1999-08-31 Huntsman Petrochemical Corporation Molybdenum-modified vanadium-phosphorus oxide catalysts for the production of maleic anhydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283307A (en) * 1980-06-02 1981-08-11 Denka Chemical Corporation Catalyst structure for the partial oxidation of n-butane to produce maleic anhydride
US4795818A (en) * 1984-09-04 1989-01-03 Scientific Design Company, Inc. Optimizing the yield of maleic anhydride catalyst
US5168090A (en) * 1990-10-04 1992-12-01 Monsanto Company Shaped oxidation catalyst structures for the production of maleic anhydride

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078057A1 (de) * 2002-03-15 2003-09-25 Basf Aktiengesellschaft Katalysator und verfahren zur herstellung von maleinsäureanhydrid
WO2003078059A1 (de) * 2002-03-15 2003-09-25 Basf Aktiengesellschaft Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
US7345167B2 (en) 2003-07-28 2008-03-18 Basf Aktiengesellschaft Method for the production of maleic anhydride
US8546295B2 (en) 2007-01-19 2013-10-01 Basf Aktiengesellschaft Process for preparing shaped catalyst bodies whose active composition is a multielement oxide
KR101392580B1 (ko) 2007-01-19 2014-05-21 바스프 에스이 그의 활성 덩어리가 다원소 산화물인 촉매 성형체의 제조 방법
DE102007004961A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
DE102007017080A1 (de) 2007-04-10 2008-10-16 Basf Se Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres
DE102007025869A1 (de) 2007-06-01 2008-07-03 Basf Se Verfahren der Wiederbeschickung der Reaktionsrohre eines Rohrbündelreaktors mit einem neuen Katalysatorfestbett
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
DE102008040094A1 (de) 2008-07-02 2009-01-29 Basf Se Verfahren zur Herstellung eines oxidischen geometrischen Formkörpers
DE102008040093A1 (de) 2008-07-02 2008-12-18 Basf Se Verfahren zur Herstellung eines ringähnlichen oxidischen Formkörpers
US8546293B2 (en) 2008-12-12 2013-10-01 Basf Se Process for continuously producing geometric shaped catalyst bodies K
DE102008054586A1 (de) 2008-12-12 2010-06-17 Basf Se Verfahren zur kontinuierlichen Herstellung von geometrischen Katalysatorformkörpern K
US8298980B2 (en) 2008-12-12 2012-10-30 Basf Se Process for continuously producing geometric shaped catalyst bodies K
WO2010072721A2 (de) 2008-12-22 2010-07-01 Basf Se Katalysatorformkörper und verfahren zur herstellung von maleinsäureanhydrid
WO2010072721A3 (de) * 2008-12-22 2010-10-28 Basf Se Katalysatorformkörper und verfahren zur herstellung von maleinsäureanhydrid
US9138729B2 (en) 2008-12-22 2015-09-22 Basf Se Catalyst and method for producing maleic anhydride
WO2010072723A2 (de) 2008-12-22 2010-07-01 Basf Se Katalysator und verfahren zur herstellung von maleinsäureanhydrid
WO2011023646A1 (de) 2009-08-26 2011-03-03 Basf Se Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
WO2012035019A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrysläure aus ethanol und formaldehyd
DE102010040921A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Methanol und Essigsäure
DE102010040923A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Ethanol und Formaldehyd
WO2012034929A2 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrylsäure aus methanol und essigsäure
US8877966B2 (en) 2010-09-16 2014-11-04 Basf Se Process for preparing acrylic acid from methanol and acetic acid
US8507721B2 (en) 2010-09-16 2013-08-13 Basf Se Process for preparing acrylic acid from ethanol and formaldehyde
DE102012012510A1 (de) 2012-06-22 2013-12-24 Clariant International Ag Graphithaltiger Katalysatorformkörper
WO2013189948A2 (de) 2012-06-22 2013-12-27 Clariant International Ag Graphithaltiger katalysatorformkörper
DE102012012510B4 (de) 2012-06-22 2018-12-06 Clariant International Ltd. Graphithaltiger Katalysatorformkörper, dessen Herstellverfahren sowie Verwendung
WO2014184099A1 (de) 2013-05-14 2014-11-20 Basf Se Verfahren zur herstellung von acrylsäure mit hoher raum-zeit-ausbeute
DE102013008207A1 (de) 2013-05-14 2014-11-20 Basf Se Verfahren zur Herstellung von Acrylsäure mit hoher Raum-Zeit-Ausbeute
WO2014197309A1 (en) 2013-06-05 2014-12-11 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
WO2014209633A2 (en) 2013-06-27 2014-12-31 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
DE102022004204A1 (de) 2022-11-12 2024-05-23 Hans-Jürgen Eberle Vefahren zur Herstellung von Maleinsäureanhydrid

Also Published As

Publication number Publication date
KR20020080478A (ko) 2002-10-23
DE50102534D1 (de) 2004-07-15
DE10011307A1 (de) 2001-09-13
CN1416367A (zh) 2003-05-07
CN1147358C (zh) 2004-04-28
AU2001250362A1 (en) 2001-09-24
ATE268641T1 (de) 2004-06-15
JP2003526507A (ja) 2003-09-09
MY124824A (en) 2006-07-31
US6812351B2 (en) 2004-11-02
EP1261424B1 (de) 2004-06-09
JP4681197B2 (ja) 2011-05-11
KR100684237B1 (ko) 2007-02-20
US20030114688A1 (en) 2003-06-19
EP1261424A1 (de) 2002-12-04

Similar Documents

Publication Publication Date Title
EP1261424B1 (de) Hohlzylinderförmiger katalysator und verfahren zur herstellung von maleinsäureanhydrid
EP2379222B1 (de) Katalysator und verfahren zur herstellung von maleinsäureanhydrid
DE10211446A1 (de) Verfahren zur Herstellung eines Vanadium, Phosphor und Sauerstoff enthaltenden Katalysators
EP2379223A2 (de) Katalysatorformkörper und verfahren zur herstellung von maleinsäureanhydrid
WO2011023646A1 (de) Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
DE102014004786B4 (de) Alkalimetall-modifizierter Vanadium-Phosphor-Oxid (VPO)-Katalysator
WO2001068626A1 (de) Verfahren zur herstellung von maleinsäureanhydrid
EP2997004A1 (de) Verfahren zur herstellung von acrylsäure mit hoher raum-zeit-ausbeute
WO2006005504A1 (de) Verfahren zur herstellung von 1,6-hexandiol in einer reinheit von über 99,5%
EP2997005A1 (de) Verfahren zur herstellung von vinylidencarbonsäure(ester)n durch umsetzung von formaldehyd mit alkylcarbonsäure(estern)n
EP0182078A2 (de) Katalysator für Oxidationsreaktionen und Verfahren zu dessen Herstellung
DE10211449A1 (de) Katalysator-Precursor für die Herstellung von Maleinsäureanhydrid und Verfahren zu dessen Herstellung
EP1337332A1 (de) Katalysator und verfahren zur herstellung von maleinsäureanhydrid
EP1812366A1 (de) Verfahren zur hydrierung von ketonen
WO2003078057A1 (de) Katalysator und verfahren zur herstellung von maleinsäureanhydrid
EP1658258B1 (de) Verfahren zur herstellung von maleins ureanhydrid
EP1529039B1 (de) Verfahren zur herstellung von maleinsaeureanhydrid
WO2012013563A1 (de) Dmapn mit niedrigem dgn-gehalt und ein verfahren zur herstellung von dmapa aus dmapn mit niedrigem dgn-gehalt
EP1318136B1 (de) Verfahren zur Herstellung von gesättigten Carbonsäuren mit ein bis vier C-Atomen durch Gasphasenoxidation von 2-butanon
WO2002022257A1 (de) Katalysator-precursor für die herstellung von maleinsäureanhydrid
DE102019127790A1 (de) Neues Katalysatorsystem für die Herstellung von Maleinsäureanhydrid durch katalytische Oxidation von n-Butan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001923638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220703

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027011781

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 566795

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018063845

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027011781

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001923638

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001923638

Country of ref document: EP