EP2312239A2 - Compound-Pulse-Tube-Kühler - Google Patents

Compound-Pulse-Tube-Kühler Download PDF

Info

Publication number
EP2312239A2
EP2312239A2 EP10183734A EP10183734A EP2312239A2 EP 2312239 A2 EP2312239 A2 EP 2312239A2 EP 10183734 A EP10183734 A EP 10183734A EP 10183734 A EP10183734 A EP 10183734A EP 2312239 A2 EP2312239 A2 EP 2312239A2
Authority
EP
European Patent Office
Prior art keywords
pulse tube
piston
tube cooler
cooler
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10183734A
Other languages
English (en)
French (fr)
Other versions
EP2312239A3 (de
Inventor
Gunter Kaiser
Jürgen Klier
Moritz Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Original Assignee
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH filed Critical Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Publication of EP2312239A2 publication Critical patent/EP2312239A2/de
Publication of EP2312239A3 publication Critical patent/EP2312239A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the invention relates to an arrangement of a plurality of pulse tube coolers with active phase shifters, which are achieved in the cryogenic refrigeration and efficiencies that are at least as high as are known from Stirling coolers the same power class.
  • the application of the invention is particularly suitable for the cryostatization of high-temperature superconducting cables in motors and in generators and fault current limiters.
  • Stirling coolers or Pulse Tube coolers are commonly used for high cooling capacities from several hundred watts to kilowatts.
  • a pulse tube refrigerator comprising a compression and expansion cylinder with pistons carried therein.
  • the compression and expansion pistons are driven by a crank drive with a phase shift of 55 to 78 degrees; the compression cylinder leads the expansion cylinder.
  • the reservoir of the pulse tube is thereby cyclically varied (active phase shifter), so that precise control of the course of the thermodynamic cycle (in particular the phase shift between pressure wave and volume flow) is possible.
  • the radiator drive is supported by in-phase feedback from the expansive energy released in the Pulse Tube.
  • the cooler designed for smaller refrigeration space applications (1.5 W at 80 K)
  • a 5% coefficient of performance could be achieved. This value is not reached by Stirling coolers of the same performance class.
  • the pulse tube cooler has the disadvantage that the required for the phase-offset drive of compression and expansion cylinder crank drive high friction losses (about 80% of the total friction losses attributable to the crank drive alone) causes.
  • the invention has for its object to provide a compact cryocooler without moving parts in the cold area, which is characterized by a high refrigeration density and high efficiency.
  • the starting point is an arrangement of several pulse tube coolers with active phase shifters.
  • the individual pulse tube coolers each consist of a combined compressor-expander unit in which a drive by means of a compression and an expansion piston causes a mutually phase-out volume change in a compression and expansion chamber, a cold heat exchanger, a compressor line, the the compression chamber connects to the regenerator, and an expander line connects the expansion chamber to the cold end of the Pulse tube.
  • the regenerator and the pulse tube are connected in series, the warm heat exchanger is located at the warm end of the regenerator and the cold heat exchanger is located between the regenerator and the pulse tube.
  • the arrangement consists of several pulse tube coolers.
  • the warm end of the pulse tube of each pulse tube cooler is connected to the expansion chamber of another pulse tube cooler via the expander lead.
  • the compressors are linear drives that drive a free-running piston, which is movably mounted in a tubular chamber closed on both sides. Through one side of the piston and the adjacent portion of the tubular chamber If the compression chamber is defined by the other side and the adjoining portion of the tubular chamber, the expansion chamber is formed, that is, the combined piston simultaneously assumes the function of the compression and expansion piston.
  • the compound pulse tube cooler is composed of four individual pulse tube coolers.
  • the drives are, for. B. connected to each one phase of a 4-phase voltage system, connected such that the piston of the first pulse tube cooler with respect to the piston of the second pulse tube cooler, the piston of the second pulse tube cooler with respect to Piston of the third pulse tube cooler, the piston of the third pulse tube cooler with respect to the piston of the fourth pulse tube cooler and the piston of the fourth pulse tube cooler with respect to the piston of the first pulse tube cooler with a Phase shift of 90 ° is moved.
  • the compound pulse tube cooler may alternatively consist of three pulse tube coolers, which are connected in the manner described.
  • the phase shift is then 120 °.
  • Such an arrangement is slightly less favorable compared to the arrangement of four pulse tube coolers on the coefficient of performance.
  • this compound pulse tube cooler can be advantageously driven with three phase AC voltage with a phase shift of 120 °.
  • the compound pulse tube cooler of the present invention as well as the prior art one-stage active tube shifter (diversified reservoir) pulse tube chiller, has passive phase shifters, such as conventional pulse tube coolers, such as, e.g. Inertance tube or orifice coolers, three major benefits.
  • passive phase shifters such as conventional pulse tube coolers, such as, e.g. Inertance tube or orifice coolers, three major benefits.
  • the active phase shifter allows optimum adjustment of the phase shift between the pressure wave and the flow, so that less gas has to circulate.
  • a portion of the gas is moved back and forth between the expansion chamber and the pulse tube, a lesser amount flows over the regenerator, which helps to relieve the regenerator.
  • the volume of the Pulse Tube can be reduced by 55% and that of the Regenerator even by 80%. Accordingly, the mass of the cold part (regenerator and pulse tube) is reduced by about 65 to 70%.
  • the Compound Pulse Tube cooler over the known single-stage pulse tube cooler with active phase shifter has the advantage that it can be realized without the frictional crank drive. As a result, the efficiency is further increased; In addition, a component which is subjected to strong mechanical wear is eliminated, while the cold part of the pulse tube cooler according to the invention requires no moving parts. Because the Compound Pulse Tube Cooler includes three or four single Pulse Tubes, all of which contribute to cooling performance, it is ideal for applications requiring higher cooling capacities (greater than one hundred watts).
  • the compound pulse tube cooler is constructed so that move in operation all four pistons along an axis (uniaxial). Due to the special, mutually phase-shifted operation of the piston, individual pulses of the pistons virtually cancel each other out at any time, so that vibrations of the drive part are minimized. In addition, the mean value of the internal pressures of the individual cold parts is almost constant, so that only minimal vibrations occur on the cold part.
  • pistons of the first and third pulse tube coolers and the pistons of the second and fourth pulse tube coolers are structurally combined to form piston units.
  • Each of the two piston units is equipped with only one drive.
  • the two drives are connected in such a way that during operation, the two piston units each move 90 ° out of phase with each other.
  • This embodiment is more compact than the embodiment with four separate pistons.
  • two drives are saved.
  • the individual pulses of the pistons are not completely equal, so that stronger vibrations occur here.
  • the Compound Pulse Tube cooler can either be in compact (the cold parts and the compressor expander units are housed in a common housing) or in split design (the cold parts and the compressor expander units are in spaced from each other separated).
  • the pulse tube cooler according to the invention can also be used advantageously as a heat engine.
  • the cold heat exchangers are used for heating and the warm heat exchangers for cooling.
  • the operating principle of a pulse tube cooler 1 with active phase shifter will be described below using the example of the prior art embodiment with crank drive 2 (FIG. Fig. 1 ) explained.
  • the cooler 1 differs from conventional pulse tube coolers (Orifice, Double-Inlet, Inertance Tube) in that the actively variable phase space (expansion chamber 9) at the warm end 4 of the pulse tube 3 instead of an otherwise conventional passive phase shifter located.
  • thermodynamic equilibrium state By cyclic compression, expansion and translation of the working gas (helium or neon) is generated in four working phases in the pulse tube 3 cold. Although the four working phases are superimposed in the real process, the thermodynamic processes during the four working phases for the simplified case that the temperature distribution in the pulse tube 3 and in the regenerator 5 has stably stabilized (thermodynamic equilibrium state) are described below, described.
  • the expansion piston 10 is moved in the direction of its top dead center simultaneously in the compression chamber 7 by means of the drive 6 and the crank drive 2 and in the expansion chamber 9.
  • the working gas is thus pushed out of the compression chamber 7 via the compressor line 11, in which the gas a large part of the heat of compression is removed, through the regenerator 5 and the cold heat exchanger 12 into the pulse tube 3, and compressed in this.
  • the regenerator 5 absorbs heat from the working gas, so that it is at approximately the same temperature level as the cold heat exchanger 12 when it flows into the cold end 13 of the pulse tube 3.
  • the pressure of the working gas increases approximately adiabatically; in the region of the warm end 4 of the pulse tube 3, the working gas is overheated.
  • phase 2 When “pushing over at high pressure” (phase 2), the compression piston 8 continues to move to top dead center, while (due to the phase shift between the two pistons) of the expansion piston 10 back in the direction of the bottom dead center moves.
  • the superheated working gas is pushed by the warm end 4 of the pulse tube through the expander 14 approximately isobaric in the expansion chamber 9.
  • the working gas When flowing through the expander 14, the working gas is deprived of heat and its temperature increase largely reduced
  • both the compression piston 8 and the expansion piston 10 move to their bottom dead center.
  • the working gas in the Pulse tube 3 is approximately adiabatically relaxed and cools down.
  • the original temperature increase of the working gas, which is located near the cold end 4 of the pulse tube 3, is completely degraded.
  • the cooling of the working gas required for cooling is achieved.
  • a large part of the supercooled working gas flows back into the compression chamber 7 via the cold heat exchanger 12, the regenerator 5 and the compressor line 11. In this case, the cold heat exchanger 12 heat is removed from the supercooled working gas and the regenerator 5 is partially recooled.
  • phase 4 the compression piston 8 moves in the direction of bottom dead center and the expansion piston 10 in the direction of top dead center, so that the remaining portion of the supercooled working gas still in the vicinity of the cold end 13 of the pulse -Tubes 3 is left is approximately isobar on the cold heat exchanger 12, the regenerator 5 and the compressor line 11 is pushed into the compression chamber 7. As a result, the cold heat exchanger 12 is withdrawn more heat and the regenerator 5 is completely recooled. This phase is followed by a compression phase (new cycle).
  • the pulse tube cooler system consists of four pulse tube coolers 1.1, 1.2, 1.3, 1.4, wherein the warm end 4.1 of the first pulse tube cooler 1.1 via the expander 14.1 with the expansion chamber 9.2 of the second pulse tube Cooler 1.2, the warm end 4.2 of the second pulse tube cooler 1.2 via line 14.2 with the expansion chamber 9.3 of the third pulse tube cooler 1.3, the warm end 4.3 of the third pulse tube cooler 1.3 is over the conduit 14.3 with the expansion chamber 9.4 of the fourth pulse tube cooler 1.4 and the warm end 4.4 of the fourth pulse tube cooler 1.4 is connected via the line 14.4 with the expansion chamber 9.1 of the first pulse tube cooler 1.1.
  • the linear actuators 6.1, 6.2, 6.3, 6.4 are also driven with 4-phase current, so that in each case the combined (expansion and compression) piston 16.1 with respect to the piston 16.2, the piston 16.2 with respect to the piston 16.3, the piston 16.3 with respect to the piston 16.4 and Piston 16.4 is moved with respect to the piston 16.1 with a phase shift of 90 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Closing Of Containers (AREA)

Abstract

Die Erfindung betrifft eine Anordnung aus mehreren Pulse-Tube-Kühlern (1) mit aktiven Phasenschiebern, wobei das warme Ende (4) jedes Pulse-Tube-Kühlers über eine Expanderleitung (14) mit der Expansionskammer (9) eines anderen Pulse-Tube-Kühlers (1) verbunden ist. Die Kolben (16) der Verdichter (15) der unmittelbar miteinander verbundenen Pulse-Tube Kühler (1) bewegen sich zueinander mit einer Phasenverschiebung von 360° dividiert durch die Anzahl der insgesamt verbundenen Pulse-Tube-Kühler (1). In einer bevorzugten Ausführungsvariante sind vier Puls-Tube-Kühler miteinander verbunden, wobei das warme Ende (3.1) des ersten Pulse-Tube-Kühlers (1.1) mit der Expansionskammer (9.2) des zweiten Pulse-Tube-Kühlers (1.2), entsprechend der zweite Pulse-Tube-Kühler (1.2) mit dem dritten Pulse-Tube-Kühler (1.3), der dritte Pulse-Tube-Kühler (1.3) mit dem vierten Pulse-Tube-Kühler (1.4) und der vierte Pulse-Tube-Kühler (1.4) mit dem ersten Pulse-Tube-Kühler (1.1) verbunden ist. Die Antriebe (6.1, 6.2, 6.3, 6.4) der einzelnen Kühler sind so geschaltet, dass der Kolben (16.1) des ersten Pulse-Tube-Kühlers (1.1) bezüglich des Kolbens (16.2) des zweiten Pulse-Tube-Kühlers (1.2), der Kolben (16.2) bezüglich des Kolbens (16.3) des dritten Pulse-Tube-Kühlers (1.3), der Kolben (16.3) bezüglich des Kolbens (16.4) des vierten Pulse-Tube-Kühlers (1.4) und der Kolben (16.4) bezüglich des Kolbens (16.1) mit einer Phasenverschiebung von 90° bewegt wird.

Description

  • Die Erfindung betrifft eine Anordnung aus mehreren Pulse-Tube-Kühlern mit aktiven Phasenschiebern, mit der im Tieftemperaturbereich Kälteleistungen und Wirkungsgrade erreicht werden, die mindestens so hoch sind, wie sie von Stirlingkühlern derselben Leistungsklasse bekannt sind. Die Anwendung der Erfindung bietet sich besonders zur Kryostatierung von hochtemperatur-supraleitenden Kabeln in Motoren und in Generatoren sowie von Fehlerstrombegrenzern an.
  • Im Tieftemperaturbereich werden für hohe Kühlleistungen von mehreren hundert Watt bis Kilowatt üblicherweise Stirlingkühler oder Pulse-Tube-Kühler eingesetzt.
  • Mit Stirlingkühlern sind zwar prinzipiell höhere Kreisprozesswirkungsgrade erreichbar als mit Pulse-Tube-Kühlern, andererseits führen bei Stirlingkühlern prinzipbedingte Verluste, wie z.B. Reibungs- und Shuttleverluste des Displacers, zu einer Verringerung des Gesamtwirkungsgrads. Bei Pulse-Tube-Kühlern treten derartige Verluste nicht auf.
  • Deshalb sind auch mit Pulse-Tube-Kühlern hohe Wirkungsgrade erreichbar, insbesondere dann, wenn es gelingt die üblicherweise eingesetzten passiven Phasenschieber (Orifice-, Double-Inlet-, Inertance-Tube-Prinzip) durch aktive zu ersetzen.
  • In DE 100 51 115 A1 wird ein Pulse-Tube-Kühler offenbart, der einen Kompressions-und Expansionszylinder mit darin geführten Kolben umfasst. Der Kompressions- und der Expansionskolben werden mittels eines Kurbelantriebs mit einer Phasenverschiebung von 55 bis 78 Grad angetrieben; der Kompressionszylinder eilt dem Expansionszylinder voraus. Beim Betrieb des Kühlers wird hierdurch das Reservoir der Pulse-Tube zyklisch variiert (aktiver Phasenschieber), sodass eine genaue Steuerung des Verlaufs des thermodynamischen Kreisprozesses (insbesondere der Phasenverschiebung zwischen Druckwelle und Volumenstrom) möglich ist. Gleichzeitig wird der Kühlerantrieb durch eine phasenrichtige Rückspeisung von der in der Pulse-Tube freiwerdenden Expansionsenergie unterstützt.
  • Mit einer Ausführungsform des Kühlers, der für Weltraumanwendungen mit kleineren Kälteleistungen (1,5 W bei 80 K) konzipiert war, konnte eine Leistungszahl von 5% erreicht werden. Dieser Wert wird von Stirlingkühlern derselben Leistungsklasse nicht erreicht. Der Pulse-Tube-Kühler hat jedoch den Nachteil, dass der für den phasenversetzten Antrieb von Kompressions- und Expansionszylinder erforderliche Kurbelantrieb hohe Reibungsverluste (ca. 80% der Gesamtreibungsverluste entfallen allein auf den Kurbelantrieb) verursacht.
  • Der Erfindung liegt die Aufgabe zugrunde, einen kompakten Kryokühler ohne bewegte Teile im kalten Bereich vorzuschlagen, welcher sich durch eine hohe Kälteleistungsdichte und eine hohen Wirkungsgrad auszeichnet.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausführungen ergeben sich aus den Ansprüchen 2 bis 8.
  • Ausgegangen wird von einer Anordnung mehrerer Pulse-Tube-Kühler mit aktiven Phasenschiebern. Die einzelnen Pulse-Tube-Kühler bestehen jeweils aus einer kombinierten Verdichter-Expander-Einheit, in der ein Antrieb mittels eines Kompressions-und eines Expansionskolbens eine zueinander phasenverschobene Volumenänderung in einer Kompressions- und einer Expansionskammer bewirkt, einen kalten Wärmetauscher, eine Kompressorleitung, die die Kompressionskammer mit dem Regenerator verbindet, und eine Expanderleitung, die die Expansionskammer mit dem kalten Ende des Pulse-Tubes verbindet. Der Regenerator und das Pulse-Tube sind in Serie geschaltet, der warme Wärmetauscher befindet sich am warmen Ende des Regenerators und der kalte Wärmetauscher ist zwischen dem Regenerator und dem Pulse-Tube angeordnet.
  • Nach Maßgabe der Erfindung besteht die Anordnung aus mehreren Pulse-Tube-Kühlern. Jeweils über die Expanderleitung ist das warme Ende des Pulse-Tubes jedes Pulse-Tube-Kühlers mit der Expansionskammer eines anderen Pulse-Tube-Kühlers verbunden. Die Antriebe der Verdichter (Verdichter-Expander-Einheiten) sind Linearantriebe, die einen freischwingenden Kolben antreiben, der beweglich in einer beidseitig geschlossenen, röhrenförmigen Kammer gelagert ist. Durch die eine Seite des Kolbens und den an diesen angrenzenden Abschnitt der röhrenförmigen Kammer wird die Kompressionskammer definiert, durch dessen andere Seite und den daran angrenzenden Abschnitt der röhrenförmigen Kammer wird die Expansionskammer gebildet, d.h. der kombinierte Kolben übernimmt gleichzeitig die Funktion des Kompressions- und Expansionskolbens.
  • Bevorzugt is der Compound-Pulse-Tube Kühler aus vier einzelnen Pulse-Tube-Kühlern aufgebaut. Die Antriebe sind, indem sie z. B. an jeweils eine Phase eines 4-Phasen-Spannungsystems angeschlossen sind, derart geschaltet, dass der Kolben des ersten Pulse-Tube-Kühlers bezüglich des Kolbens des zweiten Pulse-Tube-Kühlers, der Kolben des zweiten Pulse-Tube-Kühlers bezüglich des Kolbens des dritten Pulse-Tube-Kühlers, der Kolben des dritten Pulse-Tube-Kühlers bezüglich des Kolbens des vierten Pulse-Tube-Kühlers und der Kolben des vierten Pulse-Tube-Kühlers bezüglich des Kolbens des ersten Pulse-Tube-Kühlers mit einer Phasenverschiebung von 90° bewegt wird.
  • Der Compound-Pulse-Tube-Kühler kann alternativ auch aus drei Pulse-Tube-Kühlern bestehen, welche in beschriebener Weise verschaltet sind. Die Phasenverschiebung beträgt dann 120°. Eine solche Anordnung ist gegenüber der Anordnung aus vier Pulse-Tube-Kühlern seitens der Leistungszahl geringfügig ungünstiger. Dieser Compound-Pulse-Tube-Kühler kann jedoch vorteilhafterweise mit Dreiphasen-Wechselspannung mit einer Phasenverschiebung von 120° angetrieben werden.
  • Der erfindungsgemäße Compound-Pulse-Tube-Kühler hat, wie auch der bekannte einstufige Pulse-Tube-Kühler mit aktivem Phasenschieber (variiertem Reservoir), gegenüber den herkömmlichen Pulse-Tube-Kühlern mit passiven Phasenschiebern, wie z.B. Inertance-Tube- oder Orifice-Kühlern, drei wesentliche Vorteile.
  • Erstens wird bei dem erfindungsgemäßen Pulse-Tube-Kühlersystem am kalten Wärmetauscher aufgenommene Wärme durch Volumenarbeit erzeugt, ein großer Anteil der Volumenarbeit über das Pulse-Tube der Expansionskammer zugeführt und dort in mechanische Arbeit umgewandelt. Hierdurch wird ungefähr 30 bis 40 % der eingesetzten Antriebsenergie zurückgewonnen und so der Wirkungsgrad gesteigert. Außerdem kann der Wärmetauscher am warmen Ende der Pulse-Tube eingespart werden.
  • Zweitens ermöglicht der aktive Phasenschieber eine optimale Einstellung der Phasenverschiebung zwischen Druckwelle und Volumenstrom, sodass insgesamt weniger Gas zirkulieren muss. Außerdem strömt während der Kompression und der Expansion, da in beiden Phasen ein Teil des Gases zwischen Expansionskammer und Pulse-Tube hin und her bewegt wird, ein geringerer Anteil über den Regenerator, was zur Entlastung des Regenerators beiträgt. Bei gleicher Leistung kann das Volumen des Pulse-Tube um 55 % und das des Regenerator sogar um 80 % reduziert werden. Entsprechend reduziert sich die Masse des Kaltteils (Regenerator und Pulse-Tube) um circa 65 bis 70 %.
  • Drittens werden die bei herkömmlichen Pulse-Tube-Kühlern mit passiven Phasenschiebern prinzipbedingt auftretenden, irreversiblen thermodynamischen Vorgänge und die damit verbundenen Energieverluste vermieden.
  • Darüber hinaus hat der Compound-Pulse-Tube-Kühler gegenüber dem bekannten einstufigen Pulse-Tube-Kühler mit aktivem Phasenschieber den Vorteil, dass er ohne den reibungsbehafteten Kurbelantrieb realisiert werden kann. Hierdurch wird der Wirkungsgrad weiter erhöht; zudem entfällt ein Bauteil, das starken mechanischem Verschleiß unterworfen ist, während das Kaltteil des erfindungsgemäßen Pulse-Tube-Kühlers ohne bewegliche Teile auskommt. Da der Compound-Pulse-Tube-Kühler drei bzw. vier einzelne Pulse-Tubes umfasst, die alle zur Kühlleistung beitragen, ist es besonders für Anwendungen geeignet, die höhere Kühlleistungen (größer hundert Watt) erfordern.
  • In einer bevorzugten Variante ist der Compound-Pulse-Tube-Kühler so aufgebaut, dass sich im Betrieb alle vier Kolben längs einer Achse (uniaxial) bewegen. Aufgrund der speziellen, zueinander phasenverschobenen Betriebsweise der Kolben, heben sich Einzelimpulse der Kolben zu jedem Zeitpunkt praktisch vollständig auf, sodass Vibrationen des Antriebteils minimiert werden. Außerdem ist der Mittelwert der Innendrücke der einzelnen Kaltteile nahezu konstant, sodass nur minimale Vibrationen am Kaltteil auftreten.
  • In einer alternativen Ausführungsform sind die Kolben des ersten und des dritten Pulse-Tube-Kühlers sowie die Kolben des zweiten und des vierten Pulse-Tube-Kühlers strukturell zu Kolbeneinheiten zusammengefasst. Jede der beiden Kolbeneinheiten ist nur mit einem Antrieb ausgestattet. Die beiden Antriebe sind derart geschaltet, dass sich beim Betrieb die beiden Kolbeneinheiten jeweils um 90° phasenverschoben zueinander bewegen. Diese Ausführungsform ist kompakter aufgebaut als die Ausführungsform mit vier separaten Kolben. Außerdem werden zwei Antriebe eingespart. Andererseits gleichen sich die Einzelimpulse der Kolben nicht vollständig aus, sodass hier stärkere Vibrationen auftreten.
  • Den Anforderungen entsprechend kann der Compound-Pulse-Tube-Kühler entweder in Kompakt- (die Kaltteile und die Verdichter-Expander-Einheiten sind in einem gemeinsamen Gehäuse untergebracht) oder in Splitbauweise (die Kaltteile und die Verdichter-Expander-Einheiten sind in räumlich voneinander getrennt) ausgeführt werden.
  • Zur Erhöhung der Kälteleistung ist es möglich mehrere Compound-Pulse-Tube-Kühler parallel zu schalten; zur Verringerung der erreichbaren Minimaltemperatur können mehrere in Serie geschaltet werden
  • Durch Umkehrung des Kreisprozesses kann der erfindungsgemäße Pulse-Tube-Kühler auch vorteilhaft als Wärmekraftmaschine verwendet werden. Hierzu werden die kalten Wärmetauscher zum Erhitzen und die warmen Wärmetauscher zum Kühlen eingesetzt.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert; hierzu zeigen:
  • Fig. 1:
    den Aufbau eines Pulse-Tube-Kühlers mit aktivem Phasenschie- ber und Kurbelantrieb (Stand der Technik);
    Fig. 2:
    den Aufbau eines Compound-Pulse-Tube-Kühlers mit vier Pulse- Tubes und vier Arbeitszyklen und
    Fig. 3:
    den Aufbau eines Compound-Pulse-Tube-Kühlers mit drei Pulse- Tubes und drei Arbeitszyklen.
  • Das Funktionsprinzip eines Pulse-Tube-Kühlers 1 mit aktivem Phasenschieber wird im Folgenden am Beispiel der bereits aus dem Stand der Technik bekannten Ausführung mit Kurbelantrieb 2 (Fig. 1) erläutert. Der Kühler 1 unterscheidet sich von herkömmlichen Pulse-Tube-Kühlern (Orifice, Double-Inlet, Inertance-Tube) dadurch, dass sich am warmen Ende 4 des Pulse-Tubes 3 statt eines sonst üblichen passiven Phasenschiebers der aktiv variierbare Phasenraum (Expansionskammer 9) befindet.
  • Durch zyklische Kompression, Expansion und Translation des Arbeitsgases (Helium oder Neon) wird in vier Arbeitsphasen im Pulse-Tube 3 Kälte erzeugt. Zwar überlagern sich im realen Ablauf die vier Arbeitsphasen, zur besseren Verständlichkeit werden jedoch im Folgenden die thermodynamischen Abläufe während der vier Arbeitsphasen für den vereinfachten Fall, dass sich die Temperaturverteilung im Pulse-Tube 3 und im Regenerator 5 stabil eingestellt hat (thermodynamischer Gleichgewichtszustand), beschrieben.
  • Während der Kompression (Phase 1) wird mit Hilfe des Antriebs 6 und des Kurbelantriebs 2 gleichzeitig in der Kompressionskammer 7 der Kompressionskolben 8 und in der Expansionskammer 9 der Expansionskolben 10 in Richtung seines oberen Totpunkts bewegt. Das Arbeitsgas wird somit aus der Kompressionskammer 7 über die Kompressorleitung 11, in der dem Gas ein großer Teil der Kompressionswärme entzogen wird, durch den Regenerator 5 und den kalten Wärmetauscher 12 in das Pulse-Tube 3 geschoben, und in diesem komprimiert. Dabei nimmt der Regenerator 5 Wärme aus dem Arbeitsgas auf, sodass es sich beim Einströmen in das kalte Ende 13 des Pulse-Tubes 3 auf ungefähr demselben Temperaturniveau wie der kalte Wärmetauscher 12 befindet. Im Pulse-Tube 3 erhöht sich der Druck des Arbeitsgases annähernd adiabatisch; im Bereich des warmen Endes 4 des Pulse-Tubes 3 wird das Arbeitsgas überhitzt.
  • Beim "Überschieben bei Hochdruck" (Phase 2) bewegt sich der Kompressionskolben 8 nach wie vor zum oberen Totpunkt, während sich (aufgrund der Phasenverschiebung zwischen den beiden Kolben) der Expansionskolben 10 schon wieder in Richtung des unteren Totpunkts bewegt. Das überhitzte Arbeitsgas wird vom warmen Ende 4 des Pulse-Tubes durch die Expanderleitung 14 annähernd isobar in die Expansionskammer 9 geschoben. Beim Durchströmen durch die Expanderleitung 14 wird dem Arbeitsgas Wärme entzogen und dessen Temperaturüberhöhung weitgehend abgebaut
  • Bei der Expansion (Phase 3) bewegen sich sowohl der Kompressionskolben 8 als auch der Expansionskolben 10 zu ihrem unteren Totpunkt. Das Arbeitsgas im Pulse-Tube 3 wird näherungsweise adiabatisch entspannt und kühlt ab. Die ursprüngliche Temperaturüberhöhung des Arbeitsgases, das sich in der Nähe des kalten Endes 4 des Pulse-Tubes 3 befindet, wird vollständig abgebaut. Gleichzeitig wird in der Nähe des kalten Endes 13 die für die Kälteerzeugung erforderliche Unterkühlung des Arbeitsgases erreicht. Ein großer Teil des unterkühlten Arbeitsgases strömt über den kalten Wärmetauscher 12, den Regenerator 5 und die Kompressorleitung 11 in die Kompressionskammer 7 zurück. Dabei wird dem kalten Wärmetauscher 12 vom unterkühlten Arbeitsgas Wärme entzogen und der Regenerator 5 wird teilweise rückgekühlt.
  • Während des "Überschiebens bei Niederdruck" (Phase 4) bewegt sich der Kompressionskolben 8 in Richtung des unteren Totpunkts und der Expansionskolben 10 in Richtung des oberen Totpunkts, sodass der restliche Anteil des unterkühlten Arbeitsgases, das noch in der Nähe des kalten Endes 13 des Pulse-Tubes 3 verblieben ist, näherungsweise isobar über den kalten Wärmetauscher 12, den Regenerator 5 und die Kompressorleitung 11 in die Kompressionskammer 7 geschoben wird. Hierdurch wird dem kalten Wärmetauscher 12 weitere Wärme entzogen und der Regenerator 5 vollständig rückgekühlt. Auf diese Phase folgt wieder eine Kompressionsphase (neuer Kreislauf).
  • Wie aus Fig. 2 ersichtlich, besteht das Pulse-Tube-Kühlersystem aus vier Pulse-Tube-Kühlern 1.1, 1.2, 1.3, 1.4, wobei das warme Ende 4.1 des ersten Pulse-Tube-Kühlers 1.1 über dessen Expanderleitung 14.1 mit der Expansionskammer 9.2 des zweiten Pulse-Tube-Kühlers 1.2, das warme Ende 4.2 des zweiten Pulse-Tube-Kühlers 1.2 über die Leitung 14.2 mit der Expansionskammer 9.3 des dritten Pulse-Tube-Kühlers 1.3, das warme Ende 4.3 des dritten Pulse-Tube-Kühlers 1.3 ist über die Leitung 14.3 mit der Expansionskammer 9.4 des vierten Pulse-Tube-Kühlers 1.4 und das warme Ende 4.4 des vierten Pulse-Tube-Kühlers 1.4 ist über die Leitung 14.4 mit der Expansionskammer 9.1 des ersten Pulse-Tube-Kühlers 1.1 verbunden ist. Die Linearantriebe 6.1, 6.2, 6.3, 6.4 werden außerdem mit 4-Phasenstrom angetrieben, sodass jeweils der kombinierte (Expansion und Kompression) Kolben 16.1 bezüglich des Kolbens 16.2, der Kolben 16.2 bezüglich des Kolbens 16.3, der Kolben 16.3 bezüglich des Kolbens 16.4 und der Kolben 16.4 des bezüglich des Kolbens 16.1 mit einer Phasenverschiebung von 90° bewegt wird.
  • Auf diese Weise wird erreicht, dass jeweils durch die Volumenarbeit des vorangehenden Pulse-Tubes 1.1, 1.2, 1.3 der Antrieb 6.1, 6.2, 6.3 des jeweils nachfolgenden Pulse-Tubes 1.1, 1.2, 1.3 bzw. durch die Volumenarbeit des letzten Pulse-Tubes 1.4 der Antrieb 6.1 des ersten Pulse-Tubes 1.1 unterstützt wird. Durch diese Ringschaltung der vier Pulse-Tubes 1.1, 1.2, 1.3, 1.4 wird, da die Phasendifferenz zwischen Druckwelle und Volumenstrom in den Pulse-Tubes 1.1, 1.2, 1.3, 1.4 jeweils 90° beträgt, eine optimale Ausnutzung der Volumenarbeiten erreicht.
  • Liste der verwendeten Bezugszeichen
  • 1
    Pulse-Tube-Kühler
    1.1
    Pulse-Tube-Kühler (erste Stufe)
    1.2
    Pulse-Tube-Kühler (zweite Stufe)
    1.3
    Pulse-Tube-Kühler (dritte Stufe)
    1.4
    Pulse-Tube-Kühler (vierte Stufe)
    2
    Kurbelantrieb
    3
    Pulse-Tube
    3.1
    Pulse-Tube (erste Stufe)
    3.2
    Pulse-Tube (zweite Stufe)
    3.3
    Pulse-Tube (dritte Stufe)
    3.4
    Pulse-Tube (vierte Stufe)
    4
    warmes Endes der Pulse-Tube
    4.1
    warmes Endes der Pulse-Tube (erste Stufe)
    4.2
    warmes Endes der Pulse-Tube (zweite Stufe)
    4.3
    warmes Endes der Pulse-Tube (dritte Stufe)
    4.4
    warmes Endes der Pulse-Tube (vierte Stufe)
    5
    Regenerator
    5.1
    Regenerator (erste Stufe)
    5.2
    Regenerator (zweite Stufe)
    5.3
    Regenerator (dritte Stufe)
    5.4
    Regenerator (vierte Stufe)
    6
    Antrieb
    6.1
    Antrieb (erste Stufe)
    6.2
    Antrieb (zweite Stufe)
    6.3
    Antrieb (dritte Stufe)
    6.4
    Antrieb (vierte Stufe)
    7
    Kompressionskammer
    7.1
    Kompressionskammer (erste Stufe)
    7.2
    Kompressionskammer (zweite Stufe)
    7.3
    Kompressionskammer (dritte Stufe)
    7.4
    Kompressionskammer (vierte Stufe)
    8
    Kompressionskolben
    9
    Expansionskammer
    9.1
    Expansionskammer (erste Stufe)
    9.2
    Expansionskammer (zweite Stufe)
    9.3
    Expansionskammer (dritte Stufe)
    9.4
    Expansionskammer (vierte Stufe)
    10
    Expansionskolben
    11
    Kompressorleitung
    11.1
    Kompressorleitung (erste Stufe)
    11.2
    Kompressorleitung (zweite Stufe)
    11.3
    Kompressorleitung (dritte Stufe)
    11.4
    Kompressorleitung (vierte Stufe)
    12
    kalter Wärmetauscher
    12.1
    kalter Wärmetauscher (erste Stufe)
    12.2
    kalter Wärmetauscher (zweite Stufe)
    12.3
    kalter Wärmetauscher (dritte Stufe)
    12.4
    kalter Wärmetauscher (vierte Stufe)
    13
    kaltes Endes der Pulse-Tube
    13.1
    kaltes Endes der Pulse-Tube (erste Stufe)
    13.2
    kaltes Endes der Pulse-Tube (zweite Stufe)
    13.3
    kaltes Endes der Pulse-Tube (dritte Stufe)
    13.4
    kaltes Endes der Pulse-Tube (vierte Stufe)
    14
    Expanderleitung
    14.1
    Expanderleitung (erste Stufe)
    14.2
    Expanderleitung (zweite Stufe)
    14.3
    Expanderleitung (dritte Stufe)
    14.4
    Expanderleitung (vierte Stufe)
    15
    Verdichter-Expander-Einheit
    15.1
    Verdichter-Expander-Einheit (erste Stufe)
    15.2
    Verdichter-Expander-Einheit (zweite Stufe)
    15.3
    Verdichter-Expander-Einheit (dritte Stufe)
    15.4
    Verdichter-Expander-Einheit (vierte Stufe)
    16.1
    kombinierter Kolben (erste Stufe)
    16.2
    kombinierter Kolben (zweite Stufe)
    16.3
    kombinierter Kolben (dritte Stufe)
    16.4
    kombinierter Kolben (vierte Stufe)
    17.1
    warmer Wärmetauscher (erste Stufe)
    17.2
    warmer Wärmetauscher (zweite Stufe)
    17.3
    warmer Wärmetauscher (dritte Stufe)
    17.4
    warmer Wärmetauscher (vierte Stufe)

Claims (8)

  1. Compound-Pulse-Tube-Kühler mit aktiver Phasenverschiebung, dadurch gekennzeichnet, dass er aus mehreren separaten Pulse-Tube-Kühlern (1) besteht, wobei das warme Ende (4) jedes Pulse-Tube-Kühlers über eine Expanderleitung (14) mit der Expansionskammer (9) eines anderen Pulse-Tube-Kühlers (1) verbunden ist und sich die Kolben (16) der Verdichter (15) der unmittelbar miteinander verbundenen Pulse-Tube Kühler (1) zueinander mit einer Phasenverschiebung von 360° dividiert durch die Anzahl der insgesamt verbundenen Pulse-Tube-Kühler (1) bewegen.
  2. Compound-Pulse-Tube-Kühler nach Anspruch 1, dadurch gekennzeichnet, dass er aus vier separaten Pulse-Tube-Kühlern (1.1, 1.2, 1.3, 1.4) besteht, wobei das warme Ende (4.1) des Pulse-Tubes (3.1) des ersten Pulse-Tube-Kühlers (1.1) über dessen Expanderleitung (14.1) mit der Expansionskammer (9.2) des zweiten Pulse-Tube-Kühlers (1.2), das warme Ende (4.2) des Pulse-Tubes (3.2) des zweiten Pule-Tube-Kühlers (1.2) über dessen Expanderleitung (14.2) mit der Expansionskammer (9.3) des dritten Pulse-Tube-Kühlers (1.3), das warme Ende (4.3) des Pulse-Tubes (3.3) des dritten Pulse-Tube-Kühlers (1.3) über dessen Expanderleitung (14.3) mit der Expansionskammer (9.4) des vierten Pulse-Tube-Kühlers (1.4) und das warme Ende (4.4) des Pulse-Tubes (3.4) des vierten Pulse-Tube-Kühlers (1.4) über dessen Expanderleitung (14.4) mit der Expansionskammer (9.1) des ersten Pulse-Tube-Kühlers (1.1) verbunden ist, wobei die Antriebe (6.1, 6.2, 6.3, 6.4) der Verdichter-Expander-Einheiten (15.1, 15.2, 15.3, 15.4) Linearantriebe sind, die jeweils zum Antreiben eines frei schwingenden kombinierten Kolbens (16.1, 16.2, 16.3, 16.4) dienen, und der Kolben (16.1, 16.2, 16.3, 16.4) beweglich in einer beidseitig geschlossenen, röhrenförmigen Kammer gelagert ist, wobei jeweils die eine Seite des Kolbens (16.1, 16.2, 16.3, 16.4) mit dem an diesen angrenzenden Abschnitt der röhrenförmigen Kammer die Kompressionskammer (7.1, 7.2, 7.3, 7.4) und die andere Seite des Kolbens mit dem angrenzenden Abschnitt der röhrenförmigen Kammer die Expansionskammer (9.1, 9.2, 9.3, 9.4) bildet, wobei die Antriebe (6.1, 6.2, 6.3, 6.4) derart geschaltet sind, dass jeweils der Kolben (16.1) des ersten Pulse-Tube-Kühlers (1.1) bezüglich des Kolbens (16.2) des zweiten Pulse-Tube-Kühlers (1.2), der Kolben (16.2) des zweiten Pulse-Tube-Kühlers (1.2) bezüglich des Kolbens (16.3) des dritten Pulse-Tube-Kühlers (1.3), der Kolben (16.3) des dritten Pulse-Tube-Kühlers (1.3) bezüglich des Kolbens (16.4) des vierten Pulse-Tube-Kühlers (1.4) und der Kolben (16.4) des vierten Pulse-Tube-Kühlers (1.4) bezüglich des Kolbens (16.1) des ersten Pulse-Tube-Kühlers (1.1) mit einer Phasenverschiebung von 90° bewegt wird.
  3. Compound-Pulse-Tube-Kühler mit aktiver Phasenverschiebung, dadurch gekennzeichnet, dass er aus drei separaten Pulse-Tube-Kühlern (1.1, 1.2, 1.3) besteht, wobei das warme Ende (4.1) des Pulse-Tubes (3.1) des ersten Pulse-Tube-Kühlers (1.1) über dessen Expanderleitung (14.1) mit der Expansionskammer (9.2) des zweiten Pulse-Tube-Kühlers (1.2), das warme Ende (4.2) des Pulse-Tubes (3.2) des zweiten Pule-Tube-Kühlers (1.2) über dessen Expanderleitung (14.2) mit der Expansionskammer (9.3) des dritten Pulse-Tube-Kühlers (1.3), das warme Ende (4.3) des Pulse-Tubes (3.3) des dritten Pulse-Tube-Kühlers (1.3) über dessen Expanderleitung (14.3) mit der Expansionskammer (9.1) des ersten Pulse-Tube-Kühlers (1.1) verbunden ist, wobei die Antriebe (6.1, 6.2, 6.3) der Verdichter-Expander-Einheiten (15.1, 15.2, 15.3) Linearantriebe sind, die jeweils zum Antreiben eines frei schwingenden kombinierten Kolbens (16.1, 16.2, 16.3) dienen, und der Kolben (16.1, 16.2, 16.3) beweglich in einer beidseitig geschlossenen, röhrenförmigen Kammer gelagert ist, wobei jeweils die eine Seite des Kolbens (16.1, 16.2, 16.3) mit dem an diesen angrenzenden Abschnitt der röhrenförmigen Kammer die Kompressionskammer (7.1, 7.2, 7.3) und die andere Seite des Kolbens mit dem angrenzenden Abschnitt der röhrenförmigen Kammer die Expansionskammer (9.1, 9.2, 9.3) bildet, wobei die Antriebe (6.1, 6.2, 6.3) derart geschaltet sind, dass jeweils der Kolben (16.1) des ersten Pulse-Tube-Kühlers (1.1) bezüglich des Kolbens (16.2) des zweiten Pulse-Tube-Kühlers (1.2), der Kolben (16.2) des zweiten Pulse-Tube-Kühlers (1.2) bezüglich des Kolbens (16.3) des dritten Pulse-Tube-Kühlers (1.3), der Kolben (16.3) des dritten Pulse-Tube-Kühlers (1.3) bezüglich des Kolbens (16.1) des ersten Pulse-Tube-Kühlers (1.1) mit einer Phasenverschiebung von 120° bewegt wird.
  4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kolben in den Verdichtereinheiten uniaxial angeordnet sind
  5. System nach Anspruch 2, dadurch gekennzeichnet, dass die Kolben (16.1, 16.3) des ersten (1.1) und des dritten Pulse-Tube-Kühlers (1.3) sowie die Kolben (16.2, 16.4) des zweiten (1.2) und des vierten Pulse-Tube-Kühlers (1.4) jeweils strukturell zu einer Kolbeneinheit verbunden sind, wobei jede Kolbeneinheiten über einen Antrieb verfügt, und die beiden Antriebe derart geschaltet sind, dass sich die beiden Kolbeneinheiten 90° phasenverschoben zueinander bewegen.
  6. System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verdichter-Expander-Einheiten im selben Gehäuse wie die Pulse-Tubes und die Regeneratoren untergebracht sind.
  7. System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verdichter-Expander-Einheiten räumlich getrennt von den Pulse-Tubes und den Regeneratoren angeordnet sind.
  8. System nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kaltteile mehrstufig ausgeführt sind.
EP10183734.2A 2009-10-05 2010-09-30 Compound-Pulse-Tube-Kühler Withdrawn EP2312239A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910048324 DE102009048324A1 (de) 2009-10-05 2009-10-05 Compound-Pulse-Tube-Kühler

Publications (2)

Publication Number Publication Date
EP2312239A2 true EP2312239A2 (de) 2011-04-20
EP2312239A3 EP2312239A3 (de) 2014-02-19

Family

ID=43466368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10183734.2A Withdrawn EP2312239A3 (de) 2009-10-05 2010-09-30 Compound-Pulse-Tube-Kühler

Country Status (2)

Country Link
EP (1) EP2312239A3 (de)
DE (1) DE102009048324A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411359A (zh) * 2013-08-16 2013-11-27 中国科学院理化技术研究所 一种可调式双作用行波热声系统
EP2728181A1 (de) * 2011-04-01 2014-05-07 Lihan Thermoacoustic Technologies (Shenzhen) Co., Ltd Einstufiges thermoakustisches wanderwellensystem mit doppeltem wirkungsmechanismus
FR3036175A1 (fr) * 2015-05-12 2016-11-18 Air Liquide Dispositif de refrigeration cryogenique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051115A1 (de) 2000-10-14 2002-04-25 Inst Luft Kaeltetech Gem Gmbh Pulse-Tube-Kühler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902159B2 (ja) * 1991-06-26 1999-06-07 アイシン精機株式会社 パルス管式冷凍機
JPH05322338A (ja) * 1992-05-21 1993-12-07 Aisin Seiki Co Ltd 複合型パルス管式ヒートポンプ
JP2001241795A (ja) * 2000-02-24 2001-09-07 Ekuteii Kk パルス管式スターリング冷凍機のガス作動空間の構造およびそれを使用したパルス管式スターリング冷凍機。

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051115A1 (de) 2000-10-14 2002-04-25 Inst Luft Kaeltetech Gem Gmbh Pulse-Tube-Kühler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728181A1 (de) * 2011-04-01 2014-05-07 Lihan Thermoacoustic Technologies (Shenzhen) Co., Ltd Einstufiges thermoakustisches wanderwellensystem mit doppeltem wirkungsmechanismus
EP2728181A4 (de) * 2011-04-01 2015-03-25 Lihan Thermoacoustic Technologies Shenzhen Co Ltd Einstufiges thermoakustisches wanderwellensystem mit doppeltem wirkungsmechanismus
CN103411359A (zh) * 2013-08-16 2013-11-27 中国科学院理化技术研究所 一种可调式双作用行波热声系统
CN103411359B (zh) * 2013-08-16 2015-11-04 中国科学院理化技术研究所 一种可调式双作用行波热声系统
FR3036175A1 (fr) * 2015-05-12 2016-11-18 Air Liquide Dispositif de refrigeration cryogenique

Also Published As

Publication number Publication date
DE102009048324A1 (de) 2011-04-21
EP2312239A3 (de) 2014-02-19

Similar Documents

Publication Publication Date Title
DE102008023793B4 (de) Wärmekraftmaschine
DE4234678A1 (de) Schwingrohr-waermekraftmaschine
DE4220840C2 (de) Pulsationsrohr-Kühlsystem
DE112005003132B4 (de) Kroygener Kühler mit verringerter Eingangsleistung
DE112011100912B4 (de) Kryogenische Expansionsmaschine mit Gasausgleich
DE102009057210B4 (de) Stirling-Verdampfer-Wärmekraftanlage
EP0890063B1 (de) Mehrstufige tieftemperaturkältemaschine
DE10052993A1 (de) Verfahren und Vorrichtung zur Umwandlung von thermischer Energie in mechanische Energie
EP2312239A2 (de) Compound-Pulse-Tube-Kühler
EP2601389B1 (de) Expansionsvorrichtung zur verwendung in einem arbeitsmittelkreislauf und verfahren zum betrieb einer expansionsvorrichtung
DE2432508A1 (de) Verfahren und maschine zur kaelteerzeugung
DE10001460A1 (de) Pulsrohr-Leistungsverstärker und Verfahren zum Betreiben desselben
WO2020015963A1 (de) Thermoelektrischer oder thermomechanischer wandler und computergesteuerte oder elektronisch gesteuerte verfahren
DE102015105878B3 (de) Überkritischer Kreisprozess mit isothermer Expansion und Freikolben-Wärmekraftmaschine mit hydraulischer Energieauskopplung für diesen Kreisprozess
DE19841686A1 (de) Entspannungseinrichtung
DE102009022933B4 (de) Pulse-Tube-Kaltkopf
DE10051115A1 (de) Pulse-Tube-Kühler
EP2710263A1 (de) Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine
DE10035289A1 (de) Vorrichtung zur Erzeugung von mechanischer Energie mit einer mit äußerer Verbrennung arbeitenden Wärmekraftmaschine
DE102011055511A1 (de) Kolbenmaschine
DE102019129495B3 (de) Verdichteranordnung, Wärmepumpenanordnung und Verfahren zum Betreiben der Verdichteranordnung
DE102021005781A1 (de) Wärmetransportsystem mit PLL Wärmetransportsystem mit Phasenregelschleife (PLL) zur automatischen Maximierung des Wirkungsgrades.
DE102011080377A1 (de) Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung und eine damit ausgerüstete Kältemaschine
DE102004033027B4 (de) Erfindung betreffend Tieftemperaturkühlvorrichtungen
DE102012111410B4 (de) Wärmekraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/14 20060101AFI20130924BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/14 20060101AFI20140113BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140820