WO2001058804A2 - Composant micromecanique et procede de production correspondant - Google Patents

Composant micromecanique et procede de production correspondant Download PDF

Info

Publication number
WO2001058804A2
WO2001058804A2 PCT/DE2000/004554 DE0004554W WO0158804A2 WO 2001058804 A2 WO2001058804 A2 WO 2001058804A2 DE 0004554 W DE0004554 W DE 0004554W WO 0158804 A2 WO0158804 A2 WO 0158804A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cover layer
upper cover
micromechanical component
lower cover
Prior art date
Application number
PCT/DE2000/004554
Other languages
German (de)
English (en)
Other versions
WO2001058804A3 (fr
Inventor
Frank Fischer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2001058804A2 publication Critical patent/WO2001058804A2/fr
Publication of WO2001058804A3 publication Critical patent/WO2001058804A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0077Other packages not provided for in groups B81B7/0035 - B81B7/0074
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid

Definitions

  • the present invention relates to a micromechanical component with a subsrate, a functional area provided on the substrate and a cap-shaped cover for covering the functional area, and a corresponding manufacturing method, as known from DE 195 37 814 AI.
  • the present invention and the problem on which it is based will relate to a micro-mechanical component that can be produced in the technology of silicon surface micromechanics, e.g. an acceleration sensor explained.
  • micromechanical component according to the invention with the features of claim 1 or the production method according to Claim 8 provides an at least two-layer structure with which micromechanical sensors or functon structures can be hermetically sealed. A defined gas and / or pressure connection can be guaranteed.
  • the core of the invention is therefore a human structure that is deposited by means of micromechanical sensors or functional structures and protects them from environmental influences.
  • the sensor cap is not, as usual, structured separately by etching processes and connected to the sensor wafer or functon wafer using a seal glass soldering process, but the cap is directly attached to the sensor. sorfer is produced in such a way that a multi-layer scaffold is built up over the, for example, movable functional structures, the multi-layer scaffold being hermetically sealed by at least one sealing layer after a sacrificial layer etching.
  • the multi-layer cap framework can be created using simple semiconductor processes. There is no need for PbO-containing seal glass, which causes massive corrosion on Al-Bond pads under the influence of moisture.
  • a first sealing layer is arranged over the upper covering layer, and the hole arrangement of the upper covering layer is grafted through the first sealing layer.
  • a second sealing layer is arranged between the upper and the lower cover layer, and the hole arrangement of the upper one
  • the top layer is sealed by fusing the second sealing layer.
  • the upper cover layer does not function as a closure layer for the hole arrangement of the lower cover layer. This can be achieved by choosing the material of the upper cover layer such that it has a lower melting point than the material of the lower cover layer and the upper cover layer is melted so that it closes the hole arrangement of the lower cover layer.
  • the upper cover layer has connecting webs z-ir connection to the lower cover layer.
  • the lower cover layer and / or the upper cover layer does not have polysilicon or aluminum.
  • the sealing layer has aluminum, silicon, silicon metride, silicon dioxide, a glass or a lacquer.
  • Fig. La-g is a schematic cross-sectional view of the
  • FIG. 1h shows a plan view of the micromechanical component according to the first embodiment to illustrate the different hole arrangements
  • 3a-c is a schematic cross-sectional view of the
  • FIG. 1a-g show a schematic cross-sectional view of the manufacturing steps of a micromechanical component according to a first embodiment of the present invention and FIG. 1h shows a corresponding top view to illustrate the different hole arrangements.
  • a sacrificial layer 2 made of SiO 2 a structured interconnect level 3 and a further sacrificial layer 4 made of SiO 2 are applied to a silicon substrate 1.
  • a functional layer with the functional region 5 is applied to the sacrificial layer 4 and is structured by likewise known methods for the etching of trenches 6.
  • the method described in DE 42 41 045 AI can be used.
  • the functional structural elements 7, which are shown here by way of example as three electrode fingers, are either made freely movable for the proposed component by a known method for sacrificial layer etching (see, for example, DE 43 17 274 A1), or they remain after deep etching still firmly on the
  • a thick sacrificial layer 8 is deposited on the functional structural elements 7 of the micromechanical component in a next step such that the structural trenches 6 are partially filled with the sacrificial material in the upper trench region 9.
  • the sacrificial layer 8 covers the part of the structure which is to be capped in the final state.
  • the sacrificial layer 8 preferably has a thickness of 1 ⁇ m to 20 ⁇ m and can consist, for example, of silicon dioxide, boron-phosphorus-silicate glass or amorphous silicon. However, any other material that is isotropic with an sufficient selectivity towards the functional structural elements 7 and the later cover layers can be etched.
  • the lower cover layer 10 is deposited onto the sacrificial layer 8 and structured with a hole arrangement with small holes 11.
  • the holes 11 can be angular or round.
  • the diameter of the holes 11 is preferably between 0.5 ⁇ m and 20 ⁇ m.
  • the perforation is designed so that it lies uniformly over the surface of the functional structural elements 7.
  • the lower cover layer 10 is preferably between 0.5 ⁇ m and 10 ⁇ m thick and made of polysilicon or aluminum. However, it can also consist of any other material that is resistant to the sacrificial etching of the sacrificial layer 8 and further sacrificial layers.
  • the lower cover layer 10 is pulled beyond the edge of the sacrificial layer 8 and is bonded to the layer with the functional structural elements 7.
  • the lower cover 10 is ideally under mechanical tensile stress, which can be adjusted by suitable temperature treatment.
  • a second sacrificial layer 12 is applied to the first cover layer 10.
  • This second sacrificial layer 12 ideally consists of the same material as the first sacrificial layer 8, that is to say of silicon dioxide, and is also selectively etchable with respect to the lower cover layer 10.
  • the thickness of the second sacrificial layer 12 is preferably between 0.3 ⁇ m and 5 ⁇ m.
  • the second victim 12 is then structured in such a way that it lies on the through hole arrangement 11 of the lower cover layer 10.
  • the second sacrificial layer 12 also has a hole arrangement with holes 13, which are offset with respect to the holes 11 of the hole arrangement of the lower cover layer 10.
  • the upper cover layer 14 is deposited on the second sacrificial layer 12. This upper cover layer 14 is connected locally to the lower cover layer 10 via the holes 13 of the second sacrificial layer 12. In the top
  • Cover layer 14 is a hole arrangement with holes 15, the holes 15 being offset from the holes 11 of the lower cover layer 10, so that the holes 11 are all covered by the upper cover layer 14 and the lower cover layer 10 is located under the holes 15 everywhere ,
  • the perforation preferably has a diameter of 0.5 ⁇ m to 20 ⁇ m.
  • the upper cover layer 14 is pulled beyond the edge of the second sacrificial layer 12 and is bonded to the lower cover layer 10 and preferably also to the periphery of the functional area 5. In other words, the upper cover layer 14 preferably also completely covers the lower cover layer 10.
  • the upper cover layer 14 is between 0.5 ⁇ m and 30 ⁇ m thick and, like the lower cover layer 10, can consist, for example, of silicon or aluminum or other materials with the required etching properties.
  • the first sacrificial layer 8 and the are then in a selective etching step second sacrificial layer 12 etched.
  • a wet chemical process such.
  • the sacrificial layers 2 and 4 below the functional structural elements 7 can also be etched in this step, if this has not already happened before the first sacrificial layer 8 is deposited.
  • a cap or dome which is perforated with perforations, is stretched over the functional structural elements (here movable capacitor electrodes).
  • This cap consists of the interconnected cover layers 10, 14, there being no straight path for gases or atoms or molecules through the cap, since the hole arrangements in the cover layers 10, 14 are arranged offset from one another.
  • a closure layer 17 is provided on the upper cover layer 14, which closes the holes 15 of the outer cover layer 14 tightly by means of plugs 18.
  • the sealing layer 17 preferably completely covers the upper covering layer 14. The closing process takes place under defined gas and pressure conditions.
  • the sealing layer 17 can be made of aluminum, silicon, silicon nitride, silicon dioxide, a glass, a lacquer or another suitable material and is preferably by means of a CVD (Chemical Vapor Deposition) method, sputtering, vapor deposition, Process, flash evaporation process, spin-on process or spray process applied.
  • CVD Chemical Vapor Deposition
  • the sensor structure shown is thus hermetically capped, and under the capping in the functional area 5 with the functional structural elements there is a predetermined atmosphere and a predetermined pressure.
  • Figure lh illustrates the mutual orientation of the different perforations.
  • the top view of FIG. 1h shows the offset of the holes 15 in the upper cover layer 14 with respect to the holes 11 in the lower cover layer 10.
  • the connection points 13 between the lower cover layer 10 and the upper cover layer 14 are offset with respect to the two hole arrangements with the holes 11 and 15, so that gases (e.g. reaction products and educts in the case of sacrificial layer etching) can flow into the open through both hole arrangements.
  • gases e.g. reaction products and educts in the case of sacrificial layer etching
  • FIG. 2a-e illustrate a schematic cross-sectional view of the manufacturing steps of a micromechanical component according to a second embodiment of the present invention.
  • a layer 20 is applied and structured to the lower cover layer 10 ', which preferably consists of aluminum or another fusible material with sufficient Surface tension u-id suitable adhesion or wetting exists on the material of the lower cover layer 10 ⁇ .
  • the layer thickness of the second sealing layer 20 should be smaller than the thickness of the second sacrificial layer 12 ".
  • the second sealing layer 20 is structured in such a way that it leaves the holes 11 in the lower covering layer 10 free and is arranged below the holes 15 in the upper covering layer 14 ' is.
  • the upper sacrificial layer 12 is deposited and structured analogously to the first embodiment.
  • the second sacrificial layer 12 - in this second embodiment does not necessarily contain holes for attaching the outer cover layer 14 'to the lower cover layer 10.
  • a temperature step for the thermal cleaning of the sensor surfaces is expedient, which, however, must not exceed the melting temperature of the material of the second closure.
  • the entire structure is introduced into a heating device, with which defined gas and pressure conditions can be established.
  • a vacuum can be generated, or an inert gas or. another gas to increase the damping of the vibrations of the functional structural elements 7 are included.
  • a vacuum can be generated, or an inert gas or. another gas to increase the damping of the vibrations of the functional structural elements 7 are included.
  • the temperature in the heating device is increased above the melting point of the material of the second sealing layer 20, so that the material 20 contracts due to the surface tension and melts out.
  • the position of these fusible beads on the lower cover layer 10 is controlled via the structural position and thickness of the second sealing layer 20 in such a way that the fusing beads form exactly under the holes 15 of the second covering layer 14 " .
  • the material of the second sealing layer 20 is selected such that there is sufficient wetting with the material of the lower cover layer 10 * and the upper cover layer 14 ", and therefore the openings 15 of the upper cover layer 14 ' are sealed from below.
  • a predetermined atmosphere and a predetermined pressure can be set under the capping.
  • a further sealing layer 25 can optionally be deposited over the resulting structure as in the first embodiment, as shown in FIG. 2e.
  • 3a-c are a schematic cross-sectional view of the manufacturing steps of a micromechanical component. measured a third embodiment of the present invention.
  • the material of the upper cover layer 14 "" is selected such that it has a lower melting point than the material of the lower cover layer 10 "".
  • the material of the upper cover layer 14 "" can be aluminum, which melts at 660 ° C., while the material of the lower cover layer 10 "" is a high-melting material, e.g. B. CVD silicon.
  • Figure 3a shows the state after the sacrificial layer etching corresponding to the state of Figure 2c or the state of Figure 1f.
  • the material of the upper cover layer 14 " " is melted in a heating device under defined gas and pressure conditions. If there is sufficient wetting between the lower and upper cover layer 10 "", 14 “ ", the openings 11 in the lower cover layer 10 "" are then hermetically sealed by the upper cover layer 14 "".
  • a further sealing layer 30 can be applied for the hermetic sealing, which is made of silicon dioxide, aluminum, niu, silicon nitride, silicon or another suitable material. This is shown in Fig. 3c.
  • any desired micromechanical basic materials can be used, and not just the exemplary silicon substrate.
  • the hole arrangements and the number and design of the cover layers and sacrificial layers can also be chosen as desired.

Abstract

L'invention concerne un composant micromécanique comprenant un substrat (1) ; une zone fonctionnelle (5) prévue sur ledit substrat (1) ; et un élément de recouvrement (10, 14, 18; 10`, 14`, 20, 25; 10``, 14``, 30) sous forme de cache, servant à recouvrir la zone fonctionnelle (5). Cet élément de recouvrement (10, 14, 18; 10`, 14`, 20, 25; 10``, 14``, 30) présente au moins une couche de recouvrement supérieure et inférieure (10, 14; 10`, 14`; 10``, 14``). Ces couches de recouvrement (10, 14; 10`, 14`; 10``, 14``) présentent un agencement de trous (11, 15) décalés les uns par rapport aux autres, dont au moins un est fermé par au moins une couche d'obturation (17; 20, 25; 14``, 30).
PCT/DE2000/004554 2000-02-09 2000-12-20 Composant micromecanique et procede de production correspondant WO2001058804A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005555.9 2000-02-09
DE2000105555 DE10005555A1 (de) 2000-02-09 2000-02-09 Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren

Publications (2)

Publication Number Publication Date
WO2001058804A2 true WO2001058804A2 (fr) 2001-08-16
WO2001058804A3 WO2001058804A3 (fr) 2002-03-14

Family

ID=7630238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004554 WO2001058804A2 (fr) 2000-02-09 2000-12-20 Composant micromecanique et procede de production correspondant

Country Status (2)

Country Link
DE (1) DE10005555A1 (fr)
WO (1) WO2001058804A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433741A2 (fr) * 2002-12-24 2004-06-30 Interuniversitair Microelektronica Centrum Vzw Procédé pour la fermeture d'ouvertures dans une couche
JP2004314292A (ja) * 2003-03-20 2004-11-11 Robert Bosch Gmbh 制御された雰囲気を有する電気機械的システム及びこのシステムを製造する方法
EP1640335A2 (fr) 2004-09-28 2006-03-29 Commissariat A L'Energie Atomique Composant d'encapsulation de micro-systèmes électromécaniques intégrés et procédé de réalisation du composant
EP1640320A2 (fr) 2004-09-27 2006-03-29 Idc, Llc Méthode et système de conditionnement d'un afficheur micromécanique
JP2006526509A (ja) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
JP2007514556A (ja) * 2003-12-19 2007-06-07 コミサリア、ア、レネルジ、アトミク 密封されたマイクロキャビティを備えるマイクロ部品及びそのようなマイクロ部品の製造方法
WO2007074017A1 (fr) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Élément de construction micromécanique doté d'une couverture
JP2007216309A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 電子装置及びその製造方法
EP1840081A2 (fr) * 2006-03-28 2007-10-03 Interuniversitair Microelektronica Centrum (IMEC) Procédé pour la formation d'une cavité hermétiquement fermée
US7307776B2 (en) 2003-08-15 2007-12-11 Qualcomm Incorporated Optical interference display panel
JP2009521335A (ja) * 2005-12-27 2009-06-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 閉鎖部付きのキャップを備えたマイクロマシニング型の構成エレメント
US7956428B2 (en) 2005-08-16 2011-06-07 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
EP2356064A2 (fr) * 2008-11-10 2011-08-17 Nxp B.V. Dispositifs mems
US8129838B2 (en) 2007-05-14 2012-03-06 Fraunhofer-Gesellschaft Zur Housed active microstructures with direct contacting to a substrate
JP2012196758A (ja) * 2003-07-25 2012-10-18 Robert Bosch Gmbh Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法
WO2013019515A1 (fr) * 2011-08-03 2013-02-07 Qualcomm Mems Technologies, Inc. Mince écran de protection métallique sur dispositif électrique
JP2015034713A (ja) * 2013-08-07 2015-02-19 横河電機株式会社 振動式トランスデューサおよびその製造方法
US9139419B2 (en) 2013-07-24 2015-09-22 Yokogawa Electric Corporation Resonant transducer, manufacturing method therefor, and multi-layer structure for resonant transducer
US9199839B2 (en) 2013-12-06 2015-12-01 Commissariat à l'énergie atomique et aux énergies alternatives Method of hermetically sealing a hole with a fuse material
US9758371B2 (en) 2006-01-20 2017-09-12 Sitime Corporation Encapsulated microelectromechanical structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056716B4 (de) * 2000-11-15 2007-10-18 Robert Bosch Gmbh Mikrostrukturbauelement
DE60126291T2 (de) 2001-11-16 2007-10-18 Stmicroelectronics S.R.L., Agrate Brianza Verfahren zur Versiegelung von Mikrostrukturen enthaltenden Bauelementen
US7045459B2 (en) 2002-02-19 2006-05-16 Northrop Grumman Corporation Thin film encapsulation of MEMS devices
US6936491B2 (en) 2003-06-04 2005-08-30 Robert Bosch Gmbh Method of fabricating microelectromechanical systems and devices having trench isolated contacts
FR2864341B1 (fr) 2003-12-19 2006-03-24 Commissariat Energie Atomique Microcomposant a cavite hermetique comportant un bouchon et procede de fabrication d'un tel microcomposant
US7098065B2 (en) 2004-09-28 2006-08-29 Stmicroelectronics, Inc. Integrated lid formed on MEMS device
DE102005053722B4 (de) * 2005-11-10 2007-08-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Deckelwafer, in der Mikrosystemtechnik einsetzbares Bauelement mit einem solchen Wafer sowie Lötverfahren zum Verbinden entsprechender Bauelement-Teile
EP1908727A1 (fr) * 2006-10-03 2008-04-09 Seiko Epson Corporation Boîtier pour MEMS au niveau de plaquette et sa méthode de fabrication
DE102007022509B4 (de) * 2007-05-14 2015-10-22 Robert Bosch Gmbh Mikromechanisches Bauteil mit Dünnschichtverkappung und Herstellungsverfahrung
CN108121976A (zh) * 2018-01-08 2018-06-05 杭州士兰微电子股份有限公司 封闭空腔结构及其制造方法和超声波指纹传感器
DE102020213672A1 (de) 2020-10-30 2022-05-05 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung, Gehäuse für eine Sensoranordnung sowie Verfahren zum Herstellen einer Sensoranordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665610A (en) * 1985-04-22 1987-05-19 Stanford University Method of making a semiconductor transducer having multiple level diaphragm structure
GB2194344A (en) * 1986-07-18 1988-03-02 Nissan Motor Pressure transducer and method of fabricating same
FR2700003A1 (fr) * 1992-12-28 1994-07-01 Commissariat Energie Atomique Procédé de fabrication d'un capteur de pression utilisant la technologie silicium sur isolant et capteur obtenu.
EP0766090A2 (fr) * 1995-09-28 1997-04-02 Siemens Aktiengesellschaft Microcapteur électronique intégré et procédé pour sa fabrication
WO1997049475A1 (fr) * 1996-06-24 1997-12-31 The Regents Of The University Of California Filtre et capsule microporeux realises en membrane permeable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665610A (en) * 1985-04-22 1987-05-19 Stanford University Method of making a semiconductor transducer having multiple level diaphragm structure
GB2194344A (en) * 1986-07-18 1988-03-02 Nissan Motor Pressure transducer and method of fabricating same
FR2700003A1 (fr) * 1992-12-28 1994-07-01 Commissariat Energie Atomique Procédé de fabrication d'un capteur de pression utilisant la technologie silicium sur isolant et capteur obtenu.
EP0766090A2 (fr) * 1995-09-28 1997-04-02 Siemens Aktiengesellschaft Microcapteur électronique intégré et procédé pour sa fabrication
WO1997049475A1 (fr) * 1996-06-24 1997-12-31 The Regents Of The University Of California Filtre et capsule microporeux realises en membrane permeable

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433741A3 (fr) * 2002-12-24 2004-07-07 Interuniversitair Microelektronica Centrum Vzw Procédé pour la fermeture d'ouvertures dans une couche
EP1433741A2 (fr) * 2002-12-24 2004-06-30 Interuniversitair Microelektronica Centrum Vzw Procédé pour la fermeture d'ouvertures dans une couche
US9771257B2 (en) 2003-03-20 2017-09-26 Robert Bosch Gmbh Electromechanical system having a controlled atmosphere, and method of fabricating same
JP2004314292A (ja) * 2003-03-20 2004-11-11 Robert Bosch Gmbh 制御された雰囲気を有する電気機械的システム及びこのシステムを製造する方法
EP1460038A3 (fr) * 2003-03-20 2005-12-14 Robert Bosch Gmbh Système électromécanique présentant une atmosphère contrôlée et son procédé de fabrication
US8018077B2 (en) 2003-03-20 2011-09-13 Robert Bosch Gmbh Electromechanical system having a controlled atmosphere, and method of fabricating same
JP4908202B2 (ja) * 2003-06-04 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
JP2011245620A (ja) * 2003-06-04 2011-12-08 Robert Bosch Gmbh マイクロ電気機械的装置及びその封緘方法及び製造方法
JP2006526509A (ja) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
US7288824B2 (en) * 2003-06-04 2007-10-30 Robert Bosch Gmbh Microelectromechanical systems, and devices having thin film encapsulated mechanical structures
JP2012196758A (ja) * 2003-07-25 2012-10-18 Robert Bosch Gmbh Soi基板を持つマイクロ電気機械システム用アンカー及びその製造方法
US7307776B2 (en) 2003-08-15 2007-12-11 Qualcomm Incorporated Optical interference display panel
JP2007514556A (ja) * 2003-12-19 2007-06-07 コミサリア、ア、レネルジ、アトミク 密封されたマイクロキャビティを備えるマイクロ部品及びそのようなマイクロ部品の製造方法
JP4869943B2 (ja) * 2003-12-19 2012-02-08 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 密封されたマイクロキャビティを備えるマイクロ部品及びそのようなマイクロ部品の製造方法
EP1640320A3 (fr) * 2004-09-27 2007-02-28 Idc, Llc Méthode et système de conditionnement d'un afficheur micromécanique
EP1640320A2 (fr) 2004-09-27 2006-03-29 Idc, Llc Méthode et système de conditionnement d'un afficheur micromécanique
EP1640335A3 (fr) * 2004-09-28 2007-10-03 Commissariat A L'Energie Atomique Composant d'encapsulation de micro-systèmes électromécaniques intégrés et procédé de réalisation du composant
FR2875948A1 (fr) * 2004-09-28 2006-03-31 Commissariat Energie Atomique Composant d'encapsulation de micro-systeme electromecaniques integres et procede de realisation du composant
US7745891B2 (en) 2004-09-28 2010-06-29 Commissariat A L'energie Atomique Encapsulation component for integrated micro electromechanical system comprising first and second covers
EP1640335A2 (fr) 2004-09-28 2006-03-29 Commissariat A L'Energie Atomique Composant d'encapsulation de micro-systèmes électromécaniques intégrés et procédé de réalisation du composant
US7956428B2 (en) 2005-08-16 2011-06-07 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
WO2007074017A1 (fr) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Élément de construction micromécanique doté d'une couverture
JP2009521335A (ja) * 2005-12-27 2009-06-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 閉鎖部付きのキャップを備えたマイクロマシニング型の構成エレメント
US8154094B2 (en) 2005-12-27 2012-04-10 Robert Bosch Gmbh Micromechanical component having a cap having a closure
US9758371B2 (en) 2006-01-20 2017-09-12 Sitime Corporation Encapsulated microelectromechanical structure
US11685650B2 (en) 2006-01-20 2023-06-27 Sitime Corporation Microelectromechanical structure with bonded cover
US10766768B2 (en) 2006-01-20 2020-09-08 Sitime Corporation Encapsulated microelectromechanical structure
US10450190B2 (en) 2006-01-20 2019-10-22 Sitime Corporation Encapsulated microelectromechanical structure
US10099917B2 (en) 2006-01-20 2018-10-16 Sitime Corporation Encapsulated microelectromechanical structure
JP2007216309A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 電子装置及びその製造方法
EP1840081A3 (fr) * 2006-03-28 2012-08-01 Imec Procédé pour la formation d'une cavité hermétiquement fermée
EP1840081A2 (fr) * 2006-03-28 2007-10-03 Interuniversitair Microelektronica Centrum (IMEC) Procédé pour la formation d'une cavité hermétiquement fermée
DE102008025599B4 (de) * 2007-05-14 2013-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gehäuste aktive Mikrostrukturen mit Direktkontaktierung zu einem Substrat
US8129838B2 (en) 2007-05-14 2012-03-06 Fraunhofer-Gesellschaft Zur Housed active microstructures with direct contacting to a substrate
EP2356064A2 (fr) * 2008-11-10 2011-08-17 Nxp B.V. Dispositifs mems
WO2013019515A1 (fr) * 2011-08-03 2013-02-07 Qualcomm Mems Technologies, Inc. Mince écran de protection métallique sur dispositif électrique
US9139419B2 (en) 2013-07-24 2015-09-22 Yokogawa Electric Corporation Resonant transducer, manufacturing method therefor, and multi-layer structure for resonant transducer
JP2015034713A (ja) * 2013-08-07 2015-02-19 横河電機株式会社 振動式トランスデューサおよびその製造方法
US9865797B2 (en) 2013-08-07 2018-01-09 Yokogawa Electric Corporation Resonant transducer, manufacturing method therefor, and multi-layer structure for resonant transducer
US9199839B2 (en) 2013-12-06 2015-12-01 Commissariat à l'énergie atomique et aux énergies alternatives Method of hermetically sealing a hole with a fuse material

Also Published As

Publication number Publication date
WO2001058804A3 (fr) 2002-03-14
DE10005555A1 (de) 2001-08-16

Similar Documents

Publication Publication Date Title
WO2001058804A2 (fr) Composant micromecanique et procede de production correspondant
EP2170763B1 (fr) Procédé de production d'un composant, et composant obtenu
EP1274648B1 (fr) Composant micromecanique et son procede de production
EP1274647B1 (fr) Composant micromecanique et son procede de production
EP1334060B1 (fr) Composant micromecanique et procede de production correspondant
DE602004008331T2 (de) Mikrokomponente mit einer hermetischen mikrokavität und verfahren zur herstellung solch einer mikrokomponente
DE102013213071B3 (de) Herstellungsverfahren für ein mikromechanisches Bauteil
DE19600400C2 (de) Mikromechanisches Bauteil mit planarisiertem Deckel auf einem Hohlraum und Herstellverfahren
WO2005118463A1 (fr) Composant micromecanique presentant plusieurs chambres et procede de fabrication
WO2016134803A1 (fr) Composant mems à haute densité d'intégration
EP2438005B1 (fr) Composant micromécanique présentant un joint eutectique entre deux substrats et procédé de production d'un tel composant micromécanique
DE102013209266A1 (de) Bauelement mit einem Hohlraum
EP0714121A2 (fr) Protection contre la corrosion pour couches métalliques micromécaniques
WO2010012547A2 (fr) Procédé d'encapsulation d'une tranche pour microsystème, ainsi que tranche pour microsystème
DE102012208053A1 (de) Hybrid integriertes Bauteil und Verfahren zu dessen Herstellung
WO2018069028A1 (fr) Capteur micro-mécanique à structure de découplage de contraintes
DE10056716B4 (de) Mikrostrukturbauelement
DE102006009718A1 (de) Sensorvorrichtung
WO2010060684A2 (fr) Procédé de fabrication d'un composant micromécanique, composant micromécanique fabriqué selon ce procédé et son utilisation
EP1296886B1 (fr) Procede de production d'un composant micromecanique
DE102009027898B4 (de) Herstellungsverfahren für ein mikromechanisches Bauelement
DE60307769T2 (de) Vorrichtung zur Verkapselung von mikroelektromechanischen integrierten Systemen und Verfahren zu deren Herstellung
DE10052419B4 (de) Verfahren zur Herstellung mikromechanischer Bauelemente
DE102015216471A1 (de) Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
DE10231730A1 (de) Mikrostrukturbauelement und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP