WO2001056474A1 - Sonde a ultrasons et dispositif de diagnostic par ultrasons pourvu de cette sonde - Google Patents

Sonde a ultrasons et dispositif de diagnostic par ultrasons pourvu de cette sonde Download PDF

Info

Publication number
WO2001056474A1
WO2001056474A1 PCT/JP2001/000701 JP0100701W WO0156474A1 WO 2001056474 A1 WO2001056474 A1 WO 2001056474A1 JP 0100701 W JP0100701 W JP 0100701W WO 0156474 A1 WO0156474 A1 WO 0156474A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
transducer
probe
types
group
Prior art date
Application number
PCT/JP2001/000701
Other languages
English (en)
French (fr)
Inventor
Takaya Osawa
Yutaka Sato
Shuzo Sano
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2001556173A priority Critical patent/JPWO2001056474A1/ja
Publication of WO2001056474A1 publication Critical patent/WO2001056474A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array

Definitions

  • the frequency characteristics of an ultrasonic probe that receives reflected echo should be as wide as possible in order to obtain a good ultrasonic image of a diagnostic site acquired by an ultrasonic diagnostic apparatus. ing.
  • Various modulation processing must be performed on the echo signal received by the ultrasonic probe, but in order to improve the image quality of the ultrasonic image, the modulation processing of the echo signal is performed over a wider range. There must be. For that purpose, it is necessary to expand the frequency characteristic band of the ultrasonic probe.
  • harmonic imaging for improving the image quality of an ultrasonic image.
  • Harmonic imaging technology is to transmit a fundamental wave with a certain frequency from an ultrasonic probe into a subject (living body), and to generate a frequency component that is an integral multiple (for example, twice) of the fundamental wave generated from the subject.
  • the ultrasonic echo is used to receive the reflected echoes of the harmonics, and the ultrasonic diagnostic equipment converts the above reflected echoes into electrical signals and then performs various image processing to improve the resolution of the ultrasonic image and improve clarity.
  • This is a technique for forming a simple image.
  • Improving the image quality of an ultrasonic image of a diagnostic site using this harmonic imaging technology is also necessary for an ultrasonic diagnostic apparatus using an ultrasonic probe in which transducer elements are two-dimensionally arranged.
  • an ultrasonic probe equipped with a two-dimensional array transducer needs to have a wide-band frequency characteristic that is capable of separating the fundamental frequency component and the harmonic frequency component. .
  • Three-dimensional ultrasonic imaging technology is a technology that transmits ultrasonic waves from a two-dimensionally arranged ultrasonic transducer into the subject through transducer elements that transmit and receive ultrasonic waves, and the transmitted ultrasonic waves
  • the probe receives the echo reflected by the probe, processes the received echo signal, and scans the inside of the subject with an ultrasonic beam while changing the transmission / reception direction of the ultrasound.
  • This technique is performed on a plurality of cross-sections to form a large number of two-dimensional images that display the cross-sections of the above-mentioned diagnostic site. is there.
  • a second object of the present invention is to provide an ultrasonic diagnostic apparatus that can easily perform modulation processing in harmonic imaging.
  • a third object of the present invention is to provide an ultrasonic probe capable of displaying a diagnostic site of a subject with a high-resolution and clear three-dimensional image, and using the ultrasonic probe.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus. Disclosure of the invention
  • the plurality of types of transducer elements having different frequency characteristics are provided so as to be mixed in a unit of a row or a column of a two-dimensional array. Also, the plurality of types of transducer elements having different frequency characteristics may be provided so as to have the same frequency characteristic for each row or column unit of the two-dimensional array, and to be mixed for each row or column unit. Desirable.
  • the plurality of types of transducer element groups are included in a frequency characteristic band of one type of transducer element group.
  • a certain frequency component included in the frequency characteristic band of another type of transducer element group has a frequency that is an integral multiple of the frequency component.
  • the ultrasonic diagnostic apparatus has an arrayed vibrator in which a plurality of types of vibrator elements having different frequency characteristics are mixed.
  • the ultrasonic diagnostic apparatus of the present invention includes a plurality of types of transducer elements having different frequency characteristics.
  • a probe having an array of transducers in which transducers are mixed and transmitting and receiving ultrasonic waves to and from the subject, and a group of transducers having the first frequency characteristic of the probe are driven to generate ultrasonic waves.
  • a signal processing means for converting a signal received by the receiving means into image data, and a means for displaying the image data output from the signal processing means are provided.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an ultrasonic probe according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing a second embodiment of the ultrasonic probe.
  • FIG. 3 is a schematic configuration diagram showing a third embodiment of the ultrasonic probe.
  • FIG. 4 is a diagram showing a transducer constituting the ultrasonic probe according to the first to third embodiments shown in FIGS. 1 to 3. It is sectional drawing which shows the structure of an element group.
  • FIG. 5 is a front view of a flexible substrate constituting the ultrasonic probe shown in FIG.
  • Fig. 6 is a front view of a flexible substrate that constitutes a convex ultrasonic probe.
  • FIG. 5 is a front view of a flexible substrate constituting the ultrasonic probe shown in FIG.
  • Fig. 6 is a front view of a flexible substrate that constitutes a convex ultrasonic probe.
  • FIG. 5 is a front view of a flexible substrate constituting the ultras
  • FIG. 7 is a graph showing frequency characteristics of an ultrasonic probe including two types of transducer element groups according to the first embodiment of the present invention.
  • FIG. 8 is a graph showing the frequency characteristics of an ultrasonic probe including four types of transducer elements according to the second and third embodiments of the present invention.
  • FIG. 9 is a block diagram showing an ultrasonic diagnostic apparatus using the ultrasonic probe according to the first embodiment of the present invention.
  • FIG. 10 is a block diagram showing a first modified example of the ultrasonic diagnostic apparatus shown in FIG.
  • FIG. 11 is a block diagram showing a second modification of the ultrasonic diagnostic apparatus shown in FIG.
  • FIG. 12 is a block diagram showing a third modified example of the ultrasonic diagnostic apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the two-dimensional array transducer 1 is configured such that two types of transducers, vibrator elements 1 a and 1 b having different frequency characteristics, are arranged to be mixed. I have.
  • the two types of transducer elements 1 a and lb are alternately arranged in the same direction (two-dimensional row direction or column direction) at a predetermined portion on the surface of the flexible substrate 2.
  • a packing material 3 is provided on the back of each transducer element la, lb.
  • the ultrasonic probe according to the present embodiment includes the transducer elements 1 a and 1 b alternately arranged in the two-dimensional row direction or the column direction and the package.
  • the ultrasonic probe it is configured by laminating a plurality of flexible substrates 2 each having a king material 3 at a predetermined position. Also, in the laminating direction of the flexible substrate 2, the two types of vibrator elements 1a and 1b are laminated so as to be alternately arranged. As described above, in the ultrasonic probe according to the first embodiment of the present invention, the direction in which the two types of transducer elements la and 1b are arranged on the flexible substrate 2 and the flexible substrate 2 are laminated. It is arranged so as to be alternately mixed in two directions perpendicular to the direction.
  • the flexible substrate 2 on which four types of transducers are cyclically arranged has a plurality of four types of transducer elements stacked in the stacking direction such that the positions are sequentially different.
  • four types of transducer elements are mixedly arranged in a so-called two-dimensional matrix.
  • FIG. 3 is a diagram illustrating the concept of an ultrasonic probe according to the third embodiment of the present invention.
  • only one of the four types of transducer elements 1a, 1b, 1c, and 1d is arranged on each flexible substrate 2.
  • a flexible substrate 2 in which only one type of transducer element is arranged is created for each of the four types of transducer elements, and the frequency characteristics of the four types of transducer elements change cyclically in the lamination direction. And so on,-a plurality of sheets are stacked.
  • each flexible substrate 2 The pitch of each arrayed element is independent of the type of the arrayed elements. The same. Therefore, since the positional relationship between the elements arranged in the two orthogonal directions is isotropic, the signal obtained by using this probe is subjected to image processing, for example, processing for forming a three-dimensional image. When performing the calculation, no arithmetic processing for calculating the position of the element is required. That is, the arithmetic processing for forming an ultrasonic image by performing arithmetic processing on the electric signal (echo signal) transmitted from the ultrasonic probe to the diagnostic apparatus main body does not become complicated.
  • various ultrasonic probes can be formed by changing the number of frequency characteristics of the transducer element and the combination thereof. An infinite number of such combinations can be set, and by combining appropriate transducer elements, various ultrasonic probes according to the intended use can be realized.
  • the ultrasonic transducer of the transducer has a flat ultrasonic transmission / reception surface, such as a linear array type and a phased array type. It can also be applied to various ultrasonic probes such as a curved (dry curve) type ultrasonic probe.
  • transducer elements 1 are arranged at predetermined positions of the flexible substrate 2, and a packing material 3 is provided below the transducer element 1.
  • a matching layer 4 for efficiently transmitting the ultrasonic waves emitted from the transducer element 1 to a living body is provided.
  • a signal electrode 5 is provided on a lower surface of the vibrator element 1, and a ground electrode 6 is provided on an upper surface of the vibrator element 1. When a voltage is applied between the signal electrode 5 and the ground electrode 6, the vibrator element 1 vibrates to generate ultrasonic waves.
  • one packing material 3 provided on the lower surface of the vibrator element 1 is used for one flexible substrate.
  • the material may be provided individually for each element. The reason is that if the packing material is integrally molded, and the frequency characteristics of the vibrator element are changed by the thickness of the element, it is necessary to make the transmitting and receiving surfaces of the vibrator flat. However, it is necessary to integrally form the mounting surface of the vibrator of the packing material in a complicated manner. However, if the packing material is provided for each vibrator element, the knocking material This is because there is no need to make a complex shape.
  • the flexible substrate 2 is provided with a base film 7 serving as a base, a signal pattern 8 disposed at a predetermined position on the front surface of the base film 7, and a predetermined position on the back surface of the base film 7. It is composed of a ground pattern 9 and a power layer 10 disposed on the back surface of the base film 7 so as to cover the ground pattern 9.
  • the connection portion 11 of the signal pattern 8 and the connection portion 12 of the ground pattern 9 are soldered so as to be electrically connected to the signal electrode 5 and the ground electrode 6, respectively. Further, the signal electrode 5 and the ground electrode 6 of the vibrator element 1 are connected to the connecting portions 11 and 12 of the flexible substrate 2 by soldering.
  • the ultrasonic probe according to the first to third embodiments of the present invention includes a plurality of types of transducer elements having different frequency characteristics. Can be adjusted by changing the composition, thickness and Z of the resonator element 1 or the thickness of the matching layer 4. However, if there is a large difference in the frequency characteristic band of the resonator element, it is considered desirable to change the thickness of the resonator element, especially the thickness of the piezoelectric ceramic. If it is desired to increase the frequency characteristic band of the ultrasonic transducer element, the thickness of the transducer element 1 and / or the matching layer 4 may be reduced, and conversely, the frequency characteristic band may be set lower.
  • FIG. 5 is a front view of the flexi-pnole substrate 2 shown in FIG.
  • a flexible substrate 2 ′ includes a base film 7, which is a base of the flexible substrate 2, a signal pattern 8 provided on the surface of the base film 7, and a signal pattern 8 formed on the lower surface of the vibrator element 1.
  • the distance between the connection parts 11 and the connection parts 12 provided on the surface of the flexible substrate 2 is provided on both upper and lower surfaces of the vibrator element 1 shown in FIG. It is formed in accordance with the interval between the signal electrode 5 and the ground electrode 6. That is, when the frequency characteristic band of the vibrator element is set to be low, the thickness of the vibrator element increases, so that the distance between the signal electrode 5 and the ground electrode 6 increases. Conversely, when setting the raw frequency band of the vibrator element to be set high, the gap between the signal electrode 5 and the ground electrode 6 must be short because the vibrator element is thin.
  • two types of transducer elements 1 a and 1 b having different frequency characteristics are alternately arranged at predetermined positions on the surface of the flexible substrate 2.
  • the distance between the connection part 11 and the connection part 12 is formed alternately in a long and short direction.
  • vibrator elements On the surface of the flexible substrate 2 formed in accordance with the frequency characteristics of the vibrator element, vibrator elements having a thickness equal to the distance between the connection portions 11 and 12 are arranged, respectively, and soldering is performed. It is connected to connection parts 11 and 12 by attaching. Arrangement of the oscillator elements on a flexible substrate can be realized by using a technique for mounting semiconductor chip components and the like on the substrate, and soldering can be easily realized by using a reflow furnace or the like. By laminating a plurality of devices manufactured as described above, an ultrasonic probe configured by arranging two types of transducer elements having different frequency characteristics according to the first embodiment is arranged in two orthogonal directions. A child can be made.
  • FIG. 6 is a front view of the flexible substrate 2 in the convex ultrasonic probe.
  • the flexible substrate 2 ′ has a base film 7, which is a base of the flexible substrate 2 ′, and a signal.
  • connection portions 11 and 12 are formed in an arc shape.
  • the interval between the connection portions 11 and the connection portions 12 is formed in accordance with the interval between the signal electrode 5 and the ground electrode 6 provided on the upper and lower surfaces of the vibrator element 1.
  • the positions of the connection portions 11 and the connection portions 12 that determine the arrangement positions of the elements are formed so as to follow the arc above the base film 7.
  • FIG. 7 is a graph showing frequency characteristics of two types of vibrator element keys 1a and 1b (see FIG. 1) having different frequency characteristics used in the first embodiment of the present invention.
  • This graph explains the relationship between the sound intensity and the frequency band of the ultrasonic waves generated by the two types of transducer elements 1a and 1b.
  • the horizontal axis in the graph is the frequency (MHz), and the vertical axis is the sound.
  • Strength. Symbol A indicates the frequency characteristic of the transducer element 1a
  • symbol B indicates the frequency characteristic of the transducer element 1b.
  • a certain frequency component f1 included in the frequency characteristic A of the vibrator element 1a is included in a frequency characteristic B of the vibrator element 1b.
  • the frequency component ⁇ 2 is an integral multiple, for example, twice the frequency.
  • harmonic imaging can be performed. Modulation processing is facilitated, and a good ultrasonic image is formed.
  • the ultrasonic probe according to the present invention includes two types of transducer elements 1 a and .ltT having different frequency characteristics, and thus includes a transducer element having only one frequency characteristic. Its frequency band is wider than that of an ultrasonic probe.
  • Fig. 8 is a graph showing the frequency characteristics of four types of transducer elements 1a, lb, lc, and 1d with different frequency characteristics.
  • the frequency characteristics of the transducer elements 1a, 1b, 1c, and 1d are indicated by symbols A, B, C, and D, respectively.
  • the band of the frequency characteristic A of the vibrator element 1a is set to 2 to 4 MHz
  • the band of the frequency characteristic B of the vibrator element 1b is set to 3 to 6 MHz
  • one type of transducer element group has a certain frequency component included in the frequency characteristics
  • another type of transducer element group has By making the frequency component included in the frequency characteristic have an integral multiple of the frequency component, modulation processing for harmonic imaging becomes easy, and a good ultrasonic image is formed.
  • the present invention when used, by combining a plurality of types of transducer element groups having different frequency characteristics, it becomes possible to variously set the frequency characteristics of the ultrasonic probe according to the application.
  • FIG. 9 is a block diagram showing an ultrasonic diagnostic apparatus using the ultrasonic probe described in the first embodiment of the present invention.
  • the ultrasonic diagnostic apparatus includes a probe 20 in which a plurality of transducer elements are arranged two-dimensionally and transmits / receives ultrasonic waves to / from a subject, and drives the probe 20 to generate ultrasonic waves.
  • a display unit 26 for displaying the number.
  • the ultrasonic probe shown in FIG. 1 is used as the probe 20. That is, the probe 20 includes a vibrator group including the vibrator element 1a and a vibrator group including the vibrator element 1b. As shown in FIG.
  • the two types of transducer element groups 1 a and 1 b are different from the frequency component ⁇ 1 included in the frequency characteristic A of one type of transducer element group 1 a, as shown in FIG.
  • a certain frequency component f 2 included in the frequency characteristic ⁇ of the vibrator element group 1 b of the type is an integral multiple.
  • the vibrator element group 1 a is connected to a transmitting unit 21, and the vibrator element group 1 b is connected to a receiving unit 22.
  • FIG. 10 is a block diagram showing a first modified example of the ultrasonic diagnostic apparatus shown in FIG.
  • the overall configuration of the device in this embodiment is similar to the configuration shown in FIG. 10, but the two types of transducer element groups 1a and 1b constituting the probe 20 are included in the transducer element group 1a. Is connected to the transmission unit 21, and both transducer element groups are connected to the reception unit 22, which is different from the configuration shown in FIG.
  • an ultrasonic wave having the frequency characteristic A is transmitted into the subject, and the echo signal J and the frequency characteristic A and the frequency characteristic B are received with the added frequency characteristic.
  • FIG. 11 is a block diagram showing a second modified example of the ultrasonic diagnostic apparatus shown in FIG.
  • the overall configuration of the device in this embodiment is also similar to the configuration shown in FIG. 9, except that the two types of transducer element groups 1 a and 1 b that constitute the probe 20 include the transmitting unit 2. 1 in that only the transducer element group 1 b is connected to the receiver 22.
  • a wideband ultrasonic wave in which the frequency characteristic A and the frequency characteristic B are synthesized is transmitted into the subject, and an echo signal corresponding to the transmitted frequency characteristic B, and a frequency characteristic A
  • An echo signal having a frequency that is an integral multiple of a certain frequency is also received. Therefore, according to this embodiment, an image in which the harmonic signal is more emphasized can be obtained.
  • FIG. 12 is a block diagram showing a third modified example of the ultrasonic diagnostic apparatus shown in FIG.
  • the overall configuration of the device in this embodiment is a combination of the embodiments shown in FIGS. 10 and 11.
  • the two types of transducer element groups 1 a and 1 b that constitute the probe 20 are both connected to the transmission unit 21, and both are connected to the reception unit 22.
  • a broadband ultrasonic wave in which the frequency characteristics A and the frequency characteristics B are combined is transmitted into the subject, and is also received at the two frequency characteristics. Since the echo signal is received by the frequency characteristic A and the echo signal from the depth and the part of the subject by the frequency characteristic B, a good image from the shallow part to the deep part of the object is received. Is obtained.
  • a signal suitable for the harmonic imaging can be received at the same time.
  • FIGS. 9 to 12 can be configured as a modified example in which the probes shown in FIGS. 2 and 3 are combined.
  • the ultrasonic diagnostic apparatus can display a diagnostic part of the subject as a clear three-dimensional ultrasonic image with high resolution by performing modulation processing such as harmonic imaging.
  • the probe is described as a two-dimensional probe. However, the same effect can be obtained when the present invention is applied to a one-dimensional array transducer.
  • the width and length of the vibrator element were the same even if the frequency characteristics were different.
  • the size of the vibrator element is reduced when the frequency characteristic band is low, and the size of the vibrator element is increased when the frequency characteristic is high. By doing so, it becomes possible to improve the harmonic reception sensitivity of the probe.
  • a plurality of types of transducer elements having different frequency characteristics are provided as a plurality of transducer elements arranged two-dimensionally, so Compared with a probe having a transducer element having one frequency characteristic, a probe having a wider frequency characteristic can be realized.
  • the ultrasonic probe according to the first aspect of the present invention as a probe of an ultrasonic diagnostic apparatus, modulation processing for harmonic imaging can be easily performed.
  • the diagnostic part of the subject is displayed with high resolution and a clear image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

明 細 書 超音波探触子およびこれを用いた超音波診断装置 技術分野
本発明は、 被検体の診断部位を超音波を利用して検査するために用いる超音 波探触子及びこれを用いた超音波診断装置に関し、 特に、 広帯域の超音波を送 受信することができるように構成された 2次元ァレー型超音波探触子と、 この 探触子と組み合わせによつてハーモニックイメ一ジングゃ高分解能で明瞭な 3 次元画像を取得することができる超音波診断装置に関する。 背景技術
超音波診断装置により取得される診断部位の超音波画像を良好な画像とする ためには、 反射エコーを受信する超音波探触子の周波数特性を可能な限り広い 帯域にすると良いことが知られている。 超音波探触子で受信されたエコー信号 に対してさまざまな変調処理が行わなければならないが、 超音波画像の画質を 向上させるためには、 上記エコー信号の変調処理がより広いレンジで行われな ければならない。 そのためには超音波探触子が有する周波数特性の帯域を拡大 させることが必要である。
また、 近年、 超音波画像の画質を向上させるためのハーモニックイメージン グと称する超音波撮像技術が用いられている。 ハーモニックイメージング技術 とは、 超音波探触子からある周波数を有する基本波を被検体 (生体) 内に送信 し、 被検体内から発生する上記基本波の整数倍 (例えば、 2倍)の周波数成分を 有する高調波の反射エコーを超音波探触子により受信し、 超音波診断装置で上 記反射エコーを電気信号に変換した後にさまざまな画像処理を行うことにより 超音波画像の分解能を向上させ明瞭な画像を形成する技術である。 このハーモ ニックィメ一ジング技術は、 マイクロパプル等からなる超音波造影剤を血管を 介して生体内部へ投与し、 診断部位をコントラストの強調された画像として描 出するために用いられる。 その理由は、 被検体内へ投与されたマイクロバブル が高調波をより強く反射する'性質を有していることにある。
このハーモニックイメ一ジング技術を用いて診断部位の超音波画像の画質を 向上させることは、 振動子素子が 2次元に配列された超音波探触子を用いる超 音波診断装置にとっても必要となる。 このためには、 2次元配列振動子を備え た超音波探触子は、 基本波の周波数成分と高調波の周波数成分とを力パーする 広 ヽ帯域の周波数特性を有することが必要とされる。
一方、 近年において、 被検体の診断部位を立体画像化して表示させる 3次元 超音波撮像技術が注目されている。 3次元超音波撮像技術とは、 超音波を送受 信する振動子素子を 2次元配列された超音波探触子から被検体内へ超音波を送 信し、 送信'された超音波が診断部位で反射されたエコーを探触子で受信し、 こ の受信されたエコー信号を信号処理するとともに、 超音波の送受信方向を変え て被検体内を超音波ビームで走査する動作を被検体内の複数断面に対して行い、 上記診断部位の断面を表示する 2次元画像を多数形成し、 この多数の断面の画 像データを用いて診断部位を立体的に表示する 3次元画像を表示する技術であ る。
従来の超音波探触子は広い帯域の周波数特性を有していなかつたので、 超音 波診断装置により取得された診断部位の 3次元画像は分解能が低く、 画質が良 好ではなかった。 そのため、 3次元超音波撮像技術の分野においても上記のハ 一モニックィメ一ジング技術を適用することにより、 高分解能を有した、 かつ 明瞭な 3次元超音波画像を取得できる技術が待望されていた。 3次元超音波撮 像技術へハーモュックイメ一ジング技術を適用するためには、 前記 2次元超音 波探触子が基本波の周波数成分と高調波の周波数成分とを力パーする広い帯域 の周波数特性を有することが要求される。
本発明の第 1の目的は、 超音波探触子により送受信される超音波の周波数特 性の帯域を拡大することにある。
そして、 本発明の第 2の目的は、 ハーモニックイメージングにおける変調処 理を容易に行うことができる超音波診断装置を提供することにある。
さらに、 本発明の第 3の目的は、 被検体の診断部位を高分解能を有した、 か つ明瞭な 3次元画像で表示させることができる超音波探触子及びこれを用いた 超音波診断装置を提供することにある。 発明の開示
前記第 1の目的を達成するために、 本発明による超音波探触子は、 超音波を 送受信する複数の振動子素子が 2次元に配列された超音波探触子において、 前 記二 2次元に配列された複数の振動子素子は、 その周波数特性が異なる複数種 類の振動子素子が 2次元配列内に混在するように設けられていることを特徴と している。
そして、 前記周波数特性が異なる複数種類の振動子素子は、 2次元配列の行 または列の単位内において混在するように設けられていることが望ましい。 また、 前記周波数特性が異なる複数種類の振動子素子は、 2次元配列の行ま たは列の単位毎に同一の周波数特性を持ち、 行または列単位では混在するよう に設けられていることが望ましい.
さらに、 前記周波数特性が異なる複数種類の振動子の混在する順序が巡回的 になされていることが望ましい。
前記第 2の目的を達成するために、 本発明による超音波探触子では、 前記複 数種類の振動子素子群は、 一種類の振動子素子群が有する周波数特性の帯域に 含まれるある
周波数成分に対し、他の種類の振動子素子群が有する周波数特性の帯域に含 まれるある周波数成分が整数倍の周波数であることを特徴としている。
そして、 前記第 2、 第 3の目的を達成するために本発明による超音波診断装 置は、 周波数特性が異なる複数種類の振動子素子が混在させられた配列振動子 を有し、 被検体に対し超音波を送受信する探触子と、 この探触子の持つ第 1の 周波数特性を有した振動子群を駆動し超音波を送信させる送信手段と、 前記被 検体内からのエコーを送信に用いた振動子群とは異なる第 2の周波数特性を有 した振動子群で受信させる受信手段と、 この受信手段により受信された信号を 画像データとする信号処理手段と、 この信号処理手段から出力された画像デー タを表示する手段とを備えたことを特徴としている。
また、 本発明の超音波診断装置は、 周波数特性が異なる複数種類の振動子素 子が混在させられた配列振動子を有し、 被検体に対し超音波を送受信する探触 子と、 この探触子の持つ第 1の周波数特性を有した振動子群を駆動し超音波を 送信させる送信手段と、 前記被検体内からのエコーを送信に用いた第 1の振動 子群と、 これとは異なる第 2の周波数特性を有した振動子群とで受信させる受 信手段と、 この受信手段により受信された信号を画像データとする信号処理手 段と、 この信号処理手段から出力された画像データを表示する手段とを備えた ことを特徴としている。
さらに本発明の、 超音波診断装置は、 周波数特性が異なる複数種類の振動子 素子が混在させられた配列振動子を有し、 被検体に対し超音波を送受信する探 触子と、 この探触子の持つ複数種類の周波数特性を有した振動子が混在した振 動子群を駆動し超音波を送信させる送信手段と、 前記被検体内からのエコーを 送信に用いた振動子群のうちの 1種類の周波数特性を持つ振動子群のみで受信 させる受信手段と、 この受信手段により受信された信号を画像データとする信 号処理手段と、 この信号処理手段から出力された画像データを表示する手段と を備えたことを特徴としている。
そしてさらに本発明の超音波診断装置は、 周波数特性が異なる複数種類の振 動子素子が混在させられた配列振動子を有し、 被検体に対し超音波を送受信す る探触子と、 この探触子の持つ複数種類の周波数特性を有した振動子が混在し た振動子群を駆動し超音波を送信させる送信手段と、 前記被検体内からのェコ 一を送信に用いた振動子群と同じ振動子群を用いて受信させる受信手段と、 こ の受信手段により受信された信号を画像データとする信号処理手段と、 この信 告処理手段から出力された画像データを表示する手段とを備えたことを特徴と している。 図面の簡単な説明
図 1は本発明による超音波探触子の第 1の実施形態を示す概略構成図である。 図 2は上記超音波探触子の第 2の実施形態を示す概略構成図である。 図 3は上 記超音波探触子の第 3の実施形態を示す概略構成図である。 図 4は図 1乃至図 3に示される第 1乃至第 3の実施形態における超音波探触子を構成する振動子 素子群の構造を示す断面図である。 図 5は図 4に示される超音波探触子を構成 するフレキシブル基板の正面図である。 図.6はコンベックス型の超音波探触子 を構成するフレキシブル基板の正面図である。 図 7は本発明の第 1の実施形態 における 2種類の振動子素子群から構成される超音波探触子の周波数特性を示 すグラフである。 図 8は本発明の第 2、 第 3の実施形態における 4種類の振動 子素子群から構成される超音波探触子の周波数特性を示すグラフである。 図 9 は本発明の第 1の実施形態における超音波探触子を用いた超音波診断装置を示 すブロック図である。 図 1 0は図 9に示される超音波診断装置の第 1の変形例 を示すプロック図である。 図 1 1は図 9に示される超音波診断装置の第 2の変 形例を示すブロック図である。 図 1 2は図 9に示される超音波診断装置の第 3 の変形例を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を添付図面を参照して詳細に説明する。
図 1は、本発明による超音波探触子の第 1の実施形態の概念を示す図である。 この超音波探触子は、 超音波を用いて被検体の診断部位を画像化する超音波診 断装置において、 被検体に対して超音波を送信及び 信するもので、 複数の振 動子素子が 2次元に配列された 2次元配列振動子 1と、 この 2次元配列振動子 1へ超音波を送信させるためのパルス信号を供給する信号線及び 2次元配列振 動子 1で受信されたエコー信号を出力する信号線が形成されているフレキシプ ル基板 2と、 前記各振動子素子の背面へ放出される超音波を吸収及び減衰する パッキング材 3とを備えている。
ここで、 実施形態においては、 2次元配列振動子 1は周波数特性が異なる振 動子素子 1 aと振動子素子 1 bとの 2種類の振動子が入り混じるように配列さ れて構成されている。 前記 2種類の振動子素子 1 a, l bは、 前記フレキシプ ル基板 2の表面における所定部位に同一方向( 2次元の行方向または列方向)に それぞれ交互に配列されている。 そして、 各振動子素子 l a, l bの背面には パッキング材 3が設けられている。 このように本実施形態の超音波探触子は、 2次元の行方向または列方向に交互に配列された振動子素子 1 a, 1 bとパッ キング材 3とを所定位置に備えたフレキシブル基板 2を複数枚積層して構成さ れている。 また、 上記フレキシブル基板 2の積層方向においても、 前記 2種類 の振動子素子 1 a , 1 bがそれぞれ交互に配列されるように積層されている。 以上のように、 本発明の第 1の実施形態における超音波採触子は、 2種類の 振動子素子 l a, 1 bがフレキシブル基板 2上に配列される方向と、 フレキシ プル基板 2が積層される方向との直交する二方向に交互に混在するように配列 されて構成されている。
図 2は、 本発明の第 2の実施形態における超音波探触子の概念を示す図であ る。 この実施形態では、 複数種類の振動子素子が、 4種類の振動子素子 l a , l b, l c, 1 dから成り、 これら振動子素子ほ互いに周波数特性が異なるも のである。 前記 4種類の振動子素子 1 a, l b , l c, I dは、 一つのフレキ シブル基板 2の所定位置に振動子素子 1 aが配置され、 この素子 1 aの隣りに 振動子素子 1 bが配置され、 またこの素子 1 bの隣りに振動子素子 1 cが配置 され、 さらにこの素子 1 cの隣りに振動子素子 1 dが酉 3設され、 そしてこの素 子 1 dの隣りに振動子素子 1 aが配置されるというように 4種類の振動子素子 が巡回的に配列されている。 また、 4種類の振動子が巡回的に配列されたフレ キシブル基板 2は、 その積層方向においても 4種類の振動子素子が順次位置が 異なるように複数枚積層されている。 このような振動子素子の配列及ぴフレキ シブル基板の積層により、 4種類の振動子素子が、 いわゆる 2次元マトリック ス状に混在して配列される。
図 3は、 本発明の第 3の実施形態における超音波探触子の概念を示す図であ る。 この実施形態では、 各フレキシブル基板 2には 4種類の振動子素子 1 a, l b , 1 c , 1 dのうちの 1種類の振動子素子のみが配列される。 そして、 1 種類の振動子素子のみが配列されたフレキシブル基板 2が 4種類の振動子素子 の各々について作成され、 それらがその積層方向において 4種類の振動子素子 の周波数特性が巡回的に変化するように、 -複数枚積層されている。
この第 3の実施形態において、 4種類の振動子素子 l a, 1 b , 1 c , I d における各素子の厚みが異なっても幅と長さが全て同一であれば、 各フレキシ ブル基板 2に配列された各素子のピッチは、 配列された素子の種類によらず総 て同一となる。 したがって、 直交する 2方向に配列された各素子の位置関係は 等方的であるので、 この探触子を使用して得た信号を画像ィ匕処理、 例えば 3次 元画像化するための処理をする際に、 素子の位置を算出するための演算処理は 必要とされない。 つまり、 超音波探触子から診断装置本体に送出された電気信 号 (エコー信号)を演算処理して超音波画像を形成させるための演算処理が複雑 化することはない。
以上に説明したように、 本努明によれば、 、 振動子素子の周波数特性の数と その組合せを変えて種々の超音波探触子が形成され得る。 それらの組合せは無 数に設定することが可能であり、 適正な振動子素子を組み合わせることにより 用途に応じた多様な超音波探触子が実現され得る。
また、 図 1乃至図 3に示す第 1乃至第の実施形態では、 リニアアレイ型ゃフ エイズドアレイ型のように振動子の超音波送受信面が平坦なものについて説明 したが、 本発明はコンベックス型 (カーブドリユア) 型の超音波探触子などの 様々な超音波探触子にも適用することができる。
次に、 前記図 1乃至図 3に示された超音波探触子を構成する振動子素子群の 構造を図 4を参照して説明する。 図 4において、 前記フレキシブル基板 2の所 定部位に振動子素子 1が配列され、 この振動子素子 1の下方にはパッキング材 3が設けられている。 そして、 前記振動子素子 1の上方には、 この振動子素子 1から放出された超音波を効率よく生体に伝播させるマッチング層 4が設けら れている。 前記振動子素子 1の下面には信号電極 5が、 前記振動子素子 1の上 面にはグランド電極 6が設けられている。 この信号電極 5とグランド電極 6の 間に電圧が印加されると、 振動子素子 1が振動して超音波が発生される。
ここで、 図 4から明らかに読み取れるように、 前記実施形態では、 振動子素 子 1下面に設けられたパッキング材 3は 1枚のフレキシブル基板に対しては 1 個が使用されているが、 パッキング材は素子毎に個別に設けられても良い。 何 故ならば、 パッキング材を一体成形するようにすると、 振動子素子の周波数特 性を素子の厚みによつて変化させると仮定したときに、 振動子の送受信面を平 坦にするためには、 パッキング材の振動子取付面を複雑に一体成形する必要が 生ずるが、 振動子素子毎にパッキング材を設けるようにすれば、 ノ ッキング材 を複雑な形状にする必要がなくなるからである。
前記フレキシブル基板 2は、 その母体とされるベースフィルム 7と、 このべ 一スフイルム 7の表面の所定部位に配設された信号パターン 8と、 上記ベース フィルム 7の裏面の所定部位に配設されたグランドパターン 9と、 このグラン ドパターン 9を覆うようにベースフィルム 7の裏面に配設された力パー層 1 0 とから構成されている。 前記信号パターン 8の接続部 1 1及びグランドパター ン 9の接続部 1 2は、 それぞれ前記信号電極 5と前記グランド電極 6とへそれ ぞれ電気的に接続するように半田付けされている。 また、 このフレキシブル基 板 2の接続部 1 1と接続部 1 2へ振動子素子 1の信号電極 5とグランド電極 6 が半田付けによって接続される。 そして、 信号パターン 8とグランドパターン 9の間に電圧が印加されると、 これらの電極とパターンとの接続によって振動 子素子 1の上下両面に設けられた信号電極 5とダランド電極 6の間に電圧が印 加され、 前記振動子素子 1が振動して超音波が発生される。
前述のように、 本発明の第 1乃至第 3の実施形態における超音波探触子は、 周波数特性の異なる複数種類の振動子素子群から構成されているが、 各振動素 子群の周波数特性は、 振動子素子 1セラミック材料の組成、 厚み及ぴ Zまたは マッチング層 4の厚さを変えることによって調整することができる。 但し、 振 動子素子の周波数特性帯域に大きな差をつける場合には、 振動子素子の厚み、 とりわけ、 圧電セラミックの厚みを変えることが望ましいと考えられる。 そし て、 超音波振動子素子の周波数特性の帯域を高く設定したい場合には、 振動子 素子 1及ぴ/またはマツチング層 4の厚さを薄くすれば良く、 逆に周波数特性 の帯域を低く設定したい場合には、 振動子素子 1及び Zまたはマッチング層 4 め厚さを厚くすれば良い。 振動子素子 1の上下両面に設けられた信号電極 5及 ぴグランド電極 6の間隔は、 振動子素子 1の厚さによって変化させられる。 図 5は、 図 4に示されるフレキシプノレ基板 2の正面図である。 図 5 .において、 フレキシブル基板 2'は、 フレキシブル基板 2の母体 されるベースフィルム 7 と、 ベースフィルム 7の表面に設けられた信号パターン 8と、 この信号パター ン 8を前記振動子素子 1の下面に設けられた信号電極 5 (図 4参照) へ電気的 に接続させる接続部 1 1と、 前記信号パターン 8を診断装置本体と接続するた めのケーブルに接続させる信号パターン端部 1 3と、 前記べ一スフイルム 7の 裏面に設けられたグランドパターン (図示せず) の接続部 1 2とで構成されて いる。
前記フレキシブル基板 2の表面の所定位置には、 周波数特性の異なる 2種類 の振動子素子 1 a , 1 bがそれぞれ交互に配列されている。 このような構造を実 現するため、 フレキシブル基板 2の表面に設けられた前記接続部 1 1と接続部 1 2との間隔は、 図 4に示される振動子素子 1の上下両面に設けられた信号電 極 5及ぴグランド電極 6の間隔に合わせて形成される。 つまり、 振動子素子の 周波数特性の帯域を低く設定するときは、 振動子素子の厚さは厚くなるので、 信号電極 5とグランド電極 6との間隔は長くなる。 逆に、 配設される振動子素 子の周波数特'! "生の帯域を高く設定するときは、 振動子素子の厚さは薄くなるの で、 信号電極 5及びグランド電極 6の間隔は短くなる。 なお、 第 1の実施形態 の超音波探触子では、周波数特性の異なる 2種類の振動子素子 1 a, 1 bが上記 フレキシブル基板 2の表面の所定位置にそれぞれ交互に配列されるので、 接続 部 1 1と接続部 1 2との間隔は、 長短交互に形成される。
このように振動子素子の周波数特性に合わせて形成されたフレキシブル基板 2の表面には、 接続部 1 1と接続部 1 2との間隔に等しい厚みを有した振動子 素子がそれぞれ配列され、半田付け等により接続部 1 1, 1 2へ接続される。振 動子素子をフレキシブル基板上に並べるには、 半導体チップ部品等を基板上に マウントする技術を用いて実現することができ、 また半田付けはリフロー炉等 を用いれば容易に実現可能である。 以上のようにして作製されたものを複数枚 積層することにより、 第 1の実施形態による周波数特性が異なる 2種類の振動 子素子群が直交する二方向に配列されて構成された超音波探触子を作製するこ とができる。
以上、 本発明の超音波探触子の第 1の実施形態について説明したが、 図 2、 図 3に示される第 2、 第 3の実施形態においても、 第 1の実施形態と同様に、 フレキシブル基板 2の表面における接続部 1 1及ぴ接続部 1 2の間隔は、 振動 子素子 1の上下両面に設けられた信号電極 5及ぴグランド電極 6の間隔に合わ せて形成される。 図 6は、コンべックス型超音波探触子におけるフレキシプル基板 2,の正面図 である。 このコンベックス型超音波探触子においても、 図 5に示されるリニア アレイ型用のフレキシブル基板 2と同様に、 フレキシブル基板 2 'は、 フレキシ プル基板 2 'の母体となるベースフィルム 7,と、 信号パターン 8と、 接続部 1 1, 1 2と、 信号パターン端部 1 3とから構成されている。 なお、 上記ベース フィルム 7 'は上部が円弧状に形成されている。 また、上記接続部 1 1及ぴ接続 部 1 2の配設間隔は振動子素子 1の上下両面に設けられた信号電極 5及ぴグラ ンド電極 6の間隔に合わせて形成されるが、 振動子素子の配列位置を決める接 続部 1 1及ぴ接続部 1 2の位置は、ベースフィルム 7,の上部の円弧に沿うよう に形成される。 このように形成されたコンベックス型のフレキシブル基板 2 ' 上に振動子素子が配列されたものを複数枚積層させると、 コンベックス型の 2 次元超音波探触子が形成される。
次に、 本発明における超音波探触子の周波数特性について、 図 7及び図 8を 参照して説明する。 図 7は、 本発明の第 1の実施形態で用いた周波数特性の異 なる 2種類の振動子素キ 1 a , 1 b (図 1参照) の周波数特性を示すグラフであ る。 このグラフは、 2種類の振動子素子 1 a, 1 bが発生する超音波の周波数帯 域に対する音響強度の関係を説明するもので、グラフにおける横軸は周波数(M H z ) 、 縦軸は音響強度である。 符号 Aは振動子素子 1 aの周波数特性を示し、 符号 Bは振動子素子 1 bの周波数特性を示している。 前記 2種類の振動子素子 1 a , 1 bにおいて、振動子素子 1 aが有する周波数特性 Aに含まれるある周波 数成分 f 1に対し、振動子素子 1 bが有する周波数特性 Bに含まれるある周波数 成分 ί 2は整数倍、例えば 2倍の周波数である。 このように、前記 2種類の振動 子素子 1 a, 1 bが有する周波数特性 A, Bのうちのある成分 f 1, f 2は整数倍 の関係を有すようにすることにより、 ハーモニックイメージングのための変調 処理が容易になり、 良好な超音波画像が形成される。 また、 本発明による超音 波探触子は、周波数特性の異なる 2種類の振動子素子 1 a ,. l tTを備えているの で、 周波数特性が 1種類のみの振動子素子を備えている超音波探触子よりその 周波数帯域が広くなる。
次に図 8を参照して、 本発明の第 2、 第 3の実施形態における超音波探触子 の周波数特性を説明する。図 8は周波数特性の異なる 4種類の振動子素子 1 a, l b , l c, 1 dの周波数特性を示すグラフである。 振動子素子 1 a, 1 b , 1 c , 1 dの周波数特性をそれぞれ符号 A, B , C, Dで示している。 図 8に おいて、 例えば、 振動子素子 1 aの周波数特性 Aの帯域を 2〜4 MH zとし、 振動子素子 1 bの周波数特性 Bの帯域を 3〜 6 MH zとし、 振動子素子 1 cの 周波数特性 Cの帯域を 6〜 9 MH Zとし、 振動子素子 1 dの周波数特性 Dの帯 域を 8〜1 2 MH zと仮定すると、 各周波数帯域を重ね合わせることにより、 2〜1 2 MH zの広い帯域の周波数特性が得られる。 このように、 周波数特性 の異なる 4種類の振動子素子群で構成された超音波探触子を用いると、 被検体 内から得られるエコー信号の帯域もそれに応じて広帯域ィヒされる。 前記 4種類 の振動子素子 l a, 1 b , l c, I dのうち、 1種類の振動子素子群が有する 周波数特性に含まれるある周波数成分に対し、 他の種類の振動子素子群が有す る周波数特性に含まれる周波数成分がその整数倍の周波数成分を有すようにす ることによりハーモニックイメージングのための変調処理が容易になり、 良好 な超音波画像が形成される。
以上のように本発明を用いると、 周波性特性の異なる複数種類の振動子素子 群を組み合わせることにより、 用途に応じて超音波探触子の周波数特性を様々 に設定することが可能となる。
次に、 前述のように構成された超音波探触子を用いた超音波診断装置につい て説明する。 図 9は、 明の第 1の実施形態で説明された超音波探触子を用いた 超音波診断装置を示すプロック図である。 この超音波診断装置は、 複数の振動 子素子が 2次元に配列され被検体に対し超音波を送受信する探触子 2 0と、 超 音波を発生させるためにこの探触子 2 0を駆動する送信部 2 1と、 前記探触子 2 0で受信された反射ヱコーを電気信号に変換する受信部 2 2と、 この受信部 2 2から出力された電気信号を Bモード信号に変換する Bモード処理部 2 3と、 前記受信部 2 2から出力された信号をドプラ信号に変換するドプラ処理部 2 4 と、 前記 Bモード処理部 2 3またはドプラ処理部 2 4からの信号を後述の表示 部 2 6で表示される超音波画像情報に変換するデジタルスキャンコンパ一ター (以下 「D S C」 と略称する) 2 5と、 この D S C 2 5から出力された画像信 号を表示する表示部 2 6とで構成されている。 この実施形態においては、 前記探触子 2 0として、 前述の図 1に示した超音 波探触子を用いたものである。 すなわち、 探触子 2 0は、 振動子素子 1 aから 成る振動子群と振動子素子 1 bから成る振動子群を備えている。 そして、 前記 2種類の振動子素子群 1 a, 1 bは、 図 7に示されるように、 1種類の振動子 素子群 1 aが有する周波数特性 Aに含まれる周波数成分 ί 1に対し、他の種類の 振動子素子群 1 bが有する周波数特性 Βに含まれるある周波数成分 f 2が整数 倍である。 そして、 前記振動子素子群 1 aは送信部 2 1に接続され、 前記振動 子素子群 1 bは受信部 2 2に接続されている。
このような構成により、前記探触子 2 0における振動素子群 1 aから周波数特 性 Aを有した超音波を被検体内へ送信し、 周波数特性 Bを有する振動子群 1 b で受信すると、送信周波数に対し整数倍の周波数を有した超音波を受信できる。 したがって、 受信されたェコ一信号をハーモニックイメージング等のために変 調処理することにより、 被検体の診断部位が高分解能で明瞭な三次元超音波画 像として表示される。 また、 前記探触子 2 0としては、 図 2、 図 3に示す第 2、 第 3の実施形態を含むさまざまな超音波探触子が用いられ得るので、 本発明の 探触子を用いた超音波診断装置は、 ハーモニックイメ一ジング等の変調処理を 最適に行うことができる。 それゆえに、 本発明によれば、 より良好な三次元超 音波画像を医師等へ提供することが可能となる。
図 1 0は、 図 9に示される超音波診断装置の第 1の変形例を示すブロック図 である。 この実施形態における装置の全体構成は図 1 0に示される構成と似て いるが、 探触子 2 0を構成する 2種類の振動子素子群 1 a, l bのうちの振動 子素子群 1 aが送信部 2 1に接続され、 両方の振動子素子群が受信部 2 2に接 続されている点が図 9に示される構成と相違する。 この実施の形態においては、 周波数特性 Aを有した超音波が被検体内へ送信され、 そのェコ一信号 Jま周波数 特性 Aと周波数特性 Bとが加算された周波数特性で受信される。 したがって、 周波数特性 Aによる画像と、 周波数特性 Aに含まれるある周波数の整数倍の高 調波の画像との合成画像が得られる。 図 1 1は、 図 9に示される超音波診断装置の第 2の変形例を示すプロック図 である。 この実施形態における装置の全体構成は、 これも図 9に示される構成 と似ているが、 探触子 2 0を構成する 2種類の振動子素子群 1 a, 1 bの両方 が送信部 2 1に接続され、 振動子素子群 1 bのみが受信部 2 2に接続されてい る点が相違する。 この実施の形態においては、 周波数特性 Aと周波数特性 Bと が合成された広帯域の超音波が被検体内へ送信され、 送信された周波数特性 B に対応したェコ一信号と、 周波数特性 Aに含まれるある周波数の整数倍の周波 数のエコー信号とが併せて受信される。 したがって、 この実施形態によって、 高調波の信号がより強調された画像が得られる。
図 1 2は、 図 9に示される超音波診断装置の第 3の変形例を示すプロック図 である。 この実施形態における装置の全体構成は、 図 1 0と図 1 1に示された 実施形態を組み合わされたもので。 探触子 2 0を構成する 2種類の振動子素子 群 1 a, l bの両方が送信部 2 1に接続され、 且つその両方が受信部 2 2に接 続されている。 この実施形態においては、 周波数特性 Aと周波数特性 Bとが合 成された広帯域の超音波が被検体内へで送信され、 二つの周波数特性で受信も 行われるので、 被検体の浅い部分からのェコ一信号は周波数特性 Aによって、 また被検体の深レ、部分からのェコ一信号は周波数特性 Bによつて受信されるの で、 被検体の浅い部分から深い部分までの良好な画像が得られる。 また、 この 実施形態によれば、 前記ハーモ-ックイメ一ジングに適した信号をも同時に受 信することができる。
なお、 図 9乃至図 1 2に示された実施形態は、 図 2及ぴ図 3に示された探触 子を組み合わせた変形例として構成することが可能である。
以上のように、 本発明においては、 探触子を構成する 2種類の振動子素子群 のうちの一方または両方が、 送信部または受信部に接続されているので、 前記 探触子は、 超音波を送信及び受信する周波数帯域を基本波の周波数成分と高調 波の周波数成分を力パーするように広い帯域に拡大することができる。 レたが つて、 超音波診断装置は、 ハーモニックイメージング等の変調処理によって被 検体の診断部位を分解能が高く明瞭な三次元超音波画像で表示することができ る。 なお、 上記実施の形態では探触子を二次元探触子として説明したが、 本発明 は 1次元のァレー配列振動子へ適用した場合にも同様の効果が得られる。
また、 前記実施例では振動子素子の幅と長さを周波数特性が異なっても同じ にする例を説明したが、 振動子素子の幅と長さを周波数特性毎に変更しても良 レ、。 例えば、 周波数特性の帯域が低いものは振動子素子のサイズを小さくし、 帯域が高いものは振動子素子のサイズを大きくする実施形態もあり得る。 こう することによって、 探触子の高調波受信感度を向上することが可能となる。 以上説明したように、 本発明の第 1の発明によれば、 2次元に配列される複 数の振動子素子として、 その周波数特性が異なる複数種類の振動子素子群を備 えたことにより、 単一の周波数特性を有する振動子素子を備えた探触子と比較 し、 より広帯域の周波数特性を有した探触子が実現できる。
また、 本発明の探触子において、 一種類の振動子素子群が有する周波数特性 に含まれるある周波数成分に対し、 他の種類の振動子素子群が有する周波数特 性に含まれるある周波数成分が整数倍の関係を持たせると、 基本波の周波数成 分と高調波の周波数成分とを同時にまたは個別に受信する使用態様に適応する ことができる。
また、 本発明の第 2の発明によれば、 超音波診断装置の探触子として第 1の 発明による超音波探触子を用レヽることにより、 ハーモエックイメージングのた めの変調処理が容易に行えるようになり、 被検体の診断部位が高分解能で、 か つ明瞭な画像で表示される。

Claims

請 求 の 範 囲
1 . 超音波を送受信する複数の振動子素子が 2次元に配列された超音波探 触子において、 前記二 2次元に配列された複数の振動子素子は、 その周波数 特性が異なる複数種類の振動子素子が 2次元配列内に混在するように設けら れていることを特徴とする超音波探触子。
2 . 前記周波数特性が異なる複数種類の振動子素子は、 2次元配列の行ま たは列の単位内において混在するように設けられていることを特徴とする請 求項 1記載の超音波探触子。
3 . 前記周波数特性が異なる複数種類の振動子素子は、 2次元配列の行ま たは列の単位毎に同一の周波数特性を持ち、 行または列単位で混在するよう に設けられていることを特徴とする請求項 1記載の超音波探触子。
4. 前記周波数特性が異なる複数種類の振動子の混在する順序が巡回的に なされていることを特徴とする請求項 2または 3に記載の超音波探触子。
5 .前記複数種類の振動子素子群は、 一種類の振動子素子群が有する周波 数特性の帯域に含まれるある周波数成分に対し、 他の種類の振動子素子群が 有する周波数特性の帯域に含まれるある周波数成分が整数倍の周波数である ことを特徴とする請求項 1記載の超音波探触子。
6 . 超音波を送受信する複数の振動子素子がアレイ状に配列された超音波 探触子において、 前記アレイ状に配列された複数の振動子素子は、 その周波 数特性が異なる複数種類の振動子素子が配列内に混在するように設けられて いることを特徴とする超音波探触子。
7 . 周波数特性が異なる複数種類の振動子素子が混在させられた配列振動 子を有し、 被検体に対し超音波を送受信する探触子と、 この探触子の持つ第 1の周波数特性を有した振動子群を駆動し超音波を送信させる送信手段と、 前記被検体内からのエコーを送信に用いた振動子群とは異なる第 2の周波数 特性を有した振動子群で受信させる受信手段と、 この受信手段により受信さ れた信号を画像データとする信号処理手段と、 この信号処理手段から出力さ れた画像データを表示する手段とを備えたことを特徴とする超音波診断装置。
8 . 周波数特性が異なる複数種類の振動子素子が混在させられた配列振動 子を有し、 被検体に対し超音波を送受信する探触子と、 この探触子の持つ第 1の周波数特性を有した振動子群を駆動し超音波を送信させる送信手段と、 前記被検体内からのエコーを送信に用いた第 1の振動子群と、 これとは異な る第 2の周波数特性を有した振動子群とで受信させる受信手段と、 この受信 手段により受信された信号を画像データとする信号処理手段と、 この信号処 理手段から出力された画像データを表示する手段とを備えたことを特徴とす
9 . 請求項 8に記載の超音波診断装置において、 第 1の周波数特性の帯域 が第 2の周波数特性の帯域よりも低域にあることを特徴とする超音波診断装
1 0 . 周波数特性が異なる複数種類の振動子素子が混在させられた配列振 動子を有し、 被検体に対し超音波を送受信する探触子と、 この探触子の持つ 複数種類の周波数特性を有した振動子が混在した振動子群を駆動し超音波を 送信させる送信手段と、 前記被検体内からのェコーを送信に用いた振動子群 のうちの 1種類の周波数特性を持つ振動子群のみで受信させる受信手段と、 この受信手段により受信された信号を画像データとする信号処理手段と、 こ の信号処理手段から出力された画像データを表示する手段とを備えたことを 特徴とする超音波診断装置。
1 1 . 請求項 1 0に記載の超音波診断装置において、 受信動作に供される 振動子群の周波数特性の帯域が受信動作に供されない振動子群の周波数特性 の帯域よりも高域にあることを特徴とする超音波診断装置。
1 2 . 周波数特性が異なる複数種類の振動子素子が混在させられた配列振 動子を有し、 被検体に対し超音波を送受信する探触子と、 この探触子の持つ 複数種類の周波数特性を有した振動子が混在した振動子群を駆動し超音波を 送信させる送信手段と、 前記被検体内からのェコーを送信に用いた振動子群 と同じ振動子群を用いて受信させる受信手段と、 この受信手段により受信さ れた信号を画像データとする信号処理手段と、 この信号処理手段から出力さ れた画像データを表示する手段とを備えたことを特徴とする超音波診断装置。
PCT/JP2001/000701 2000-02-01 2001-02-01 Sonde a ultrasons et dispositif de diagnostic par ultrasons pourvu de cette sonde WO2001056474A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001556173A JPWO2001056474A1 (ja) 2000-02-01 2001-02-01 超音波探触子およびこれを用いた超音波診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000/24317 2000-02-01
JP2000024317A JP2003169800A (ja) 2000-02-01 2000-02-01 超音波探触子およびこれを用いた超音波診断装置

Publications (1)

Publication Number Publication Date
WO2001056474A1 true WO2001056474A1 (fr) 2001-08-09

Family

ID=18550330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000701 WO2001056474A1 (fr) 2000-02-01 2001-02-01 Sonde a ultrasons et dispositif de diagnostic par ultrasons pourvu de cette sonde

Country Status (2)

Country Link
JP (2) JP2003169800A (ja)
WO (1) WO2001056474A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063956A (ja) * 2015-09-29 2017-04-06 キヤノン株式会社 被検体情報取得装置
WO2023122788A1 (en) * 2021-12-23 2023-06-29 Fujifilm Sonosite, Inc. Array architecture and interconnection for transducers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146101B2 (ja) * 2008-05-16 2013-02-20 コニカミノルタエムジー株式会社 超音波診断装置
JP5582139B2 (ja) * 2009-05-11 2014-09-03 コニカミノルタ株式会社 超音波探触子および超音波診断装置
JP5399192B2 (ja) 2009-09-30 2014-01-29 富士フイルム株式会社 超音波診断装置、および超音波診断装置の作動方法
JP5928151B2 (ja) 2012-05-21 2016-06-01 セイコーエプソン株式会社 超音波トランスデューサー、超音波プローブ、診断装置および電子機器
JP5966621B2 (ja) 2012-05-29 2016-08-10 セイコーエプソン株式会社 超音波デバイス、超音波プローブ及び超音波診断装置
JP2016172112A (ja) * 2016-07-05 2016-09-29 セイコーエプソン株式会社 超音波デバイス、超音波プローブ及び超音波診断装置
KR101877769B1 (ko) * 2017-12-12 2018-07-13 한국표준과학연구원 복합 다중 주파수 초음파 위상배열 영상화 장치
JP7240930B2 (ja) * 2019-03-29 2023-03-16 東芝プラントシステム株式会社 埋設物探査装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131344A (ja) * 1995-11-10 1997-05-20 Ge Yokogawa Medical Syst Ltd 超音波撮像方法および装置並びに超音波探触子および超音波造影剤
US5724976A (en) * 1994-12-28 1998-03-10 Kabushiki Kaisha Toshiba Ultrasound imaging preferable to ultrasound contrast echography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724976A (en) * 1994-12-28 1998-03-10 Kabushiki Kaisha Toshiba Ultrasound imaging preferable to ultrasound contrast echography
JPH09131344A (ja) * 1995-11-10 1997-05-20 Ge Yokogawa Medical Syst Ltd 超音波撮像方法および装置並びに超音波探触子および超音波造影剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063956A (ja) * 2015-09-29 2017-04-06 キヤノン株式会社 被検体情報取得装置
WO2023122788A1 (en) * 2021-12-23 2023-06-29 Fujifilm Sonosite, Inc. Array architecture and interconnection for transducers

Also Published As

Publication number Publication date
JP2003169800A (ja) 2003-06-17
JPWO2001056474A1 (ja) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4625145B2 (ja) 音響振動子及び画像生成装置
JP5275565B2 (ja) 静電容量型超音波トランスデューサ
US7713199B2 (en) Medical diagnostic ultrasound transducer system for harmonics
JP2020513291A (ja) 直接相互接続機能をもつ低電圧、低電力memsトランスデューサ
JP5656520B2 (ja) 超音波診断装置
JP2004089311A (ja) 超音波送受信装置
JP2012015680A (ja) 超音波プローブ及び超音波診断装置
JP4632728B2 (ja) 超音波プローブおよび超音波画像診断装置
WO2001056474A1 (fr) Sonde a ultrasons et dispositif de diagnostic par ultrasons pourvu de cette sonde
JPH05244691A (ja) 超音波探触子
JP2006320415A (ja) 超音波プローブ及び超音波診断装置
JP3382831B2 (ja) 超音波振動子アレイの製造方法、超音波振動子アレイ、超音波プローブおよび超音波撮像装置
JP5776542B2 (ja) 超音波プローブおよび超音波検査装置
JP4382382B2 (ja) 超音波診断装置及び超音波プローブ
JP4963899B2 (ja) 超音波探触子、超音波診断装置
JP3468678B2 (ja) 超音波探触子
JP3916365B2 (ja) 超音波探触子
JP2010219774A (ja) 超音波トランスデューサ、超音波プローブおよび超音波診断装置
JP2007236820A (ja) 超音波プローブ及び超音波診断装置
JPH02271845A (ja) 超音波診断装置
JP2007288397A (ja) 超音波用探触子
JP2004008642A (ja) 波面符号法による3次元表示医療診断装置
JP2012142880A (ja) 超音波振動子、超音波探触子ならびに超音波診断装置
JP2007289283A (ja) 超音波用探触子
JP2002291740A (ja) 超音波探触子及び超音波診断装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 556173

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase