WO2001057089A1 - Antibody for detecting chlamydia pneumoniae - Google Patents

Antibody for detecting chlamydia pneumoniae Download PDF

Info

Publication number
WO2001057089A1
WO2001057089A1 PCT/JP2001/000625 JP0100625W WO0157089A1 WO 2001057089 A1 WO2001057089 A1 WO 2001057089A1 JP 0100625 W JP0100625 W JP 0100625W WO 0157089 A1 WO0157089 A1 WO 0157089A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
protein
microorganism
ribosomal protein
chlamydia pneumoniae
Prior art date
Application number
PCT/JP2001/000625
Other languages
English (en)
French (fr)
Inventor
Monzur Rahman
Takashi Etoh
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to AU2001230531A priority Critical patent/AU2001230531A1/en
Priority to CA2398467A priority patent/CA2398467C/en
Priority to JP2001557920A priority patent/JP5331284B2/ja
Publication of WO2001057089A1 publication Critical patent/WO2001057089A1/ja
Priority to US10/386,050 priority patent/US20040014943A1/en
Priority to US12/424,370 priority patent/US20090269789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1217Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1242Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/125Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Chlamydiales (O)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1253Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Mycoplasmatales, e.g. Pleuropneumonia-like organisms [PPLO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1275Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56927Chlamydia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56933Mycoplasma

Definitions

  • the present invention provides an antibody useful for detecting organisms belonging to Chlamydia pneumoniae, which is a common microorganism causing pneumonia, a method for detecting the microorganism, a reagent kit for detecting the microorganism, and a method for detecting the microorganism.
  • the present invention relates to a method for producing an antibody.
  • the present invention is important medically, especially for the diagnosis of atypical pneumonia caused by Chlamydia pneumoniae.
  • the present invention is useful for detecting a microorganism Chlamydia pneumoniae contained in a specimen, for example, a throat swab, a tissue sample, and a specimen collected from a body fluid.
  • a specimen for example, a throat swab, a tissue sample, and a specimen collected from a body fluid.
  • Diagnosis of microbial infection is usually confirmed by detecting the causative organism at the site of infection, or by detecting antibodies to the causative organism in serum or body fluids. In particular, this diagnosis is important in that the detection of the causative organism enables rapid treatment of the patient.
  • infectious disease-causing bacteria are detected by separating and culturing the causative bacteria and then identifying them based on their physiological, biochemical or structural characteristics. (PCR) or specific nucleic acid hybridization to amplify and detect this by genetic diagnosis and immunological method to detect the causative organism using the specific reaction between the antibody and the antigen marker of the causative organism Classified by method.
  • PCR PCR
  • specific nucleic acid hybridization to amplify and detect this by genetic diagnosis and immunological method to detect the causative organism using the specific reaction between the antibody and the antigen marker of the causative organism Classified by method.
  • Chlamydia pneumoniae is a common cause of pneumonia worldwide. A small, non-motile, gram-negative bacterium that selectively penetrates humans and causes disease. The animal that becomes the pathogen is unknown. The seroprevalence is 40-50% for adults in their 30s and 40s (Hyman, Roblin et al. 1995). This microorganism causes laryngitis, bronchitis and mild pneumonia.
  • This fungus is a very small obligate parasite that grows in the host cell cytoplasm.
  • the growth of Chlamydia pneumoniae in tissue culture is very slow (Godzik, O 'Brien et al. 1995) and it takes at least 3-5 days to identify bacteria in culture (Essig, Zucs et al. 1997). Therefore, the Gram stain method and the culture method cannot be applied as a diagnostic method for rapid detection as a pathogenic bacterium. Therefore, an immunological method using antibodies is often used as a rapid diagnostic method for chlamydia.
  • the genus-specific antigen lipopolysaccharide (LPS)
  • LPS lipopolysaccharide
  • the present invention relates to a protein which is universally present in all microorganisms as a molecule having the same function, and which is useful as a protein antigen for obtaining an antibody. Normally, such molecules are only accompanied by small structural changes. Such large-scale structural changes to the same functional universal molecule can have serious adverse effects on the survival of an organism.
  • the present inventors have found a protein in which the same function is preserved in all microorganisms as a useful antigen protein. Usually, it is expected that the structural change of such a protein is extremely small. Surprisingly, however, antibodies against the protein are specific to the species or genus of the microorganism, and antibodies against the protein have a variety that can be used to identify the species or genus of the microorganism. The target microorganism was found to be capable of detecting all its serotypes.
  • Ribosomal Protein L7 / L12 protein which is a kind of ribosomal protein.
  • Ribosomal Protein L7 / L12 protein is a protein with a molecular weight of about 13 kilodaltons and is known to exist as a ribosomal protein essential for protein synthesis.
  • the entire amino acid sequence of Ribosomal Protein L7 / L12 protein has been analyzed for some microorganisms including Chlamydia pneumoniae.
  • the present inventors have noticed that although this molecule is similar between microorganisms, some of the molecules have a structural portion unique to each microorganism, and have developed antibodies against the Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae. It has been found that the use of this method makes it possible to detect serotypes of various microorganisms and bacteria that are species-specific and all within the same strain.
  • the present inventors have found that an antibody specific to the protein of Chlamydia pneumoniae can be obtained and that it is possible to specifically detect Chlamydia pneumoniae by using the antibody, and have completed the present invention.
  • a monoclonal antibody specific to the Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae has been found and developed.
  • This antibody is novel and differs from any conventionally known antibodies in that it has the property of specifically reacting with the protein.
  • SEQ ID NOS: 1 and 2 are Ribosomal Protein L7 / L12 of Chlam dia tmeumoniae.
  • the DNA sequence of the gene (NCBI database accession # NC # 000922) and the corresponding amino acid sequence (NCBI database accession # AE001593.1, NCBI database).
  • the left and right ends of the amino acid sequence described in the sequence listing are the amino terminal (hereinafter referred to as “N-terminal”) and the terminal riboxyl group (hereinafter referred to as “C-terminal”), respectively. 'End and 3' end.
  • the amino acid sequence of the cross match test is indicated by a single letter abbreviation for amino acids.
  • the notation “+” in the cross match test indicates that different amino acids have similar properties, such as force and hydrophobicity, and the blank “” indicates that they are completely different amino acids including the properties.
  • a series of molecular biology experiments of the genetic manipulation described in the present invention can be performed by a method described in an ordinary experimental manual. Examples of the above-mentioned ordinary experimental book include, for example, C: Molecular Cloning, A laboratory manual, Cold Spring Harber Laboratory Press, Sambrook, J. et al. (1989).
  • microorganism means Chlamydia pneumoniae, and in particular, refers to a microorganism having pathogenicity in the respiratory tract and having a high diagnostic significance as a causative organism of Qli ⁇ ! Z ⁇ infection.
  • an antibody that specifically reacts with a microorganism refers to an antibody that specifically reacts with a species or genus of a microorganism, but in a diagnosis of a microbial infectious disease, an antibody that specifically reacts with a species of a microorganism. Is particularly useful.
  • an antibody refers to a polyclonal antibody or a monoclonal antibody, and can be prepared using the full-length Ribosomal Protein L7 / L12 protein or a partial peptide thereof.
  • the length of the peptide for preparing the antibody is not particularly limited, but in the case of an antibody against the Ribosomal Protein L7 / L12 protein, it is sufficient that the length be characterized by this protein, preferably 5 amino acids or more, particularly preferably. May use a peptide of 8 amino acids or more.
  • This peptide or full-length protein can be used as is, or after cross-linking with a carrier protein such as KLH (keyhole-limpet hemocyanin) or BSA (bovine serum albumin), and then inoculated into an animal with an adjuvant if necessary, and the serum can be collected.
  • a carrier protein such as KLH (keyhole-limpet hemocyanin) or BSA (bovine serum albumin)
  • An antiserum containing an antibody (polyclonal antibody) that recognizes Ribosomal Protein L7 / L12 protein can be obtained.
  • antibodies can be purified from antisera and used.
  • the animals to be inoculated are sheep, magpies, goats, magpies, mice, rats, and the like. Particularly, for the production of polyclonal antibodies, sheep, magpies and the like are preferable.
  • a monoclonal antibody can be obtained by a known method for producing hybridoma cells. In this case, a mouse is preferable.
  • the fusion protein is obtained by purifying the fusion protein with the full-length amino acid sequence of the protein or 5 or more residues, desirably 8 or more residues, and daltathione S-transferase (GST) or the like.
  • GST daltathione S-transferase
  • Antibodies can be obtained by the following method or other similar methods, but are not limited to these methods.
  • peptide fragments are synthesized in regions of other microorganisms with little similarity to the amino acid sequence of the protein, and used as immunogens.
  • the desired antibody can be obtained by preparing a polyclonal antibody or a monoclonal antibody.
  • the full-length of the gene can be obtained by using a conventional gene manipulation technique such as gene amplification by PCR using the DNA sequence at both ends of the known gene as a probe and hybridization using a homologous partial sequence as a ⁇ ⁇ ⁇ ⁇ -type probe. You can get an array.
  • a conventional gene manipulation technique such as gene amplification by PCR using the DNA sequence at both ends of the known gene as a probe and hybridization using a homologous partial sequence as a ⁇ ⁇ ⁇ ⁇ -type probe. You can get an array.
  • a fusion gene with another protein gene is constructed, and the corresponding fusion gene is inserted into a host by a known gene transfer method using E. coli or the like as a host, and expressed in a large amount, and then an antibody against the protein used as the fusion protein is obtained.
  • the target protein antigen can be obtained by purifying the expressed protein by an affinity column method or the like. In this case, since the full-length protein of Ribosomal Protein L7 / L12 serves as an antigen, obtaining an antibody against an amino acid portion conserved between microorganisms does not meet the purpose of the present invention.
  • a hybridoma that produces a monoclonal antibody is obtained by a known method, and a clone that produces an antibody that reacts only with the relevant microorganism is selected.
  • the desired antibody can be obtained.
  • the amino acid sequence of Ribosomal Protein L7 / L12 protein is 50-60% homologous depending on the bacterial species. Based on the sequence of the homologous portion, the protein gene can be easily obtained by using a conventional gene manipulation technique such as gene amplification of a specific sequence portion by PCR or a hybridization method using the homologous portion sequence as a type I probe. be able to.
  • a fusion gene with another protein gene is constructed, and the relevant fusion gene is inserted into a host by a known gene transfer technique using E. coli or the like as a host, expressed in a large amount, and then an antibody against the protein used as the fusion protein.
  • the target protein antigen can be obtained by purifying the expressed protein by an affinity column method or the like. In this case, since the full-length protein of Ribosomal Protein L7 / U2 serves as an antigen, obtaining an antibody against an amino acid portion conserved between microorganisms does not meet the purpose of the present invention.
  • the amino acid sequence of the Ribosomal Protein L7 / L12 protein corresponds to the consensus sequence conserved between microorganisms.
  • a synthetic peptide of 5 to 30 amino acids is prepared, and a polyclonal antibody or a monoclonal antibody is prepared for the peptide sequence by a known method.
  • highly purified Ribosomal Protein L7 / L12 protein can be obtained.
  • the protein is purified by known methods such as ion-exchange chromatography, hydrophobic chromatography, gel filtration, and the like.
  • the purified protein can be obtained by identifying the eluted fraction of the L7 / L12 protein.
  • the antibodies of the present invention specific to various microorganisms obtained by the above methods a), b) and c) can be obtained by various immunological methods utilizing various diagnostic reagents and kits specific to microorganisms. Can be used for analytical methods.
  • this antibody can be obtained by a known measurement method such as agglutination reaction in which the antibody is adsorbed on polystyrene latex particles, an ELISA method known in a microtiter plate, an existing immunochromatography method, an existing immunochromatography method, a colored particle or chromogenic ability.
  • Microbial diagnostic methods using antibodies include agglutination reactions in which the antibodies are adsorbed onto polystyrene latex particles, ELISA, which is a well-known technique performed in a microtiter plate, the existing Immunoku Mato method, colored particles, and chromogenic ability.
  • an antibody reaction is carried out on an optical thin film formed of silicon, silicon nitride, and the like described in Japanese Patent Application Laid-Open No. Hei 7-509565 as a particularly useful microbial diagnostic method using an antibody.
  • methods for extracting intracellular marker antigens from microorganisms required for the detection method include a treatment method using an extraction reagent using various surfactants such as TritonX-100, Tween-20, and an appropriate protease.
  • surfactants such as TritonX-100, Tween-20, and an appropriate protease.
  • Known cell structure crushing methods such as enzyme treatment using the above enzymes and crushing of microbial cells by physical methods, are used. It is desirable to set the optimal extraction conditions with the reagent for each microorganism by combining surfactants and the like.
  • the reagent kit for detecting a microorganism using an antibody in the present invention corresponds to a reagent kit for detection using the detection method.
  • the amino acid sequence and the DNA sequence of the Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae are shown in SEQ ID NOs: 1 and 2 in the Sequence Listing. Therefore, in the case of this microorganism, it is possible to compare the amino acid sequence of the Ribosoraal Protein L7 / L12 protein with the homologous protein of a similar microorganism described in the sequence listing as “cross-match”. Synthesizing a peptide having a segment with low homology and producing a polyclonal or monoclonal antibody against the peptide makes it possible to omit the selection of those having specificity for microorganisms.
  • PCR primers were prepared based on the N-terminal and C-terminal sequences from the DNA sequence of the Ribosomal Protein L7 / L12 protein of the microorganism. Using the homology of these PCR primers, a DNA fragment can be amplified by PCR using genomic DNA, extracted, and a fragment of the Chlamydia pneu iae Ribosomal Protein L7 / L12 gene can be obtained by a conventional method. it can. The full length of the Ribosomal Protein L7 / L12 gene of Chlamydia pne niae can be determined by analyzing the DNA sequence information of these fragments.
  • the obtained Ribosomal Protein L7 / L12 gene of Chlamydia pneumoniae constitutes a fusion protein gene with, for example, GST etc., constructs an expression vector using an appropriate expression plasmid, and then transforms E. coli or the like to transform the protein. It can be expressed in large quantities.
  • the transformed Escherichia coli is cultured in an appropriate amount, and the cell lysate is purified by an affinity column using GST to obtain a Chlamydia Epeumoniae Ribosomal Protein L7 / L12 protein and a GST fusion protein.
  • This protein as it is, or after cutting the GST portion, is used to establish a root-numbered hybridoma clone by a known method as an antigen protein, and the Chlamydia pne-excited niae cells are in a cell lysate or Chlamydia pneumoniae It is also possible to obtain the desired specific monoclonal antibody by selecting an antibody that shows a specific reaction to the Protein L7 / L12 protein.
  • Antibodies prepared according to the present invention can be obtained by a known measurement method such as an agglutination reaction in which the antibody is adsorbed on polystyrene latex particles, a known technique performed in a microtiter plate, an ELISA method, an existing immunochromatography method, and coloring.
  • the present invention can be used for all known immunoassay techniques such as Sandwich tissue using particles or particles having a coloring ability, or magnetic particles coated with a capture antibody together with the antibody labeled with an enzyme or a fluorescent substance.
  • the antibody prepared according to the present invention can function as a so-called capture antibody that captures the antigen protein in a solid phase or a liquid phase in all immunoassay techniques, and at the same time, an enzyme such as peroxidase-specific phosphatase.
  • an enzyme such as peroxidase-specific phosphatase.
  • Chlamydia pneumoniae (ATCC VR-1310, purchased and purchased from ATCC) was cultured on a monolayer of HL cells.
  • the detailed culturing method of Chlamydia pneumoniae followed the description of Kuo et al. (Cles and Stamm 1990; Kuo and Grayston 1990; Yoshizawa, Dairiki et al. 1992).
  • C0 were cultured microorganisms for 5 days under the conditions of 37t, 5% C0 2 at 2 incubator base over the data.
  • Infected cells were collected by centrifugation, and suspended in TE buffer (manufactured by Wako Pure Chemical Industries) to a final concentration of about 5 ⁇ 10 7 cells / ml.
  • This solution was centrifuged with a microcentrifuge at 12, OOOrpnu. For 5 minutes at 4 and the aqueous fraction was transferred to a new microcentrifuge tube. A 0.6-fold amount of isoprono was added thereto, and the tube was shaken well to form a DNA precipitate. The white DNA precipitate was picked up with a glass rod and transferred to another microfuge tube containing 1 ml of 70% ethanol (cooled to -20). Thereafter, the tube was centrifuged at 10,000 rpm for 5 minutes, and the supernatant was gently removed. One ml of 70% ethanol was added and the mixture was centrifuged for another 5 minutes.
  • This mixture was subjected to 5 cycles of 1 minute at 95, 2 minutes at 50, and 3 minutes at 72 using the TaKaRa PCR Thermal Cycler 480, and then 95 minutes of Cl, 2 minutes at 60, and 72 ⁇ 3 minutes for 25 minutes.
  • electrophoresis was carried out in a 1.5% agarose gel, stained with ethidium Mabuchi Mide (manufactured by Nippon Gene Co., Ltd.), and observed under ultraviolet light. After digestion with the restriction enzymes BamHI and Xhol, electrophoresis was performed in a 1.5% agarose gel and stained with ethidium amide. This band was purified with SuprecOl (Takara Shuzo Co., Ltd.) and is a common vector.
  • This vector can function as an expression vector for a target molecule capable of expressing a fusion protein with a GST protein by incorporating a target gene fragment into an appropriate restriction enzyme site.
  • vector PGEX-6P-1 and the above DNA were mixed at a molar ratio of 1: 3, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen).
  • Vector PGEX-6P-1 containing DNA was introduced into Escherichia coli one-shot competent cells by a genetic method, and then transferred to a semi-solid culture plate containing 50; ug / ml ampicillin (Sigma). is there LB L-broth agar (Takara Shuzo) was inoculated. Plates were incubated at 37 for 12 hours, and grown colonies were randomly selected and inoculated into L-broth cultures containing the same concentration of ampicillin.
  • the nucleotide sequence of the inserted DNA fragment was determined using a fluorescent sequencer manufactured by Applied Biosystems. .
  • Preparation of the sequence sample was performed using PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystemsi ⁇ 3 ⁇ 4).
  • a reaction solution of .9.51, a 0.81 pmol / l T7 promoter-primer (Gibco BRL) in 4.01, and a 0.16 ⁇ g // z 1 template DNA in 6.5 / 1; was added to a 0.5 ml microtube and mixed.
  • 25 cycles of PCR amplification were performed.
  • one cycle consists of a treatment at 96 ° C for 30 seconds, a treatment at 55 "C for 15 seconds, and a treatment at 60 ° C for 4 minutes.
  • Escherichia coli containing the expression vector was cultured in LB medium at 37 ml for 50 days.
  • 500ml 2 Double concentration YT medium was heated at 37 for 1 hour.
  • 1 ml of the cultured E. coli solution was placed in 500 ml of the above-mentioned medium.
  • 550 / l of 100 mM isopropyl; 3-D (-)-thiogalactobyranoside (IPTG) was introduced, and the cells were cultured for 4 hours.
  • the product was collected, transferred to a 250 ml centrifuge tube, and centrifuged at 7000 rpni for 10 minutes.
  • the supernatant was discarded, and the cells were dissolved in 25 ml of 50 mM Tris buffer, pH 7.4, and 25 ml of Lysis buffer containing 25% sucrose. An additional 10% NP-40 1.25 mL 1M MgCl 2 125 ⁇ l was added and transferred to a plastic tube. Ultrasonic treatment was performed 5 times for 1 minute under ice cooling. Thereafter, the mixture was centrifuged at 12, OOO rpm for 15 minutes, and the supernatant was recovered.
  • the supernatant was adsorbed onto a glutathione agarose column conditioned with PBS. Then, 20 m Tris buffer pH7. 4, 4. The column was washed two base head volume fraction with a washing solution containing 2raM MgCl 2, lmM Jichiosurei Torr (DTT). Elution was performed in 50 mM Tris buffer pH 9.6 containing 5 mM daltathione. The protein content of the eluted fraction was determined by the pigment binding method (Bradford method; BioKad Co.), and the main fraction was obtained.
  • the purity of the obtained purified GST fusion Ribosomal Protein L7 / L12 protein was confirmed by electrophoresis to be about 75%, and sufficient purity as an immunogen could be secured.
  • mice 100 ⁇ g of GST fusion Ribosomal Protein L7 / L12 protein antigen of Chlamydia pne intestinal niae was dissolved in 200 ⁇ l of PBS, and then Freund's complete adjuvant was added at 200 / zl and mixed. After emulsification, 200 ⁇ l was injected intraperitoneally. The same emulsion antigen was injected intraperitoneally at 2, 4 and 6 weeks later. Two-fold concentrations of the emulsified antigen were injected intraperitoneally after 10 and 14 weeks. The spleen was removed 3 weeks after the end of the immunization at the end;
  • myeloma cells were placed in a glass tube and mixed well with 10 8 spleen cells of the mouse aseptically removed, centrifuged at 1500 rpm for 5 minutes, the supernatant was discarded, and the cells were mixed well.
  • the myeloma cells used for cell fusion were cultured in RPMI1640 medium containing 10% fetal bovine serum using an NS-1 cell line, and 0.1 ⁇ m of azaguanine, 0.5 ⁇ m from 2 weeks before cell fusion.
  • RPMI1640 medium containing g / ml MC-210 and 10% fetal bovine serum
  • the cells were further cultured for 1 week in RPMI1640 medium containing 10% fetal bovine serum.
  • 50 ml of RPMI 1640 culture maintained at 37 ° C was added to the mixed cell sample, and centrifuged at 1,500 rpni. After removing the supernatant, 1 ml of 50% polyethylene glycol maintained at 37X: was added and stirred for 1 minute. 10 ml of RPMI 1640 culture maintained at 37 ⁇ was added, and the mixture was vigorously stirred by aspirating and discharging with a sterilized pipette for about 5 minutes.
  • 1% bovine serum albumin solution (in PBS) 200Z1 was added, and reacted at room temperature for 1 hour for blocking. After removing the supernatant, the product was washed with a washing solution (0.02% Tween 20, PBS). To this, 100 ml of a culture solution of the fused cells was added, and reacted at room temperature for 2 hours. The supernatant was removed, and the precipitate was washed with a washing solution. Next, a goat anti-mouse IgG antibody solution ( ⁇ ) labeled with peroxidase at a concentration of 50 ng / ml was added and reacted at room temperature for 1 hour.
  • a washing solution 0.02% Tween 20, PBS
  • the cells in the positive well were collected and cultured in a HAT medium in a 24-well plastic plate.
  • the antibody activity in the culture supernatant was similarly assayed by the aforementioned ELISA method, and cells positive for reaction with the Ribosomal Protein L7 / L12 'protein were collected. Repeat the same dilution assay and cloning procedure. Again, a total of 5 clones of hybridoma CPRB-1 to 5 were obtained.
  • Monoclonal antibodies were produced and recovered using the positive hybridoma cells obtained as described above according to a standard method.
  • the obtained solution containing the antibody was absorbed into a Protein A column (5 ml, manufactured by Pharmacia), and washed with 3 volumes of PBS. Then eluted with Kuen acid gentle species i solution P H3. The antibody fraction was collected to obtain a monoclonal antibody produced by each hybridoma. Evaluation was performed by ELISA using the monoclonal antibodies derived from the five hybridoma strains.
  • a sandwich assay was used for evaluation of the monoclonal antibody.
  • the prepared monoclonal antibody was bound to peroxidase and used as an antibody for detection.
  • Enzyme labeling is performed using horseradish peroxidase (Sig swelling grade VI) and binding is performed using the reagent S-acetylthioacetic acid N-hydroxysuccinimide.
  • Ribosomal Protein of Chlamydia pneumoniae obtained by the method described in Example 1
  • Supernatants of cells treated with L7 / L12 protein or Triton X-100 were used as antigens.
  • About 1.2 ml of physiological saline containing 100 g of the antigen was emulsified with 1.5 ml of Freund's adjuvant.
  • the emulsion was subcutaneously injected into SPF Japanese White Egret to immunize Egret. Immunization was performed 5 to 6 times every two weeks, and the antibody titer was confirmed.
  • An affinity column was prepared by immobilizing the Ribosomal Protein L7 / L12 protein of Chlamydia pneumoniae.
  • a HiTrap NHS activation column (1 ml, manufactured by Pharmacia) was used.
  • a PBS solution (lrag / ml) of Ribosomal Protein L7 / L12 protein was added.
  • the blocking reagent was added and equilibrated with PBS.
  • Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein-immobilized affinity column the supernatant of Chlamydia pneumoniae-treated Triton X-100 treated cells was used as an antigen to obtain anti-polysaccharide in antiserum.
  • the antibody was purified. This antiserum was diluted 5-fold with PBS, passed through a 0.45 ⁇ finoletor, and adsorbed onto a Chlamydia pneumoniae Ribosomal Protein L7 / L12 protein immobilized column at a flow rate of 0.5 ml / min.
  • the purified antibody was used as a capture antibody in the 0IA method.
  • the detection antibody used was the ACP-1 monoclonal antibody described in Example 4 which was enzymatically labeled with oxidase. Enzyme labeling was performed using horseradish peroxidase (Sigma Dale VI) and binding was performed using reagent N-hydroxysuccinimide S-acetylthioacetate.Analytical Bio-chemistry 132 (1983), 68-73 Performed according to the method described.
  • purified polyclonal antibody in PBS containing 0.05% sodium azide was diluted to a concentration of 10 ⁇ g / ml with 0.1 M HEPES buffer solution PH 8.0. It was added onto the wafer and allowed to react at room temperature for 30 minutes, washed with distilled water, coated with a coating solution containing saccharose and alkali-treated casein, and used.
  • An antigen solution l5 jL1 obtained by adding Triton X-100 in a concentration of 0.5% to the culture solution of each microorganism obtained by the above operation and extracting at room temperature for 5 minutes is added to the silicon wafer.
  • the reaction was performed at room temperature for 10 minutes.
  • 15 ⁇ l of 20 ⁇ g / ml peroxidase-labeled monoclonal antibody was added, and reacted for 10 minutes.
  • ⁇ solution manufactured by KPL
  • was added in 15 ⁇ l portions was added in 15 ⁇ l portions, and the mixture was reacted at room temperature for 5 minutes.
  • the product was washed with distilled water, and the blue color generated by the enzymatic reaction was visually observed.
  • the present invention it is not only possible to specifically detect a microorganism of a specific species by using an antibody against an intracellular molecule that is functionally retained during the evolution of the microorganism, but also to accurately measure microorganisms of all serotypes within the same species. It can be detected well.
  • an antibody against a ribosomal protein of a microorganism or Ribosomal Protein L7 / L12 protein can be used to accurately detect Chlamydia pneumoniae.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明細書
クラミジァ ·ニューモニァ検出用抗体 技術分野
本発明は、 一般的な肺炎の原因微生物であるクラミジァ ·ニューモニァ(Chlamydia pneumoniae)に属する徼生物の検出に有用な抗体、該微生物の検出方法、該微生物の検出用 試薬キット、 及び該微生物検出用抗体の製造方法に関する。
本発明は、 医療上、 特に Chlamydia pneumoniaeによつて惹起される非定型肺炎の診断に 重要である。
本発明は、 検体、 例えば、 のど綿棒、 組織サンプル、 および体液から採取された検体中 に含まれる微生物 Chlamydia pneumoniaeを検出するのに有用である。 背景技術
微生物感染症の診断は、 通常感染部位などでの原因菌の検出か、 血清、 体液中の原因菌 に対する抗体の検出により確定される。 特に、 この診断は原因菌の検出が患者への迅速な 治療を可能にする意味で重要である。
感染症原因菌の検出は、 一般に、 原因菌の分離培養を経て、 その生理学的、 生化学的あ るいは構造的な特性に基づきこれを同定する培養同定法、 原因菌の遺伝子を Polymerase chain reaction (PCR)法または特異的核酸ハイブリダィゼ一シヨンにより増幅させて、 こ れを検出する遺伝子的診断法および抗体と原因菌の抗原マーカーとの特異的反応を利用し て原因菌を検出する免疫学的方法に分類される。
しかしながら、 ±咅養同定法または遺伝子的診断法を用いる場合には、 結果を得るのに長 時間を要する。 従って、 原因菌を短時間にしかも高感度で検出することができ、 迅速かつ 適切な患者の治療につながる免疫学的方法による診断が汎用されている。
従来、 免疫学的方法による感染症原因菌の検出には、 菌種によつて様々なマーカー抗原 と抗体の組み合わせが使われている。
Chlamydia pneumoniaeは世界的に肺炎の一般的な原因菌である。 小さな、 非運動性のグラ ム陰性菌であり、 選択的にヒ トの体内に侵入し、 病気を引き起す。 病原巣となる動物は知 られていなレ、。血清陽性率は 30〜40代の成人で 40〜50%である(Hyman, Roblin et al. 1995)。 この微生物は喉頭炎、 気管支炎および軽度の肺炎を発症せしめる。
この菌は、 非常に微小の偏性寄生生物であり、 宿主細胞の細胞質中で成長する。 組織培 養液中での Chlamydia pneumoniaeの成長は非常に緩慢であり(Godzik, O ' Brien et al. 1995)、培養液中に菌を同定するまでに少なくとも 3〜5日間を要する(Essig, Zucs et al. 1997)。従って、迅速に病原菌として検出する診断法としては、 グラム染色法と培養法など を適用することができない。 従って、 クラミジァの迅速診断法としては、 抗体を用いた免 疫学的手法がしばしば用いられる。
クラミジァ (Chlamydia) 属の場合、 属特異的抗原であるリポ多糖 (LPS)の抗原決定基と しての存在が知られており(Verkooyen, Van Lent et al. 1998)、 様々な診断用キットにお いて特に Chlamydia trachomatisの検出用試薬抗体に利用されている„
吏に、 Peterson ら (Peterson, Cheng et al. 1993 ; Peterson, de la Maza et al. 1998) および Batteiger ら(Batteiger, Newhallet al. 1986)は Chlamydia属の主要外膜蛋白質 (M0MP)に対するモノクローナル抗体を報告している。
これらの抗体力 ^Chlamydia pheunoniae t Chlamydia trachomatisを区 ¾'Jすることに役立つ ことが明らかになつたが、 その後、 これらの抗体は Chlamydia pheunoniae種内の複数の抗 原性の違いを明らかにすることに重要な役割をはたした。 このような抗原は Chlamydia pheunoniae種内の血清型分頷には役立つかもしれないが Chlamydia pheunoniae種の全ての 菌株の検出を必要とする通常の診断には役に立つものではない。 普遍的な機能を持つ共通 な抗原、 しかも大部分な構造は微生物種間で保存されているにもかかわらず、 それを区別 して検出するのに利用できる抗原はいままで知られていなかった。
本発明は全ての微生物に同一機能の分子として普遍的に存在し、 しかも抗体を取得する ための蛋白質抗原として有用な蛋白質に関するものである。 通常、 このような分子は小規 模の構造変化しか伴わないものである。 このような同一機能の普遍的な分子に対する大規 模な構造変化は生物の生存に対して重大な悪影響を及ぼす可能性のあるものである。
クラミジァ病原体を検出する商業的に利用可能なモノクローナル抗体の数はごく僅かで あり、 十分というには程遠レ、。 最近まで TWAR株のみが肺炎の原因菌であると信じられてき た(Thom and Grayston 1991 ; United States Patent No. 5, 008, 186)。 最近になって、 レヽ くつかのクラミジァ病原体の血清型が報告された。 LPSまたは M0MPは菌株によって異なり、 また 1つの血清型に対する抗体では全てをカバーできない状況である。 発明の開示
本発明は、 上記のような課題を解決するためになされたものである。 すなわち、 本発明 は、. Chlamydia pneumoniaeに属する微生物を特異的、 かつ高感度に迅速に検出する方法、. その検出に用いる検出用抗体、 検出用試薬キットを提供することを課題とする。 さらに、 本発明は、 その検出に用いる検出用抗体の製造方法を提供することを課題とする。
本発明者等は、 全ての微生物において同一の機能が保存されている蛋白質を有用な抗原 蛋白質として見出した。 通常、 このような蛋白質の構造変化はきわめて少ないと予想され る。 しかし驚くべきことに、 該蛋白質に対する抗体は、 微生物の種あるいは属特異的であ り、 該蛋白質に対する抗体は、 微生物の種あるいは属特異的な識別に用いることが可能な 多様性を持つとともに、 対象となる微生物についてはその全ての血清型を検出しうるもの であることが見出されたのである。
本発明者らは全ての微生物細胞に同一機能の分子として存在し、 しかもそのアミノ酸構 造が微生物間である程度の相違点をもつ細胞内分子、 特にリボソーム蛋白質の一種である Ribosomal Protein L7/L12蛋白質に着目した。 Ribosomal Protein L7/L12蛋白質は分子量 約 13キロダルトンの蛋白質であり、 蛋白質合成に必須のリボソーム蛋白質として存在する ことが知られている。 特に Chlamydia pneumoniaeを含むいくつかの微生物では Ribosomal Protein L7/L12蛋白質の全アミノ酸配列が解析されている。
本発明者らはこの分子が微生物間で類似しているにもかかわらずその一部に各微生物固 有の構造部分を持つことに着目し、この Chlamydia pneumoniaeの Ribosomal Protein L7/L12 蛋白質に対する抗体を利用することで様々な微生物、 細菌の種特異的でかつ全ての同一菌 種内の血清型について検出が可能であることを見出した。
本発明者等は Chlamydia pneumoniaeの該蛋白質に特異的な抗体が得られること、 および 該抗体を用いることにより Chlamydia pneumoniaeの特異的な検出が可能であることを見出 し、 本発明を完成した。
本発明により、 Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質に対して特異 的なモノクローナル抗体が見出され、 開発された。 この抗体は新規であり、 従来公知のい かなる抗体とも異なり、 上記蛋白質と特異的に反応する性質を有する。
配列表において配列番号 1及び 2は Chlam dia tmeumoniaeの Ribosomal Protein L7/L12 遺伝子の DNA配列(NCBI database accession #NC# 000922)及び対応するアミノ酸配列 (NCBI database accession #AE001593. 1, NCBI data base)である。 なお、 配列表に記載 されたアミノ酸配列の左端および右端はそれぞれアミノ基末端(以下、 N末端) および力ノレ ボキシル基末端 (以下、 C末端) であり、 また塩基配列の左端および右端はそれぞれ 5 '末 端および 3 '末端である。 クロスマッチテストのアミノ酸配列はアミノ酸 1文字略字によつ て記している。 また、 クロスマッチテストにおける 「+」 の表記は、 異なるアミノ酸である 力 疎水性などの性質が類緣のアミノ酸であること、 「」 のブランクは性質も含めて全く 異なるアミノ酸であることを示す。 また、 本発明で述べられる遺伝子操作の一連の分子生 物学的な実験は通常の実験書の記載方法によって行うことができる。 前記の通常の実験書 としては、例; Cば Molecular Cloning, A laboratory manual, Cold pring Harber Laboratory Press, Sambrook, J.ら(1989)を挙げることができる。
ク口スマツチテス ト.
Ct: 1 MTTESLETLVEQLSGLTVLELSQLKKLLEEKWDVTAAAPWAVAGAAAAGDAPASAEPTE 60 '
+TTESLETLVE+LS LTVLELSQLKKLLEEKWDVTA+APWAVA A G+AP +AEPTE
Cp : 1 TTESLETLVEKLSNLTVLELSQLKKLLEEKWDVTASAPWAVA-AGGGGEAPVAAEPTE 59
Ct : 61 FAVILEDVPSDKKIGVLKWREVTGLALKEAKEMTEGLP TVKEKTSKSDAEDTVKKLQE 120
FAV LEDVP+DKKIGVLKWREVTGLALKEAKEMTEGLPKTVKEKTSKSDAEDTVKKLQ+
Cp : 60 FAVTLEDVPADKKIGVLKWREVTGLALKEAKEMTEGLPKTVKEKTSKSDAEDTVKKLQD 119
Ct : 121 AGAKAVAKGL 130
AGAKA KGL
Cp : 120 AGAKASFKGL 129 Ct= Chl amydia trachoma ti s
Cp= Chlamydia pneumoniae
本発明において〃微生物" とは、 Chlamydia pneumoniaeを意味し、 特に、 呼吸器におけ る病原性 有し Qli^!Z^感染症の原因菌として診断の意義の高い微生物をいう。
本発明において、 " 微生物と特異的に反応する抗体〃 とは、 微生物の種あるいは属に特 異的に反応する抗体をさすが、 微生物感染症の診断においては微生物の種に特異的に反応 する抗体が特に有用となる。 .
本発明において抗体は、 ポリクロ一ナル抗体またはモノクローナル抗体を指し、 Ribosomal Protein L7/L12蛋白質の全長あるいはその部分べプチドを用いて作成すること ができる。抗体を作成するためのぺプチドの長さは特に限定されないが Ribosomal Protein L7/L12蛋白質に対する抗体の場合、 この蛋白質を特徴づけられる長さがあれば良く、 好ま しくは 5ァミノ酸以上、 特に好ましくは 8ァミノ酸以上のぺプチドを用いれば良い。
このぺプチドあるいは全長蛋白質をそのまま、 または KLH (keyhole-limpet hemocyanin) や BSA (bovine serum albumin)といったキャリア蛋白質と架橋した後必要に応じてアジュバ ントとともに動物へ接種せしめ、 その血清を回収することで Ribosomal Protein L7/L12蛋 白質を認識する抗体 (ポリクローナル抗体) を含む抗血清を得ることができる。 また抗血 清より抗体を精製して使用することもできる。接種する動物としてはヒッジ、ゥマ、ャギ、 ゥサギ、 マウス、 ラット等であり、 特にポリクロ一ナル抗体作製にはヒッジ、 ゥサギなど が好ましい。 また、 ハイプリ ドーマ細胞を作製する公知の方法によりモノクローナル抗体 を得ることも可能であるが、 この場合はマウスが好ましい。
また該蛋白質の全長または 5残基以上、 望ましくは 8残基以上のアミノ酸配列をダルタチ オン S—トランスフェラーゼ (GST) などとフュージョン蛋白質としたものを精製して、 ま たは未精製のまま、抗原として用いることもできる。成書(Antibodies a laboratory manual, E. Harlow et al., Cold Spring Harbor Laboratory)に示された各種の方法ならびに遺伝 子クローニング法などにより分释されたィムノグロプリン遺伝子を用いて培養した細胞に 発現させた遺伝子組み換え抗体によっても作製することができる。
本発明のマ一カー抗原として用いることができる Ribosomal Protein L7/L12蛋白質に対 する抗体は、 以下の方法あるいはその他の類似の方法によって取得することができるがこ れらの方法に限定されるものではない。
a ) Ribosomal Protein L7/L12蛋白質の遺伝子配列およびァミノ酸配列が既知の微生物に ついては、 他の微生物における該蛋白質のアミノ酸配列との類似性の少ない領域について ペプチド断片を合成し、 それを免疫原としてポリクローナル抗体、 あるいはモノクローナ ノレ抗体を作製することにより目的の抗体を取得することができる。
また、 既知の該遺伝子の両端部位における DNA配列をプローブとした PCR手法による遺伝 子増幅、 相同部分配列を踌型プローブとしたハイプリダイゼーション法など通常の遺伝子 操作手法を用いることにより該遺伝子の全長配列を取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、 大腸菌等を宿主として 公知の遺伝子導入手法により宿主内に該当フュージョン遺伝子を挿入し大量に発現させた 後にフユ一ジョン蛋白質として用いた蛋白質に対する抗体ァフィ二ティカラム法などによ り発現蛋白質を精製することにより目的とする蛋白質抗原を取得することができる。 この 場合 Ribosomal Protein L7/L12の全長蛋白質が抗原となるため微生物間で保存されている アミノ酸部分に対する抗体を取得しても本発明の目的に合致しない。 従って、 本法によつ て取得した抗原に対しては公知の手法によりモノクローナル抗体を産生するハイプリ ドー マを取得し、 該当する微生物とのみ反応する抗体を産生するクローンを選択することによ り目的の抗体を取得することができる。
b ) Ribosomal Protein L7/L12蛋白質のアミノ酸配列が未知の微生物については 1つには Ribosomal Protein L7/L12蛋白質のアミノ酸配列が菌種問で 50〜60%相同であることにより、 そのァミノ酸配列の相同部分の配列を基にして PCR法による特定配列部分の遺伝子増幅や 相同部分配列を铸型プローブとしたハイブリダィゼーション法など通常の遺伝子操作手法 を用いることにより該蛋白質遺伝子を容易に取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、 大腸菌等を宿主として 公知の遺伝子導入手法により宿主内に該当フユ一ジョン遺伝子を挿入し大量に発現させた 後にフュージョン蛋白質として用いた蛋白質に対する抗体ァフィ二ティカラム法などによ り発現蛋白質を精製することにより目的とする蛋白質抗原を取得することができる。 この 場合 Ribosomal Protein L7/U2の全長蛋白質が抗原となるため微生物間で保存されている アミノ酸部分に対する抗体を取得しても本発明の目的に合致しない。 従って、 本法によつ て取得した抗原に対しては公知の手法によりモノクローナル抗体を産生するハイプリ ドー マを取得し、 該当する微生物とのみ反応する抗体を産生するクローンを選択することによ り目的の抗体を取得することができる。
c ) あるいは Ribosomal Protein L7/L12蛋白質のァミノ酸配列が未知な場合の別な方法と して、 既知の Ribosomal Protein L7/L12蛋白質のアミノ酸配列のうち微生物間で保存され ている共通配列部分に相当する 5〜30アミノ酸の合成べプチドを作製し、そのべプチド配列 に対し公知の方法でポリク口ーナル抗体あるいはモノクローナル抗体を作製する。 該抗体 を用いたァフイエティカラムクロマトによって目的の微生物細胞破砕液を精製することに より高度に精製された Ribosomal Protein L7/L12蛋白質を取得することができる。
蛋白質の精製度が不足している場合は公知の精製手法であるイオン交換クロマトグラフ ィ一、 疎水クロマトグラフィー、 ゲル濾過などの手法により精製したのち作製した抗体に よるウェスタンブロットなどの方法により Ribosomal Protein L7/L12蛋白質の溶出画分を 同定し精製蛋白質を得ることができる。 得られた精製 Ribosomal Protein L7/L12蛋白質抗 原を基にして公知の方法によりハイプリ ドーマを取得し、 目的の微生物に特異的に反応す るハイプリ ドーマを選択することにより目的の抗体を取得することができる。
上記の方法 a )、 b ) および c ) によって得られた、 種々の微生物に特異的な本発明の抗 体は、 微生物に特異的な各種の診断試薬およびキットを利用する、 種々の免疫学的分析法 に用いることができる。 例えば、 この抗体は、 公知の測定手法であるポリスチレンラテツ クス粒子上に該抗体を吸着させた凝集反応、 マイクロタイタープレート中で行う公知技術 である ELISA法、既存のィムノクロマト法、 着色粒子もしくは発色能を有する粒子、 または 酵素もしくは蛍光体でラベルされた該抗体とともに捕捉 (capture)抗体で被覆した磁気微 粒子などを用いるサンドイッチアツセィなど既知の全ての免疫測定手法に利用できる。 抗体を用いる微生物診断方法とは、 ポリスチレンラテックス粒子上に該抗体を吸着させ た凝集反応、マイクロタイタープレート中で行う公知技術である ELISA法、既存のィムノク 口マト法、 着色粒子もしぐは発色能を有する粒子、 または酵素もしくは蛍光体でラベルさ れた該抗体とともに捕捉抗体で被覆した磁気微粒子などを用いるサンドィツチアツセィな ど既知の全ての免疫測定手法を利用する診断方法を意味する。
また、 特に抗体を用いる有用な微生物診断方法として特表平 7— 5 0 9 5 6 5号公報に 記載されているシリコン、 窒化珪素などにより形成された光学薄膜上で抗体反応をおこな い光干渉原理等により検出するいわゆるオプティカルィムノアッセィ(0I Optical Immunoassay)などが高感度な診断方法として有用である。
また該検出方法において必要となる微生物からの細胞内マーカー抗原の抽出方法として は、 TritonX-100, Tween-20をはじめとする種々の界面活性剤を用いた抽出試薬による処理 法、 適当なプロテアーゼなどの酵素を用いる酵素処理法、 物理的方法による微生物細胞の 破砕をはじめ既知の細胞構造の破砕手法が用いられる。 界面活性剤等の組み合わせにより 微生物ごとに試薬による最適な抽出条件を設定することが望ましい。
また、 本発明における、 抗体を用いる微生物検出用試薬キットとは、 当該検出方法を用 いた検出用試薬キットに相当する。
Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質のァミノ酸配列及び DNA配列を 配列表配列番号: 1及び 2に示す。 従って、 この微生物の場合は Ribosoraal Protein L7/L12 蛋白質のアミノ酸配列を、 配列表に 「クロスマッチ」 と記した類似した微生物の同種の蛋 白質と比較することが可能である。 相同性の低いセグメントのペプチドを合成し、 これに 対するポリクローナルあるいはモノクローナル抗体を作成することは、 微生物に対する特 異性を有するものの選択を省略することを可能とする。
特にポリクローナル抗体の場合、 免疫した動物の抗血清を Protein Aカラム等で精製し IgG画分を取得したのち、さらに動物の免疫に用いた合成べプチドによるァフィ二ティ精製 を実施することが望ましい。
更に、 当該微生物の Ribosomal Protein L7/L12蛋白質の DNA配列から N末端と C末端の配列 に基づいて PCRプライマーが作成された。 この PCRプライマーの相同性を利用して、 ゲノム DNAを用いて PCR法により DNA断片を増幅させ、 これを抽出し、 常法により Chlamydia pneu iaeの Ribosomal Protein L7/L12遺伝子の断片を取得することができる。 Chlamydia pne niaeの Ribosomal Protein L7/L12遺伝子の全長はこれらの断片の DNA配列情報を分析 することにより知ることができる。
取得した Chlamydia pneumoniaeの Ribosomal Protein L7/L12遺伝子は、 例えば GSTなどと フュージョン蛋白質遺伝子を構成し、 適当な発現用プラスミ ドを用いて発現ベクターを構 築後、 大腸菌等を形質転換して該蛋白質を大量発現させうる。 形質転換した大腸菌を適当 量培養し、菌体破砕液を GSTを用いたァフィ二ティカラムで精製することにより、 Chlamydia Epeumoniaeの Ribosomal Protein L7/L12蛋白質と GSTのフユ一ジョン蛋白質が得られる。 この蛋白質をそのまま、あるいは GST部分を切断後、抗原蛋白質として公知の手法により、 根数のノヽイブリ ド一マクローンを確立し、 Chlamydia pne励 niae菌体あるレヽは菌体破碎液 または Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質に特異的な反応を示す抗 体を選択することにより目的の特異的モノクローナル抗体を取得することも可能である。 本発明に基づき作製された抗体は、 公知の測定手法であるポリスチレンラテックス粒子 上に該抗体を吸着させた凝集反応、 マイクロタイタ一プレート中で行う公知技術である ELISA法、既存のィムノクロマト法、着色粒子もしくは発色能を有する粒子、 または酵素も しくは蛍光体でラベルされた該抗体とともに捕捉抗体で被覆した磁気微粒子などを用いる サンドィツチアツセィなど既知の全ての免疫測定手法に利用できる。
また、 本発明に基づき作製された抗体は全ての免疫測定手法において当該抗原蛋白質を 固相あるいは液相中で捕獲するいわゆる捕捉抗体として機能しうると同時にバーオキシダ ーゼゃアル力リフォスファターゼなどの酵素を公知の方法により修飾していわゆる酵素標 識抗体とすることにより、 検出用抗体としても機能しうる。 発明を実施するための最良の形態
以下の例は本発明を具体的に説明するためのものであって本発明について何らその範囲 を限定するものではない。
実施例 1 '
Chlamydia pneumoniaeからの Ribosomal Protein L7/L12遣伝子のクローニング
Chlamydia pneumoniae (ATCC VR-1310, ATCCから分譲、 購入)を HL細胞のモノレイヤー上で 培養した。 Chlamydia pneumoniaeの詳細な培養方法は Kuoらなど(Cles and Stamm 1990; Kuo and Grayston 1990 ; Yoshizawa, Dairiki et al. 1992)の記載に従った。 C02インキュべ ータ内にて 37t 、5% C02の条件下で微生物を 5日間培養した。 感染した細胞を遠心分離によ り集め、 最終的に 5 X 107個/ ml前後の濃度となるように TE緩衝液 (和光純薬工業製) に懸濁 した。 この懸濁液約 1· 5nilを微量遠心チューブに移し取り 10, OOOrpmで 2分間遠心した。 上澄み液を棄てた。沈殿部分を 567 μ 1の TE緩衝液に再懸濁した。 さらに 30 μ 1の 10%SDSと 3 μ 1の 20nig/mlの ProteinaseK溶液を加えて良く混合し、 37でで 1時間ィンキュベートした。 懸濁液を 56でで更に 1時間ィンキュベートした。 次に 10%のセチルトリメチルアンモニゥム プロマイ ド /0. 7M NaCl溶液を 80 1加え、 よく混合したのち 65でで 10分間インキュベートし た。 同一体積の 24 : 1のクロロホルムーィソァミルアルコール混合液を 700 μ 1加えよく攪拌 した。
この溶液を微量遠心機で 12, OOOrpnu.5分間、 4でで遠心処理したのち、水層画分を新しい微 量遠心管に移した。 そこに 0. 6倍量のィソプロノ、 °ノ一ルを加えチューブをよく振って DNAの 沈殿を形成した。 白い DNA沈殿をガラス棒ですくって lmlの 70%エタノール (-20 に冷却し たもの) が入った別の微量遠心管に移した。 その後チューブを 10, OOOrpmで 5分間遠心し、 上清を静かに除去した。 1mlの 70%エタノールを追加し、混合物を更に 5分間遠心した。 再び上澄みを除去したのち沈殿を ΙΟΟ μ 1の ΤΕ緩衝液に溶解し DNA溶液を得た。 このゲノム 匪溶液の濃度を Molecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J., Fritsch, E. F. , and Maniatis, T., Cold Spring harbor Laboratory Pressの E5, Spectrophotometric Determination of the Amount of DNA or RNAに従つて定量した。 このゲノム DNAのうち 10ngを用いて PCR (polymerase chain reaction)を行った。 PCRは Taq ポリメラ一ゼ (宝酒造社製、 コード R001A) を用いた。 酵素に添付の緩衝液 5 μ 1、 酵素に添 付の dNTP混合物 4 /z lおよび各 200pmolのオリゴヌクレオチド(配列表配列番号: 3および 4 に示すもの) を酵素に加えた。 全体の容量が 50 μ 1となるように精製水を加えた。
この混合物を、 TaKaRa PCR Thermal Cycler 480を用いて、 95で 1分、 50で2分、 72で 3分 を 5サイクル行ったのち、 95"Cl分、 60で2分、 72^3分を 25サイクル行った。 この PCR生成物の —部を用いて、 1. 5%ァガロースゲル中にて電気泳動を実施した。ェチジゥムブ口マイド(日 本ジーン社製) にて染色後、 紫外線下で観察し、 約 400bpの DNAが増幅されていることを確 認した。制限酵素 BamHIおよび Xholを用いて切断後、 1. 5%ァガロースゲル中にて電気泳動と ェチジゥムブ口マイドによる染色を行った。ゲルから約 400bpのバンドを切り取った。 この バンドを SuprecOl (宝酒造株式会社製) で精製し、 一般的なベクタ一である
PGEX-6P-1 (Pharmacia社製)に挿入した。 同ベクターは目的の遺伝子断片を適当な制限酵素 サイ 卜に組み込むことにより GST蛋白質とのフュージョン蛋白質を発現しうる目的分子の 発現ベクターとして機能することができる。
具体的にはベクター PGEX-6P-1と先の DNAとをそのモル比が 1 : 3となるように混ぜ合わせ て、 T4 DNAリガ一ゼ(Invitrogen社製)にてベクターに DNAを組み込んだ。 DNAを組み込んだ ベクタ一 PGEX-6P - 1は大腸菌のワンショットコンピテントセルに遺伝子学的手法により導 入し、 ついで 50 ;u g/mlのアンピシリン (シグマ社) を含む半固体状の培養プレートである LB L-ブロス寒天 (宝酒造株式会社製) に接種した。 プレートを 37でで 12時間インキュベー トし、 成長したコロニーを無差別に選択し、 同じ濃度のアンピシリンを含む L-ブロス培養 液に接種した。 37でで 8時間振とう培養 ·集菌後、 Wizard Miniprepを用い、 添付の説明書 に従ってプラスミ ドを分離した。 プラスミ ドは制限酵素 BamHI/XhoIにて切断処理した。 約 370bpの DNAを切断することによって PCR生成物の挿入を確認した。 挿入された DNAの塩基配 列を上記クロ一ンを用いて決定した。
挿入 DNA断片の塩基配列の決定は、 Applied Biosystems社製の蛍光シークェンサ一を用い て実施した。 .
シ一クェンスサンプルの調製は PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Appl ied Biosystemsi±¾)を用いて行った。 先ず、. 9. 5 1の反応液、 4. 0 1の 0. 8pmol/ lの T7プロモータ一プライマー(Gibco BRL)、 および 6· 5 /; 1の 0· 16 μ g/ /z 1テンプレート DNAを 0. 5mlのマイクロチューブに加え、混合した。混合物を 2層の ΙΟΟ ι 1鉱油で覆ったのち、 25サイクノレ PCR増幅処理を行った。 ここで、 1サイクルは、 96°Cでの 30秒間の処理、 55"Cで の 15秒間の処理、および 60°Cでの 4分間の処理からなる。 生成物を 4でで 5分間保持した。 反 応終了後、 80 μ 1の無菌精製水を加え、 攪拌した。 生成物を遠心分離し、 水層をフユノール 一クロ口ホルム混合液で 3回抽出した。 ΙΟ μ Ιの 3Μ酢酸ナトリゥム ρΗ5. 2と 300 μ 1のェタノ ールを ΙΟΟ μ Ιの水層に加え、 攪拌した。 その後 14, 000rpm、 室温で 15分間遠心し、 沈殿を回 収した。 沈殿を 75%エタノールで洗浄後、 真空下に 2分間静置して乾燥させ、 シークェンス 用サンプノレとした。 シークェンスサンプルは、 4 /x lの lOmMの EDTAを含むホルムアミ ドに溶 解して 90t:で 2分間変性した。 このものは氷中で冷却してシークェンスに供した。
無差別に選択した 5個のクローンのうち 2個は PCRに用いたプローブと配列上の相同性を有 していた。 また、 Ribosomal Protein L7/L12蛋白質の遺伝子配列と一致した DNA配列が明白 であった。 その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は配列表配列番 号: 1及び 2に示すような配列であった。 この遺伝子断片は、 明ら力 4こ Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質の遺伝子をコードするものである。
実施例 2
Chlamydia pneumoniaeからの Ribosomal Protein L7/L12蛋白質の大腸菌での大量発現と精 製
発現ベクターを組み込んだ大腸菌を LB培地中で 50ml、 37で、 一昼夜培養した。 500mlの 2 倍濃度の YT培地を 37 で 1時間加熱した。 1晚培養した大腸菌液 50mlを 500mlの前述の培地に 入れた。 一時聞後、 550 / lの lOOmMイソプロピル; 3 - D (- ) -チォガラク トビラノシド(IPTG) を導入し、 4時間培養した。 生成物を回収し、 250mlの遠心チューブに移し、 7000rpniで 10 分間遠心した。上澄みを棄てて 50mM Tris緩衝液 pH7. 4, 25% Sucroseを含む Lysis緩衝液 25ml ずつに溶解した。 さらに 10% NP- 40 1. 25mL lM MgCl2 125 μ 1を加えてプラスチックチュー ブに移した。氷冷下、 1分間の超音波処理を 5回行った。その後、 12, OOOrpmで 15分間遠心し、 上清を回収した。
次に、 PBSでコンディショニングしたグルタチオンァガロースカラムに前記の上澄み液を 吸着させた。 次に、 20m Tris緩衝液 pH7. 4、 4. 2raM MgCl2、 lmM ジチオスレィ トール(DTT) を含む洗浄液でカラムを 2べッドボリューム分洗浄した。 5mMのダルタチオンを含む 50mMTris緩衝液 pH9. 6中で溶離処理をした。 溶出画分の蛋白質含有量をピグメント結合法 (Bradford法 ; BioKad Co. )で決定し、 主画分を取得した。
得られた精製 GSTフュージョン Ribosomal Protein L7/L12蛋白質の純度は電気泳動法によ り確認したところ約 75%であり免疫源として充分な純度を確保できた。
実施例 3
Chlamydia p匪睡 iaeの Ribosomal Protein L7/L12蛋白質に対するモノクローナノレ抗体の 作製
まずマウスの免疫については Chlamydia pne腸 niaeの GSTフユ一ジョン Ribosomal Protein L7/L12蛋白質抗原 100 μ gを 200 μ 1の PBSに溶解後フロイントのコンプリ一トアジ ュバントを 200 /z l加え混合した。 ェマルジヨン化したのち 200 μ 1を腹腔内に注射した。 同 じェマルジヨン化抗原を 2週間後、 4週間後、 および 6週間後に腹腔内に注射した。 2倍濃度 のェマルジョン化抗原を 10週間後および 14週間後に腹腔内に注射した。 最;^の免疫化終了 の 3ョ後に脾臓を摘出し、 細胞融合した。
無菌的に取り出したマウスの脾細胞 108個に対し骨髄腫細胞 2 X 107個をガラスチューブ に取り良く混合したのち 1500rpmで 5分間遠心し上澄みを棄て、その後細胞をよく混合した。 細胞融合に使用した骨髄腫細胞は、 NS-1系の細胞株を用い 10%の牛胎児血清を含む RPMI1640培地で培養し、細胞融合の 2週間前から 0. 13m のァザグァニン、 0. 5 μ g/mlの MC-210、 10%の牛胎児血清を含む RPMI1640培地で 1週間培養後、 さらに 10%の牛胎児血清を含む RPMI1640培地で 1週間培養したものを用いた。 37°Cに保持した RPMI1640培養液 50mlを混合細胞試料に加え、 1, 500rpniで遠心分離した。上 澄み液を除去後、 37X:に保持した 50%ポリエチレングリコール lmlを加え、 1分間攪拌した。 37^に保持した RPMI1640培養液 10mlを加え、混合液を殺菌したピぺットで約 5分間吸引-排 出することにより激しく攪拌した。
5分間 l,000rPmで遠心分離し、 上澄み液を除去したのち、 細胞濃度が 5 X lOVmlとなるよ うに 30ml HAT培養液を加えた。 この混合物を均一になるまで攪拌し、 0. lmlずつを 96穴の培 養プレートに注ぎ、 37^、 7%の炭酸ガス雰囲気下で培養した。 HAT培地を、第 1日、第 1週、 および第 2週にそれぞれ 0. lmlずつ加え、 ELISA法により所望の抗体を産生する細胞をスクリ 一ユングした。
0. 05%のアジ化ソーダ含む PBS中に溶解した GSTフユ一ジョン Ribosoraal Protein L7/L12 蛋白質および GST蛋白質をそれぞれ 10 μ g/ral濃度で希釈した液を 100 1ずつ 96穴プレ一ト に別々に分注し 4でで 1晚吸着させた。
上澄み除去後、 1%牛血清アルブミン溶液 (PBS中) 200 Z 1添加し室温で 1時間反応しプロッ キングした。 上澄み液を除去後、 生成物を洗浄液 (0. 02%Tween20, PBS)で洗浄した。 これに 融合細胞の培養液 100mlを加え、 室温にて 2時間反応させた。 上澄み液を除去し、 沈殿を洗 浄液で洗浄した。 次いで、 濃度 50ng/mlのペルォキシダーゼでラベルした goat anti-mouse IgG抗体溶液 ΙΟΟ μ Ιを加え、 室温にて 1時間反応させた。 上澄み液を除去し、 生成物を再び 洗浄液で洗浄した。 ΤΜΒ溶液 (KPL社製) を 100 /x lずつ加え、 混合物を室温にて 20分間反応さ せた。着色したところで 1Nの硫酸 100 1を加えて反応を停止し、 450nmの吸光度を測定した。 この結果、 GSTフユ一ジョン Ribosomal Protein L7/L12蛋白質にのみ反応し GST蛋白質に は反応しない陽性ゥヱルが見いだされ Ribosomal Protein L7/L12蛋白質に対する抗体が含 まれていることが判明した。
そこで陽性ゥエル中の細胞をそれぞれ回収し 24穴プラスティックプレート中、 HAT培地で 培養した。
培養した融合培地を細胞数が約 20個/ mlになるように HT培地で希釈し 1を、 HT培地に 懸濁した 6週齢のマウス胸腺細胞 106個と 96穴培養プレート中で混合した。 混合後、 7%C02条 件下、 37^で 2週間培養した。
培養上澄み中の抗体活性を前述の ELISA法にて同様に検定し、 Ribosomal Protein L7/L12 '蛋白質との反応陽性の細胞を回収した。 さらに、 同様の希釈検定、 クローニング操作を繰 り返し、 ハイブリ ドーマ CPRB- 1〜5の計 5クローンを取得した。
実施例 4
Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質を検出するモノクローナル抗体 の選択
前述のようにして取得した陽性ハイプリ ドーマ細胞を用いて定法にしたがってモノクロ ーナル抗体を生産回収した。
具体的には、 RPMI1640培地(10¾FCS入り)を用いて継代培養した細胞をあらかじめ 2週間前 に 0. 5mlのプリスタンを腹腔内に注射した Balb/Cマウスの腹腔内に 5 X 106個(PBS中)注射し た。 3週間後腹水を回収し、 その遠心上澄みを取得した。
得られた抗体を含む溶液を Protein Aカラム(5ml, Pharmacia製)に吸収させ、 3倍量の PBS で洗浄した。 次いで、 クェン酸緩種 i液 PH3で溶出した。抗体画分を回収し、 各ハイプリ ド一 マによつて産生されたモノクロ一ナル抗体を取得した。この 5株のハイブリ ドーマ由来のモ ノクローナル抗体を用いて ELISA法により評価した。
モノクローナル抗体の評価にはサンドウイツチ分析法を用いた。 作成されたモノク口一 ナル抗体をペルォキシダーゼに結合せしめるこどにより検出用の抗体として用いた。 酵素標識はホースラディッシュパーォキシダーゼ(Sig膨グレード VI)を用い結合には試 薬 S-ァセチルチオ酢酸 N-ヒ ドロキシスクシンイミ ドを使用し Analytical Bio-chemi stry 132 (1983) , 68- 73に述べられている方法に従って行った。 ELISA反応においては市販の抗 Chlamydia pneumoniaeポリクロ一ナル抗体 (ゥサギ) を 10 g/ml濃度で希釈した液を 100 μ 1ずつ 96穴プレートに別々に分注し 4Τ:で 1晚吸着させた。
上澄み除去後、 1%牛血清アルブミン溶液 (PBS中) 200 / 1添加し室温で 1時間反応しプロッ キングした。 上澄み液を除去後、 生成物を洗浄液 (0. 02%TWeen20, PBS)で洗浄した。 これに 各微生物の培養液に濃度 0. 3%となる量の Triton X-100を加え常温で 5分間抽出することに より得られた抗原溶液 ΙΟΟ μ Ιを加え、 室温で 2時間反応させた。 上澄み液を除去し、 生成物 を再び洗浄液で洗浄した。 次いで、 濃度 5 /z g/mlのペルォキシダ一ゼ標識抗 Ribosoraal Protein L7/L12蛋白質抗体溶液 ΙΟΟ μ 1を加え、 室温にて 1時間反応させた。 上澄み液を除去 し、 生成物を再び洗浄液で洗浄した。 ΤΜΒ溶液 (KPL社製)を ΙΟΟ μ Ιずつ加え、 混合物を室温 にて 20分間反応させた。着色したところで 1Nの硫酸 100 /i lを加えて反応を停止した。 450nm の吸光度を測定した。 酵素標識抗体としてハイプリ ドーマ CPRB - 1由来のモノクローナル抗体を用いた場合、 試 験した Chlamydia pneumoniaeの全ての株を 106個/ mlの感度で検出すると同時に他の Haemophi lus ιπι丄 uenzse, Klebsiella Dneumoniae, Mycoplasma pneumoniae jo «t If Neisseria meningitides等の微生物にっレ、て 108個/ mlの高濃度でも反応性を示さず Ribosomal Protein L7/L12蛋白質に対するモノクローナル抗体を用いることで Chlamydia pneumoniae特異的な反応性をもつ抗体を取得したことが明確に確認できた。 この抗体は AMCP - 1と名付けられた。 表 2は AMCP-1を用いた結果のみを示す。 別の微生物と交差反応を 示す他の抗体を使用した結果はここで言及しない。
表 2
検出結果(106 cell s /ml )
C . pneumoniae
検出結果(108 cells /ml )
N . eningi tides
N. Js c亡 s/ni cs
N. mucosa
N. sicca
M . pneumoniae .
H . infl uezae
B . ca tarrharis
N. gonorrhoeae
E . col丄
K. pneumoniae
(+; ポジティブ、 -;ネガティブ) 実施例 5
Ribosomal Protein L7/L12蛋白質固定化ァフィ二ティカラムを用いた Chlamydia
pneumoniae Ribosomal Protein L7/L12蛋白質と特異的に反応するポリクローナル抗体の 取得
実施例 1に記載の方法により取得した Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質または Triton X- 100処理した菌体の上清を抗原として使用した。 100 gの抗 原を含む生理食塩水約 1. 2mlをフロイントアジュバント 1. 5mlとともに乳化した。 ェマルジ ョンを SPF日本白色ゥサギに皮下注射してゥサギを免疫化した。 2週間おきに 5〜6回免疫し、 抗体価を確認した。
抗体価の確認は ELISA法により実施した。 0. 05%のアジ化ソ一ダ含む PBS中に溶解した Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質を 10 μ g/ml濃度に希釈した液を 100 /z lずつ 96穴プレートに分注し 4°Cで 1晚吸着させた。 上澄み除去後、 1%牛血清アルブミ ン溶液 (PBS中) 200 μ 1添加し室温で 1時間反応しブロッキングした。 上澄み液を除去後、 生 成物を洗浄液 (0. 02% Tween20, PBS)で洗浄した。 正常のゥサギ血清および免疫化したゥサ ギの抗血清を希釈して得られた溶液 100 1を加え、室温にて 2時間反応させた。上澄み液を 除去し、 生成物を再び洗浄液で洗浄した。 次いで、濃度 50ng/mlのペルォキシダ一ゼ標識抗 ゥサギ IgG抗体溶液 100 1を加え、 室温にて 1時間反応させた。 上澄み液を除去し、 生成物 を再び洗浄液で洗浄した。 0PD溶液 (Sigraa社製)を ΙΟΟ μ Ιずつ加え、 混合物を室温にて 20分 間反応させた。着色したところで 1Nの硫酸 ΙΟΟ μ Ιを加えて反応を停止した。 492nmの吸光度 を測定した。
抗体価上昇を確認後、大量採血を実施した。耳動脈から血液をガラス製遠心管に採取し、 37でで 1時間放置後、 4ででー晚静置した。 その後 3000rpm5分間遠心し、 上清を回収した。 得られた抗血清は 4 :で保存した。
Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質を固定ィ匕したァフィ二ティカ ラムを調製した。 HiTrap NHS活性化カラム(lml, Pharmacia社製)を用いた。カラムを ImM HCl で置換後直ちに Ribosomal Protein L7/L12蛋白質の PBS溶液(lrag/ml)を加えた。 カラムを 30 分間静置後、 ブロッキング試薬を加え、 PBSで平衡化した。
' この Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質固定化ァフィ二ティカラ ムを使用して、 Chlamydia pneumoniaeの Triton X-100処理した菌体の上清を抗原として得 られた抗血清中のポリク口一ナル抗体の精製を行った。 この抗血清を PBSで 5倍に希釈し、 0. 45 μ πιのフイノレタ一を通した後、 流速 0. 5ml /minで Chlamydia pneumoniaeの Ribosomal Protein L7/L12蛋白質固定化カラムに吸着させた。その後 0. 1Mグリシン緩衝液 pH2. 1でカラ ムから溶出し、 直ちに lM Tris緩衝液 pH9. 0で中和した後、 抗体価測定法と同様の ELISA法に より目的とする抗体の溶出画分を回収した。 このようにして得られたポリクローナル抗体は特表平 7— 5 0 9 5 6 5号公報に記載さ れている 0IA法により評価した。
精製した抗体は 0IA法の捕捉抗体として使用した。また検出抗体としては実施例 4に記載 した A CP-1モノクローナル抗体をパ一ォキシダーゼで酵素標識したものを使用した。 酵素 標識はホースラディッシュパーォキシダーゼ (Sigmaダレ一ド VI)を用い結合には試薬 S-ァ セチルチオ酢酸 N-ヒ ドロキシスクシンイミ ドを使用し Analytical Bio-chemistry 132 (1983) , 68-73に述べられている方法に従って行った。
0IA反応においては 0. 05%アジ化ナトリゥムを含む PBS中の精製ポリクロ一ナル抗体を 10 μ g/ml濃度に 0. 1M HEPES緩衝液 PH8. 0で希釈した液を 50 // 1ずつシリコンウェハ一上に添加 し室温で 30分反応させた後、 蒸留水で洗浄し、 サッカロース及びアルカリ処理カゼインを 含むコ一ティング溶液でコーティング後、 使用した。
上記操作で得られた各微生物の培養液に濃度 0· 5%となる量の TritonX-100を加え常温で 5 分間抽出することにより得られた抗原溶液 l5 jL 1を上記シリコンウェハー上に添加し、室温 で 10分間反応させた。 次いで、 20 μ g/mlペルォキシダーゼ標識化モノクローナル抗体を 15 μ 1加え、 10分間反応させた。 蒸留水で洗浄後、 ΤΜΒ溶液 (KPL社製)を 15 μ 1ずつ加え、 混合 物を室温にて 5分間反応させた。生成物を蒸留水で洗浄し、酵素反応により生成した青色を 肉眼で観察した。
この結果、 表 3に示すように、 精製ポリクロ一ナル抗体 APCP-1を捕捉抗体として用いる ことにより、 Chlamydia pneumoniaeを 108個/ mlの感度で検知できること、 および他の微生 物の反応性は検知できないことが明らかである。 このようにして Chlamydia pneumoniae^) Ribosoraal Protein L7/L12蛋白質を固定化したァフィ二ティカラムにより、 Chlamydia pneumoniaeに特異的に反応するポリク口ーナル抗体を取得したことを確認した。 表 3
検出結果 (108 cel ls /ml )
C pneumoniae +
H inil uenzae ATCC10211 -
E coli ATCC25922 -
E . faecalis ATCC19433 - K . pneumoni ae ATCC13883 -
N . gonorrhoeae I ID821 -
N · l a ctami ca ATCC239フ 0 -
N. eningi tl di s ATCC13090 -
P . aeruginosa ATCC27 853 -
GroupB Streptococcus ATCC12386 -
S . a ureus ATCC25923 -
S . pneumoni ae ATCC27336 -
S . pyogenes ATCC19615 -
(+; ポジテイブ、 - ;ネガティブ)
産業上の利用可能性
本発明によると微生物の進化の過程で機能的に保持された細胞内分子に対する抗体を用 いて特定の種の微生物を特異的に検出できるだけでなく、 同一種内における全ての血清型 の微生物を精度よく検出することができる。
このような抗体として微生物のリボソーム蛋白質、 Ribosomal Protein L7/L12蛋白質に 対する抗体を用い、 Chlamydia pneumoniaeの検出を精度良く行うことができる。
また、 このような抗体を構成要素とする微生物検出用試薬キットを用いることで、 微生 物の検出をより汎用的に精度良く行なうことができる。 引用文献:
特許文献
米国特許 Νο· 5, 008, 186、 Grayston, et al. 1991、 急性呼吸器疾患を引き起す特異な
Chlamydiaの検出
米国特許 No. 5, 281, 518, Campbell, et al. 1994、急性呼吸器疾患を引き起す特異な Chlamydia の検出
米国特許 No. 5, 350, 673、 Campbell, et al. 1994、 急性呼吸器疾患を引き起す特異な
Chlamydiaの検出
その他の文献
Batteiger, B. E., Newhall, W. J. th. et al. (1986) , 「マウスモノクローナル抗体を使 用する Chlamydia trachomatisの主なる外皮薄膜タンパク質の抗原分析法」 Infect Immun 53 (3) , 646-50 Cles, L. D. and W. E. Stamm (1990) ["Chlamydia pneumoniaeの分離および継体'培赛のた めの HL細胞の使用」 J Cl in Microbiol 28 (5), 938-40
Essig, A. , P. Zucs, et al. (1997) 「慢性の肺炎患者のポリメラ一ゼ連鎖反応および細胞 培養によるオル二トーシス(鳥類病;ハト病)の診断」、 Clin Diagn Lab Immunol 4 (2 213-6 Godzik, K. L. , E. R. O ' Brien, et al. (1995 「Chlamydia pne niae感染ヒ ト血管壁 細胞の生体外感受性」 J Clin Microbiol 33 (9) , 2411-4
Hyman, C. L. P. M. Robl in, et al. (1995) 「主観的に健常な成人における無症状の Chlamydia pneumoniae轟咽頭保持率、 ポリメラーゼ連鎖反応一酵素による免疫学的分析と 培養による評価」 Clin Infect Dis 20 (5) , 1174-8
Kuo, C. C. and J. T. Grayston (1990) ["Chlamydia pneumoniaeの分離および增殖のため の感応セルラインおよひ *HL細胞の使用」 J Infect Dis 162 (3) , 755-8
Peterson, E. . , X. Cheng, et al. (1993) rchlamydia trachomatisの機能的要外皮薄膜 蛋白質ェピトープ」 J Gen Microbiol 139 (Ptl l), 2621-6
Peterson, E. M. , し M. de la Maza, et al. (1998) Γ Chlamydia pneumoniae ( リポ多糖 類による中和モノクローナル抗体の物性特定」 Scand J Infect Dis 30 (4), 381-6 Thorn, D. H. and J. T. Grayston (1991) ["Chlamydia pneumoniae TWAR感染 J Clin Chest Med 12 (2), 245-56
Verkooyen, R. P. , N. A. Van Lent, et al. (1998) 「ミクロ免疫蛍光分析および ELISA法 による慢性の閉塞性肺炎患者における Chlamydia pneumoniae感染の診断」 Am Heart .T 135 (1) , 15-20
Yoshizawa, H. , K. Dairiki, et al. (1992) Chlamydia pneu iaeに対する Hen - 2細胞の 感度と H L細胞の感度の比較。」 Kansenshogaku Zasshi 66 (8) , 1037-41
NCBIデータベース #NC#000922. Kalman, S. , Mitchell, W. Marathe, R. , Lammel, C. Fan,
J. , Olinger, L. , Grimwood, J. , Davis, R. W. , and Stephens, R. S.
NCBIデータベース #AEO01593· 1. Kalman, S. , Mitchell, W. Marathe, R. La el, C. , Fan,
J. Olinger, L. Grimwood, J. , Davis, R. W. and Stephens, R. S.
Harlow, E. , and D. Lane (1988) 「抗体、 .実験室マニュアル」 NewYork. Cold Spring Harbor
Laboratory Press
Shambrook, J. E. F. Fritsch, and T. Maniatis. , (1989) 「モレキュラークローニング、 実験室マ二ユアノレ、 第 2'版 j Cold Spring Harbor Laboratory Press

Claims

請求の範囲
1. クラミジァ ·ニューモニァ (Chlamydia pneumoniae) に属する微生物のリボソーム蛋 白質に対する抗体であって、 該微生物に特異的に反応する抗体。
2. クラミジァ ' ニューモニァ (Chlamydia pneumoniae) に属する微生物のリボソーム蛋 白質が Ribosomal Protein L7/L12である、 請求の範囲 1に記載の抗体。
3. 抗体がモノクローナルまたはポリク口一ナルである、請求の範囲 1まだは 2に記載の 抗体。
4. 抗体が酵素と結合した抗体である、 請求の範囲 1一 3のいずれかに記載の抗体。
5. 請求の範囲 1一 4のいずれかに記載の抗体を用いることを特徵とするクラミジァ.二 ュ―モ二/ (Chlamydia nneumoniae) に属する微生物の検出方法。
6. a ) 検体を溶解液と接触せしめて微生物からリボソーム蛋白質を抽出すること、 b ) 抽出した検体を、 捕捉抗体、 すなわち請求の範囲 1一 4のいずれかに記載の抗体が固体表 面上に固定された抗体、 と接触せしめることによりリボソーム蛋白質と捕捉抗体との間に 抗原抗体複合体を形成せしめること、 および c ) 検出用抗体、 すなわち請求の範囲 1一 4 のいずれかに記載の抗体、を用いて抗原抗体複合体を検出することからなる、クラミジァ- ニューモニァ (Chlamydia pneumoniae) に属する微生物の検出方法。.
7. 検出用抗^が酵素と結合した抗体であり、抗原抗体複合体が該酵素の特異的基質によ つて検出されるものである請求の範囲 6記載の方法。
8. 請求の範囲 1—4のいずれかに記載の抗体を用いることを特徴とするクラミジァ.二 ユーモニァ (Chlamydia pneumoniae) に属する微生物の検出用試薬キット。
9. 遺伝子操作手法によりあるいは微生物からの単離精製により得られたクラミジァ ·二 ユーモニァ (Chlamydia pneumoniae) に属する微生物の Ribosomal Protein L7/L12蛋白質、 その部分べプチド、 またはその部分ペプチドに相当する合成べプチドを免疫源とすること を特徴とする請求の範囲 1一 3のいずれかに記載の抗体の製造方法。
PCT/JP2001/000625 1998-07-31 2001-01-31 Antibody for detecting chlamydia pneumoniae WO2001057089A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001230531A AU2001230531A1 (en) 2000-01-31 2001-01-31 Antibody for detecting chlamydia pneumoniae
CA2398467A CA2398467C (en) 2000-01-31 2001-01-31 Antibody for detecting chlamydia pneumoniae
JP2001557920A JP5331284B2 (ja) 2000-01-31 2001-01-31 クラミジア・ニューモニア検出用抗体
US10/386,050 US20040014943A1 (en) 1998-07-31 2003-03-12 Antibodies for detecting microorganisms
US12/424,370 US20090269789A1 (en) 1998-07-31 2009-04-15 Antibodies for detecting microorganisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000062684 2000-01-31
JP2000-62684 2000-01-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000626 Continuation-In-Part WO2001057199A1 (fr) 1998-07-31 2001-01-31 Anticorps servant a detecter le mycoplasma pneumoniae

Related Child Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP1999/004122 Continuation-In-Part WO2000006603A1 (fr) 1998-07-31 1999-07-30 Anticorps pour la detection de micro-organismes
US74491001A Continuation-In-Part 1998-07-31 2001-05-17
US10/386,050 Continuation-In-Part US20040014943A1 (en) 1998-07-31 2003-03-12 Antibodies for detecting microorganisms

Publications (1)

Publication Number Publication Date
WO2001057089A1 true WO2001057089A1 (en) 2001-08-09

Family

ID=18582657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000625 WO2001057089A1 (en) 1998-07-31 2001-01-31 Antibody for detecting chlamydia pneumoniae

Country Status (6)

Country Link
JP (2) JP5331284B2 (ja)
KR (1) KR100734994B1 (ja)
CN (2) CN1406248A (ja)
AU (1) AU2001230531A1 (ja)
CA (1) CA2398467C (ja)
WO (1) WO2001057089A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201605A (ja) * 2002-12-26 2004-07-22 Asahi Kasei Corp レジオネラ属菌リボソームl7/l12タンパク質をコードするdna
JP2017207333A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 細菌を検出する方法及びキット
JP2017207332A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 クラミジア・ニューモニエを検出する方法及びキット
WO2022210594A1 (ja) 2021-03-29 2022-10-06 旭化成株式会社 淋菌検出キット及び淋菌検出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977234B1 (en) * 2006-01-13 2015-11-04 Indiana University Research & Technology Corporation Type V collagen for use in a method of treatment of idiopathic pulmonary fibrosis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509565A (ja) * 1992-07-31 1995-10-19 サーモ バイオスター インコーポレイテッド 光干渉による分析対象の検出装置およびその方法
JPH099974A (ja) * 1994-09-20 1997-01-14 Hitachi Chem Co Ltd クラミジア・ニューモニエの抗原ポリペプチド、それをコードするdna、そのdnaを含む組換えベクター、その組換えベクターを含む形質転換体、及び抗クラミジア・ニューモニエ抗体の製造方法
WO1999027105A2 (en) * 1997-11-21 1999-06-03 Genset Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection
WO2000006603A1 (fr) * 1998-07-31 2000-02-10 Asahi Kasei Kogyo Kabushiki Kaisha Anticorps pour la detection de micro-organismes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274321B1 (ko) * 1990-09-11 2000-12-15 스미드 이. 그레이엄 데르마토파고이디즈(집 먼지 진드기)의 알레르기 항원의 클로닝 및 서열결정
WO1996007910A1 (fr) * 1994-09-02 1996-03-14 Meiji Milk Products Company Limited Substance pour le diagnostic de l'infection par le chlamydia
JPH0931097A (ja) * 1995-07-24 1997-02-04 Yuka Medeiasu:Kk クラミジア・トラコマティス抗体の測定法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509565A (ja) * 1992-07-31 1995-10-19 サーモ バイオスター インコーポレイテッド 光干渉による分析対象の検出装置およびその方法
JPH099974A (ja) * 1994-09-20 1997-01-14 Hitachi Chem Co Ltd クラミジア・ニューモニエの抗原ポリペプチド、それをコードするdna、そのdnaを含む組換えベクター、その組換えベクターを含む形質転換体、及び抗クラミジア・ニューモニエ抗体の製造方法
WO1999027105A2 (en) * 1997-11-21 1999-06-03 Genset Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection
WO2000006603A1 (fr) * 1998-07-31 2000-02-10 Asahi Kasei Kogyo Kabushiki Kaisha Anticorps pour la detection de micro-organismes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201605A (ja) * 2002-12-26 2004-07-22 Asahi Kasei Corp レジオネラ属菌リボソームl7/l12タンパク質をコードするdna
JP2017207333A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 細菌を検出する方法及びキット
JP2017207332A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 クラミジア・ニューモニエを検出する方法及びキット
WO2022210594A1 (ja) 2021-03-29 2022-10-06 旭化成株式会社 淋菌検出キット及び淋菌検出方法

Also Published As

Publication number Publication date
CN1962694A (zh) 2007-05-16
KR100734994B1 (ko) 2007-07-04
CA2398467C (en) 2010-06-29
CA2398467A1 (en) 2001-08-09
AU2001230531A1 (en) 2001-08-14
JP5331284B2 (ja) 2013-10-30
JP2012017334A (ja) 2012-01-26
CN1406248A (zh) 2003-03-26
KR20020073191A (ko) 2002-09-19

Similar Documents

Publication Publication Date Title
KR100771275B1 (ko) 미생물 검출용 항체
US6828110B2 (en) Assays for detection of Bacillus anthracis
JP5712140B2 (ja) マイコプラズマ・ニューモニエ及び/又はマイコプラズマ・ジェニタリウムに属する微生物を検出する方法
JP2012006968A (ja) マイコプラズマ・ニューモニア検出用抗体
JP5442641B2 (ja) 全インフルエンザ菌の測定方法
US20090269789A1 (en) Antibodies for detecting microorganisms
JP2012017334A (ja) クラミジア・ニューモニア検出用抗体
US9804159B2 (en) Immunoreactive antigens of Mycoplasma haemofelis and diagnostic immunoassay
JP5351367B2 (ja) クラミジア・トラコマチス検出用抗体
JPWO2020111272A1 (ja) 細菌感染による急性副鼻腔炎の起炎菌の検出方法
RU2575075C2 (ru) Способ обнаружения микроорганизмов, принадлежащих виду mycoplasma pneumoniae и/или mycoplasma genitalium
Villegas et al. Searching Immunogens by Screening an Expression Library for the Development of a Chlamydia Pneumoniae Diagnostic Kit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 557920

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2398467

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/965/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020027009786

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018057276

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027009786

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase