WO2001051862A1 - Periodisch arbeitende kältemaschine - Google Patents

Periodisch arbeitende kältemaschine Download PDF

Info

Publication number
WO2001051862A1
WO2001051862A1 PCT/EP2001/000124 EP0100124W WO0151862A1 WO 2001051862 A1 WO2001051862 A1 WO 2001051862A1 EP 0100124 W EP0100124 W EP 0100124W WO 0151862 A1 WO0151862 A1 WO 0151862A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
pulse tube
heat
expander
compressor
Prior art date
Application number
PCT/EP2001/000124
Other languages
English (en)
French (fr)
Inventor
Albert Hofmann
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Priority to DE50104203T priority Critical patent/DE50104203D1/de
Priority to JP2001552033A priority patent/JP3857587B2/ja
Priority to EP01915128A priority patent/EP1247050B1/de
Priority to AT01915128T priority patent/ATE280369T1/de
Publication of WO2001051862A1 publication Critical patent/WO2001051862A1/de
Priority to US10/194,262 priority patent/US6622491B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Definitions

  • the invention relates to a thermal power amplifier for periodically operating chillers and a method to operate such a thermal cycle.
  • a refrigeration process which works on the principle of a Stirling engine, can be constructed so that there are no mechanical components to be moved in the cold part of such an engine.
  • the cooler of this type consists of a compressor piston which is moved periodically at ambient temperature, a thermally insulated regenerator, a likewise thermally insulated pulse tube, which is provided at both ends with heat exchangers, and an expansion piston which is also operated at ambient temperature. Both pistons are moved so that the following cycle is carried out in the pulse tube: compression of the gas;
  • the temperature can typically be reduced from room temperature to about 25 K [I, II], with two-stage devices even below 4 K [III].
  • the work thus obtained can be used to drive a pulse tube cooler.
  • the thermal power amplifier from a compressor device to which a first heat exchanger is attached which emits heat to the surroundings.
  • a regenerator is attached to this.
  • This heat exchanger is therefore called a heater.
  • the pulse tube of the power transmitter is then attached to the heater and is completed with a heat exchanger that emits heat.
  • the pulse tube cooler is attached to this last heat exchanger, and the last heat exchanger of the power amplifier is the first of the pulse tube cooler, if you will.
  • the heat exchanger which forms the useful cold zone, lies between the regenerator and the pulse tube of the pulse tube cooler.
  • Claim 2 the Stirling process with piston expander
  • Claim 3 the Stirling process with passive expander
  • Claim 4 the Gifford-McMahon mode of operation with a high and low pressure reservoir, both with Connect one valve each to the regenerator, and with a passive expander as in claim 3 and finally
  • Claim 5 the Gifford-McMahon mode of operation with a compression device, as described in claim 4, and one each with a controllable valve vers en Zule * do * ⁇ r v * "* m high and low pressure reservoir, the valve-controlled expander, to the pulse tube.
  • the pulse tube amplifier can be electrically heated on the one hand (claim 6), and on the other hand, similar to a Stirling engine, other heat sources such as solar heating or combustion [5] can also be used (claim 7). In this case, the radiator can be operated with an even lower requirement for primary energy.
  • the pulse tube amplifier i.a. achieved the following advantages: better efficiency, i.e. less primary energy with the same cooling capacity; Cost-effective production of the cooler - compared to a mechanical compressor, the pulse tube amplifier is a very easy to manufacture assembly, the additional effort outweighs the cost savings due to a smaller compressor; lower operating costs; Low maintenance costs - the pulse tube amplifier itself is maintenance-free, the additional components required for the pulse tube cooler, such as compressors and valves, which require regular maintenance or replacement, are sufficient in a smaller design and are therefore cheaper.
  • FIG. 1 shows the schematic structure of the refrigerator as a series Circuit from a thermal amplifier with a pulse tube cooler and the representation of the temperature curve along the same
  • FIG. 2a shows the realization as a Stirling type with a double piston
  • FIG. 2b shows the realization as a Stirling type with a single piston and double-outlet phase shifter
  • FIG. 2c Gifford-McMahon type with double inlet phase shifter
  • FIG. 2d Gifford-McMahon type with active phase shifter
  • FIG. 3a the phase diagram of the oscillations of pressure and volume flow on the optimized pulse tube cooler
  • FIG. 3b shows the phase diagram of the oscillations of pressure and volume flow on the cold machine, the series connection of pulse tube amplifier and pulse tube cooler,
  • FIG. 4 shows the construction of the refrigeration machine with a valve-operated thermal amplifier
  • the compressor and expander are operated in such a way that the following cycle is run through in the pulse tube:
  • the entire gas column cools down, at the left end below the temperature of the heat exchanger located there.
  • the temperature that occurs in the stationary case along the pulse tube cooler is shown below.
  • the pulse tube cooler can be operated in different ways. Ent ⁇ speaking operating schemes are shown in Figures 2a to 2d, m combination with the thermal amplifier. The respective
  • thermal power booster also known as a compressor or pulse tube compressor
  • the thermal power booster functions like a pulse tube cooler
  • both systems, the power booster and the pulse tube cooler can be treated using the same methods.
  • a known calculation method [IV] provides good in tune with experiments.
  • a typical case here is a
  • the calculation assumes harmonic, ie sinusoidal pulsations of pressure and volume flow.
  • the relationships between the pressure p and the volume flow U shown in the diagram / phase diagram according to FIG. 3a result at different positions, such as the regenerator inlet, RE, pulse tube inlet, PTE, and pulse tube outlet, PTA.
  • the volume flow U PT E in the pulse tube on the side facing the compressor leads the pressure p PT present in the pulse tube by approximately 30 °, whereas the gas flow U PT A lags the pressure by approximately 45 ° on the opposite side. Similar operating conditions should occur on a pulse tube amplifier if it is designed for optimal energy conversion.
  • U R , E thus identifies the volume flow fed into the regenerator of the amplifier at room temperature.
  • the volume flow U R , A present at the heated end of this regenerator is distinguished by a longer length due to the thermal expansion of the gas and by a small rotation due to the empty volume in the regenerator.
  • the difference between U RA and U PT ⁇ , E the gas flow present at the hot end of the pulse tube comes about when the heater unit flows through.
  • the pointers p R / E , P PT ⁇ and p PT2 mark the prints at the room temperature f- 1 1 v (__ r *. R-1 __> r-. __. C_ * ⁇ -.
  • a cooling power of 110 W at 50 K can be achieved.
  • the compressor output is reduced by 50%, but in addition a heating output of 1700 W at 1000 K must be fed in. This reduces the total electrical drive power from 6000 W to 4700 W, 3000 W at the compressor and 1700 W at the heating.
  • the pipe connection between the outlet of the regenerator and the entrance to the pulse tube is heated by the gas flame.
  • the pulse tube cooler is coupled to the output of the jerk cooler.
  • the practical implementation of a cooler with the aforementioned performance data is shown by way of example in FIG. 4.
  • the left assembly in the figure represents the compressor with high and low pressure buffer tanks, HD and ND, and the alternately operated valves, solenoid or rotary valves.
  • the middle group represents the single-stage pulse tube cooler to be operated, and the right assembly shows to scale the power or pulse tube amplifier adapted to it.
  • Its regenerator has a similar structure to that of the cooler, with only the pore size being adapted to the higher temperature range.
  • a ceramic body wrapped with heating wire can be used as a largely conventional design as direct heating.
  • the pulse tube is optimized in terms of length and diameter so that a temperature a little above ambient temperature (approx. 300 K + ⁇ T) arises at the lower end, and that the phase relationship between pressure and gas flow is adapted to the requirements of the series connection.
  • the heat previously supplied at high temperature is recooled to ambient temperature.
  • a similar recooling takes place in the compressor. Therefore, the heat exchanger installed between the pulse tube amplifier and the pulse tube cooler can be constructed in a similar way to the plate exchanger which is integrated in the compressor.
  • the linear alignment of the pulse tube power amplifier in Figure 4 is based on practical considerations. Pulse tube amplifiers and coolers are shown on the same scale. The main dimensions and operating parameters are summarized in Table 1.
  • the regenerator consists of stacked 100 mesh SS, 62 mm diameter, 2 mm thick. This is followed by the heat exchanger in the form of the heater, which uses 1700 W and generates 1000 K. It has an inner diameter of 55.2 mm and is 140 mm long. The empty space is 50%.
  • the pulse tube with the above dimensions follows. It has a wall thickness of 2 mm and consists of high temp. Steel 1.4961. At the pulse tube exit there is a flow smoother made of a 200 mesh SS, about 15 mm thick.
  • the heater is covered with a first radiation shield. Another encases this, about a third of the regenerator and about one
  • the heat must be transferred to the working gas from a burner chamber located outside the gas space or from a collector space for solar heating.
  • the pulse tube amplifier can be operated with a gas or oil burner according to the schematic illustration in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Amplifiers (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Eine periodisch arbeitende Kältemaschine bestehend aus: einem auf dem Pulsrohrprozess basierenden thermischen Leistungsverstärker und einem an dessen als Rückkühler wirkenden Wärmeübertrager in Reihe angeschlossenen Pulsrohrkühler. Der thermische Leistungsverstärker wiederum besteht aus: einer Kompressoreinrichtung, einem ersten, an die Umgebung Wärme abgebenden Wärmeübertrager, einem Regenerator, einem zweiten, in den Leistungsverstärker Wärme einbringenden Wärmeübertrager, dem Heizer, einem Pulsrohr, einem dritten, an die Umgebung Wärme abgebenden Wärmeübertrager, an den sich der Pulsrohrkühler anschliesst. Auch dieser besteht aus einem Regenerator, einem Wärmeübertrager, einem Pulsrohr, einem Wärmeübertrager und einem Expander. Die optimale Auslegung der Kältemaschine für den stationären Betrieb lässt sich mit Hilfe eines Zeigerdiagramms ermitteln.

Description

Periodisch arbeitende Kältemaschine
Die Erfindung betrifft einen thermischen Leistungsverstärker für periodisch arbeitende Kältemaschinen und ein Verfahren einen solchen mit einem thermischen Kreisprozeß zu betreiben.
Es ist bekannt, daß ein Kälteerzeugungsprozeß, der nach dem Prinzip einer Stirlingmaschine funktioniert, so aufgebaut werden kann, daß im kalten Teil einer solchen Maschine keine zu bewegenden mechanischen Komponenten vorhanden sind. Der Kühler einer solchen besteht aus einem bei Umgebungstemperatur periodisch bewegten Kompressorkolben, einem thermisch isolierten Regenerator, einem ebenfalls thermisch isolierten Pulsrohr, das an beiden Enden mit Wärmeübertragern versehen ist und einem ebenfalls bei Umgebungstemperatur betriebenen Expansionskolben. Beide Kolben werden so bewegt, daß im Pulsrohr folgender Kreisprozeß durchlaufen wird: Kompression des Gases;
Verschiebung des Gases in Richtung Expander; Expansion des Gases; Verschiebung des Gases in Richtung Kompressor:
Die genauere Analyse zeigt daß mit dem Kompressor verhältnismäßig viel Arbeit zugeführt wird. Ein geringer Anteil davon wird am Expander zurückgewonnen. Die Differenz wird in Wärme umgesetzt, die im wesentlich im Bereich des Kompressors abgeleitet werden muß (siehe auch Figur 6).
Derartige Kühlprozesse sind in unterschiedlich abgewandelten Betriebsweisen realisiert worden. Mit einstufigen Anordnungen kann die Temperatur typischerweise von Raumtemperatur auf etwa 25 K abgesenkt werden [I, II], mit zweistufigen Einrichtungen sogar bis unterhalb von 4 K [III].
Folgende Überlegung führte zu der Erfindung:
Wenn an dem Wärmeübertrager zwischen dem Regenerator und dem Pulsrohr soviel Warme zugeführt wird, daß dort keine Abkühlung sondern eine Erwärmung über die Raumtemperatur hinaus erfolgt, wird die am Expander abzuführende Arbeitsleistung großer als die dem System mechanisch zugefuhrte Kompressionsleistung. Ein Teil der beim Warmeubetrager zwischen Regenerator und Pulsrohr zu- und der beim Wärmeübertrager am Ende des Pulsrohrs abgeführten Warme wird in Arbeit umgewandelt und fuhrt somit zu einer Verstärkung der mechanischen Leistung.
Die damit gewonnenen Arbeit ist zum Antrieb eines Pulsrohrkuh- lers nutzbar.
In Anspruch 1 ist der Aufbau einer solchen, aus einem thermischen Leistungsverstarker und einem an seinen Ausgang angeschlossenen, also in Reihe geschalteten Pulsrohrkühler in seinen Merkmalen gekennzeichnet.
Der thermische Leistungsverstarker aus einer Kompressoreinrichtung an die ein erster Wärmeübertrager angebaut ist, der an die Umgebung Warme abgibt. An diesen ist ein Regenerator angebaut. Am andern Ende sitzt ein weiterer Wärmeübertrager, über den Warme in den Leistungsverstarker eingeleitet wird. Dieser Wärmeübertrager wird daher als Heizer bezeichnet. An den Heizer ist in Folge das Pulsrohr des Leistungsubertragers angebaut und wird mit einem Wärmeübertrager, der Warme abgibt abgeschlossen. An diesen letzten Wärmeübertrager ist der Pulsrohrkühler angebaut, dabei ist der letzte Wärmeübertrager des Leistungsverstarkers der erste des Pulsrohrkuhlers, wenn man so will. Zwischen dem Regenerator und Pulsrohr des Pulsrohrkuhlers liegt der Warmeubetrager, der die Nutzkaltezone bildet. Schließlich schließt das Pulsrohr mit einem letzten Wärme bertrager und der daran ankoppelnden Expandereinrichtung ab.
In den Unteranspruchen 2 bis 5 sind verschiedene Betriebsvarianten entsprechend der bekannten Betriebsvarianten von Pulsrohr- kuhlern aufgeführt 1*1 bis III--: Zunächst die beiden Varianten mit bewegten Bauteilen:
Anspruch 2 der Stirling-Prozess mit Kolbenexpander, Anspruch 3 der Stirling-Prozeß mit passivem Expander, und dann die beiden Varianten, die keine bewegten Bauteile haben: Anspruch 4 die Gifford-McMahon-Betriebsweise mit einem Hoch- und Niederdruckreservoir, die beide über mit je einem Ventil versehenen Zuleitungen am Regenerator ankoppeln, und mit passivem Expander wie in Anspruch 3 und schließlich
Anspruch 5 die Gifford-McMahon-Betriebsweise mit einer Kompressionseinrichtung, wie in Anspruch4 beschrieben, und je einer mit e * nem steuerbaren Ventil vers en Zule * tun*~r v*"*m Hoc — und Nie— derdruckreservoir, dem ventilgesteuertem Expander, zum Pulsrohr.
Der Pulsrohrverstarker kann einerseits elektrisch beheizt werden (Anspruch 6), andrerseits, ahnlich wie bei einem Stirling-Motor, können auch andere Wärmequellen wie solare Erwärmung oder Verbrennung [5] genutzt werden (Anspruch 7) . In diesem Fall kann der Kuhler mit noch geringerem Bedarf an Primarenergie betrieben werden.
Mit der Erfindung werden u.a. folgende Vorteile erzielt: besserer Wirkungsgrad, d.h. weniger Primarenergie bei gleicher Kälteleistung; kostengünstige Fertigung des Kuhlers - im Vergleich zu einem mechanischen Kompressor ist der Pulsrohrverstarker eine sehr einfach zu fertigende Baugruppe, der Zusatzaufwand wiegt die Kosteneinsparung aufgrund eines kleineren Kompressors auf; geringere Betriebskosten; geringe Wartungskosten - der Pulsrohrverstarker selbst ist wartungsfrei, die für den Pulsrohrkühler in jedem Fall erforderlichen Zusatzkomponenten wie Kompressor und Ventile, die regelmäßige Wartung bzw. Austausch erfordern, genügen in kleinerer Bauweise und sind dadurch billiger.
Die Erfindung wird im folgenden anhand der Zeichnung naher beschrieben. Die Zeichnung besteht aus mehreren Figuren. Es zeigt: Figur 1 den schematischen Aufbau der Kältemaschine als Reihen- Schaltung aus einem thermischen Verstarker mit einem Pulsrohrkühler und die Darstellung des Temperaturverlaufs entlang derselben,
Figur 2a die Realisierung als Stirling-Typ mit Doppelkolben, Figur 2b die Realisierung als Stirling-Typ mit Einfachkolben und Doppelemlaß-Phasenschieber,
Figur 2c Gifford-McMahon-Typ mit Doppeleinlaß-Phasenschieber, Figur 2d Gifford-McMahon-Typ mit aktivem Phasenschieber, Figur 3a das Phasendiagramm der Oszillationen von Druck und Volumenstrom am optimierten Pulsrohrkühler,
Figur 3b das Phasendiagramm der Oszillationen von Druck und Volumenstrom an der Kaltemaschiene, der Reihenschaltung von Pulsrohrverstarker und Pulsrohrkühler,
Figur 4 den Aufbau der Kältemaschine mit ventilbetriebenem thermischen Verstarker,
Figur 5 den Heizer als Brennkammer-Heizung,
Figur 6 Funktionsprinzip des Pulsrohrkuhlers und der Temperaturverlauf entlang ihm.
Zunäcnsr wird anhand der Figur 6 an das Funktionsprinzip des Pulsrohrkuhlers in seinen vier Phasen einer Periode kurz erinnert :
Der Kompressor und Expander werden so betrieben, daß im Pulsrohr folgender Kreisprozeß durchlaufen wird:
- Kompression des Gases.
- Verschiebung des Gases in Richtung Expander um eine Lange Δl, die kleiner als die Gesamtlange des Pulsrohrs ist. Hierbei wird dem durch den Wärmeübertrager WU3 am Ende des dem Regenerator zugewandten Ende des Pulsrohrs stromenden Gas Warme entzogen.
- Expansion des Gases.
Die gesamte Gassaule kühlt sich ab, am linken Ende unter die Temperatur des dort befindlichen Wärmeübertragers.
- Verschiebung des Gases zum Kompressor hin. Dabei kommt es zu einer Abkühlung am linken Wärmeübertrager WU1 oder es muß dort Warme zugeführt werden, wenn dieser Wärmeübertrager WU1 bei konstanter Temperatur betrieben wird.
Die sich im stationären Fall einstellende Temperatur entlang des Pulsrohrkuhlers ist darunter dargestellt.
Der Pulsrohrkühler kann unterschiedliche betrieben werden. Ent¬ sprechende Betriebsschemen sind in den Figuren 2a bis 2d m Kombination mit dem thermischen Verstarker dargestellt. Die jewei-
. -i ri*--- A *f""+~ n p r*h F-i πn r O 2 π η rl
Figure imgf000007_0001
-i o -r-o n n -F H O T* f -*- . --
Figure imgf000007_0002
nes geeigneten Kolbenkompressors zum Antrieb des Verstärkers. Entsprechend dem bekannten Stirling-Prozeß wird bei der Expansion Arbeit zurückgewonnen. Gemäß dem Prinzip nach den beiden Figuren 2c und 2d wird der dem Verstarker zugefuhrte Gasstrom mit periodisch geschalteten Ventilen aufgeprägt. Dieses wird einem Hochdruckbehalter, HD, (Druckreservoir) entnommen und in einen Niederdruckbehalter, ND, (Niederdruckreservoir) entspannt, ahnlich wie beim Betrieb eines Gifford-McMahon (GM) -Kühlers . Diese GM-Betriebsweise hat zwar einen schlechteren Wirkungsgrad als die Stirling-Betriebsweise, hat aber den Vorteil, daß preisgünstigere Kompressoren eingesetzt werden können. Analoges gilt auch f r dem Pulsrohrverstarker sowie für die Reihenschaltung beider Einheiten. In Figur 1 ist die Kombination des thermischen Leistungsverstarkers mit dem Pulsrohrkühler schematisch dargestellt .
Im weiteren wird eine beispielhafte Auslegung für die aus der Reihenschaltung des thermischen Leistungsverstarkers und des mit ihm betriebenen Pulsrohrkuhlers bestehenden, periodisch arbeitenden Kältemaschine beschrieben.
Da der thermische Leistungsverstarker, auch Kompressor oder Pulsrohrkompressor genannt, wie ein Pulsrohrkühler funktioniert, können beide Systeme, der Leistungsverstarker und der Pulsrohrkühler, mit gleichen Methoden behandelt werden. Ein bekanntes Berechnungsverfahren [IV] liefert bei Pulsrohrkuhlern gute Über- einstimmung mit Experimenten. Als typischer Fall wird hier ein
Kuhler betrachtet, der am Regeneratoreingang einen Arbeitsstrom ("pV-Leistung" ) von 1000 W benotigt. Bei 2 Hz Pulsationsfrequenz ist hierzu ein harmonisch pulsierender Gasstrom mit einem Scheitelwerten von Us = 4,8 1/s des Volumenstroms und ps = 5,7 bar des Drucks mit einer Phasendifferenz von 45° erforderlich. Bei ventilgesteuerter Betriebsweise sind die Pulsationen nicht mehr harmonisch. Es zeigte sich aber, daß auch dann mit diesem Berechnungsmodell eine Auslegung mit guter Näherung vorgenommen werden kann. Bei der GM-Betriebsweise wird die "pV-Leistung" von einem Kompressor mit ca. 6000 W elektrischer Antriebsleistung erbracht. Er arbeitet bei einem Kompressionsverhaltnis von etwa 1, 9 bei 18 bar Mitteldruck. Für einen optimal angepaßten Pulsrohrkühler ergibt das Rechenverfahren eine Kühlleistung von ca. 110 W bei 50 K Kuhltemperatur und 300 K Umgebungstemperatur.
Bei der Berechnung werden harmonische, also sinusförmige Pulsa- tionen von Druck und Volumenstrom angenommen. Im optimierten System ergeben sich die m dem Zeιger-/Phasendιagramm gemäß Figur 3a gezeigten Bezienungen zwischen Druck p und Volumenstrom U an verschiedenen Positionen wie dem Regeneratoreintritt, RE, Pulsrohreintritt, PTE, und Pulsrohraustritt, PTA. Der Volumenstrom UPT E im Pulsrohr auf der dem Kompressor zugewandten Seite eilt dem im Pulsrohr vorliegenden Druck pPT um etwa 30° voraus, wohingegen der Gasstrom UPT A an der gegenüber liegenden Seite dem Druck um etwa 45° nacheilt. Ahnliche Betriebsbedingungen sollten sich an einem Pulsrohrverstarker einstellen, wenn dieser für optimale Energiewandlung konzipiert wird.
Wenn nun aber der Pulsrohrverstarker, 1, und der Pulsrohrkühler, 2, m Reihe geschaltet sind, wie es bei der erfmdungsgemaßen Anordnung nach den Figuren 1, 2 und 4 der Fall ist, summieren sich die Phasenverschiebungen, wie m Figur 3b dargestellt. Im Pulsrohr des Pulsrohr- oder Leistungsverstarkers, 1, eilen beide Volumenstromzeiger UPT1 E und UPTI,A dem Druck pPTι voraus und im Kuhler, 2, eilen die Volumenstrome UPT2,E und UPT2,A dem Druck pPT2 nach. Ergänzend dazu sind in Figur 3b auch die Zeiger der Druck- und Volumenstromoszillation an anderen Positionen dargestellt.
So kennzeichnet UR,E den bei Raumtemperatur in den Regenerator des Verstärkers eingespeisten Volumenstrom. Der am beheizten Ende dieses Regegenerators vorliegende Volumenstrom UR,A ist durch eine größere Lange aufgrund der thermischen Ausdehnung des Gases und durch eine geringe Drehung aufgrund des Leervolumens im Regenerator ausgezeichnet. Der Unterschied zwischen UR A und UPTι,E dem am heißen Ende des Pulsrohrs vorliegenden Gasstrom kommt bei der Durchstromung der Heizereinheit zustande. Entsprechend kennzeichnen die Zeiger pR/ E, PPTι und pPT2 die Drucke am Räumtempera- f- 1 1 v (__ r*. r-1 __> r-. __. c_* -. i η*m ~_ v- +- r- lr- r* r*r __. /—, τ~ c . r. r. r__ r*ι Ü Drrpn D r a lri r Q i m Pl t l Q roh der Verstarkereinheit und im Pulsrohr der Kuhlereinheit.
Beide Komponenten werden nicht in dem jeweils optimalen Zustand betrieben. Hierdurch verschlechtert sich die Effizienz des Pulsrohrkuhlers gegenüber der Betriebsweise mit direktem Anschluss am Kompressor. Durch Modifizierung der Abmessungen kann dieser schädliche Effekt aber so weit vermindert werden, daß ein Gewinn erzielt wird.
Beispielsweise kann mit einem in konventioneller Weise betriebenen Pulsrohrkühler in GM-Betriebsweise mit 6000 W elektrischer Antriebsleistung des Kompressors eine Kuhlleistung von 110 W bei 50 K erzielt werden. Bei Einsatz eines Pulsrohrverstarkers mit 1000 K mittlerer Temperatur im Bereich der Heizung wird die Kompressorleistung um 50 % verringert, zusatzlich muß aber eine Heizleistung von 1700 W bei 1000 K eingespeist werden. Damit reduziert sich die gesamte elektrische Antriebsleistung von 6000 W auf 4700 W, 3000 W am Kompressor und 1700 W an der Heizung.
Der Effekt wird noch gunstiger, wenn Materialien mit höherer Temperaturvertraglichkeit eingesetzt werden, oder wenn die Heizleistung nicht elektrisch aufgebracht wird, sondern z.B. über eine Gasbrennerkammer beispielsweise, wie in Fig. 5 an skizziert. Die Rohrverbindung zwischen dem Ausgang des Regenerators und dem Eingang zum Pulsrohr wird über die Gasflamme erhitzt. Am Ausgang des Ruckkuhlers koppelt der Pulsrohrkühler an. Die praktischen Ausfuhrung eines Kuhlers mit den zuvor genannten Leistungsdaten ist beispielhaft in Figur 4 gezeigt. Die linke Baugruppe in der Figur stellt den Kompressor mit Hoch- und Niederdruck-Pufferbehaltern, HD und ND, und den alternierend betriebenen Ventilen, Magnet- oder Drehventile, dar. Die mittlere Gruppe stellt den zu betreibenden einstufigen Pulsrohrkühler dar, und die rechte Baugruppe zeigt maßstablich den daran ange- passten Leistungs- oder Pulsrohrverstarker. Dessen Regenerator ist ahnlich aufgebaut wie der des Kühlers, wobei nur die Porenweite an den höheren Temperaturbereich ange^asst ist. Als direkte Heizung kann ein mit Heizdraht bewickelter Keramikkorper m weitgehend konventioneller Ausfuhrung verwendet werden. Das Pulsrohr ist in Bezug auf Lange und Durchmesser so optimiert, daß sich am unteren Ende eine Temperatur wenig über Umgebungstemperatur (ca. 300 K+^T) einstellt, und daß die Phasenbeziehung zwischen Druck und Gasstromung an die Erfordernisse der Reihenschaltung angepasst ist. In dem nachgeschalteten, wassergekühlten Wärmeübertrager wird die zuvor bei hoher Temperatur zuge- fuhrte Warme auf Umgebungstemperatur ruckgekühlt. Eine ahnliche Ruckkuhlung erfolgt in dem Kompressor. Daher kann der zwischen Pulsrohrverstarker und Pulsrohrkühler eingebaute Wärmeübertrager ahnlich aufgebaut sein wie der in dem Kompressor integrierte, ein Plattenubertrager . Die lineare Ausrichtung des Pulsrohr- Leistungsverstarkers in Figur 4 beruht auf praktischen Erwägungen. Pulsrohr-Verstarker und -Kuhler sind in gleichem Maßstab dargestellt. Die wesentlichen Abmessungen und Betriebsparameter sind in der Tabelle 1 zusammengestellt.
Figure imgf000011_0001
Tabelle 1: Parameter eines Pulsrohrverstarkers
Der Regenerator besteht aus gestapelten 100 mesh SS, 62 mm Durchmesser, 2 mm stark. Daran schließt sich der Wärmetauscher in Form des Heizers an, der 1700 W braucht und 1000 K erzeugt. Er hat 55,2 mm Innendurchmesser und ist 140 mm lang. Der Leerraum betragt 50 %. Das Pulsrohr mit den obigen Maßen schließt sich an. Es hat eine Wandstarke von 2 mm und besteht aus Hoch- temp. -Stahl 1.4961. Am Pulsrohrausgang befindet sich ein Stro- mungsglatter aus einem 200 mesh SS, etwa 15 mm dick. Der Heizer ist mit einem ersten Strahlungsschild ummantelt. Ein weiteres ummantelt dieses, etwa ein Drittel des Regenerators und etwa ein
Drittel des Pulsrohrs.
Wenn andere Heizenergien für den Heizer eingesetzt werden sollen, muß die Warme von einer außerhalb des Gasraums angebrachten Brennerkammer oder einem Kollektorraum für Solarheizung an das Arbeitsgas übertragen werden. Das Problem stellt sich in gleicher Weise bei Stirling-Motoren. Die hierfür erarbeiteten Losungen, bei denen zur Zeit Arbeitstemperaturen bis zu etwa 1000 K realisiert werden, können mit geringen Modifikationen übernommen werden. In Analogie dazu kann der Pulsrohrverstarker gemäß der schematische Darstellung der Figur 5 mit einem Gas- oder Olbren- ner betrieben werden. Die hier gewählte U-formige Anordnung von Regenerator und Pulsrohr erwies sich als vorteilhaft. Das wärmere Gas des Regenerators als auch des Pulsrohrs sind oben, Warme durch Naturkonvektion kann nicht abfließen.
Literatur
I. S. Wild: Untersuchung ein- und mehrstufiger Pulsrohrkühler, Fortschritt-Berichte VDI, Reihe 19, Nr. 105, VDI-Verlag Düsseldorf 1997, ISBN 3-18-310519-5
II. J. Blaurock, R. Hackenberger, P.Seidel, and M. Thürk. Compact Four-Valve Pulse Tube Refrigerator in Coaxial Configuration. Proc. 8th Int. Cryocooler Conf, Vail (USA) 1994, p. ...
III. Wang, G. Thummes, and C. Heiden: Experimental Study of Staging Method for Two-Stage Pulse Tube Refrigera tors for Li quid Helium Tempera tures, Cryogenics Vol. 37 (1997), p. 159-164
IV. Hofmann and S. Wild: Analysi s of o two-s tage pulse tube cooler by modeling wi th thermoacousti c theory. Proc. 10th In- Cryocooler Conf., May 26-28, 1998, Monterey, Ca. (USA)
V. H. Carlson: 10 kW Hermetic Stirling Engine for Stationary Application, 6th International Stirling Engine Conference, Eindhoven (NL), May 26-28, 1993 (Paper ISEC-93086)

Claims

Patenansprüche :
1. Periodisch arbeitende Kältemaschine, bestehend aus: einem auf dem Pulsrohrprozeß basierenden thermischen Leistungsverstarker und einem an dessen als Ruckkuhler wirkenden Warmeubetrager in Reihe angeschlossenen Pulsrohrkühler, und der thermische Leistungsverstarker besteht aus: einer Kompressoreinrichtung (K) , einem ersten, an die Umgebung Warme abgebenden Wärmeübertragger*,c-. --- I \ τv.i.r .1_L \; , einem Regenerator (Rl), einem zweiten, in den Leistungsverstarker Warme einbringenden Wärmeübertrager (WU2), dem Heizer, einem Pulsrohr (PR1), einem dritten, an die Umgebung Warme abgebenden Wärmeübertrager (WU3), an den sich der Pulsrohrkühler, der aus einem Regenerator (R2), einem Wärmeübertrager (WU4), einem Pulsrohr (PR2), einem Wärmeübertrager (WU5) und einem Expander (E) besteht, anschließt.
2. Periodisch arbeitende Kältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Kältemaschine vom Stirlingtyp ist, als Kompressoreinrichtung (K) einen Kompressorkolben und als Expandereinrichtung (E) einen Expanderkolben - Doppelkolbenauf au - hat .
3. Periodisch arbeitende Kältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Kältemaschine vom Stirlingtyp ist, als Kompressoreinrichtung (K) einen Kompressorkolben hat - Einkolbenaufbau - und als Expander einen Doppeleinlaß-Phasenschieber m Form einer querschnittveranderbaren Rohrverbindung vom Wärmeübertrager (WU3) zum Wärmeübertrager (WU5) und einer querschnittveranderbaren Rohrverbindung vom War eu- bertrager (WU5) zu einem Ausdehnungsgefäß hat.
4. Periodisch arbeitende Kältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Kältemaschine vom Gifford-McMahon- Typ, GM-Typ, ist, als Kompressoreinrichtung (K) eine jeweils ventilgesteuerte Zuleitung von einem Hochdruckreservoir (HD) und einem Niederdruckreservoir (ND) hat - Zweiventilanordnung - und als Expander einen Doppeleinlaß-Phasenschieber in Form einer querschnittveranderbaren Rohrverbindung vom Wärmeübertrager (WU3) zum Wärmeübertrager (WU5) und einer querschnittveranderbaren Rohrverbindung vom Wärmeübertrager (WU5) zu einem Ausdehnungsgefäß hat.
5. Periodisch arbeitende Kältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Kältemaschine vom Gifford-McMahon- Typ, GM-Typ, ist, als Kompressoreinrichtung (K) eine jeweils ventilgesteuerte Zuleitung von einem Hochdruckreservoir (HD) und einem Niederdruckreservoir (ND) und als Expander ebenfalls je eine ventilgesteuerte Zuleitungen zum Hochdruckreservoir (HD) und einem Niederdruckreservoir (ND) hat - Vierventilanordnung .
6. Periodisch arbeitende Kältemaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Wärmequelle für den Heizer direkt im Wärmeübertrager (WU2), dem Heizer, eingebaut
7. Periodisch arbeitende Kältemaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Wärmequelle für den Heizer außerhalb des des Leistungsverstarkers liegt und mit dem Wärmeübertrager (WU2), dem Heizer, gut die Warme leitend verbunden ist.
PCT/EP2001/000124 2000-01-15 2001-01-08 Periodisch arbeitende kältemaschine WO2001051862A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50104203T DE50104203D1 (de) 2000-01-15 2001-01-08 Periodisch arbeitende kältemaschine
JP2001552033A JP3857587B2 (ja) 2000-01-15 2001-01-08 周期的に作動する冷凍機
EP01915128A EP1247050B1 (de) 2000-01-15 2001-01-08 Periodisch arbeitende kältemaschine
AT01915128T ATE280369T1 (de) 2000-01-15 2001-01-08 Periodisch arbeitende kältemaschine
US10/194,262 US6622491B2 (en) 2000-01-15 2002-07-15 Periodically operating refrigeration machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001460A DE10001460A1 (de) 2000-01-15 2000-01-15 Pulsrohr-Leistungsverstärker und Verfahren zum Betreiben desselben
DE10001460.7 2000-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/194,262 Continuation-In-Part US6622491B2 (en) 2000-01-15 2002-07-15 Periodically operating refrigeration machine

Publications (1)

Publication Number Publication Date
WO2001051862A1 true WO2001051862A1 (de) 2001-07-19

Family

ID=7627597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000124 WO2001051862A1 (de) 2000-01-15 2001-01-08 Periodisch arbeitende kältemaschine

Country Status (6)

Country Link
US (1) US6622491B2 (de)
EP (1) EP1247050B1 (de)
JP (1) JP3857587B2 (de)
AT (1) ATE280369T1 (de)
DE (3) DE10001460A1 (de)
WO (1) WO2001051862A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990496A (zh) * 2017-12-29 2019-07-09 同济大学 一种串列式脉管制冷机

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454271B1 (ko) * 2002-08-16 2004-10-26 엘지전선 주식회사 열-음향 구동 오리피스형 맥동관 극저온 냉동장치
JP4035069B2 (ja) * 2003-02-27 2008-01-16 財団法人名古屋産業科学研究所 熱音響効果を利用した音波増幅・減衰器を備えた配管装置
US20050103615A1 (en) * 2003-10-14 2005-05-19 Ritchey Jonathan G. Atmospheric water collection device
WO2005106352A2 (en) * 2004-03-10 2005-11-10 Praxair Technology, Inc. Low frequency pulse tube with oil-free drive
JP2008286507A (ja) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd パルス管冷凍機
DE102008050653B4 (de) * 2008-09-30 2013-09-12 Institut für Luft- und Kältetechnik gGmbH Wärmekraftmaschine nach dem Pulsröhrenprinzip
DE102008050655B4 (de) * 2008-09-30 2011-02-10 Fox-Service Gmbh Abgasanlage für Kraftfahrzeuge mit integrierter Wärmekraftmaschine
US8950193B2 (en) 2011-01-24 2015-02-10 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Secondary pulse tubes and regenerators for coupling to room temperature phase shifters in multistage pulse tube cryocoolers
CN103017401B (zh) * 2012-12-12 2015-06-03 浙江大学 采用冷能的声功放大装置
JP6286837B2 (ja) * 2013-03-05 2018-03-07 いすゞ自動車株式会社 熱音響冷凍装置
DE102013005304A1 (de) 2013-03-22 2014-09-25 Technische Universität Ilmenau Vorrichtung und Verfahren zur Erzeugung einer Kälteleistung
US11041458B2 (en) * 2017-06-15 2021-06-22 Etalim Inc. Thermoacoustic transducer apparatus including a working volume and reservoir volume in fluid communication through a conduit
US11193191B2 (en) * 2017-11-28 2021-12-07 University Of Maryland, College Park Thermal shock synthesis of multielement nanoparticles
JP6913039B2 (ja) * 2018-01-25 2021-08-04 住友重機械工業株式会社 パルス管冷凍機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858441A (en) * 1987-03-02 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Heat-driven acoustic cooling engine having no moving parts
JPH03194364A (ja) * 1989-12-25 1991-08-26 Sanyo Electric Co Ltd 極低温冷凍装置
US5269147A (en) * 1991-06-26 1993-12-14 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating system
JPH0719635A (ja) * 1993-06-29 1995-01-20 Naoji Isshiki パルスチューブ冷凍機
US5481878A (en) * 1993-05-16 1996-01-09 Daido Hoxan Inc. Pulse tube refrigerator
US5722243A (en) * 1996-11-13 1998-03-03 Reeves; James H. Pulsed heat engine for cooling devices
US5927081A (en) * 1997-02-18 1999-07-27 Sumitomo Heavy Industries, Ltd. Pulse tube refrigerator and its running method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706828B2 (ja) * 1989-11-01 1998-01-28 株式会社日立製作所 冷凍機
JP3624542B2 (ja) * 1996-04-30 2005-03-02 アイシン精機株式会社 パルス管冷凍機
US5791149A (en) * 1996-08-15 1998-08-11 Dean; William G. Orifice pulse tube refrigerator with pulse tube flow separator
JPH10132404A (ja) * 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk パルス管冷凍機
JP4147697B2 (ja) * 1999-09-20 2008-09-10 アイシン精機株式会社 パルス管冷凍機
US6374617B1 (en) * 2001-01-19 2002-04-23 Praxair Technology, Inc. Cryogenic pulse tube system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858441A (en) * 1987-03-02 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Heat-driven acoustic cooling engine having no moving parts
JPH03194364A (ja) * 1989-12-25 1991-08-26 Sanyo Electric Co Ltd 極低温冷凍装置
US5269147A (en) * 1991-06-26 1993-12-14 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating system
US5481878A (en) * 1993-05-16 1996-01-09 Daido Hoxan Inc. Pulse tube refrigerator
JPH0719635A (ja) * 1993-06-29 1995-01-20 Naoji Isshiki パルスチューブ冷凍機
US5722243A (en) * 1996-11-13 1998-03-03 Reeves; James H. Pulsed heat engine for cooling devices
US5927081A (en) * 1997-02-18 1999-07-27 Sumitomo Heavy Industries, Ltd. Pulse tube refrigerator and its running method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOFMANN A ET AL: "Phase shifting in pulse tube refrigerators", CRYOGENICS,IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD,GB, vol. 39, no. 6, June 1999 (1999-06-01), pages 529 - 537, XP004179522, ISSN: 0011-2275 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 457 (M - 1181) 20 November 1991 (1991-11-20) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04 31 May 1995 (1995-05-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990496A (zh) * 2017-12-29 2019-07-09 同济大学 一种串列式脉管制冷机
CN109990496B (zh) * 2017-12-29 2021-10-08 同济大学 一种串列式脉管制冷机

Also Published As

Publication number Publication date
EP1247050A1 (de) 2002-10-09
US20030019218A1 (en) 2003-01-30
ATE280369T1 (de) 2004-11-15
JP2003523495A (ja) 2003-08-05
DE10061922A1 (de) 2001-08-02
DE10001460A1 (de) 2001-08-02
EP1247050B1 (de) 2004-10-20
DE10061922C2 (de) 2003-10-30
JP3857587B2 (ja) 2006-12-13
US6622491B2 (en) 2003-09-23
DE50104203D1 (de) 2004-11-25

Similar Documents

Publication Publication Date Title
WO2001051862A1 (de) Periodisch arbeitende kältemaschine
DE4234678C2 (de) Reversible Schwingrohr-Wärmekraftmaschine
DE112005003132B4 (de) Kroygener Kühler mit verringerter Eingangsleistung
KR102505889B1 (ko) 열을 전기에너지로 변환하는 열 사이클 장치
EP0865595A1 (de) Tieftemperatur-refrigerator mit einem kaltkopf sowie verfahren zur optimierung des kaltkopfes für einen gewünschten temperaturbereich
EP0890063A1 (de) Mehrstufige tieftemperaturkältemaschine
DE3500124A1 (de) Durch externe waermezufuhr betriebene, dezentrale versorgungseinheit zur wahlweisen und kombinierten erzeugung von elektrischer energie, waerme und kaelte
DE102008041939A1 (de) Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine bzw. einer Kraftmaschine sowie Wärmepumpe oder Kältemaschine und Kraftmaschine
WO2007054204A1 (de) Solar betriebene kältemaschine
JP2005106297A (ja) 極低温冷凍機
EP3559564B1 (de) Verfahren und vorrichtung zur erzeugung von prozesskälte und prozessdampf
EP2312239A2 (de) Compound-Pulse-Tube-Kühler
DE1957174A1 (de) Verfahren und Vorrichtung zur Umwandlung thermischer in mechanische Energie
DE102009022933B4 (de) Pulse-Tube-Kaltkopf
DE10220391A1 (de) Wärmepumpe oder Kältemaschine
DE10035289A1 (de) Vorrichtung zur Erzeugung von mechanischer Energie mit einer mit äußerer Verbrennung arbeitenden Wärmekraftmaschine
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
DE10051115A1 (de) Pulse-Tube-Kühler
DE19511215A1 (de) Nach dem Stirling-Prinzip arbeitende Wärmekraftmaschine
DE19502188C2 (de) Verfahren zur Leistungssteuerung einer Wärme- und Kältemaschine
DE19948808A1 (de) Regenerativer Wärmekraftkompressor
Schweigler et al. Operation and performance of a 350 kW (100 RT) single-effect/double lift absorption chiller
DE4237826A1 (de) Verfahren und Vorrichtung zur Gewinnung mechanischer Energie aus Wärme
JPH05322337A (ja) 波動式冷凍機
DE19540017A1 (de) Wärmepumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001915128

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 552033

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10194262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001915128

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001915128

Country of ref document: EP