WO2001058596A1 - Separateur centrifuge - Google Patents

Separateur centrifuge Download PDF

Info

Publication number
WO2001058596A1
WO2001058596A1 PCT/JP2001/000670 JP0100670W WO0158596A1 WO 2001058596 A1 WO2001058596 A1 WO 2001058596A1 JP 0100670 W JP0100670 W JP 0100670W WO 0158596 A1 WO0158596 A1 WO 0158596A1
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
centrifugal separator
discharge
wall
member extending
Prior art date
Application number
PCT/JP2001/000670
Other languages
English (en)
French (fr)
Inventor
Tetsuo Oohinata
Hiroyoshi Mizukami
Noboru Suzuki
Yasuyuki Yoshida
Hiroyuki Matsui
Takashi Uchikawa
Original Assignee
Kotobuki Engineering & Manufacturing Co., Ltd.
Kubota Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kotobuki Engineering & Manufacturing Co., Ltd., Kubota Corporation filed Critical Kotobuki Engineering & Manufacturing Co., Ltd.
Priority to AU2001230553A priority Critical patent/AU2001230553B2/en
Priority to EP01902708A priority patent/EP1304170B1/en
Priority to AU3055301A priority patent/AU3055301A/xx
Priority to DE60124554T priority patent/DE60124554T2/de
Priority to US10/182,709 priority patent/US6780148B2/en
Priority to NZ520746A priority patent/NZ520746A/en
Priority to CA002399443A priority patent/CA2399443C/en
Publication of WO2001058596A1 publication Critical patent/WO2001058596A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/2083Configuration of liquid outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/2091Configuration of solids outlets

Definitions

  • the present invention relates to a centrifugal separator in which the concentration, dehydration, sedimentation heavy components and separated water of sewage sludge, industrial wastewater, and various products for the chemical and food industries are collected by centrifugal force.
  • a decanter-type centrifugal separator has been generally used for solid-liquid separation of sludge and the like.
  • this separating device is formed by connecting a conical cylinder 31 to the tip of a horizontally long straight body 30 and forming a high-speed rotating bowl (outer rotating cylinder) 1 with an inner cylinder (inner cylinder).
  • (Rotary cylinder) 1 Spiral blades 12 are provided in 1, and a screw conveyor 10 that rotates with a relative speed difference from bowl 1 is accommodated, and processing liquid a such as sludge is supplied into bowl 1 from inner cylinder 11. To separate solid and liquid by centrifugal force.
  • the dewatered cake b which is a heavy component settled and separated by the centrifugal force in the bowl 1, is successively drawn toward the front end by the spiral blade 12, and further in the conical cylinder 31. Due to the consolidation and dewatering action, it is discharged out of the machine from the front end sludge b, and the separated liquid c overflows and flows out from the discharge hole 32 provided in the rear end wall 3 of the bowl 1 on the opposite side. It is being done.
  • the direction in which the centrifugal force acts that is, the direction in which the radius of the bowl increases is referred to as “down”, and the direction in which the radius decreases becomes “up”.
  • This decanter-type centrifugal separator stores the filtrate in the bowl 1, prevents the filtrate from flowing out of the sludge boiler 7 that discharges the cake, and has a conical portion called a beech.
  • the conical cylinder In order to raise the dewatered cake above the water level in the bowl and increase the dewatering effect, the conical cylinder whose front end is narrowed down to a level (water level) equivalent to or higher than the separated liquid discharge hole 32 It is a feature that requires 3 1.
  • the dewatered cake b passes through a large-inclined conical cylinder for draining beyond the water level in the bowl, causing a slip at this part to make draining worse and separating liquid together with sludge. Is discharged from the separated liquid outlet 32 and the separated liquid becomes dirty.
  • the bowl 1 is used to reduce the water content of the discharged dewatered cake. The actual situation is that the engine is operated at an unnecessarily high rotational speed (about 2,000 to 3,000 rpm). Therefore, large power is required.
  • the outlet of the sedimentation layer is basically located at a level equal to or higher than the liquid level in the bowl, and even if the head pressure in the bowl is used for discharging,
  • the head pressure of the treated solution is smaller than the head pressure of the heavy sedimentation layer, and it is impossible in principle to discharge only by the head pressure, and some kind of discharge mechanism is required. Disclosure of the invention
  • the present invention has been made in order to solve the problems in the decanter-type centrifugal separator as described above.
  • the sludge is directly discharged from the d portion having the lowest water content. It is intended to obtain a centrifugal separator which can be used.
  • the separation efficiency can be improved by promoting the separation, the bowl rotation speed can be reduced, and the power can be saved and the device can be simplified and downsized because it does not have a conical beach portion. .
  • a discharge path of the dehydrated cake is provided in one end wall of the bowl.
  • the opening of the passage into the bowl is provided near the inner peripheral wall of the bowl.
  • the bowl means a part where the processing liquid is subjected to a solid-liquid separation effect due to the action of centrifugal force.
  • the solid content is immediately discharged from the outlet without being concentrated and dewatered, and the solid content is sufficiently settled (accordingly.
  • the centrifugal force must be applied for a certain period of time in the bowl. Therefore, at least at the initial stage of the start-up, it is advantageous that the discharge path has a structure capable of maintaining the expected liquid level in the powl.
  • the above-mentioned discharge route acts as a restrictor that limits the amount of dewatered cake discharged from the sedimentary layer.
  • the dewatered cake in the discharge path is mainly formed by the head pressure due to the centrifugal force of the sedimentary layer acting on the back surface, and in addition to this, the conveying force of the screw, and in some cases, Extruded by the supply pressure of the processing solution to the
  • the amount of discharge is determined by the discharge resistance received from the discharge path and the pressure that pushes it out. And emissions are small. Therefore, the thickness of the sedimentary layer near the opening of the discharge path will gradually increase due to the deposition of heavy sediment attracted by the screw conveyor. However, as the thickness of the sedimentary layer increases, the extrusion force increases, overcoming the discharge resistance and increasing the amount of discharge. You will be drowned. Since the specific gravity of the sedimentation layer is higher than the specific gravity of the processing liquid, the water head pressure available for discharge is higher than the head pressure of the processing liquid used in the conventional equipment. When the sedimentary layer rises above the liquid level due to the effect of reducing the volume, the head pressure becomes extremely large, and the drainage cake is easily discharged. And this In this case, the consolidation effect on the dewatered cake by the sedimentary layer can be maximized, and the discharged solid content can be reduced and the water content can be achieved. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a side sectional view showing the structure of one embodiment of the centrifugal separator of the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is a sectional view taken along line BB of FIG.
  • FIG. 4 is a partial cross-sectional view showing the structure of the discharge path in the centrifugal separator of the apparatus of the present invention.
  • FIG. 5 is a partial sectional view showing another embodiment of the discharge path.
  • FIG. 6 is a partial sectional view showing still another embodiment of the discharge path.
  • FIG. 7 is a side sectional view showing a conventional decanter-type centrifugal separator.
  • FIG. 8 is a partial sectional view showing another embodiment of the bowl end.
  • FIG. 9 is a partial sectional view showing still another embodiment of the discharge path.
  • FIG. 10 is a partial cross-sectional view showing an embodiment of a valve provided at the discharge port at the end of the discharge path.
  • FIG. 11 is a partial cross-sectional view showing another embodiment of the valve.
  • FIG. 1 is a side sectional view showing one embodiment of the device of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a sectional view taken along line BB of FIG. 1
  • FIG. 1 is a side sectional view showing one embodiment of the device of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a sectional view taken along line BB of FIG. 1
  • FIG. 1 is a side sectional view showing one embodiment of the device of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a sectional view taken along line BB of FIG. 1
  • FIG. 1 is a side sectional view showing one embodiment of the device of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a sectional view taken along line BB of FIG. 1
  • FIG. 1 is a
  • reference numeral 1 denotes a high-speed rotating bowl (outer rotating cylinder), which is a horizontal cylinder and has a straight body, and is provided at a central portion of a sludge chamber wall 6 and a rear end wall 3 attached to a front end thereof.
  • the hollow shafts 4 and 5 are protrudingly provided, and are supported by bearings (not shown) so that they can be rotated at high speed by a driving device.
  • a plurality of mud drains 7 are spaced along the circumferential direction.
  • the sludge chamber wall 6 and the sludge chamber 7 are integrally formed with the bowl in the present embodiment, but are not the basic structure of the centrifugal separator, but may be formed separately from the bowl 1 if necessary. Appropriate design changes are possible.
  • the rear end wall 3 of the bowl 1 is provided with an outlet 8 for the separated liquid.
  • the discharge outlet 8 may be, for example, a plurality of fan-shaped ones spaced in the circumferential direction, or a large number of small holes may be concentrically spaced in the rear end wall 3 as shown in FIG.
  • Numeral 10 denotes a screw conveyor accommodated in the bowl 1, and a spiral wing 12 is wound around the outer periphery of a horizontal cylindrical rotating drum 11, and both ends of the spiral wing 12 are attached to the hollow shaft 4 of the bowl 1.
  • the rotary shaft 13 is supported by the protruding portion of the bowl 5 and is inserted through the hollow shaft 4 so as to be rotated at a required speed difference from the bowl 1.
  • a supply chamber 14 for the processing liquid a is provided in the rotating drum 11, and a supply port 15 communicating with the annular space 17 between the bowl 1 and the rotating cylinder 11 is provided on the peripheral wall thereof.
  • a supply pipe 16 for the processing liquid passed through the rear hollow shaft 5 of the bowl 1 is opened to the supply chamber 14.
  • a wall 2 is provided at the front end of the annular space 17 of the bowl 1, and a discharge path 20 for the dehydrated cake b is provided in the wall 2.
  • the opening 20a of the discharge path 20 into the bowl is provided in contact with the inner surface of the peripheral wall of the bowl 1, while in the embodiment of the present invention, the outside of the bowl is provided.
  • the opening 20b serving as a discharge port to the outside has a height in the radial direction. Therefore, the sediment that can enter the discharge passage through the opening 20a is limited to only the lowermost part of the pile.
  • the opening 2Ob is supplied such that the processing liquid does not overflow the opening 20b at the beginning of operation, and determines the initial height of the liquid level in the bowl.
  • the outlet 8 of the separated liquid defines the liquid level of the annular space 17 during operation, and when the position of the outlet 8 is lower than the opening 20 b, the so-called “lower overflow” state occurs. If it is high, the operation will be in the state of “overflow”. Then, in the case of operation in the state of overflow on the upper side, the outflow of the processing liquid from the discharge path 20 is prevented by the sediment layer deposited near the opening 20a.
  • the separation liquid can be discharged from the shaft center.
  • the processing liquid a to be dehydrated enters the supply chamber 14 from the supply pipe 16 as shown by the arrow, is supplied into the annular space 17 from the supply port 15, and the bowl 1 and the screw conveyor Spiral blade 1 2 while solid-liquid separation by centrifugal force of rotation 10 It is conveyed toward the end. Then, the separated liquid c, which is the separated liquid, is discharged out of the machine from the outlet 8 in the rear end wall.
  • the sediment layer transported to the front part of the bowl 1 accumulates at the front end of the annular space 17 by the difference from the discharge amount from the discharge path 20.
  • This sedimentary layer has a specific gravity of about 2.5 to 3 if the precipitated heavy component is sand, for example, and is much heavier than one of water, so it is subject to centrifugal force acting on this sedimentary layer.
  • the head pressure is more than double that of water.
  • the sedimentary layer rises above the liquid level and rises above the liquid level.
  • a large centrifugal head pressure acts near the opening 20a of the discharge path due to the specific gravity and the height of the swelling, resulting in a large consolidation effect on the sedimentary layer.
  • the pushing force to the discharge path is generated by the conveying force of the above.
  • the centrifugal separator of the present invention is not limited to the above structure, and various design changes can be made within the scope of the present invention.
  • FIG. 5 shows another embodiment of the discharge path 20.
  • the discharge path 20 does not form a straight line whose cross section is inclined to the end, as in the previous embodiment, but is almost parallel to the wall 2 between the openings 20a and 2Ob. Includes parallel parts.
  • the discharge path of this shape takes the required length (ie discharge resistance) and height difference between the openings 20a, 2Ob, even if the wall 2 is relatively thin I can do it.
  • the front end wall 2 of the annular space 17 can be constituted by two members arranged at a small interval so as to form the discharge path 20 described above. That is, a member 21 protruding from the vicinity of the inner wall of the bowl in the direction of the rotation axis, and a member protruding from the rotating body 11 and extending at a substantially constant interval from the member 21, and a discharge path therebetween. It can be composed of the member 22 to be formed.
  • the members forming these discharge paths 20 are bowls. 1 and the rotating body 11 may be separated from each other and fixed by bolts or other means. At this time, the thickness of the discharge path 20 formed therebetween can be changed by assembling the spacers via the spacers 23 and appropriately selecting the thickness of the spacers.
  • the upper half shows the case where the discharge route is narrow, and the lower half shows the case where the discharge route is thick.
  • such adjustment of the distance between the members 21 and 22 may be performed by making each member movable by a screw or the like without using a spacer. By adjusting such discharge resistance, it is possible to adjust the discharge amount and the water content.
  • the height of the member 22 can be changed to change the portion of the deposited layer that is discharged.
  • the wall 2 at the front end of the bowl in which the dewatered cake discharge path 20 is provided is formed as an opposing portion between the bowl peripheral wall and the screw conveyor 10.
  • the bowl front end wall 32 is a member that rotates integrally with the bowl 1, and the screw conveyor 30 is enclosed in the bowl 1.
  • the bearings 33 must be sealed with a high-pressure packing 34 to prevent the processing liquid from entering the bearings 33.
  • the opening 20b outside the bowl is larger than the opening 20a inside the bowl so that the processing liquid does not flow out of the discharge path 20 in the initial stage of operation. It was a high position.
  • the discharge path is closed with a valve 35, etc., and as shown in Fig. 9, the opening 2 Ob is the same height as the opening 20a or lower than the opening 20a. Position, which makes it easier to discharge the dewatered cake.
  • Valve 35 must be opened only by increasing head pressure in the sediment without opening by centrifugal force associated with bowl operation.
  • FIGS. 10 and 11 show a needle valve as an example of such a valve.
  • the discharge path 20 is It is provided as a plurality of discharge holes arranged along the circumferential direction.
  • the centrifugal dewatering device of the present invention is based on a technical idea different from common sense in a conventional centrifugal separator, and only the portion of the sedimentary layer in the bowl that is subjected to the highest consolidation action is used. Since the water is directly discharged, the water content of the dewatered cake can be reduced unprecedented in the conventional centrifugal separator.

Description

明 細 書 遠心分離装置 技術分野
本発明は下水汚泥や工業排水、 および化学 ·食品工業用諸生産品の濃縮、 脱水、 沈殿重成分および分離水の回収を、 遠心力により行うようにした遠心分離装置に 関する。 背景技術
汚泥等の固液分離には、 従来一般に、 デカンタ型の遠心分離装置が使用されて いる。 この分離装置は図 7に示すように、 横長の直胴部 3 0の先に円錐筒 3 1を 接続して形成した、 高速回転されるボウル (外側回転筒) 1内に、 内筒 (内側回 転筒) 1 1に螺旋翼 1 2を設け、 ボウル 1と相対速度差をもって回転されるスク リユーコンベア 1 0を収容し、 内筒 1 1からボウル 1内に汚泥等の処理液 aを供 給して、 遠心力によリ固液分離を行うものである。 そして、 ボウル 1内で遠心力 によリ、 沈降分離された重成分である脱水ケーキ bは、 螺旋翼 1 2により前端部 に向けて順次搔き寄せられて行き、 円錐筒 3 1内でさらに圧密脱液作用を受け、 前端の排泥ロ 7から機外に排出され、 分離液 cの方は、 反対側であるボウル 1の 後端壁 3に設けた排出孔 3 2からオーバーフローして流出されるようになつてい る。 (以下、 本明細書においては、 遠心力の作用する方向、 すなわちボウルの半 径の大きくなる方向を下、 半径の小さくなる方向を上と呼ぶ。 )
このデカンタ型遠心分離装置は、 ボウル 1内にろ液を貯めこむため、 ろ液が、 ケーキを排出する排泥ロ 7から出てしまわないようにするために、 および、 ビー チと呼ばれる円錐部によって、 脱水ケーキをボウル内の水位以上に持ち上げ、 脱 水効果を高めようとするために、 分離液の排出孔 3 2と同程度以上のレベル (水 位) まで前端を小径に絞った円錐筒 3 1を必要としているのが特徴である.
これら従来の遠心分離装置は、 液相中の結晶などの濃縮や脱水のために発展し てきたものであるが、 これとはその性質を異にする汚泥のような被処理物の濃縮 や脱水に使用しょうとすると、 汚泥の沈殿層はペース ト状で親水性が強く、 脱水 率を高めるためにはいわば水を絞リだすために強い圧密効果を作用させることが 必要となる。 上記従来のデカンタ型遠心分離装置において処理液 aは、 ボウル 1 の中央部に供給されたとき、 供給直後のボウル直胴部 3 0においては、 高い遠心 力場 (約 2 0 0 0〜 3 0 0 0 G ) によリ固液分離されるものの、 脱水ケーキ bが 排出されるボウル円錐部 3 1では、 回転中心からの距離 (径) が短かくなるため に、 遠心力が弱くなリ、 含水率が高まってしまう現象が見られる。 事実、 図 7に 示す装置においては、 直胴部と円錐部の境界近くの d部分において含水率が最低 となることが観測されている。 さらに、 沈殿層が排出されるためには強い遠心力 に逆らって円錐部を上昇する必要がぁリ、 スクリユーコンべャによって移送しよ うとしても、 含水率が低い場合には摩擦抵抗による共廻リを生じてしまい、 ケー キは滞留したまま排出されず、 あるいは逆に、 直胴部 3 0の回転中心に近い含水 率の比較的に高いケーキのみが排出される傾向が見られる。
また、 脱水ケーキ bは、 ボウル内の水位を越えて排出させるための大きな傾斜 の円錐筒を通過するので、 この部分でのスリ ップをおこして排出が悪くなリ、 分 離液と共に、 汚泥が分離液排出口 3 2から排出されて分離液が汚くなる等の欠点 がある。 また、 排出される脱水ケーキは、 直胴部 3 1の回転中心に近い含水率の 比較的高いものが排出されることから、 排出される脱水ケーキの含水率を低くす るために、 ボウル 1の回転数を必要以上に高め (約 2, 0 0 0〜3, 0 0 0 r p m) で運転しているのが実情である。 したがって大きな動力を要している。 汚泥のようなスクリユーコンべャでの移送が難しいペース ト状の沈殿層を排出 するために、 分離液の排出口の位置が沈殿層の排出口より高いいわゆる 「負のダ ム」 あるいは 「上側溢流」 とよばれる状態での運転が行われる。 この 1つ、 例え ば Amb l e r型 (米国特許第 3, 1 7 2 , 8 5 1号, 特開平 6— 1 9 0 3 0 2号) に おいては、 ボウル内の被処理液の水頭圧を利用して沈殿層の排出を助けている。 しかし、 ボウル内の液面が高いため、 沈殿層はビーチ部分でも液面下にぁリ、 そのまま遠心力による水頭圧の低いビーチを上昇するため、 含水率が高まってし まうという問題があった。 (ボウル内には強い遠心力が作用してぉリ、 ボウル内 の或る層には、 その上の液層あるいは沈殿層に作用する遠心力による強い押圧力 を受ける。 本明細書においては、 この押圧力を水頭圧とよぶこととする。 ) また、 Lee型遠心分離装置においては、 直胴部と円錐部の境界近傍に、 ボウル 壁と僅かの間隙を設けた仕切リ板を配置し、 このボウル壁と仕切リ板の間隙から 沈殿層の最下部のみを取リ出すことによって低い含水率を得ようとしている。 しかし、 上記のように、 含水率の低いペースト状の沈殿層はスクリューコンべ ャによる移送は困難でぁリ、 利用できる水頭もボウル内の水位のみであるので、 排出のために搔き揚げ装置 (特開平 4一 5 9 0 6 5号) などの特殊構造を必要と する。
このタイプのものの 1つとして、 ボウルの回転軸から処理液を供給し、 回転軸 から分離液、 沈殿層を排出するものもあるが (特公昭 6 3— 3 1 2 6 1号) 、 分 離装置としては優れた性能を有するものの、 脱水ケーキの含水率の低いものでは 排出が困難になる場合が生じる。
上記の各種遠心分離装置は、 基本的に、 沈殿層の排出口はボウル内の液面と同 等ないしはそれより高い位置にあり、 排出にボウル内の水頭圧を利用するとして も、 ボウル内の処理液の水頭圧は、 重い沈殿層の水頭圧よリも小さく、 水頭圧の みで排出することは原理的に不可能であリ、 なんらかの排出機構を必要とする。 発明の開示
本発明は、 上述のようなデカンタ型遠心分離装置における問題点を解決するた めになされたもので、 上記従来型の遠心分離装置において、 最も含水率の低い d 部分から直接に汚泥を排出することができる遠心分離装置を得ようとするもので ある。 これにより、 分離の促進によって分離効率の向上が図れるとともに、 ボウ ル回転数の低減化が実現でき、 動力の節減と円錐状のビーチ部分を持たないため に装置の簡易、 小型化が可能となる。
本発明の遠心分離装置においては、 高速回転されるボウル内に、 これと相対速 度差をもって回転されるスクリユーコンベアを収容した遠心分離装置において、 ボウルの一端壁内に脱水ケーキの排出経路を設け、 該経路のボウル内への開口は ボウルの内周壁近傍に設けられる。 (本明細書において、 ボウルとは、 遠心力の 作用にょリ、 処理液が固液分離作用を受けている部分を意味するものとする。 ) これによリ、 排出経路からの排出ケーキは、 ボウル一端に堆積した沈殿層中、 堆積物に作用する遠心力の水頭圧による圧密効果の最も高い部分からのもののみ が排出経路を経て排出されることとなる。
遠心分離装置の始動時に、 処理液がボウル内へ供給されると、 固形分が濃縮 - 脱水されること無く、 直ちに排出口から排出されることは好ましくなく、 固形分 が十分に沈殿する (従って、 分離液の清澄度を高める。 ) には、 ボウル内で一定 時間、 遠心力の作用を受ける必要がある。 従って、 少なくとも、 始動初期の段階 では、 排出経路はポウル内で所期の液面を保持できる構造を有することが有利で ある。
もっとも、 運転中は、 分離液の排出口が脱水ケーキの排出口よリも低い下側溢 流と呼ばれる態様であっても、 逆に高い上側溢流と呼ばれる態様であってもよい。 上側溢流の場合、 分離液の排出口の高さによつて決定されるボウル内の水面は排 出経路側に堆積した沈殿層によって保持される。
上記排出経路は、 沈殿層からの脱水ケーキの排出量を制限する絞リとして作用 する。 本発明の遠心分離装置においては、 排出経路中の脱水ケーキは、 主として その背面に作用する沈殿層の遠心力による水頭圧によって、 また、 これに加える にスクリューの搬送力、 場合によっては、 ボウル内への処理液の供給圧によって 押し出される。
排出量は、 排出経路から受ける排出抵抗と、 これを押し出す圧力によって定ま るので、 排出経路の開口近傍に沈殿する重成分の堆積層の厚さが小さい場合は、 脱水ケーキに作用する圧密効果も小さく、 排出量も少ない。 従って、 排出経路の 開口近傍の堆積層の厚さは、 スクリユーコンべャによって搔き寄せられる沈殿重 成分の堆積によって次第に増加することとなる。 しかし、 堆積層の厚さが増せば、 押出し力が強くなリ、 排出抵抗に打ち勝って排出量を増大させ、 沈殿重成分の堆 積層の厚さが堆積量と排出量のバランスによって一定に保たれることとなる。 そして、 沈殿層の比重は処理液の比重に比して大きいので、 排出に利用できる 水頭圧は、 従来装置で利用している処理液の水頭圧に比して大きなものとなるが、 特に排出量を絞る効果によって沈殿層が液面よりも高く盛リ上がる状態では、 水 頭圧は極めて大きなものとなり、 脱水ケーキの排出を容易にする。 そして、 この 場合の堆積層による脱水ケーキに対する圧密効果は最大となリ、 排出固形分の低 レ、含水率を達成することが出来る。 図面の簡単な説明
図 1は本発明装置の遠心分離装置の 1実施例の構造を示す側断面図である。 図 2は図 1の A— A断面図である。 図 3は同 B— B断面図である。
図 4は本発明装置の遠心分離装置における排出経路の構造を示す部分断面図で ある。 図 5は排出経路の他の実施の態様を示す部分断面図である。 図 6は排出経 路の、 さらに他の実施の態様を示す部分断面図である。 図 7は従来のデカンタ型 遠心分離装置を示す側断面図である。 図 8はボウル端の他の実施の態様を示す部 分断面図である。 図 9は、 排出経路のさらに他の実施の態様を示す部分断面図で ある。 図 1 0は、 排出経路端の排出口に設けられるバルブの態様を示す部分断面 図である。 図 1 1は、 バルブの他の実施の態様を示す部分断面図である。 発明を実施するための最良の形態
以下、 本発明を実施するための最良の形態について、 図面を参照して説明する。 図 1は本発明装置の 1実施例を示す側断面図、 図 2は図 1の A— A断面図、 図 3は同 B— B断面図、 図 4は要部の拡大図である。
図 1〜図 4において、 1は高速回転されるボウル (外側回転筒) で、 横型円筒 の直胴形をなし、 その前端に付設された排泥室壁 6および後端壁 3の中央部には 中空軸 4 , 5が突設され、 図示を略した軸受に支承されて、 駆動装置によリ高速 回転されるようになっている。 そして、 ボウル 1の前端部に付設された排泥室の 周壁には、 周方向に沿って複数の排泥ロ 7が隔設されている。
この排泥室壁 6と排泥ロ 7とは、 本実施の態様においてはボウルと一体に構成 されているが、 遠心分離装置の基本構成ではなく、 必要によってボウル 1と別体 に作成するなど、 適宜の設計変更が可能である。
また、 ボウル 1の後端壁 3には、 分離液の排出口 8が設けられている。 この排 出口 8は例えば複数の扇形のものを周方向に隔設したリ、 或は、 図 2のように後 端壁 3に多数の小孔を同心状に隔設するのがよい。 1 0はボウル 1内に収容されたスクリユーコンベアで、 横型円筒形の回転胴 1 1の外周に螺旋翼 1 2が卷装されておリ、 その両端部を、 ボウル 1の中空軸 4, 5のボウル内突出部に支承され、 中空軸 4に挿通された回転軸 1 3によリ、 ボウ ル 1と所要の速度差をもって回動されるようになっている。 そして、 回転胴 1 1 内には、 処理液 aの供給室 1 4が設けられ、 その周壁には、 ボウル 1と回転月同 1 1との間の環状空間 1 7と通ずる供給口 1 5が開設されているとともに、 ボウル 1の後部中空軸 5から揷通された処理液の供給管 1 6が供給室 1 4に開口して設 けられている。
ボウル 1の環状空間 1 7の前端には壁 2が設けられ、 この壁 2内に脱水ケーキ bの排出経路 2 0が設けられている。 図 1、 図 4を参照して、 排出経路 2 0のボ ウル内への開口部 2 0 aは、 ボウル 1の周壁内面に接して設けられ、 一方、 本実 施の態様においては、 ボウル外への排出口となる開口部 2 0 bは半径方向への高 さを有している。 従って、 開口部 2 0 aによリ排出経路に侵入できる沈殿物は堆 積層の最も下部の部分のみに限定されることとなる。 一方、 開口部 2 O bは、 運 転初期において、 処理液がこの開口部 2 0 bを溢流しない程度に供給されるもの で、 ボウル内の液面の初期の高さを定める。
この開口部 2 0 bが高過ぎると、 排出経路 2 0内の脱水ケーキに作用する遠心 力がボウル内の堆積層に作用する押圧力を相殺することによって、 脱水ケーキの 排出力を低減してしまうので、 必要な範囲でなるべく低いことが望ましい。 一方、 分離液の排出口 8は、 運転中の環状空間 1 7の液面を定め、 排出口 8の 位置が開口部 2 0 bよりも低いときはいわゆる 「下側溢流」 の状態での運転とな リ、 高いときは 「上側溢流」 の状態での運転となる。 そして、 上側溢流の状態で の運転の場合、 処理液の排出経路 2 0からの流出は、 開口部 2 0 aの近傍に堆積 した沈殿層によって阻止される。
その最も極端な場合は、 分離液の排出は軸心からの排出とすることも可能であ る。
上記の装置において、 脱水処理する処理液 aは、 矢印のように供給管 1 6から 供給室 1 4に入り、 供給口 1 5から環状空間 1 7内に供給され、 ボウル 1及びス クリユーコンベア 1 0の回転の遠心力で固液分離されながら螺旋翼 1 2によリ前 端に向け搬送されるようになる。 そして、 分離された液体分である分離液 cは、 後端壁の排出口 8から機外に排出される。
一方、 沈殿層は螺旋翼 1 2によってボウル 1の前端方向へと搔き寄せられて行 きながら、 さらに遠心力による分離作用を受けて、 残留液分の分離が進み、 その 分離液 cも排出口 8から排出される。
一方、 ボウル 1の前部に搬送された沈殿層は、 環状空間 1 7の前端に、 排出経 路 2 0からの排出量との差分だけ堆積する。 この堆積層は、 沈殿した重成分が例 えば砂であれば比重は約 2 . 5〜3であリ、 水の 1に比して格段に重いため、 こ の堆積層に作用する遠心力による水頭圧も水の場合に比して 2倍以上となる。 さ らに、 分離液排出口 8によって決定される液面の高さが、 回転胴 1 1より低く、 その間に空間が残っていれば、 堆積層は液面を超えて盛リ上がリ、 その比重の大 きさと盛り上がリの高さによって、 排出経路の開口 2 0 a近傍には大きな遠心水 頭圧が作用して堆積層に対する大きな圧密効果を生じ、 この遠心水頭圧とスクリ ユーの搬送力とにより排出経路への押出し作用が生じる。
本発明の遠心分離装置は、 上記の構造に限られるものではなく、 その発明の範 囲内で種々の設計変更が可能である。
図 5は排出経路 2 0の他の実施の態様を示したものである。 この態様において は、 排出経路 2 0が先の実施の態様のように、 その断面が端に傾斜した直線状を なすのではなく、 開口 2 0 a、 2 O bの間に、 壁 2とほとんど平行な部分を含ん でいる。
このような形状の排出経路は、 壁 2の厚さが比較的に薄い場合でも、 開口 2 0 a、 2 O bの間に必要な長さ (すなわち、 排出抵抗) および高さの差を取ること が出来る。
上記の環状空間 1 7の前端壁 2は、 上記の排出経路 2 0を形成するように、 僅 かの間隔をおいて配設された 2つの部材によって構成することが出来る。 すなわ ち、 ボウル内壁近傍から回転軸方向に突設された部材 2 1と、 回転胴 1 1に突設 され、 上記部材 2 1と実質上一定の間隔を置いて延び、 その間に排出経路を形成 する部材 2 2とで構成することが出来る。
あるいは、 図 6に示すように、 これらの排出経路 2 0を形成する部材はボウル 1および回転胴 1 1とは別体とし、 ボルト、 その他の手段によって固定するよう にしてもよい。 この時、 スぺーサ 2 3を介して組み付けるようにし、 スぺーサの 厚さを適宜選択することによって、 その間に形成される排出経路 2 0の太さを変 えることが出来る。 図 6において、 上半分は排出経路が細い場合、 下半分は太い 場合を示す。
このように排出経路の太さを変えることによって排出抵抗を調節することが出 来るが、 部材 2 2先端のボウル内壁からの高さは一定でぁリ、 堆積層中の排出さ れる部分は不変である。
また、 このような部材 2 1と 2 2との間隔調節は、 スぺーサによらず、 ねじな どで各部材を移動可能にすることによってなされてもよいことは云うまでもない。 このような排出抵抗の調節によリ、 排出量と含水率との調節が可能となる。
さらに、 必要に応じ、 部材 2 2の高さを変えることによリ、 堆積層中の排出さ れる部分を変えることもできる。
上記の実施の態様においては、 脱水ケーキの排出経路 2 0が設けられるボウル 前端の壁 2は、 ボウル周壁とスクリユーコンべャ 1 0の対向部分として形成され ていたが、 図 8に示す実施の態様においては、 ボウル前端の壁 3 2はボウル 1と 一体として回転する部材であリ、 スクリユーコンべャ 3 0はボウル 1内に封入さ れる。 このような構造をとる場合は、 ベアリング 3 3への処理液の侵入を防ぐた め、 高圧パッキング 3 4でシールされなければならない。
また、 上記の実施の態様においては、 運転初期において、 処理液がそのまま排 出経路 2 0から流出することがないよう、 ボウル外への開口 2 0 bはボウル内へ の開口 2 0 aよりも高い位置とされていた。 しかし、 運転初期においては排出経 路をバルブ 3 5で閉じるなどの方法にょリ、 図 9に見るように、 開口 2 O bを開 口 2 0 aと同じ高さあるいは開口 2 0 aよりも低い位置とすることが出来、 これ によって脱水ケーキの排出をよリ容易にすることが出来る。
バルブ 3 5は、 ボウルの運転に伴う遠心力で開口することなく、 堆積層の水頭 圧の上昇によってはじめて開放されなければならない。 図 1 0、 図 1 1はこのよ うなバルブの一例としてのニードル弁を示す。
これら図 8ないし図 1 1の実施例においては、 排出経路 2 0は、 ポウル壁の円 周方向に沿って配列された、 複数の排出孔として設けられる。 産業上の利用の可能性
以上説明したように、 本発明の遠心脱水装置は、 従来の遠心分離装置における 常識とは異なる技術思想に基づき、 ボウル内の沈殿物の堆積層のうち、 最も高い 圧密作用を受けている部分のみを直接に排出するので、 脱水ケーキの含水率を従 前の遠心分離装置に例を見ないほどに下げることが出来た。
そして、 含水率の低い堆積層は、 排出が困難となるのが常であつたが、 本発明 の遠心分離装置においては、 排出経路の排出抵抗によって高い堆積層を形成させ ることによリ発生する高い水頭圧を利用して、 特別の排出手段を設けること無く、 排出することを可能にしている。
このため、 比較的に単純な構成で、 比較的に小型の装置でありながら、 高い脱 水率と、 高い分離効率を得ることが出来たものである。

Claims

請求の範囲
l —方向に回転する円筒形のボウルと、 このボウル内でボウルと同軸に、 かつ 回転速度差を有して同方向に回転するスクリュコンベアとを有し、 回転中のボウ ル内に供給される処理液から重成分を遠心力によって分離沈降させ、 これをスク リュコンベアによってボウルの一側に集積させ、 重成分と分離液とを分離排出す る遠心分離装置において、
ボウルの一端壁内に沈殿した重成分の排出経路を設け、 該排出経路のボウル内 への開口がボウル内周壁近傍に設けられ、 沈殿層は、 主として該開口近傍の重成 分の堆積層の遠心水頭圧によつて排出されることを特徴とする遠心分離装置
2 上記排出経路は排出量を制限する絞リ通路となってぉリ、 これによつて上記 排出経路の開口近傍の重成分の堆積層を形成させることを特徴とする請求項 1の 遠心分離装置
3 上記排出経路からの堆積重成分のボウル外への排出口は、 ボウル半径よリ小 さな半径位置に設けられることを特徴とする請求項 1あるいは請求項 2の遠心分
4 ボウル内壁近傍から回転軸方向に延びる部材と、 これと実質上一定の間隔を 置いて延び、 上記部材との間に排出経路を形成する部材とを有することを特徴と する請求項 1あるいは請求項 2の遠心分離装置
5 上記ボウル内壁近傍から回転軸方向に延びる部材は、 円錐形内面を有する部 材であり、 これと一定の間隔を置いて延びる部材は、 円錐形外面を有する部材で あることを特徴とする請求項 4の遠心分離装置
6 上記ボウル内壁近傍から回転軸方向に延びる部材と、 これと一定の間隔を置 いて延びる部材とは、 交換可能にボウルに配設されていることを特徴とする請求 項 4の遠心分離装置
7 上記ボウル内壁近傍から回転軸方向に延びる部材は、 円錐形内面を有する部 材であリ、 これと一定の間隔を置いて延びる部材は、 円錐形外面を有する部材で あることを特徴とする請求項 6の遠心分離装置
8 上記ボウル内壁近傍から回転軸方向に延びる部材と、 これと一定の間隔を置 いて延びる部材とは、 少なくともその一方がボウル軸方向に移動可能であること を特徴とする請求項 4の遠心分離装置
9 上記ボウル内壁近傍から回転軸方向に延びる部材は、 円錐形内面を有する部 材であり、 これと一定の間隔を置いて延びる部材は、 円錐形外面を有する部材で あることを特徴とする請求項 8の遠心分離装置
PCT/JP2001/000670 2000-02-10 2001-01-31 Separateur centrifuge WO2001058596A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2001230553A AU2001230553B2 (en) 2000-02-10 2001-01-31 Centrifugal separator
EP01902708A EP1304170B1 (en) 2000-02-10 2001-01-31 Centrifugal separator
AU3055301A AU3055301A (en) 2000-02-10 2001-01-31 Centrifugal separator
DE60124554T DE60124554T2 (de) 2000-02-10 2001-01-31 Zentrifugalabscheider
US10/182,709 US6780148B2 (en) 2000-02-10 2001-01-31 Decanter type centrifugal separator with restriction effected discharge route
NZ520746A NZ520746A (en) 2000-02-10 2001-01-31 Centrifugal separator comprising a cylindrical bowl and a screw conveyor
CA002399443A CA2399443C (en) 2000-02-10 2001-01-31 Centrifugal separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000032896A JP4153138B2 (ja) 2000-02-10 2000-02-10 遠心分離装置
JP2000-32896 2000-02-10

Publications (1)

Publication Number Publication Date
WO2001058596A1 true WO2001058596A1 (fr) 2001-08-16

Family

ID=18557448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000670 WO2001058596A1 (fr) 2000-02-10 2001-01-31 Separateur centrifuge

Country Status (11)

Country Link
US (1) US6780148B2 (ja)
EP (1) EP1304170B1 (ja)
JP (1) JP4153138B2 (ja)
KR (1) KR100741680B1 (ja)
CN (1) CN1217743C (ja)
AU (2) AU3055301A (ja)
CA (1) CA2399443C (ja)
DE (1) DE60124554T2 (ja)
NZ (1) NZ520746A (ja)
TW (1) TW490321B (ja)
WO (1) WO2001058596A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780148B2 (en) * 2000-02-10 2004-08-24 Kotobuki Engineering & Manufacturing Co., Ltd. Decanter type centrifugal separator with restriction effected discharge route
US9463189B2 (en) 2007-01-23 2016-10-11 Bpv Holdings, Llc Sulfonyl-substituted bicyclic compounds as PPAR modulators for the treatment of non-alcoholic steatohepatitis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK176946B1 (da) * 2007-05-09 2010-06-14 Alfa Laval Corp Ab Centrifugalseparator og et væskefaseafløbsportelement
DK178254B1 (en) * 2010-11-12 2015-10-12 Alfa Laval Corp Ab Centrifugal separator, abrasion resistant element and set of abrasion resistant elements for a centrifugal separator
JP5191565B2 (ja) 2011-02-25 2013-05-08 寿工業株式会社 遠心脱水方法及び遠心脱水装置
CN103316780A (zh) * 2013-05-28 2013-09-25 浙江大金离心机有限公司 一种卧螺式离心机
JP6278307B2 (ja) * 2014-01-14 2018-02-14 三菱重工環境・化学エンジニアリング株式会社 遠心脱水装置
KR101706975B1 (ko) 2014-02-14 2017-02-16 주식회사 케이씨텍 슬러리 조성물의 제조 방법 및 이에 의해 제조된 슬러리 조성물
CN106694240B (zh) * 2015-08-26 2019-04-30 苏州瑞威离心分离技术有限公司 卧螺卸料离心机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806241A (en) * 1929-03-09 1931-05-19 Dupuis Fernand Centrifugal separator
JPS363447B1 (ja) * 1958-02-13 1961-04-18
US3096282A (en) * 1957-12-30 1963-07-02 Sharples Corp Improvement in centrifuges
US3098820A (en) * 1960-11-23 1963-07-23 Sharples Corp Centrifuge
JPS51150776A (en) * 1975-06-11 1976-12-24 Hoechst Ag Method of separating solid matters from suspensions
JPS57156055A (en) * 1981-03-23 1982-09-27 Kobe Steel Ltd Centrifugal concentrator
JPS58156359A (ja) * 1982-03-11 1983-09-17 Kotobuki Giken Kogyo Kk ボウル型遠心沈降分離機
JPS6245363A (ja) * 1985-08-23 1987-02-27 Kotobuki Giken Kogyo Kk 遠心濃縮機
US5261869A (en) * 1992-04-06 1993-11-16 Alfa Laval Separation, Inc. Decanter centrifuge having discontinuous flights in the beach area
JPH0957153A (ja) * 1995-08-21 1997-03-04 Tsukishima Kikai Co Ltd 遠心濃縮機
JP2000237630A (ja) * 1999-02-19 2000-09-05 Kubota Corp 遠心脱水装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE564610A (ja) 1957-02-18
US3172851A (en) * 1962-08-31 1965-03-09 Centrifuging liquid-solids mixtures
DE3005885A1 (de) * 1980-02-16 1981-09-03 Klöckner-Humboldt-Deutz AG, 5000 Köln Vollmantel-schneckenzentrifuge
DE3620912A1 (de) * 1986-06-21 1987-12-23 Kloeckner Humboldt Deutz Ag Zentrifuge zum kontinuierlichen trennen von stoffen unterschiedlicher dichte
DE3911320A1 (de) * 1989-04-07 1990-10-11 Kloeckner Humboldt Deutz Ag Zentrifuge zum kontinuierlichen trennen von stoffen unterschiedlicher dichte
JPH07508453A (ja) * 1992-04-10 1995-09-21 ワーマン・インターナショナル・リミテッド 材料を分離するための装置
JP2720373B2 (ja) * 1992-12-18 1998-03-04 月島機械株式会社 遠心濃縮機
US5695442A (en) * 1995-06-06 1997-12-09 Baker Hughes Incorporated Decanter centrifuge and associated method for producing cake with reduced moisture content and high throughput
JP3402418B2 (ja) * 1995-08-21 2003-05-06 月島機械株式会社 遠心濃縮機
US5653674A (en) * 1996-03-27 1997-08-05 Baker Hughes Incorporated Decanter centrifuge with discharge opening adjustment control and associated method of operating
JP4153138B2 (ja) * 2000-02-10 2008-09-17 株式会社クボタ 遠心分離装置
JP2002153772A (ja) * 2000-11-22 2002-05-28 Kubota Corp 遠心分離装置
JP2002153771A (ja) * 2000-11-22 2002-05-28 Kubota Corp 遠心分離装置
JP2002153773A (ja) * 2000-11-22 2002-05-28 Kubota Corp 遠心分離装置
JP2002239415A (ja) * 2001-02-21 2002-08-27 Kubota Corp 遠心分離装置
JP2002239416A (ja) * 2001-02-21 2002-08-27 Kubota Corp 遠心分離装置
JP2002273269A (ja) * 2001-03-22 2002-09-24 Kubota Corp 遠心分離装置
JP3997059B2 (ja) * 2001-03-28 2007-10-24 株式会社クボタ 遠心分離装置
JP3942402B2 (ja) * 2001-11-01 2007-07-11 寿工業株式会社 遠心分離装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806241A (en) * 1929-03-09 1931-05-19 Dupuis Fernand Centrifugal separator
US3096282A (en) * 1957-12-30 1963-07-02 Sharples Corp Improvement in centrifuges
JPS363447B1 (ja) * 1958-02-13 1961-04-18
US3098820A (en) * 1960-11-23 1963-07-23 Sharples Corp Centrifuge
JPS51150776A (en) * 1975-06-11 1976-12-24 Hoechst Ag Method of separating solid matters from suspensions
JPS57156055A (en) * 1981-03-23 1982-09-27 Kobe Steel Ltd Centrifugal concentrator
JPS58156359A (ja) * 1982-03-11 1983-09-17 Kotobuki Giken Kogyo Kk ボウル型遠心沈降分離機
JPS6245363A (ja) * 1985-08-23 1987-02-27 Kotobuki Giken Kogyo Kk 遠心濃縮機
US5261869A (en) * 1992-04-06 1993-11-16 Alfa Laval Separation, Inc. Decanter centrifuge having discontinuous flights in the beach area
JPH0957153A (ja) * 1995-08-21 1997-03-04 Tsukishima Kikai Co Ltd 遠心濃縮機
JP2000237630A (ja) * 1999-02-19 2000-09-05 Kubota Corp 遠心脱水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1304170A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780148B2 (en) * 2000-02-10 2004-08-24 Kotobuki Engineering & Manufacturing Co., Ltd. Decanter type centrifugal separator with restriction effected discharge route
US9463189B2 (en) 2007-01-23 2016-10-11 Bpv Holdings, Llc Sulfonyl-substituted bicyclic compounds as PPAR modulators for the treatment of non-alcoholic steatohepatitis

Also Published As

Publication number Publication date
EP1304170B1 (en) 2006-11-15
EP1304170A1 (en) 2003-04-23
CN1217743C (zh) 2005-09-07
JP4153138B2 (ja) 2008-09-17
CA2399443C (en) 2009-03-31
CA2399443A1 (en) 2001-08-16
TW490321B (en) 2002-06-11
AU3055301A (en) 2001-08-20
KR20020073545A (ko) 2002-09-26
US20030013591A1 (en) 2003-01-16
CN1398202A (zh) 2003-02-19
AU2001230553B2 (en) 2005-09-15
DE60124554D1 (de) 2006-12-28
JP2001219097A (ja) 2001-08-14
EP1304170A4 (en) 2004-08-25
NZ520746A (en) 2005-02-25
DE60124554T2 (de) 2007-09-20
US6780148B2 (en) 2004-08-24
KR100741680B1 (ko) 2007-07-23

Similar Documents

Publication Publication Date Title
US6248053B1 (en) Centrifugal separator comprising tubular elements
US8794448B2 (en) Separation device
US4037781A (en) Decanter centrifuge apparatus
US3955756A (en) Solid-shell screw-conveyor centrifuge
AU2006257485B2 (en) Three-phase solid bowl screw centrifuge and method of controlling the separating process
US4362620A (en) Partitioned centrifuge
US5306225A (en) Decanter centrifuge having a disc-like dip weir with a hole
WO2001058596A1 (fr) Separateur centrifuge
US6533713B1 (en) Entraining device for a centrifugal separator
DK159908B (da) Centrifuge med energigenindvinding
US6238329B1 (en) Centrifugal separator for mixed immiscible fluids
JP2002153772A (ja) 遠心分離装置
JP2006272058A (ja) 遠心分離装置
JP2000350946A (ja) スクリーンボウル型デカンタ型遠心分離機
JP3942402B2 (ja) 遠心分離装置
JP3945856B2 (ja) 液・固−液分離用スクリュウ型デカンター
JP2002153771A (ja) 遠心分離装置
CN219615809U (zh) 双椎型三相分离卧式螺旋离心机
JPH04310255A (ja) スクリュウ型デカンタ−
JPH0459065A (ja) スクリュー型遠心分離機
JP2002273269A (ja) 遠心分離装置
JP2002153773A (ja) 遠心分離装置
KR970002601Y1 (ko) 수분함량이 적은 고형물의 원심분리기
JP2002273270A (ja) 遠心分離装置
SU822912A1 (ru) Устройство дл очистки жидкости

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2399443

Country of ref document: CA

Ref document number: 10182709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018047432

Country of ref document: CN

Ref document number: 1020027010360

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 520746

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001902708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001230553

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020027010360

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001902708

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 520746

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 520746

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001230553

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2001902708

Country of ref document: EP