WO2001048806A1 - Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique - Google Patents

Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique Download PDF

Info

Publication number
WO2001048806A1
WO2001048806A1 PCT/JP2000/008933 JP0008933W WO0148806A1 WO 2001048806 A1 WO2001048806 A1 WO 2001048806A1 JP 0008933 W JP0008933 W JP 0008933W WO 0148806 A1 WO0148806 A1 WO 0148806A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric constant
coating
forming
low dielectric
film
Prior art date
Application number
PCT/JP2000/008933
Other languages
English (en)
French (fr)
Inventor
Michio Komatsu
Akira Nakashima
Miki Egami
Ryo Muraguchi
Original Assignee
Catalysts & Chemicals Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co., Ltd. filed Critical Catalysts & Chemicals Industries Co., Ltd.
Priority to EP00981780A priority Critical patent/EP1197999B1/en
Priority to US09/914,418 priority patent/US6599846B2/en
Priority to DE60043848T priority patent/DE60043848D1/de
Priority to JP2001548426A priority patent/JP3998979B2/ja
Priority to KR20017011002A priority patent/KR100430464B1/ko
Publication of WO2001048806A1 publication Critical patent/WO2001048806A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC

Definitions

  • the present invention relates to a method for forming a low dielectric constant silica-based coating and a semiconductor substrate with a low dielectric constant coating.
  • the present invention provides a low dielectric constant silica based material having a low relative dielectric constant of 3 or less without damaging metal wirings disposed on a semiconductor substrate, and having characteristics of low moisture adsorption and high film strength.
  • the present invention relates to a method for forming a film on a semiconductor substrate and a semiconductor substrate provided with a low dielectric constant silica-based film having such characteristics.
  • the interlayer insulating film used for the above purpose is generally formed on a semiconductor substrate by a vapor phase growth method such as a CVD method or a coating method of forming an insulating film using a coating liquid for forming a film.
  • the relative permittivity of the resulting silica-based coating is limited to 3.5 for a fluorine-doped silica film in vapor-phase growth methods such as CVD. Therefore, there is a problem that it is difficult to form a silica-based coating of 3 or less.
  • CVD films such as polyaryl resin, fluorine-containing polyimide resin and fluorine-based resin, and films formed using these coating solutions have a relative dielectric constant of about 2, but the surface to be coated Adhesion to the resist material used for microfabrication is poor, and further, there are problems such as poor chemical resistance and oxygen plasma resistance.
  • a film having a relative dielectric constant of about 2.5 is conventionally used. Although it can be obtained, there is a problem that adhesion to the surface to be coated is poor.
  • the inventors of the present invention have conducted intensive studies to solve these problems.
  • the use of a coating liquid for forming a low-dielectric-constant silica-based film as shown below has a relative dielectric constant as small as 3 or less, and Coating with excellent chemical and crack resistance, such as adhesion to the surface to be coated, mechanical strength, and alkali resistance, as well as process compatibility such as oxygen plasma resistance and etching processability. They have found that the invention can be formed, and applied for these inventions.
  • Invention 1 (refer to Japanese Patent Application Laid-Open No. Hei 9-31 5812)
  • a coating liquid for forming a low dielectric constant silica-based film containing an easily decomposable resin Decomposes or volatilizes with alkoxysilane and silane or halogenated silane or hydrolysates thereof at a temperature of 500 or less.
  • Invention 1 (see International Application Publication WO 00/12640) Polysiloxane which is a reaction product of alkoxysilane and Z or a halogenated silane or a hydrolyzate thereof and silica fine particles And a readily decomposable resin that decomposes or volatilizes at a temperature of 500 or less.
  • the present inventors repeatedly performed a test for forming a low dielectric constant silica-based film on various semiconductor substrates using these coating solutions and a conventionally known film forming method.
  • the coated substrate can be obtained, in some semiconductor substrates, the metal wiring disposed on the substrate may be damaged, the relative dielectric constant is 3 or less, and the moisture absorption It has been found that it is difficult to stably form a film having excellent characteristics such as low film strength and high film strength. Therefore, the present inventors have conducted intensive research, and these problems can be easily solved by forming a low dielectric constant silica-based coating on a semiconductor substrate under the conditions described in detail below. They found that they could do this and completed the present invention. Purpose of the invention
  • the present invention is intended to solve the above-mentioned problems, and has a relative permittivity as small as 3 or less without damaging metal wirings provided on a semiconductor substrate.
  • the method for forming a low dielectric constant silica-based coating according to the present invention comprises:
  • the coating is characterized in that the coating is fired at a temperature of 350 to 450 in an atmosphere of an inert gas containing 500 to 1500 ppm by volume of oxygen.
  • the coating solution for forming a low dielectric constant silica-based film is at least one kind selected from the group consisting of an alkoxysilane represented by the following general formula (I) and a halogenated silane represented by the following general formula (II). It preferably contains a hydrolyzate of a silicon compound.
  • X represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or a carbon atom having 1 to 8 carbon atoms.
  • 8 represents an alkyl group, aryl group or vinyl group
  • X ′ represents a halogen atom
  • n is an integer of 0 to 3.
  • the coating solution for forming a low dielectric constant silica-based film is:
  • a reaction product with silica fine particles It is preferable to include a polysiloxane as the Si-containing compound.
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • X ′ represents a halogen atom
  • n is an integer of 0 to 3.
  • the coating solution for forming a low dielectric constant silica-based film further has a number average molecular weight of 50,000 to 50,000 (in terms of polystyrene), and is heat-treated at a temperature of 450 or less. It preferably contains an easily decomposable resin that decomposes or volatilizes.
  • the easily decomposable resin constitutes a hydrolyzate of the silicon compound or an interpenetrating polymer composition intertwined with the polysiloxane at a molecular chain level.
  • the hydrolyzate of the silicon compound, the polysiloxane and Z or the interpenetrating polymer composition contained therein have a SiH group at a terminal.
  • the SiH group at a terminal.
  • the heat treatment (b) according to the method of the present invention is preferably performed in an air atmosphere at a temperature of 150 to 350 ° C for 1 to 3 minutes.
  • the baking treatment (c) according to the method of the present invention is preferably performed in an atmosphere of an inert gas containing 100 to 100 ppm by volume of oxygen. Further, the baking treatment (c) is preferably performed by placing the semiconductor substrate on a hot plate maintained at a temperature of 350 to 450 ° C.
  • a semiconductor substrate according to the present invention is characterized by having a low dielectric constant silica-based film having a relative dielectric constant of 3 or less formed by the above method.
  • the method according to the present invention can be applied to a conventionally known coating liquid for forming a low dielectric constant silica-based film depending on the properties thereof.
  • Coating solution A, Coating solution B and Coating solution C is preferably used when a low dielectric constant silica-based film is formed on a semiconductor substrate.
  • the coating solution A is obtained by mixing at least one silicon compound selected from the group consisting of an alkoxysilane represented by the following general formula (I) and a halogenated silane represented by the following general formula (11) in an organic solvent.
  • X is a hydrogen atom, a fluorine atom, or an alkyl having 1 to 8 carbon atoms.
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, an aryl group or a vinyl group, and
  • X ′ represents a halogen atom.
  • N is an integer of 0-3.
  • alkoxysilane represented by the general formula (I) include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, and ethyltrisilane.
  • halogenated silane represented by the general formula (11) include trichlorosilane, trichlorosilane, dichlorosilane, fluorotrichlorosilane, fluorotrimosilane, methyltrichlorosilane. Lorosilane, ethyl trichlorosilane, phenyl trichlorosilane, vinyl trichlorosilane and the like can be mentioned.
  • Organic solvents include alcohols, ketones, ethers, For example, alcohols such as methanol, ethanol, propanol and butanol, and ketones such as methylethylketone and methylisobutylketone. Solvents, ethyl ethyl solvent, glycol ethers such as propylene glycol monopropyl ether, ethylene glycol, propylene glycol, hexylene glycol, and other glycols, methyl acetate, ethyl acetate, methyl lactate, ethyl lactate, etc. Examples include hydrocarbons such as esters, hexane, cyclohexane, and octane, and aromatic hydrocarbons such as toluene, xylene, and mesitylene.
  • solvents such as methanol, ethanol, propanol and butanol
  • ketones such as methylethylketone and methylisobutylketone
  • the catalyst examples include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; organic acids such as acetic acid, oxalic acid, and toluenesulfonic acid; and compounds that show acidity in an aqueous solution such as metal soap.
  • inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid
  • organic acids such as acetic acid, oxalic acid, and toluenesulfonic acid
  • compounds that show acidity in an aqueous solution such as metal soap.
  • Water required for the hydrolysis reaction is usually 0.1 to 5 mol, preferably 0.1 to 5 mol per mol of Si-OR group constituting alkoxysilane or Si-X 'group constituting halogenated silane. It is used in an amount of 1 to 2 moles.
  • the catalyst is usually added in an amount of 0.001-1 mol per mol of alkoxysilane or halogenated silane.
  • the reaction temperature is usually 80 or less, preferably 5 to 60, and the reaction time is 10 hours or less under stirring conditions, preferably 0.5 to 5 hours.
  • the reaction temperature is usually 50 ° C. or lower, preferably 5 to 20 and the reaction time is 20 hours or less under stirring conditions, preferably 1 to 20 hours. ⁇ 10 hours.
  • Arco In the case of simultaneously hydrolyzing xysilane and halogenated silane, hydrolysis conditions of halogenated silane are usually employed.
  • the number-average molecular weight (in terms of polystyrene) of the hydrolyzate or partial hydrolyzate thus obtained is in the range of 50,000 to: 100,000, preferably 100,000 to 500,000. Desirably.
  • the coating liquid-B is a hydrolyzate of at least one silicon compound selected from the group consisting of an alkoxysilane represented by the general formula (I) and a halogenated silane represented by the general formula (11).
  • This is a coating liquid for forming a low dielectric constant silica-based film containing polysiloxane, which is a reaction product of silica and silica fine particles.
  • the silica fine particles are obtained by mixing at least one of the alkoxysilanes represented by the general formula (I) with an organic solvent and subjecting the mixture to hydrolysis and polycondensation in the presence of water and ammonia. can get.
  • the polysiloxane is at least one silicon selected from the group consisting of the silica fine particles, the alkoxysilane represented by the general formula (I), and the nodogenated silane represented by the general formula (II). It is obtained by mixing a compound with an organic solvent and hydrolyzing in the presence of water and a catalyst.
  • Coating solution C is a coating solution for forming a low dielectric constant silicic film containing an easily decomposable resin together with the hydrolyzate contained in the coating solution 1A or the polysiloxane contained in the coating solution 1B. Liquid.
  • the easily decomposable resin used in the present invention has a number average molecular weight of 50,000 to 500,000 (in terms of polystyrene) and is decomposed or volatilized by heat treatment at a temperature of 450 or less. Is what you do.
  • the easily decomposable resin a number average molecular weight (equivalent to polystyrene) of 500 to 500, preferably 500 to 300 is used.
  • the easily decomposable resin forms an interpenetrating polymer composition in which the hydrolyzate or the polysiloxane is entangled at a molecular chain level.
  • the number average molecular weight (in terms of polystyrene) of such an interpenetrating polymer composition is desirably in the range of 500 to 500,000, and preferably in the range of 100 to 300,000.
  • Examples of the coating liquid for forming a low dielectric constant silica-based film that are preferably used in the method of the present invention include the above-mentioned coating liquid-A, coating liquid-B and coating liquid-C. It is preferable that the applied force, the hydrolyzate of the silicon compound, the polysiloxane and Z or the interpenetrating polymer composition have a Si-H group at the terminal.
  • the above-mentioned hydrolyzate, the above-mentioned polysiloxane, the composition containing the pre-degradable resin, and the form of Z or the pre-interpenetrating polymer composition It is desirable that the organic solvent be contained in an amount of 5 to 30 flr ffi%, preferably 10 to 25 S%.
  • the organic solvent can be selected from organic solvents such as alcohols, glycol ethers, ketones, ethers, esters, hydrocarbons, and aromatic hydrocarbons.
  • the solution containing the solid content obtained by the above method may be used as it is as a coating solution.
  • the organic solvent layer component is separated, and the solvent is separated from the solvent.
  • Solvent replacement with methyl isobutyl ketone, propylene glycol monopropyl ether, etc. After removing the alcohol, dissolved water, acid catalyst and the like generated by the hydrolysis reaction, it is desirable to adjust the solid content to the above range before use.
  • the method for forming a low dielectric constant silica-based coating according to the present invention includes the following steps: (1) applying the coating liquid for forming a low dielectric constant silica-based coating as described above on a semiconductor substrate; After the heat treatment at a temperature of 50 ° C., (c) the coating was heated to a temperature of 350 to 450 ° C. in an atmosphere of an inert gas containing 50,000 to 150,000 volume ppm of oxygen. This is performed by baking.
  • a spray method for applying such a coating solution
  • a spin coating method for forming a low dielectric constant silica-based film
  • a transfer printing method for forming a low dielectric constant silica-based film
  • the coating applied on the semiconductor substrate in this way is heated at a temperature of 50 to 350 ° C, preferably 150 to 350 ° C.
  • the heating temperature is appropriately selected from the following arbitrary temperatures of 350, at which the organic solvent contained in the coating can be evaporated.
  • the coating is heated at a temperature exceeding 350, rapid evaporation of the organic solvent contained in the coating occurs, and further, the easily decomposable resin is contained in the coating. This is not desirable because the decomposition and volatilization will proceed rapidly.
  • the heat treatment varies depending on the thickness of the film, but is preferably performed for 5 minutes or less, preferably for 1 to 3 minutes.
  • this heat treatment may be performed at the same temperature or at a stepwise temperature. For example, (i) at a temperature of 150 for 3 minutes,
  • the heat treatment method (iii) when adopted, the organic solvent contained in the coating film is gently evaporated, so that the in-plane uniformity of the film thickness is improved.
  • this method when this method is used to treat the above-mentioned easily decomposable resin), there is an advantage that a part of the resin can be gently decomposed or volatilized.
  • the relative dielectric constant of the film formed on the substrate tends to be slightly higher than that of the method (i) in which the heat treatment is performed at a relatively low temperature.
  • this heat treatment may be performed in an atmosphere of an inert gas such as nitrogen as in the past, but in the method of the present invention, it is preferably performed in an air atmosphere. This is because, as described above, this process is performed under a relatively low temperature condition for a very short period of time, so that even if the heat treatment is performed in an air atmosphere containing a relatively large amount of oxygen, the process is performed on the semiconductor substrate. This is because the provided metal wiring is not damaged by metal oxidation or the like.
  • SiO 2 is generated in the subsequent baking process (C), and a low dielectric constant silica-based film with low moisture adsorption and high film strength is formed. It is easy to form.
  • the organic solvent contained in the coating is evaporated, and on the other hand, the polymerization of the solid component progresses and hardens, and the melt viscosity of the polymer decreases during the heating process. As a result, the reflow property of the coating increases, and the flatness of the obtained coating improves.
  • the film thickness of the low dielectric constant silica-based coating formed in this manner varies depending on the semiconductor substrate on which the coating is formed and the purpose thereof.
  • the thickness of the silicon-based coating in a semiconductor device is usually 100 to 100 ⁇ m. It is about 250 OA, and it is usually 1000 to 100 A in the case of a multilayer wiring.
  • the film subjected to this heat treatment is subjected to an atmosphere of an inert gas containing oxygen having a volume of 50,000 to 150,000 ppm, preferably 100 to 100,000 ⁇ . It is calcined (cured) at a temperature of from 350 to 450, preferably from 375 to 425 ° C.
  • the inert gas it is preferable to use nitrogen gas.
  • oxygen gas or air dry air is added to the inert gas to reduce the oxygen concentration of the inert gas to 5%. It is adjusted so that the volume may become 0 to 1500 volume ppm.
  • the film after sintering does not have sufficient mechanical strength, so that a semiconductor substrate having poor practicality can be obtained. .
  • the reason is that the atmosphere This is probably because the -O-Si-O-Si network is not sufficiently formed in the film fired in the air.
  • the oxygen concentration in the inert gas exceeds 1500 ppm by volume, metal wiring on the semiconductor substrate is easily damaged by metal oxidation during the baking treatment, and the final yield of the semiconductor substrate is increased. Tends to decrease.
  • the sintering temperature is selected from a temperature range of 350 to 450, which varies depending on the properties of the Si-containing compound contained in the coating solution. For example, when a coating solution containing the above-mentioned easily decomposable resin is used, it is desirable to perform calcination at a temperature higher than the temperature at which this easily decomposable resin is decomposed or volatilized. A low-density, low-dielectric-constant silica-based coating having no pores with a diameter of O nm (10 OA) or more is formed.
  • the baking treatment over a period of 10 to 60 minutes, with a force that varies depending on the type of the coating solution, the film thickness, and the like.
  • the temperature of the baking treatment is lower than 350 ° C., a film having sufficient coating strength cannot be obtained, and if it exceeds 450 ° C., a semiconductor substrate is formed.
  • the temperature must be kept in the range of 350 to 450, because the aluminum wiring or copper wiring to be oxidized or melted may damage the wiring layer. .
  • the above calcination treatment is performed in an atmosphere of an inert gas such as nitrogen gas or in an atmosphere of an inert gas having a relatively high oxygen concentration (for example, a gas containing 5% by volume of oxygen).
  • an inert gas such as nitrogen gas
  • an inert gas having a relatively high oxygen concentration for example, a gas containing 5% by volume of oxygen.
  • This calcination process is performed with an inert gas (eg, nitrogen) and oxygen gas or Since the gas (dry air) is mixed and gas adjusted in advance to an arbitrary oxygen concentration is fed into the furnace, a conventionally known vertical furnace / horizontal furnace capable of processing a large number of sheets at a time can be used.
  • an inert gas eg, nitrogen
  • oxygen gas dry air
  • the baking treatment is performed using a single-wafer hot plate having an upper lid. Is desirable.
  • the device for performing the firing process must be cooled without taking it out of the system. For example, it is desirable to have a cooling plate.
  • the semiconductor substrate with a low dielectric constant silicon-based coating film according to the present invention refers to a silicon substrate, a wiring layer of a multilayer wiring structure, an element surface, and a Z or PN junction portion, which are formed by the above method.
  • This is a semiconductor device component obtained by forming a power-based coating.
  • the film formed on this semiconductor substrate has a small relative dielectric constant of 3 or less, and has excellent adhesion to the surface to be coated, chemical resistance such as alkali resistance, and crack resistance. Has not only process compatibility such as oxygen plasma resistance and etching processability, but also has extremely low moisture absorption and sufficiently high film strength.
  • the low dielectric constant silica-based coating having the above excellent characteristics is provided without damaging the metal wiring provided on the semiconductor substrate.
  • Provide semiconductor substrates Can be.
  • the triethoxysilane was hydrolyzed at a temperature of 20 for about 1 hour while stirring at a speed of. Then, 10 times the amount of methyl isobutyl ketone (MIBK) was added, and the solvent was replaced again with methyl isobutyl ketone using a rotary evaporator, and the alcohol generated by the hydrolysis reaction and the dissolved water were removed. was completely removed (including nitric acid), to obtain a MIBK solution containing 20 double fi% bets Rie Tokishishiran hydrolyzate S i ⁇ 2 equivalent.
  • MIBK methyl isobutyl ketone
  • a solution of 25 g of acryl resin dissolved in 100 g of MIBK solution was mixed with 125 g of MIBK solution of the triethoxysilane hydrolyzate obtained as described above, and 250 g of the coating solution for film formation (1) was mixed. Obtained.
  • the number average molecular weight of this acrylic resin was 222,900.
  • Triethoxysilane (Shin-Etsu Chemical Co., Ltd.) 20. Og and methyl trimethy 500 g of a mixed solution of ethanol containing 39.77 g of xysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was held at 20, and 45 g of a 0.05% by weight nitric acid-containing aqueous solution was added thereto at a time, and stirred at 150 rpm. The hydrolysis of triethoxysilane and methyltrimethoxysilane was carried out at a temperature of 20 for about 1 hour.
  • a MIBK solution obtained by dissolving 3.75 g of an acrylic resin in 15 g of MIBK was mixed with 125 g of a MIBK solution containing a hydrolyzate obtained as described above to obtain a coating solution (2) for forming a coating.
  • the number average molecular weight of this acrylic resin was 222.90.
  • the coating solution (2) prepared as described above was applied to an 8-inch silicon wafer (semiconductor substrate) by spin coating.
  • these substrates are treated in a single-wafer baking apparatus having an upper lid (Tokyo One by one, placed on a hot plate of ACT-8) manufactured by Kyo-Electron Co., Ltd., the atmosphere of inert gas (oxygen added to nitrogen gas) having the oxygen concentration shown in Table 1 below. Underneath, a baking treatment was performed for 30 minutes at the temperature shown in Table 1 to form a low dielectric constant silica-based film. Next, they were cooled to a temperature near room temperature and taken out of the system.
  • a single-wafer baking apparatus having an upper lid (Tokyo One by one, placed on a hot plate of ACT-8) manufactured by Kyo-Electron Co., Ltd., the atmosphere of inert gas (oxygen added to nitrogen gas) having the oxygen concentration shown in Table 1 below. Underneath, a baking treatment was performed for 30 minutes at the temperature shown in Table 1 to form a low dielectric constant silica-based film. Next, they were cooled to a temperature
  • the thickness of each of the films obtained in this manner was about 500 A.
  • the coating solution (2) prepared as described above was applied to an 8-inch silicon wafer (semiconductor substrate) by a spin coating method. Thereafter, these substrates were subjected to a heat treatment step and heated at 150 ° C. for 3 minutes in a nitrogen atmosphere. In this heating process S, since the organic solvent and the like contained in the film evaporate, this was exhausted out of the system. Next, as in Examples 1 to 7, the obtained substrate was placed on a hot plate of a single-wafer baking treatment apparatus (ACT-8, manufactured by Tokyo Elect Kachi Co., Ltd.) having an upper lid.
  • ACT-8 a single-wafer baking treatment apparatus
  • the coating solution for film formation (1) prepared as described above was applied to an 8-inch silicon wafer (semiconductor substrate) by a spin coating method.
  • each of the films thus obtained was about 500 A.
  • the relative dielectric constant of the silica-based coating, the change in the amount of water adsorbed on the coating before and after oxygen plasma irradiation, the coating strength, and the presence or absence of damage to metal wiring on the substrate were measured.
  • the coating solution (2) prepared as described above was applied to an 8-inch silicon wafer (semiconductor substrate) by spin coating.
  • these substrates were subjected to a heat treatment step and heated at 150 ° C. for 3 minutes in an air atmosphere.
  • this heat treatment the organic solvent and the like contained in the film evaporate, and this was exhausted to the outside of the system.
  • these substrates were fired in a single-plate type having an upper lid.
  • An inert gas oxygen added to nitrogen gas
  • a low dielectric constant silica-based coating was formed by performing a baking treatment at a temperature shown in Table 1 for 30 minutes. Next, they were cooled to near room temperature and taken out of the system.
  • the thickness of each of the films thus obtained was about 500 A.
  • Atmosphere of baking process of heating process Oxygen concentration of baking process Heating temperature
  • Air 600 400 Example 2 Air 1 000 400 Example 3 Air 3000 400 Example 4 Item 5000 400 Example 5 Air 7000 400 Example 6 Air 1 0000 400 Example F Air 1 4000 400 Example 8 Nitrogen 5000 400 Example 9 Air 600 400 Example 10 0 Air 900 400 Comparative example 1 Air 1 0 400 Comparative example 2 Air 400 400 Comparative example 3 Air 5000 300 Comparative example 4 Air 5000 500 Comparative example 5 Air 1 6000 400 Table 2
  • the relative dielectric constant can be reduced to 3 without damaging the metal wiring on the semiconductor substrate.
  • a coating having a small Sebastian strength of 50 MPa or more was obtained.
  • the moisture adsorption of the coating after oxygen plasma irradiation was at a low level.
  • the coating has a low level of Sebastian strength.
  • the coating is disposed on the substrate. The installed metal wiring tended to be damaged.
  • the Sebastian strength of the coating tended to decrease slightly compared to when it was performed in an air atmosphere.
  • the method according to the present invention provides a low dielectric constant silicon-based coating having low moisture absorption and high coating strength without damaging the metal wiring provided on the semiconductor substrate. It has been found that a semiconductor substrate can be provided.
  • Component (-O-S i -0-) has an area ratio as high as 10% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明 細 書 低誘電率シリカ系被膜の形成方法および低誘電率被膜付半導体基板 発明の技術分野
本発明は、 半導体基板上に配設された金属配線にダメージを与え ることなく 、 比誘電率が 3以下と小さ く、 しかも低水分吸着性と高 被膜強度の特性を有する低誘電率シリカ系被膜を半導体基板上に形 成する方法およびこのような特性を有する低誘電率シリカ系被膜を 備えた半導体基板に関する。 発明の技術的背景
半導体装置の高集積化に伴い、 多層配線を有する 0 . 2 5 ミ ク ロ ンルール以下の半導体装置においては、 金属配線間隔が狭くなるた め、 静電誘導による金属配線のイ ンピーダンスが増大し、 応答速度 の遅れ、 消費電力の増大が懸念されている。 このため、 半導体基板 とアルミニウム配線層などの金属配線層との間、 あるいは金属配線 層間に設けられる層間絶縁膜の比誘電率をできるだけ小さ くする こ とが必要とされている。
上記のような目的で用いられている層間絶縁膜は、 一般に C V D 法などの気相成長法または被膜形成用塗布液を用いて絶縁膜を形成 する塗布法によって半導体基板上に形成されている。
しかしながら、 C V D法などの気相成長法では、 得られるシリカ 系被膜の比誘電率がフッ素 ドープシリカ膜の 3 . 5が限界と言われ ており、 3以下のシリ カ系被膜を形成する ことは難しいという問題 がある。 また、 ポリ ア リール樹脂、 フッ素添加ポリイ ミ ド樹脂ゃフ ッ素系樹脂などの C V D被膜やこれらの塗布液を用いて形成される 被膜は、 比誘電率が 2 前後となるが、 被塗布面との密着性が悪く 、 また微細加工に用いる レジス 卜材料との密着性も悪く 、 さ らには耐 薬品性、 耐酸素プラズマ性に劣るなどの問題がある。
さ らにまた、 従来から用いられているアルコキシシランまたはハ ロゲン化シランの部分加水分解物または加水分解物を含むシリ 力系 被膜形成用塗布液では、 比誘電率が 2 . 5前後の被膜が得られるが. 被塗布面との密着性が悪いという問題がある。
本発明者らは、 これらの問題を解決するため鋭意研究を行ったと ころ、 次に示すような低誘電率シリカ系被膜形成用塗布液を用いれ ば、 比誘電率が 3以下と小さ く 、 しかも被塗布面との密着性、 機械 的強度、 耐アルカ リ性などの耐薬品性や耐ク ラッ ク性に優れ、 更に は耐酸素プラズマ性やエッチング加工性などのプロセス適合性にも 優れた被膜を形成できる ことを見出し、 これらの発明を出願してい る。
( 1 ) 発明一 1 (特開平 9 一 3 1 5 8 1 2 号公報参照)
アルコキシシランおよび/またはハロゲン化シラ ンまたはこれ らの加水分解物と、 シリ カ微粒子との反応物を含む低誘電率シ リカ系被膜形成用塗布液。
( 2 ) 発明一 2 (国際出願公開 W O O 0 Z 1 8 8 4 7公報参照)
アルコキシシランおよびノまたはハロゲン化シランまたはこれ らの加水分解物と、 5 0 0 以下の温度で分解または揮散する 易分解樹脂とを含む低誘電率シリ カ系被膜形成用塗布液。
( 3 ) 発明一 3 (国際出願公開 W O 0 0 / 1 2 6 4 0公報参照) アルコキシシランおよび Zまたはハロゲン化シランまたはこれ らの加水分解物とシリ カ微粒子との反応物であるポリ シロキサ ンと、 5 0 0 以下の温度で分解または揮散する易分解樹脂と を含む低誘電率シリカ系被膜形成用塗布液。
その後、 本発明者らは、 これらの塗布液と従来公知の被膜形成法 を用いて種々の半導体基板上に低誘電率シリ カ系被膜を形成する試 験を繰り返し行ったところ、 前記の特性を有する被胶は得られるも のの、 一部の半導体基板においては、 該基板上に配設された金厲配 線がダメージを受けることがあり、 比誘電率が 3以下であって水分 吸着性が低く 、 被膜強度が高いという優れた特性を有する被膜を安 定的に形成するこ とは難しいことを知った。 そこで、 本発明者らは, 鋭意研究を続けたとこ ろ、 以下に詳述する条件下で半 ®体基板上に 低誘電率シリ カ系被胶を形成すれば、 これらの問题は容易に解決で きるこ とを見出し、 本発明を完成するに至った。 発明の目的
本発明は、 上記のような問題点を解決しょう とするものであって、 半導体基板上に配設された金属配線にダメージを与える こ となく 、 比誘電率が 3以下と小さ く 、 しかも低水分吸着性と高被膜強度に優 れた特性を有する低誘電率シリ カ系被膜を半導体基板上に安定的に 形成する方法およびこのような低誘電率シリ力系被膜が形成された 半導体基板を提供する ことを目的と している。 発明の開示
本発明による低誘電率シリカ系被膜の形成方法は、
半導体基板上に低誘電率シリカ系被膜を形成する方法において、
(a)半導体基板上に低誘電率シリカ系被膜形成用塗布液を塗布し、
(b)得られた被膜を 5 0〜 3 5 0での温度にて加熱処理した後、
(c)該被膜を 5 0 0〜 1 5 0 0 0容量 ppmの酸素を含む不活性ガス の雰囲気下で 3 5 0〜 4 5 0 の温度にて焼成処理することを特徴 と している。
前記低誘電率シリ カ系被膜形成用塗布液は、 下記一般式 (I)で示 されるアルコキシシランおよび下記一般式 (II)で示されるハロゲン 化シランからなる群から選ばれる少なく とも 1種のケィ素化合物の 加水分解物を含むことが好ましい。
XnS i (O R)4_n (I)
XnS iX ' 4-n (II)
(式中、 Xは水素原子、 フ ッ素原子、 または炭素数 1 〜 8 のアルキ ル基、 フッ素置換アルキル基、 ァリール基もしく はビニル基を表し、 Rは水素原子、 または炭素数 1 〜 8のアルキル基、 ァリール基も し く はビニル基を表し、 X 'はハロゲン原子を表す。 また、 nは 0 〜 3の整数である。 )
また、 前記低誘電率シリ カ系被膜形成用塗布液は、
下記一般式 ( I )で示されるアルコキシシラ ンおよび下記一般式 ( 11 )で示されるハロゲン化シランからなる群から選ばれる少なく と も 1種のケィ素化合物の加水分解物と、
シリカ微粒子との反応物である、 ポリ シロキサンを S i 含有化合物として含むことが好ましい。 XnS i (O R) 4_n (I)
XnS iX '4_n (II)
(式中、 Xは水素原子、 フッ素原子、 または炭素数 1 〜 8 のアルキ ル基、 フッ素置換アルキル基、 ァリール基もしく はビニル基を表し Rは水素原子、 または炭素数 1 〜 8のアルキル基、 ァリール基も し く はビニル基を表し、 X 'はハロゲン原子を表す。 また、 n は 0 〜 3の整数である。 )
前記低誘電率シリカ系被膜形成用塗布液は、 さ らに、 5 0 0〜 5 0 0 0 0の数平均分子量 (ポリスチレン換算) を有し、 かつ 4 5 0 以下の温度で加熱処理することによ り分解または揮散する易分解 性樹脂を含んでいることが好ましい。
前記易分解性樹脂は、 前記ケィ素化合物の加水分解物または前記 ポリ シロキサンと分子鎖レベルで絡み合った相互貫入型ポリマー組 成物を構成していることが好ましい。
また、 前記低誘電率シリカ系被膜形成用塗布液は、 その中に含ま れる前記ケィ素化合物の加水分解物、 前記ポリ シロキサンおよび Z または前記相互貫入型ポリマー組成物が末端に S i-H基を有してい ることが好ましい。
本発明方法による前記加熱処理 (b)は、 空気雰囲気下で、 1 5 0 〜 3 5 0 °Cの温度にて 1 〜 3分間、 行う ことが好ましい。
また、 本発明方法による前記焼成処理 (c)は、 1 0 0 0〜 1 0 0 0 0容量 ppmの酸素を含む不活性ガスの雰囲気下で行う こ とが好ま しい。 さ らに、 前記焼成処理 (c)は、 半導体基板を 3 5 0〜 4 5 0 °Cの 温度に保たれたホッ 卜プレー ト上に載せて行う こ とが好ましい。
一方、 本発明による半導体基板は、 上記の方法を用いて形成され た、 比誘電率 3以下の低誘電率シリ カ系被膜を有する ことを特徴と している。 発明を実施するための最良の形態
以下、 半導体基板上に低誘電率シリカ系被膜を形成するための本 発明方法について具体的に説明する。
低誘電率シリ カ系被膜形成用塗布液
本発明に係る方法は、 従来公知の低誘電率シリ カ系被膜形成用塗 布液に対してもその性状によっては適用可能である力 、 以下に示す 低誘電率シリ カ系被膜形成用塗布液 (塗布液一 A、 塗布液一 Bおよ び塗布液一 C ) を用いて半導体基板上に低誘電率シリ カ系被膜を形 成する場合において採用することが望ましい。
( 1 ) 塗布液一 A
この塗布液一 Aは、 下記一般式 ( I )で示されるアルコキシシラ ン および下記一般式( 11 )で示されるハロゲン化シランからなる群から 選ばれる 1種以上のケィ素化合物を有機溶媒に混合して、 触媒およ び水の存在下でこれを部分加水分解または加水分解して得られる反 応物を含む低誘電率シリ カ系被膜形成用塗布液である。
XnS i (O R) 4 n (I)
XnS iX '4n (II)
(式中、 Xは水素原子、 フッ素原子、 または炭素数 1 〜 8のアルキ ル基、 フ ッ素置換アルキル基、 ァリール基もしく はビニル基を表し Rは水素原子、 または炭素数 1 〜 8 のアルキル基、 ァリール基も し く はビニル基を表し、 X 'はハロゲン原子を表す。 また、 n は 0 〜 3 の整数である。 )
前記一般式 ( I )で示されるアルコキシシラ ンの具体例と しては、 メチル 卜 リ メ トキシシラン、 メチル 卜 リエ トキシシラン、 メチル ト リイ ソプロボキシシラン、 ェチル ト リ メ 卜キシシラン、 ェチル 卜 リ エ トキシシラン、 ェチル 卜 リイ ソプロボキシシラン、 ォクチル 卜 リ メ トキシシラン、 ォクチル ト リエ トキシシラン、 ビニル 卜 リ メ トキ シシラン、 ビニル ト リ エ トキシシラン、 フエニル ト リ メ トキシシラ ン、 フエニル ト リエ 卜キシシラン、 ト リ メ トキシシラン、 ト リェ 卜 キシシラ ン、 ト リイ ソプロポキシシラン、 フルォロ 卜 リ メ 卜キシシ ラン、 フルォロ ト リ エ トキシシラン、 ジメチルジメ トキシシラン、 ジメチルジェ 卜キシシラン、 ジェチルジメ トキシシラン、 ジェチル ジ工 卜キシシラン、 ジメ 卜キシシラン、 ジェ 卜キシシラン、 ジフ レ ォロジメ トキシシラン、 ジフルォロジェ 卜キシシラン、 ト リ フルォ ロメチル ト リ メ トキシシラン、 卜 リ フルォロメチル ト リエ トキシシ ランなどが挙げられる。
前記一般式( 1 1 )で示されるハロゲン化シランの具体例と しては、 ト リ ク ロロシラン、 卜 リ ブ口モシラン、 ジク ロロシラン、 フルォロ ト リ ク ロロシラン、 フルォロブ口モシラ ン、 メチル ト リ ク ロロシラ ン、 ェチル ト リ ク ロロシラン、 フエニル 卜 リ ク ロロシラン、 ビニル 卜 リ ク ロロシランなどが挙げられる。
有機溶媒としては、 アルコール類、 ケ トン類、 エーテル類、 エス テル類、 炭化水素類などが挙げられ、 よ り具体的には、 例えばメ夕 ノール、 エタノール、 プロパノール、 ブ夕ノールなどのアルコール 類、 メチルェチルケ ト ン、 メチルイ ソプチルケ トンなどのケ ト ン類 メチルセ口ソルブ、 ェチルセ口ソルブ、 プロ ピレングリ コールモノ プロピルエーテルなどのグリ コールエーテル類、 エチレンダリ コー ル、 プロ ピレングリ コール、 へキシレンダリ コールなどのグリ コー ル類、 酢酸メチル、 酢酸ェチル、 乳酸メチル、 乳酸ェチルなどのェ ステル類、 へキサン、 シク ロへキサン、 オクタンなどの炭化水素類 や トルエン、 キシレン、 メ シチレンなどの芳香族炭化水素類が挙げ られる。
触媒としては、 塩酸、 硝酸、 硫酸などの無機酸、 酢酸、 シユウ酸, トルエンスルホン酸などの有機酸、 または金属セッケンなどの水溶 液中で酸性を示す化合物が挙げられる。
加水分解反応に必要な水は、 アルコキシシランを構成する S i - O R基、 またはハロゲン化シランを構成する S i - X '基 1 モル当たり、 通常、 0 . 1 〜 5 モル、 好ましく は 0 . 1 〜 2 モルの量で用いられる。 また、 触媒は、 通常、 アルコキシシランまたはハロゲン化シラン 1 モル当たり 0 . 0 0 1 〜 1 モルの量で添加される。
加水分解の反応条件は、 アルコキシシランを加水分解する場合に は、 通常、 反応温度が 8 0で以下、 好ましく は 5 〜 6 0 で、 反応 時間が攪拌条件下で 1 0 時間以下、 好ま しく は 0 . 5 〜 5 時間であ る。 また、 ノ ロゲン化シランを加水分解する場合には、 通常、 反応 温度が 5 0 °C以下、 好ましく は 5 〜 2 0 で、 反応時間が攪拌条件 下で 2 0 時間以下、 好まし く は 1 ~ 1 0時間である。 更に、 アルコ キシシランとハロゲン化シランを同時に加水分解する場合には、 通 常、 ハロゲン化シランの加水分解条件が採用される。
このよう にして得られた加水分解物または部分加水分解物の数平 均分子量 (ポリスチレン換算) は、 5 0 0 〜 : 1 0 0 0 0 、 好ま しく は 1 0 0 0〜 5 0 0 0 の範囲にあることが望ましい。
( 2 ) 塗布液一 B
この塗布液一 Bは、 上記一般式 ( I )で示されるアルコキシシラ ン および上記一般式 ( 1 1 )で示されるハロゲン化シランからなる群から 選ばれる 1 種以上のケィ素化合物の加水分解物と、 シリ カ微粒子と の反応物である、 ポリ シロキサンを含む低誘電率シリカ系被膜形成 用塗布液である。
こ こで、 前記シリ カ微粒子は、 前記一般式 (I )で示されるアルコ キシシランの 1 種以上を有機溶媒に混合して、 水およびアンモニア の存在下で加水分解 · 重縮合させる ことによ り得られる。
また、 前記ポリ シロキサンは、 前記シ リ 力微粒子と上記一般式 ( I )で示されるアルコキシシランおよび上記一般式 (I I )で示される ノヽロゲン化シランからなる群から選ばれる 1 種以上のケィ素化合物 を有機溶媒に混合して、 水および触媒の存在下で加水分解させる こ とによ り得られる。
このようなポリ シロキサンの調製方法については、 本出願人らに よって出願された前記発明一 1 (特開平 9 一 3 1 5 8 1 2号) また は前記発明一 3 (国際出願公開 W O 0 0 Z 1 2 6 4 0 ) などの公報 に、 その詳細が記載されているので、 これを参照されたい。
( 3 ) 塗布液一 C この塗布液一 Cは、 前記塗布液一 Aに含まれる前記加水分解物ま たは前記塗布液一 Bに含まれるポリ シロキサンとともに、 易分解性 樹脂を含む低誘電率シリ力系被膜形成用塗布液である。
本発明で使用される易分解性樹脂は 5 0 0 〜 5 0 0 0 0 の数平均 分子量 (ポリスチレン換算) を有し、 かつ 4 5 0 以下の温度で熱 処理することによ り分解または揮散するものである。
こ こで、 前記易分解性樹脂の具体例と しては、 5 0 0〜 5 0 0 0 0 、 好ましく は 5 0 0 0 ~ 3 0 0 0 0 の数平均分子量 (ポリ スチレ ン換算) を有するセルロース系樹脂、 ポリ アミ ド系樹脂、 ポリエス テル系樹脂、 アク リル系樹脂、 ポリエーテル系樹脂、 ポリ オレフィ ン系樹脂、 ポリオール系樹脂、 エポキシ系樹脂などが挙げられる。 また、 この塗布液においては、 前記易分解性樹脂が前記加水分解 物または前記ポリ シロキサンと分子鎖レベルで絡み合った相互貫入 型ポリマー組成物を構成している ことが好ましい。 このような相互 貫入型ポリマー組成物の数平均分子量 (ポリ スチレン換算) は、 5 0 0〜 5 0 0 0 0 、 好ましく は 1 0 0 0〜 3 0 0 0 0 の範囲にある ことが望ましい。
このような相互貫入型ポリマー組成物の調製方法については、 本 出願人らによって出願された発明一 2 (国際出願公開 W O O 0 / 1 8 8 4 7 ) または前記発明一 3 (国際出願公開 W O 0 0 Z 1 2 6 4 0 ) の公報に、 その詳細が記載されているので、 これを参照された い。
本発明方法に好適に使用される低誘電率シリカ系被膜形成用塗布 液としては、 上記の塗布液一 A、 塗布液一 Bおよび塗布液一 Cが挙 げられる力 、 さ らに前記ケィ素化合物の加水分解物、 前記ポリ シ口 キサンおよび Zまたは前記相互貫入型ポリマー組成物は、 末端に S i - H基を有していることが望ましい。
前記 S i - H基は、 以下に記載する木発明方法に基づく特別な窒素 雰囲気下での焼成処理工程に供すると、 該雰囲気中に適正少量 ( 5 0 0 〜 1 5 0 0 0容 It p pm) の範囲で含まれる酸素によ り
S i - H → S i O H → S i O
の順に酸化され、 - S i - O - S i - O -のネッ 卜 ワーク を構成しやす く なる。
前記のような塗布液 A〜 Cを用いると、 低水分吸着性と高被膜強 度を有する比誘電率 3以下の低誘電率シ リカ系被膜を容易に形成す ることができる。
本発明方法において前記の塗布液を用いる場合には、 上記に示す 前記加水分解物、 前記ボリ シロキサン、 前^ 分解性樹脂を含む組 成物および Zまたは前 相互貫入型ポリ マー組成物などの 形分を 有機溶媒中に 5 〜 3 0 flr ffi % , 好ま しく は 1 0 〜 2 5 1S S %の量で 含有している こ とが望ましい。
前記有機溶媒と しては、 アルコール類、 グリ コールエーテル類、 ケ ト ン類、 エーテル類、 エステル類、 炭化水素類、 芳香族炭化水素 類などの有機溶媒から選択して使用する ことができる。
なお、 本発明では、 上記の方法で得られた固形分を含む溶液をそ のまま塗布液と して使用 してもよいが、 冇機溶媒層成分を分離し、 ロー夕 リーエバポレー夕一などを用いて再度、 メチルイ ソブチルケ トンやプロ ピレングリ コールモノ プロ ピルエーテルなどと溶媒置換 を行って、 前記加水分解反応で生成したアルコールや溶解している 水、 酸触媒などを除去した後、 固形分濃度を上記の範囲に調整して 使用する ことが望ましい。 低誘電率シリ カ系被膜の形成方法
本発明による低誘電率シリ カ系被膜の形成方法は、 )上記のよ うな低誘電率シリカ系被膜形成用塗布液を半導体基板上に塗布し、 (b)得られた被膜を 5 0 〜 3 5 0 の温度にて加熱処理した後、 (c ) 該被膜を 5 0 0 〜 1 5 0 0 0容量 p pmの酸素を含む不活性ガスの雰 囲気下で 3 5 0 〜 4 5 0 の温度にて焼成処理することによ り行わ れる。
(a)塗布工程
一般に、 このような塗布液の塗布方法としては、 スプレー法、 ス ピンコー ト法、 ディ ップコー ト法、 ロールコー ト法、 転写印刷法な どが採用されている力 ϊ、 本発明方法においても、 このような従来公 知の方法を用いて低誘電率シリ カ系被膜形成用塗布液を半導体基板 上に塗布することができる。
(b)加熱処理
このよう にして半導体基板上に塗布された被膜は、 5 0 〜 3 5 0 °C、 好ましく は 1 5 0 〜 3 5 0 °Cの温度にて加熱処理される。 この 加熱温度は、 該被膜中に含まれる有機溶媒を蒸発させる こ とのでき る、 3 5 0で以下の任意の温度から適宜、 選択される。 ここで、 該 被膜を 3 5 0 を超える温度で加熱すると、 被膜中に含まれる有機 溶媒の急激な蒸発が起こ り、 さ らに被膜中に前記易分解性樹脂が含 まれる場合には、 その分解や揮散が急激に進行するので好ま し く な い。
また、 この加熱処理は、 被膜の膜厚などによっても異なるが、 5分 間以下、 好ま しく は 1 〜 3分間をかけて行う ことが望ましい。
なお、 この加熱処理は、 同一温度で行ってもよく 、 また階段的な 温度で行っ て もよ い。 例えば、 ( i ) 1 5 0 での温度で 3 分間、
( i i ) 2 5 0 tの温度で 3分間などの同一温度で加熱処理する方法 や、 ( i i i ) 1 5 0 °Cの温度で 1 分間、 2 5 0での温度で 1 分間お よび 3 5 0 の温度で 1 分間などの段階的温度で加熱処理する方法
(S t ep B ak i ng Me t hod)などがある。
こ こで、 前記 ( i i i )の加熱処理方法を採用する と、 被膜中に含まれ る有機溶媒の蒸発が穏やかに起こるので、 膜厚の面内均一性がよく なる。 また、 この方法によ り、 上記の易分解性樹脂を含む被 )] を処 理する場合には、 該樹脂の一部を穏やかに分解または揮散させる こ ともできるという利点を有している。 しかし、 比較的、 低い温度で 加熱処理する前記 ( i )の方法に比べると、 基板上に形成される被膜 の比誘電率が僅かに高くなる傾向にある。
また、 この加熱処理は、 従来のよう に窒素などの不活性ガス雰囲 気下で行ってもよいが、 本発明方法においては、 空気雰囲気下で行 う ことが好ましい。 これは、 この処理が上記のよう に比較的、 低い 温度条件下で極めて短い時間行われるので、 たとえ酸素を比較的、 多量に含んでいる空気雰囲気下で加熱処理しても半導体基板上に配 設された金属配線に対し金属酸化などによるダメージを与えないか らである。 これによ り 、 高価な窒素ガスの使用量を削減でき、 また 微量の酸素が被膜中に取り込まれる可能性が高まるので、 後段 (C) の焼成処理で S i O 2が生成され、 低水分吸着性と高被膜強度を有 する低誘電率シリ カ系被膜を形成し易く なる。
上記のよう にして加熱処理を施すことによって、 被膜中に含まれ る有機溶媒が蒸発し、 また一方では固形成分の重合が進んで硬化す るとともに、 加熱の過程で重合体の溶融粘度が低下して被膜のリ フ ロー性が増大し、 得られる被膜の平坦性が向上する。
このよう にして形成される低誘電率シリカ系被膜の膜厚は、 被膜 を形成する半導体基板やその目的によっても異なる力 例えば、 半 導体装置におけるシリ コ ン基板上では通常、 1 0 0 0〜 2 5 0 O A 程度であり、 多層配線の配線層間の場合は通常、 1 0 0 0 〜 1 0 0 0 0 Aである。
(c)焼成処理
次いで、 この加熱処理が施された被膜は、 5 0 0〜 1 5 0 0 0容 量 ppm、 好ま しく は 1 0 0 0〜 1 0 0 0 0容量 ρρπιの酸素を含む不活 性ガスの雰囲気下で 3 5 0〜 4 5 0 、 好ましく は 3 7 5〜 4 2 5 °Cの温度にて焼成処理 (キュア) される。
前記不活性ガスと しては、 窒素ガスを用いることが望ま しく 、 さ らに本発明方法においては、 これに酸素ガスまたは空気 ( ドライエ ァ) を加えて、 当該不活性ガスの酸素濃度が 5 0 0〜 1 5 0 0 0容 量 ppmとなるよう に調整される。
不活性ガス中の酸素濃度が 5 0 0容量 ppm未満である と、 焼成処 理後の被膜が十分な機械的強度を有していないため、 半導体基板と して実用性に乏しいものが得られる。 その理由としては、 当該雰囲 気下で焼成処理された被膜中には- O - S i - O - S iのネッ トワークが 十分に形成されないためと考えられる。 また、 不活性ガス中の酸素 濃度が 1 5 0 0 0容量 ppmを越える と、 焼成処理中に半導体基板上 の金属配線に金属酸化によるダメージを与えやすく なり、 最終的な 半導体基板の歩留ま りが低下する傾向にある。
前記の焼成温度は、 塗布液中に含まれる S i 含有化合物の性状に よっても異なる力 、 3 5 0〜 4 5 0での温度範囲から選択される。 例えば、 前記のような易分解樹脂を含む塗布液を用いた場合には、 この易分解性樹脂が分解または揮散する以上の温度で焼成を行う こ とが望ましく 、 これによ り実質的に 1 O nm ( 1 0 O A ) 以上の径の 空孔を有しない低密度の低誘電率シリ カ系被膜が形成される。
また、 この焼成処理は、 塗布液の種類や被膜の膜厚などによって も異なる力 、 1 0〜 6 0分の時間をかけて行う ことが好ま しい。
こ こで、 焼成処理の温度が 3 5 0 °C未満であると、 十分な被胶強 度を有する被膜が得られず、 またそれが 4 5 0 °cを越えると、 半 体基板を構成するアルミニウム配線や銅配線などが酸化されたり、 溶融したり して、 該配線層に損傷を与える こ とがあるので、 当該温 度は 3 5 0〜 4 5 0での範囲に保つ必要がある。
通常、 上記の焼成処理は、 窒素ガスなどの不活性ガス雰囲気下や 比較的、 酸素濃度の高い不活性ガス (例えば、 5容量%の酸素含有 ガス) の雰囲気下で行われているが、 本発明者らは、 この処理を前 記の焼成条件下で行えば、 極めて高い歩留ま りで低誘電率シリカ系 被膜付半導体基板を安定的に製造できる ことを見出した。
この焼成処理は、 不活性ガス (例えば、 窒素) と酸素ガスまたは 空気 ( ドライエア) を混合して任意の酸素濃度にあらかじめ調整し たガスを炉内に送り込みながら行うので、 一度に多く の枚数を処理 できる従来公知の縦型炉ゃ横型炉を用いることができる。 しかし、 本発明方法では、 不活性ガス中の酸素濃度を上記の範囲に制御する ことが重要となるので、 前記の焼成処理を上蓋を有する枚葉式のホ ッ トプレー 卜を使用 して行う ことが望ましい。 また、 この焼成処理 を行う装置には、 焼成処理された被膜が熱いうちに酸素濃度の高い 空気雰囲気下に晒されるのを防止するため、 これを系外に取り出す ことなく冷却するための手段 (例えば、 クーリ ングプレー 卜) を備 えている ことが望ましい。 低誘電率シリ カ系被膜付半導体基板
本発明による低誘電率シリ力系被膜付半導体基板とは、 シリ コ ン 基板上、 多層配線構造の配線層間、 素子表面および Zまたは P N接 合部分に、 上記の方法によ り低誘電率シリ カ系被膜を形成して得ら れる半導体装置用部品である。
この半導体基板上に形成された被膜は、 比誘電率が 3以下と小さ く 、 しかも被塗布面との密着性、 耐アルカ リ性などの耐薬品性ゃ耐 ク ラ ッ ク性に優れ、 更には耐酸素プラズマ性やエツチング加ェ性な どのプロセス適合性も備えているばかりでなく 、 著しく低い水分吸 着性と十分に高い被膜強度を有している。
以上のような本発明に係る方法によれば、 半導体基板上に配設さ れた金属配線にダメージを与えることなく 、 上記のような優れた特 性を備えた低誘電率シリカ系被膜を有する半導体基板を提供する こ とができる。 実施例
以下、 本発明を実施例によ り説明する力 、 本発明はこれらの実施 例に限定されるものではない。
[製造例 1 ]
被膜形成用塗布液 (υの調製
ト リ エ ト キシシラ ン (信越化学工業製) 66.67gとエタ ノ ール 183.33gの混合溶液を 20 に保持し、 これに 05重量%濃度の硝酸 含有水溶液 21.82gを一度に加えて、 150 rpmの速度で攪袢しながら、 20 の温度で約 1時間、 ト リ エ トキシシランの加水分解を行った。 その後、 10倍量のメチルイ ソブチルケ ト ン ( M I B K ) を添加し、 ロータ リーエバポレー夕一を用いて再度、 メチルイ ソブチルケ ト ン に溶媒置換して、 加水分解反応によ り生成したアルコールや溶解し た水分 (硝酸を含む) を完全に除去して、 S i 〇 2換算で 20重 fi% の ト リエ トキシシラン加水分解物を含む M I B K溶液を得た。
上記のよう にして得られた ト リェ 卜キシシラン加水分解物の M I B K溶液 125gに、 アク リ ル樹脂 25gを M I B K溶液 100gに溶解させた ものを混合して 250gの被膜形成用塗布液 (1)を得た。 このアク リ ル 樹脂の数平均分子量は、 2 2 1 9 0であった。
[製造例 2 ]
被膜形成用塗布液 (2)の調製
卜 リ エ トキシシラン (信越化学工業製) 20. Ogとメチル 卜 リ メ ト キシシラン (信越化学工業製) 39.77gを溶解させたエタノールの混 合溶液 500gを 20 に保持し、 これに 0.05重量%濃度の硝酸含有水溶 液 45gを一度に加えて、 150rpmの速度で攪拌しながら、 20での温度 で約 1時間、 卜 リ エ トキシシラ ンおよびメチル ト リ メ 卜キシシラ ン の加水分解を行った。 その後、 10倍量のメチルイ ソブチルケ ト ン (M I B K) を添加し、 口一夕 リーエバポレーターを用いてメチル イ ソプチルケ トンに溶媒置換して、 加水分解反応によ り生成したァ ルコールや溶解した水分 (硝酸を含む) を完全に除去して、 卜 リ エ トキシシランと メチル ト リ メ 卜キシシランの加水分解物を S i O 2 換算の総量で 2 0重量%含む M I B K溶液を得た。 上記のよう にし て得られた加水分解物を含む M I B K溶液 125gに、 M I B K 15gに アク リル樹脂 3.75gを溶解させた M I B K溶液を混合して被胶形成 用塗布液 (2)を得た。 このアク リ ル樹脂の数平均分子量は、 2 2 1 9 0であった。
[実施例 1 〜 7 ]
シリカ系被膜付半導体基板
上記のよう にして調製した被膜形成用塗布液 (2)を、 それぞれ 8 イ ンチのシリ コンウェハー (半導体基板) にスピンコー ト法で塗布 した。
その後、 これらの基板を加熱処理工程に供して、 空気雰囲気下で 1 5 0 °Cの温度にて 3分間加熱した。 この加熱処理では、 被膜中に 含まれる有機溶媒などが蒸発してく るので、 これを系外に排気した。
次いで、 これらの基板を上蓋を有する枚葉式の焼成処理装置 (東 京エレク ト ロ ン社製 ACT- 8) のホッ トプレー ト上に 1 枚ずつ設置し て、 以下の表 1 に示す酸素濃度を有する不活性ガス (窒素ガスに酸 素を加えたもの) の雰囲気下で、 さ らに表 1 に示す温度にて 3 0分 間、 焼成処理を施し低誘電率シリ カ系被膜を形成した。 次に、 これ らを室温近く の温度まで冷却して系外に取り出した。
このようにして得られた被膜の膜厚は、 いずれも約 5 0 0 0 Aで あつ /こ。
次いで、 これらのシリ カ系被膜の比誘電率 (水銀プロ一ブ法、 周波 数 1 M H z ) 、 酸素プラズマ照射前後の被胶の水分吸着 1¾変化 ( T D S法 : Thermal Desorption Mas s-Spec t roscopy) 、 被膜強度 (セ バスチャ ン強度試験機) および基板上の金属配線に対する損傷の有 無 (テス夕一によ り配線抵抗値の変化を測定) を測定した。
結果を表 2 に示す。
[実施例 8 ]
シリ カ系被膜付半導体基板
上記のよう にして調製した被膜形成用塗布液 (2)を、 8 イ ンチの シリ コ ンウェハー (半導体基板) にスピンコー ト法で塗布した。 その後、 これらの基板を加熱処理工程に供して、 窒素雰囲気下で 1 5 0 °Cの温度にて 3 分間加熱した。 この加熱処 Sでは、 被膜中に含 まれる有機溶媒などが蒸発してく るので、 これを系外に排気した。 次いで、 実施例 1 〜 7 と同様に、 得られた基板を上蓋を有する枚 葉式の焼成処理装置 (東京エレク ト 口ン社製 ACT- 8) のホッ ト プレ ー ト上に配置して、 以下の表 1 に示す酸素濃度を有する不活性ガス (窒素ガスに酸素を加えたもの) の雰囲気下で、 さ らに表 1 に示す 温度にて 3 0分間、 焼成処理を施し低誘電率シリカ系被膜を形成し た。 次に、 これらを室温近く の温度まで冷却して系外に取り出した このよう にして得られた被膜の膜厚は、 約 5 0 0 0 Aであった。 次いで、 実施例 1 〜 7 と同様にシリカ系被膜の比誘電率、 酸素ブラ ズマ照射前後の被膜の水分吸着量変化、 被膜強度および基板上の金 属配線に対する損傷の有無を測定した。
結果を表 2 に示す。
[実施例 9および 1 0 ]
シリ カ系被膜付半導体基板
上記のよ う に して調製した被膜形成用塗布液 ( 1 )を、 8ィ ンチのシ リ コンウェハー (半導体基板) にスピンコー ト法で塗布した。
その後、 これらの基板を加熱処理工程に供して、 窒素雰囲気下で 1 5 0 °Cの温度にて 3分間加熱した。 この加熱処理では、 被膜中に含 まれる有機溶媒などが蒸発してく るので、 これを系外に排気した。 次いで、 実施例 1 〜 7 と同様に、 得られた基板を上蓋を有する枚 葉式の焼成処理装置 (東京エレク ト 口 ン社製 AC T-8 ) のホッ トプレ ー ト上に配置して、 以下の表 1 に示す酸素濃度を有する不活性ガス (窒素ガスに酸素を加えたもの) の雰囲気下で、 さ らに表 1 に示す 温度にて 3 0分間、 焼成処理を施し低誘電率シリカ系被膜を形成し た。 次に、 これらを室温近く の温度まで冷却して系外に取り出した。
このよう にして得られた被膜の膜厚は、 いずれも約 5 0 0 0 Aで あった。 次いで、 実施例 1 〜 7 と同様にシリカ系被膜の比誘電率、 酸素プ ラズマ照射前後の被膜の水分吸着量変化、 被膜強度および基板上の 金属配線に対する損傷の有無を測定した。
結果を表 2 に示す。
[比較例 1 〜 5 ]
シリカ系被膜付半導体基板
上記のよう に して調製した被膜形成用塗布液 (2 ) を、 それぞれ 8 イ ンチのシリ コンウェハ一 (半導体基板) にスピンコー ト法で塗布 した。
その後、 これらの基板を加熱処理工程に供して、 空気雰囲気下で 1 5 0 °Cの温度にて 3分間加熱した。 この加熱処理では、 被膜中に 含まれる有機溶媒などが蒸発してく るので、 これを系外に排気した 次いで、 実施例 1 〜 7 と同様に、 これらの基板を上蓋を有する枚 菜式の焼成処理装置 (東京エレク ト 口 ン社製 AC T- 8 ) のホッ トプレ 一 卜上に 1 枚ずつ設置して、 以下の表 1 に示す酸素濃度を苻する不 活性ガス (窒素ガスに酸素を加えたもの) の雰 RH気下で、 さ らに表 1 に示す温度にて 3 0分間、 焼成処理を施し低誘電率シリ カ系被胶 を形成した。 次に、 これらを室温近く の温度まで冷却して系外に取 り出した。
このよう にして得られた被膜の膜厚は、 いずれも約 5 0 0 0 Aで めった。
次いで、 実施例 1 〜 7 と同様に、 シリ カ系被膜の比誘電率、 酸素 プラズマ照射前後の被膜の水分吸着量変化、 被胶強度および基板上 の金属配線に対する損傷の有無を測定した。 結果を表 2 に示す。 表 1
加熱工程の 焼成工程の 焼成工程の 雰囲気 酸素濃度 加熱温度
¾ n n m ) ( °Π ) 実施例 1 空気 600 400 実施例 2 空気 1 000 400 実施例 3 空気 3000 400 実施例 4 ェ メ 5000 400 実施例 5 空気 7000 400 実施例 6 空気 1 0000 400 実施例フ 空気 1 4000 400 実施例 8 窒素 5000 400 実施例 9 空気 600 400 実施例 1 0 空気 900 400 比較例 1 空気 1 0 400 比較例 2 空気 400 400 比較例 3 空気 5000 300 比較例 4 空気 5000 500 比較例 5 空気 1 6000 400 表 2
Figure imgf000025_0001
表 2から明らかなよう に、 本発明の方法を用いて半導休基板に低 誘電率シリカ系被膜を形成すると、 半導体基板上の金属配線にダメ ージを与えることなく 、 比誘電率が 3以下と小さ く 、 しかも 5 0 M P a以上のセバスチャ ン強度を有する被膜が得られた。 また、 酸素 プラズマ照射した後の被膜の水分吸着量も低いレベルにあった。
これに対して、 酸素濃度が 5 0 0 容量 p pm未満の不活性ガスの雰 囲気下で焼成した場合には、 比誘電率 3以下の被膜が得られるもの の、 その被膜のセバスチャ ン強度は、 低いレベルにあった。 また、 酸素濃度が 1 5 0 0 0 容量 p pmを越える不活性ガスの雰囲気下で焼 成した場合においては、 基板上に配設された金属配線に金属酸化に 基づく損傷が見られた。
また、 焼成温度が 3 5 0 °C未満の温度で焼成した場合には、 被膜 のセバスチャ ン強度が低いレベルにあり、 一方、 4 5 0 を越える 温度で焼成した場合には、 基板上に配設された金属配線に損傷を与 える傾向にあった。
さ らに、 焼成処理の前段の加熱処理を、 窒素ガス雰囲気下で行つ つた場合、 これを空気雰囲気下で行った場合と比べて被膜のセバス チャ ン強度が僅かに低下する傾向を示した。
以上のことから、 本発明による方法を用いれば、 半導体基板上に 配設された金属配線にダメージを与える ことなく 、 しかも低水分吸 着性と高被膜強度を有する低誘電率シリ 力系被膜付半導体基板を提 供できる ことが判明した。
上記の表 2からも明らかなように、 酸素濃度 5 0 0容量 ppm以上の 不活性ガスの雰囲気下で焼成して被膜を形成した場合には、 比誘電 率が 3以下と小さ く 、 しかも 5 0 MP a以上のセバスチャ ン強度を有 する被膜が得られた。
これに対して、 酸素濃度 1 0容量 p pmの不活性ガスの雰囲気下で 焼成して被膜を形成した場合には、 実施例 1 〜 8 と同様に、 比誘電 率 3以下の被膜が得られるものの、 その被膜のセバスチャ ン強度は、 低いレベルにあった。
そこで、 実施例 2 、 4 、 6および 7 と比較例 1 で得られた焼成処 理後のシリカ系被膜中に含まれる以下の化学式で表される 3成分の 含有量を29 S i- NM R法 (Nuclear Magnetic Resonance) によ り測 定し、 各成分のピーク面積の比率を求めた。
Figure imgf000027_0001
[I] [II] [III]
結果を以下の表 3 に示す。 表 3
o
Figure imgf000027_0002
表 3 に示されれるように、 実施例 2、 4、 6および 7で得られた シリ カ系被膜は、 比較例 1 のものに較べて、 化学式 [ I II ]で表され
O
I
る成分 (- O- S i -0-) の面積比率が 1 0 %以上も高いこ とが判明
I
o
' I
o
I
した。 また、 化学式 [Π]で表される成分 (H- S i -0-) は、 酸素
I
o 濃度 5 0 0容量 ppm以上の不活性ガスの雰囲気下で被膜を焼成する
I
o
と、 化学式 [III] で表される成分 (-〇- S i -0-) に変換されや
I
o
I
すいことが分かつた。 これによ り、 本発明方法を用いて被膜を形成すれば、 - S i -0- S i - O -からなるネッ トワークのク ロス リ ンキングが進み、 容易に 被膜強度の高い低誘電率シリ カ系被膜が得られる ことが明らかとな つた。

Claims

請求の範囲
1 . 半導体基板上に低誘電率シリ カ系被膜を形成する方法において
(a)半導体基板上に低誘電率シリカ系被膜形成用塗布液を塗布し、
(b)得られた被膜を 5 0 〜 3 5 0 °Cの温度にて加熱処理した後、
(c)該被膜を 5 0 0 〜 1 5 0 0 0容量 ppmの酸素を含む不活性ガス の雰囲気下で 3 5 0 〜 4 5 0 t:の温度にて焼成処理することを特徴 とする低誘電率シリカ系被膜の形成方法。
2 . 前記低誘電率シリ カ系被膜形成用塗布液は、 下記一般式 (I )で 示されるアルコキシシランおよび下記一般式 ( 1 1 )で示されるハロゲ ン化シランからなる群から選ばれる少なく とも 1 種のゲイ素化合物 の加水分解物を含むことを特徴とする詰求項 1 に記載の低誘電率シ リ カ系被膜の形成方法。
X n S i ( O R ) 4_„ ··· ( I )
X n S i X ' 4_„ … ( I I )
(式中、 Xは水素原子、 フッ素原子、 または炭素数 1 〜 8 のアルキ ル基、 フッ素置換アルキル基、 ァリール基も しく はビニル基を表し、 Rは水素原子、 または炭素数 1 〜 8 のアルキル基、 ァ リール基も し く はビニル基を表し、 X 'はハロゲン原子を表す。 また、 n は 0 〜 3 の整数である。 )
3 . 前記低誘電率シリ カ系被膜形成用塗布液は、
下記一般式 ( I ) で示されるアルコキシシラ ンおよび下記一般式 ( I I )で示されるハロゲン化シランからなる群から選ばれる少なく と も 1 種のゲイ素化合物の加水分解物と、 シリカ微粒子との反応物で ある、 ポリ シロキサンを含むことを特徴とする請求項 1 に記載の低 誘電率シリ カ系被膜の形成方法。
X n S i ( O R ) 4_„ …(I )
X n S i X ' 4_„ - ( I I )
(式中、 Xは水素原子、 フッ素原子、 または炭素数 1 〜 8 のアルキ ル基、 フッ素置換アルキル基、 ァリール基もしく はビニル基を表し Rは水素原子、 または炭素数 1 〜 8 のアルキル基、 ァリール基も し く はビニル基を表し、 X 'はハロゲン原子を表す。 また、 n は 0 〜 3 の整数である。 )
4 . 前記低誘電率シリ カ系被膜形成用塗布液は、 さ らに、 5 0 0〜
5 0 0 0 0 の数平均分子量 (ポリスチレン換算) を有し、 かつ 4 5 0 以下の温度で加熱処理する ことによ り分解または揮散する易分 解性樹脂を含むことを特徴とする請求項 2 または請求項 3 に記載の 低誘電率シリカ系被膜の形成方法。
5 . 前記易分解性樹脂は、 前記ケィ素化合物の加水分解物または前 記ポリ シロキサンと分子鎖レベルで絡み合った相互貫入型ポリ マー 組成物を構成している ことを特徴とする請求項 4 に記載の低誘電率 シリカ系被膜の形成方法。
6 . 前記低誘電率シリカ系被膜形成用塗布液は、 その中に含まれる 前記ゲイ素化合物の加水分解物、 前記ポリ シロキサンおよび Zまた は前記相互貫入型ポリ マー組成物が末端に S i - H基を有する こ とを 特徴とする請求項 1 〜 5 のいずれかに記載の低誘電率シリカ系被膜 の形成方法。
7 . 前記加熱処理 (b) を、 空気雰囲気下で、 1 5 0〜 3 5 0 °Cの温 度にて 1 〜 3分間、 行う ことを特徴とする請求項 1 〜 6 のいずれか に記載の低誘電率シリ カ系被膜の形成方法。
8 . 前記焼成処理 (c)は、 1 0 0 0〜 1 0 0 0 0容量 ppmの酸素を含 む不活性ガスの雰囲気下で行う ことを特徴とする請求項 1 〜 7 のい ずれかに記載の誘電率シリカ系被膜の形成方法。
9 . 前記焼成処理 (c)は、 半導体基板を 3 5 0 〜 4 5 0での温度に 保たれたホッ トプレー ト上に載せて行う ことを特徴とする請求 ¾ 1 〜 8 のいずれかに記載の低誘電率シリカ系被膜の形成方法。
1 0 . 請求項 1 〜 9 のいずれかに記載の方法を用いて形成された、 比誘電率 3以下の低誘電率シリ カ系被膜を有する ことを特徴とする 半導体基板。
PCT/JP2000/008933 1999-12-28 2000-12-15 Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique WO2001048806A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00981780A EP1197999B1 (en) 1999-12-28 2000-12-15 Method of forming low-dielectric-constant film, and semiconductor substrate with low-dielectric-constant film
US09/914,418 US6599846B2 (en) 1999-12-28 2000-12-15 Method of forming a silica-containing coating film with a low dielectric constant and semiconductor substrate coated with such a film
DE60043848T DE60043848D1 (de) 1999-12-28 2000-12-15 Methode zur herstellung eines dielektrischen films mit einer niedrigen dielektrizitätskonstante und halbleiteranordnung mit so einem film
JP2001548426A JP3998979B2 (ja) 1999-12-28 2000-12-15 低誘電率シリカ系被膜の形成方法および低誘電率被膜付半導体基板
KR20017011002A KR100430464B1 (ko) 1999-12-28 2000-12-15 낮은 유전상수를 갖는 실리카-함유 코팅 필름의 형성 방법및 이 필름으로 코팅된 반도체 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37468299 1999-12-28
JP11-374682 1999-12-28

Publications (1)

Publication Number Publication Date
WO2001048806A1 true WO2001048806A1 (fr) 2001-07-05

Family

ID=18504259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008933 WO2001048806A1 (fr) 1999-12-28 2000-12-15 Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique

Country Status (7)

Country Link
US (1) US6599846B2 (ja)
EP (1) EP1197999B1 (ja)
JP (1) JP3998979B2 (ja)
KR (1) KR100430464B1 (ja)
DE (1) DE60043848D1 (ja)
TW (1) TW499715B (ja)
WO (1) WO2001048806A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043439A1 (ja) 2004-10-20 2006-04-27 Catalysts & Chemicals Industries Co., Ltd. 半導体加工用保護膜形成用塗布液、その調製方法およびこれより得られる半導体加工用保護膜
JP2007138144A (ja) * 2005-10-18 2007-06-07 Hitachi Chem Co Ltd シリカ系被膜形成用組成物
WO2007072750A1 (ja) 2005-12-22 2007-06-28 Catalysts & Chemicals Industries Co., Ltd. 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液から得られる低誘電率非晶質シリカ系被膜
WO2008026387A1 (fr) 2006-08-28 2008-03-06 Catalysts & Chemicals Industries Co., Ltd. Procédé de formation d'un revêtement de silice amorphe à faible constante diélectrique et revêtement de silice amorphe à faible constante diélectrique obtenu grâce à celui-ci
US7659357B2 (en) 2005-07-08 2010-02-09 Fujitsu Limited Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515584B1 (ko) * 2002-08-06 2005-09-20 주식회사 엘지화학 유기실리케이트 중합체 및 이를 함유하는 절연막
US6812135B2 (en) * 2002-10-30 2004-11-02 Taiwan Semiconductor Manufacturing Company, Ltd Adhesion enhancement between CVD dielectric and spin-on low-k silicate films
KR100488347B1 (ko) * 2002-10-31 2005-05-10 삼성전자주식회사 실록산계 수지 및 이를 이용한 반도체 층간 절연막의형성방법
JP4225765B2 (ja) * 2002-10-31 2009-02-18 日揮触媒化成株式会社 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜
JP4471564B2 (ja) 2002-10-31 2010-06-02 日揮触媒化成株式会社 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液の調製方法
KR100909384B1 (ko) * 2006-06-26 2009-07-24 제일모직주식회사 레지스트 하층막용 하드마스크 조성물 및 이를 이용한반도체 집적회로 디바이스의 제조방법
JP5119832B2 (ja) * 2007-09-27 2013-01-16 富士通株式会社 界面ラフネス緩和膜、配線層、半導体装置および半導体装置の製造方法
US20090093135A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Semiconductor manufacturing apparatus and method for curing material with uv light
WO2009150021A2 (en) * 2008-05-26 2009-12-17 Basf Se Method of making porous materials and porous materials prepared thereof
WO2015122548A1 (ko) * 2014-02-11 2015-08-20 주식회사 동성화학 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법
KR102650216B1 (ko) 2018-03-09 2024-03-21 삼성전자주식회사 산화물층의 형성 방법 및 반도체 소자의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602060A (en) * 1993-08-31 1997-02-11 Fujitsu Limited Process for the production of semiconductor devices
EP0869515A1 (en) * 1997-03-31 1998-10-07 Dow Corning Toray Silicone Company, Limited Composition and process for forming electrically insulating thin films
EP0890623A1 (en) * 1996-03-25 1999-01-13 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for low-permittivity silica coating and substrate provided with low-permittivity coating
EP1026213A1 (en) * 1998-09-01 2000-08-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
EP1035183A1 (en) * 1998-09-25 2000-09-13 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075391A (en) * 1975-10-29 1978-02-21 Xerox Corporation Production of ferrite electrostatographic carrier materials having improved properties
US4363706A (en) * 1980-03-07 1982-12-14 Imi Kynoch Limited Anode
JPS6357755A (ja) * 1986-05-30 1988-03-12 Kobe Steel Ltd 溶射用Ni基合金粉末及びその製造方法
EP0308851A3 (en) * 1987-09-24 1990-03-21 Air Products And Chemicals, Inc. A process for the manufacture of copper thick-film conductors using an infrared furnace
JPH088169B2 (ja) * 1989-09-12 1996-01-29 株式会社ジャパンエナジー Fe―Si―Al合金磁性薄膜の製造方法
US5153295A (en) * 1990-07-20 1992-10-06 Rensselaer Polytechnic Institute Carbosilane polymer precursors to silicon carbide ceramics
US5413952A (en) * 1994-02-02 1995-05-09 Motorola, Inc. Direct wafer bonded structure method of making
US5547703A (en) * 1994-04-11 1996-08-20 Dow Corning Corporation Method of forming si-o containing coatings
US5789325A (en) * 1996-04-29 1998-08-04 Dow Corning Corporation Coating electronic substrates with silica derived from polycarbosilane
EP0881668A3 (en) * 1997-05-28 2000-11-15 Dow Corning Toray Silicone Company, Ltd. Deposition of an electrically insulating thin film with a low dielectric constant
US5883219A (en) * 1997-05-29 1999-03-16 International Business Machines Corporation Integrated circuit device and process for its manufacture
DE69827259T2 (de) * 1997-07-15 2006-02-16 Asahi Kasei Kabushiki Kaisha Zusammensetzungen aus alkoxysilan und organischem polymer zur herstellung von dünnen isolierenden schichten und deren verwendung
TW439197B (en) * 1997-10-31 2001-06-07 Dow Corning Electronic coating having low dielectric constant
US6372666B1 (en) * 1998-08-31 2002-04-16 Alliedsignal Inc. Process for producing dielectric thin films
US6214746B1 (en) * 1999-05-07 2001-04-10 Honeywell International Inc. Nanoporous material fabricated using a dissolvable reagent
US6225238B1 (en) * 1999-06-07 2001-05-01 Allied Signal Inc Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602060A (en) * 1993-08-31 1997-02-11 Fujitsu Limited Process for the production of semiconductor devices
EP0890623A1 (en) * 1996-03-25 1999-01-13 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for low-permittivity silica coating and substrate provided with low-permittivity coating
EP0869515A1 (en) * 1997-03-31 1998-10-07 Dow Corning Toray Silicone Company, Limited Composition and process for forming electrically insulating thin films
EP1026213A1 (en) * 1998-09-01 2000-08-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
EP1035183A1 (en) * 1998-09-25 2000-09-13 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043439A1 (ja) 2004-10-20 2006-04-27 Catalysts & Chemicals Industries Co., Ltd. 半導体加工用保護膜形成用塗布液、その調製方法およびこれより得られる半導体加工用保護膜
US7659357B2 (en) 2005-07-08 2010-02-09 Fujitsu Limited Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same
US8124239B2 (en) 2005-07-08 2012-02-28 Fujitsu Limited Silica film forming material, silica film and method of manufacturing the same, multilayer wiring structure and method of manufacturing the same, and semiconductor device and method of manufacturing the same
JP2007138144A (ja) * 2005-10-18 2007-06-07 Hitachi Chem Co Ltd シリカ系被膜形成用組成物
WO2007072750A1 (ja) 2005-12-22 2007-06-28 Catalysts & Chemicals Industries Co., Ltd. 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液から得られる低誘電率非晶質シリカ系被膜
WO2008026387A1 (fr) 2006-08-28 2008-03-06 Catalysts & Chemicals Industries Co., Ltd. Procédé de formation d'un revêtement de silice amorphe à faible constante diélectrique et revêtement de silice amorphe à faible constante diélectrique obtenu grâce à celui-ci

Also Published As

Publication number Publication date
EP1197999A1 (en) 2002-04-17
KR20010101851A (ko) 2001-11-15
KR100430464B1 (ko) 2004-05-10
EP1197999B1 (en) 2010-02-17
US6599846B2 (en) 2003-07-29
EP1197999A4 (en) 2006-04-12
JP3998979B2 (ja) 2007-10-31
DE60043848D1 (de) 2010-04-01
TW499715B (en) 2002-08-21
US20020187652A1 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
EP1026213B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
EP1035183B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
US7381441B2 (en) Low metal porous silica dielectric for integral circuit applications
JP4021131B2 (ja) 低誘電率シリカ系被膜形成用塗布液および低誘電率シリカ系被膜付基板
WO2001048806A1 (fr) Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique
US20050173803A1 (en) Interlayer adhesion promoter for low k materials
WO1997035939A1 (fr) Fluide pour realiser un revetement de silice a permittivite basse et substrat portant ce revetement a permittivite basse
WO2007072750A1 (ja) 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液から得られる低誘電率非晶質シリカ系被膜
US6399210B1 (en) Alkoxyhydridosiloxane resins
JP2004149714A (ja) 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液の調製方法
EP2073254B1 (en) Method of forming amorphous silica coating of low dielectric constant and amorphous silica coating of low dielectric constant obtained thereby
US20050136687A1 (en) Porous silica dielectric having improved etch selectivity towards inorganic anti-reflective coating materials for integrated circuit applications, and methods of manufacture
JP2002201415A (ja) シリカ系被膜形成用塗布液、シリカ系被膜の製造方法及び半導体装置
JP4734815B2 (ja) 組成物、その組成物を用いた低誘電率膜の形成方法、低誘電率膜及びその低誘電率膜を有する電子部品
JP4241879B2 (ja) 低誘電率シリカ系被膜形成用塗布液および低誘電率被膜付基材
JP4618086B2 (ja) Si含有膜及びその製造方法等
JPH0353529A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR NL

ENP Entry into the national phase

Ref document number: 2001 548426

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09914418

Country of ref document: US

Ref document number: 1020017011002

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000981780

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000981780

Country of ref document: EP