WO2001032337A1 - Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer - Google Patents

Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer Download PDF

Info

Publication number
WO2001032337A1
WO2001032337A1 PCT/JP2000/005089 JP0005089W WO0132337A1 WO 2001032337 A1 WO2001032337 A1 WO 2001032337A1 JP 0005089 W JP0005089 W JP 0005089W WO 0132337 A1 WO0132337 A1 WO 0132337A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
iron
powder
mold
melting point
Prior art date
Application number
PCT/JP2000/005089
Other languages
English (en)
French (fr)
Inventor
Shigeru Unami
Ukiko Ozaki
Satoshi Uenosono
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP30859099A external-priority patent/JP3931503B2/ja
Priority claimed from JP2000105050A external-priority patent/JP4507348B2/ja
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to CA2356253A priority Critical patent/CA2356253C/en
Priority to EP00948302A priority patent/EP1145788B1/en
Publication of WO2001032337A1 publication Critical patent/WO2001032337A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • Lubricant for warm mold lubrication iron-based powder mixture for warm mold lubrication molding, method for producing high-density iron-based powder compact, and high-density iron-based sintered compact
  • the present invention relates to a method for producing an iron-based powder compact for powder metallurgy and a method for producing an iron-based sintered compact, and more particularly to an improvement in a lubricant used when producing a high-density iron-based powder compact by warm compaction. . Background art
  • An iron-based powder compact for powder metallurgy is made by mixing an iron-based powder mixture of an iron-based powder, an alloy powder such as copper powder and graphite powder, and a lubricant such as zinc stearate and lead stearate. After filling in a mold, it is generally manufactured by pressure molding. Is the density of the molded body, 6. 6 ⁇ 7. 1Mg / m 3 is typical.
  • iron-based powder compacts are further subjected to a sintering process to obtain sintered compacts, and further subjected to sizing / cutting processing as necessary, to obtain powder metallurgy products. If higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.
  • sintered parts To increase the strength of powder metallurgy products (sintered parts), it is effective to increase the density of sintered parts by increasing the density of compacts.
  • the iron-based powder mixture is subjected to normal molding and sintering, followed by repeated molding and sintering.
  • a sintering method and a sinter forging method in which hot forging is performed after sintering once.
  • metal powder is molded while heating.
  • a warm forming technique is disclosed. This warm forming technology melts part or all of the lubricant during warm forming to evenly disperse the lubricant between the powder particles, thereby reducing the frictional resistance between the particles and between the compact and the mold. It is intended to improve the performance and is considered to be the most advantageous in terms of cost among the above-mentioned methods for producing a high-density molded body.
  • an iron-based powder in which 0.5% by mass of graphite and 0.6% by mass of a lubricant are blended with a partially alloyed iron powder of Fe-4Ni-0.5MO-1.5Cu system
  • a molded body of about 7.30 Mg / m 3 is obtained.
  • JP-A-2-1566002, JP-B-7-103404, USP 5,256,185, and USP 5,368,630 the fluidity of the powder mixture is reduced.
  • a lubricant is contained in the iron-based powder mixture for the purpose of reducing the frictional resistance between particles and between the compact and the mold and improving the formability.
  • part or all of the material is melted and extruded near the surface of the molded body, and then is thermally decomposed or evaporated to escape from the molded body due to the subsequent sintering process. A hole is formed. Therefore, there is a problem that the mechanical strength of the sintered body is reduced.
  • Japanese Patent Application Laid-Open No. H8-100203 discloses that at room temperature or warm molding, a charged lubricant powder is applied to the surface of a mold to reduce the amount of lubricant in the iron-based powder mixture.
  • a technology for reducing the density and forming a high-density compact is disclosed.
  • the type of the lubricant to be applied is a single substance, the form of the lubricant changes around its melting point, and the lubricating function changes significantly. For this reason, there has been a problem that the molding temperature range is limited by the melting point of the lubricant.
  • the mold lubricant is applied to the surface of the mold to reduce the amount of lubricant in the iron-based powder mixture, the lubrication effect is lost due to the reduction in the amount of the lubricant to be mixed depending on the components of the mixed lubricant, and the green density increases. There is also a problem that it cannot be realized.
  • the high-density iron-based powder compact that can be obtained with a single compaction can be obtained from a higher density compact. Development of a manufacturing method was desired.
  • an iron-based alloy obtained by mixing 0.5% by mass of graphite powder with a partially alloyed iron powder of Fe-4Ni-0.5Mo-1.5Cu composition proposal of 7. 4 Mg / m 3 or more in the case of the powder mixture was molded warm pressure, it can be obtained by forming a single high-density molded product, a method for manufacturing a high-density iron-based powder formed form
  • the primary purpose is to
  • the second object of the present invention is to propose a method for producing a high-density iron-based sintered body that can obtain a high-density iron-based sintered body by performing a sintering treatment on an iron-based powder compact. It is the purpose. Disclosure of the invention
  • the present inventors have intensively studied a lubricant for mold lubrication and a lubricant compounding of the iron-based powder mixed powder. went.
  • a lubricant with a low melting point below the temperature of the specified pressure molding and its temperature are used as a lubricant for mold lubrication that can be adhered to the preheated mold surface by electrification in order to reduce the ejection force.
  • a lubricant with a higher melting point and a proper blend of lubricants is better.
  • the present invention has been completed by further study based on the above findings.
  • the first aspect of the present invention is to press-mold a powder with a preheated mold.
  • a lubricant for warm mold lubrication characterized by being a mixture with a lubricant having a low melting point.
  • a lubricant for warm mold lubrication which is used by charging and adhering to the surface of the mold when the powder is compacted with a preheated mold, is provided.
  • the lubricant having a melting point higher than the predetermined pressure molding temperature may be a metal stone test, a thermoplastic resin, or a thermoplastic elastomer.
  • Lubricants possessed are metal stones, amide waxes, polyethylene and Preferably with one or more selected from among the two or more co-melt out.
  • a second aspect of the present invention is an iron-based powder mixture containing an iron-based powder and a powder-forming lubricant, wherein the powder-forming lubricant comprises 10 to 75% by mass of the total amount of the powder-forming lubricant.
  • An iron-based powder for warm mold lubrication molding characterized in that it contains a lubricant having a melting point lower than the temperature of pressure molding, and the remainder is a lubricant having a melting point higher than the temperature of pressure molding.
  • the content of the lubricant for powder molding is 0.05 to 0.40% by mass.
  • the iron-based powder mixture contains graphite.
  • the graphite content is less than 0.5% by mass.
  • a third aspect of the present invention provides a method for producing an iron-based powder molded body, which comprises: filling a mold with a heated powder mixture of iron-based powder; and then press-forming at a predetermined temperature.
  • the mold is preheated, and the surface is charged with a lubricant for warm mold lubrication.
  • the lubricant for warm mold lubrication is 0.5 to 80% by mass of a predetermined pressure molding.
  • the lubricant for powder molding contains 10 to 75% by mass of the total amount of the lubricant for powder molding, the lubricant having a low melting point not higher than a predetermined pressure molding temperature; % High-density mixed lubricant that has a melting point higher than the predetermined pressing temperature A method for producing a group powder compact.
  • the lubricant having a melting point higher than the predetermined pressure forming temperature in the warm mold lubricating lubricant may be used as a metal stone, a thermoplastic resin, a thermoplastic elastomer, a layered crystal. It is preferable to use one or more selected from inorganic or organic lubricants having a structure.
  • the lubricant having a low melting point not higher than the predetermined pressure forming temperature in the lubricant for warm mold lubrication is used as a metal lubricant, an amide-based wax, a polyethylene, and two of these. It is preferable to use one or two or more selected from co-melts of at least one kind.
  • the content of the lubricant for powder molding is preferably set to 0.05 to 0.40% by mass.
  • graphite is added to the iron-based powder mixture.
  • the content of the graphite is preferably less than 0.5% by mass.
  • a fourth aspect of the present invention is to provide a method for producing a high-density iron-based powder compact according to any of the above-described methods for producing an iron-based sintered compact by further performing a sintering process.
  • This is a method for producing a high-density iron-based sintered body that is a feature.
  • the heated iron-based powder mixed powder is filled in a mold, it is pressed and formed at a predetermined temperature to obtain an iron-based powder compact.
  • the mold used for molding is preheated to a predetermined temperature in advance.
  • the preheating temperature of the mold may be any temperature at which the iron-based powder mixture can be maintained at a predetermined pressure molding temperature, and is not particularly limited. It is desirable that the temperature be higher by ° C.
  • a charged lubricant for mold lubrication is introduced into the preheated mold and charged on the mold surface.
  • Lubricant for mold lubrication solid powder is a mold lubrication device
  • the amount of the lubricant for mold lubrication is preferably 5 to 100 g / m 2 . If the attached amount is less than 5 g / m 2 , the lubricating effect will be insufficient, and the withdrawal force after molding will increase. If it exceeds 100 g / m 2 , the lubricant will remain on the surface of the molded body, resulting in poor appearance of the molded body. Become.
  • the lubricant for warm mold lubrication which is charged and adhered to the surface of the mold when the powder is molded under pressure with a preheated mold, is a lubricant with a melting point higher than the predetermined compression molding temperature.
  • the predetermined pressure molding temperature in the present invention refers to the temperature on the mold surface during pressure molding.
  • Lubricant having a melting point higher than the predetermined pressure molding temperature is not melted in the mold during molding, and acts as a solid lubricant like a "roller” in the mold to reduce the extraction force and In addition, it prevents the molten or partially melted lubricant (lubricant having a melting point lower than the specified pressure molding temperature) from moving in the mold, reducing the frictional resistance between the compact and the mold surface. It has the role of preventing the removal force from increasing.
  • the content of the lubricant having a melting point higher than the predetermined pressing temperature is less than 0.5% by mass, the amount of the lubricant having a melting point lower than the pressing temperature is increased, and the amount of the lubricant melted is reduced.
  • the lubricant increases, the lubricant moves and does not become evenly distributed on the mold surface, the frictional resistance between the compact and the mold surface increases, and the effect of reducing the extraction force is small.
  • it exceeds 80% by mass the amount of the lubricant that does not melt in the mold becomes too large, and the distribution of the lubricant on the mold surface becomes uneven. Insufficient mold lubrication increases the pull-out force. For this reason, the blending amount of the lubricant having a melting point higher than the predetermined pressure forming temperature in the warm mold lubricant is limited to the range of 0.5 to 80% by mass.
  • the balance of the lubricant for mold lubrication is a lubricant having a low melting point below a predetermined pressure molding temperature.
  • Lubricants having a low melting point below the specified pressure molding temperature will melt or partially melt at the pressure molding temperature, forming a grease-like state on the mold surface, and have the effect of lowering the extraction force. ing.
  • Lubricants with a melting point higher than the specified pressure molding temperature in warm mold lubricating lubricants include metal stone tests, thermoplastic resins, thermoplastic elastomers, and inorganic lubricants with a layered crystal structure.
  • the metal lithology zinc stearate, lithium stearate, lithium hydroxystearate and the like are preferable.
  • polystyrene, polyamide, fluororesin and the like are preferable.
  • thermoplastic elastomer a polystyrene-based elastomer, a polyamide-based elastomer, and the like are preferable.
  • the inorganic lubricant having a layered crystal structure may be any of graphite, MoS 2 , and fluorocarbon. The finer the particle size, the more effective it is in reducing the extraction force.
  • any of melamine mono-cyanuric acid adduct (MCA) and N-alkyl-aspartic acid-alkyl ester can be used.
  • a lubricant having a melting point lower than a predetermined pressure molding temperature in a warm mold lubrication lubricant is charged at a low melting point that melts or partially melts on a mold surface at a predetermined pressure molding temperature. It is desirable to use an easy lubricant. As such a lubricant, it is preferable to use one or more selected from metal alloys, amide-based waxes, polyethylene, and co-melts of two or more of these. .
  • the following lubricants can be selected according to the predetermined pressure molding temperature.
  • metal lithography zinc stearate and calcium stearate are preferable, and as the amide-based resin, ethylene bis-stearamide, stearate monoamide, and the like are preferable.
  • the co-melt include a co-melt of ethylene bis-steer amide and polyethylene, a co-melt of ethylene bis-steer amide and zinc stearate, and a co-melt of ethylene bis-steer amide and calcium stearate. Things are preferred.
  • the heated iron-based powder mixture is charged into a mold to which a lubricant for mold lubrication has been charged and charged, and molded by pressure to obtain a molded body.
  • the heating temperature of the iron-based powder mixture is preferably from 70 to 200 ° C. If the heating temperature is lower than 70 ° C, the yield stress of the iron powder is high, and the density of the compact decreases. On the other hand, even if the heating temperature exceeds 200 ° C, the density does not increase substantially, and the iron powder is oxidized. Therefore, it is preferable that the ripening temperature of the iron-based powder mixture is in the range of 130 to 200 ° C.
  • the iron-based powder mixture is a mixture of iron-based powder and a lubricant (lubricant for powder molding) or an alloy powder.
  • the mixing of the iron-based powder with the forming lubricant or alloying powder need not be particularly limited, and is generally known. Any of the above mixing methods can be suitably used.
  • one part of the powder-forming lubricant is added to the iron-based powder and the alloy powder, followed by primary mixing. Further, the mixture is stirred while being heated to at least the melting point of at least one of the lubricants to melt at least one of the lubricants, and cooled while stirring the molten mixture.
  • the alloying powder be adhered by fixing the molten lubricant to the surface of the iron-based powder, and then the remaining powder-forming lubricant is added and secondarily mixed.
  • the iron-based powder in the present invention is preferably pure iron powder such as atomized iron powder or reduced iron powder, partially diffused alloyed steel powder, fully alloyed steel powder, or a mixed powder thereof.
  • the content of the powder-forming lubricant contained in the iron-based powder mixture is preferably 0.05 to 0.40% by mass based on the whole iron-based powder mixture. If the content of the lubricant for powder molding is less than 0.05% by mass, the fluidity of the iron-based mixed powder is poor and the powder is not evenly filled on the mold surface, so that the density of the molded body is reduced. On the other hand, when the content of the lubricant for powder molding exceeds 0.40% by mass, the porosity after sintering increases, and the density of the compact decreases.
  • the powder forming lubricant contained in the iron-based powder mixture is a mixed lubricant comprising a lubricant having a low melting point below a predetermined pressing temperature and a lubricant having a melting point higher than a predetermined pressing temperature.
  • the content of the lubricant having a low melting point below the specified pressure molding temperature should be 10 to 75% by mass of the total amount of the powder molding lubricant included, and the remaining 25 to 90% by mass should be the prescribed pressure molding. And a melting point higher than the melting point.
  • Predetermined pressing temperature Lubricant with the following low melting point melts during pressure molding, penetrates between the powder particles by capillary force, is evenly dispersed inside the powder particles, reduces the contact resistance between the particles, and reduces particle rearrangement. It has the effect of promoting the densification of the compact by promoting it. If the content of the lubricant having a low melting point lower than the predetermined pressure molding temperature is less than 10% by mass, the lubricant is not evenly dispersed inside the powder particles, and the compact density is reduced.
  • the content exceeds 75% by mass, as the density of the molded body increases, the molten lubricant is squeezed out to the surface of the molded body, and a lubricant escape path is formed on the surface, and a large number of coarse particles are formed on the surface of the molded body. Uneven holes are formed, leading to a decrease in the strength of the sintered member.
  • the lubricant contained in the iron-based powder mixture and having a melting point higher than the predetermined pressure molding temperature exists as a solid at the time of molding, and the roller at the convex portion of the surface of the iron-based powder particles from which the molten lubricant is repelled. It has the effect of promoting the rearrangement of particles and increasing the density of the compact.
  • lubricants having a melting point higher than a predetermined compression molding temperature include metal stone test, thermoplastic resin, thermoplastic elastomer, and layered lubricant. It is preferable to use one or more selected from inorganic or organic lubricants having a crystal structure.
  • the lubricant can be appropriately selected from the following lubricants according to the predetermined pressure molding temperature.
  • thermoplastic resin polystyrene, polyamide, fluororesin and the like are preferable.
  • thermoplastic elastomer a polystyrene-based elastomer, a polyamide-based elastomer, and the like are preferable.
  • inorganic lubricant any of graphite, MoS2, and fluorocarbon may be used. The finer the particle size, the more effective it is in reducing the extraction force.
  • organic lubricant having a layered crystal structure any of melaminocyanuric acid adduct (MCA) and N-alkylaspartic acid / -alkyl ester can be used.
  • lubricants having a low melting point below the temperature of the predetermined press molding include metal lithography, amide wax, polyethylene and the like. It is preferable to use one or more selected from at least two or more co-melts.
  • the lubricant can be appropriately selected from the following lubricants according to the predetermined pressure molding temperature.
  • the metal lithology zinc stearate, calcium stearate and the like are preferable.
  • the amide wax ethylene bisstea amide, stearate monoamide, and the like are preferable.
  • the co-melt include a co-melt of ethylene bis-stear amide and polyethylene, a co-melt of ethylene bis-stea amide and zinc stearate, and a co-melt of ethylene bis-stea amide and zinc stearate.
  • a melt or the like is preferred.
  • some of these lubricants can be used as a lubricant having a melting point higher than the pressure molding temperature.
  • the high-density iron-based powder compact obtained by the above-described production method is subjected to a sintering treatment to obtain a high-density iron-based sintered body.
  • the sintering treatment in the present invention does not need to be particularly limited, and any commonly known sintering method can be suitably used. Also, a method of increasing the strength by quenching after sintering (Sinta-Hard Jung) can be used.
  • iron-based powder a partially alloyed steel powder having a composition of Fe-4Ni-0.5Mo-l.5Cu, in which Ni, Mo, and Cu were diffused and adhered to atomized pure iron powder, was used. 0.5% by mass of graphite powder and various lubricants shown in Table 1 were mixed with the partially alloyed steel powder by a heating and mixing method using a high-speed mixer to obtain an iron-based powder mixture.
  • the mold for pressure molding is preheated to the temperature shown in Table 1, and a lubricant for warm mold lubrication charged using a mold lubrication device (manufactured by Gasbarre) is sprayed into the mold. Then, it was charged and adhered to the mold surface.
  • Lubricants for warm mold lubrication are selected from the various lubricants shown in Table 2, and have a low melting point below the pressing temperature and a higher melting point above the pressing temperature. Was used as shown in Table 1. The temperature of the mold surface was measured and used as the temperature for pressure molding.
  • Table 1 shows the pressure molding conditions.
  • the powder molding lubricants contained in the iron-based powder mixture are listed in Table 2. As shown in Table 1, a lubricant having a melting point lower than the pressing temperature and a lubricant having a melting point higher than the pressing temperature are selected from the seed lubricants.
  • a mold in which the lubricant for mold lubrication was not applied was filled with the heated iron-based powder mixture, and then pressed and formed into a similar rectangular parallelepiped compact. (Molded body No. 38).
  • the densities of these compacts were measured by the Archimedes method.
  • the Archimedes method is a method of measuring the density by immersing a molded object to be measured in ethanol and measuring the volume. Furthermore, the appearance of these molded bodies was visually observed, and the presence or absence of defects such as flaws and cracks was examined. In addition, these compacts were cut at the center, embedded in resin and polished, and the presence or absence of voids in the cross section was observed with an optical microscope.
  • Table 1 shows the results regarding the extraction force, compact density, compact appearance, and cross-sectional properties of the compact.
  • Each of the examples of the present invention is a molded body having a low withdrawal force after molding of 20 MPa or less and a high density of 7.4 Mg / m 3 or more. Furthermore, no defects such as flaws, cracks, etc. were observed on the molded body, in addition to surface oxidation by heating. The cross-sectional properties of the molded product were normal, and no coarse pores were observed.
  • iron-based powder As an iron-based powder, (1) Partially alloyed steel powder with Fe-4Ni-0.5Mo-1.5Cu composition, in which Ni, Mo, and Cu are diffused and attached to atomized pure iron powder a, (2) Atomized Fe-2Ni-lMo partially alloyed steel powder b, (3) Cr, Mo, V pre-alloyed, Fe-3Cr_0.3Mo-0.3V composition, with Ni and Mo diffused and attached to pure iron powder Pre-alloyed steel powder c, (4) Cr-Mo, V-prealloyed Fe-IlCr_0.3Mo-0.3V-composed Blairroy steel powder d, (5) Atomized iron powder e, (6) Reduction Iron powder f was used.
  • the A Tomaizu iron powder, a Tetsumotoko powder obtained by spraying the molten steel in high-pressure water, and the reduced iron powder, c these portions are iron-based powder obtained by reducing iron oxide Alloyed steel powder a, partially alloyed steel powder b, blaroy alloy powder c, prealloy steel powder d, atomized iron powder e, reduced iron powder f, respectively, graphite with the content shown in Table 3 and Table 3
  • the various lubricants shown were mixed by a heating and mixing method using a high-speed mixer to obtain an iron-based powder mixture.
  • atomized iron powder e and reduced iron powder f 2.0% by mass of Cu powder was mixed in addition to 0.8% by mass of graphite.
  • the graphite content is the mass ratio to the total amount of the iron-based powder and graphite or, further, the alloy powder.
  • the mold for pressure molding is preheated to the temperature shown in Table 3, and a lubricant for warm mold lubrication charged using a mold lubrication device (manufactured by Gasbarre) is sprayed into the mold. Then, it was charged and adhered to the mold surface.
  • Lubricants for warm mold lubrication are selected from various lubricants shown in Table 2 As shown in Table 3, a mixture of a lubricant having a high melting point and a lubricant having a melting point higher than the pressing temperature was used. The temperature of the mold surface was measured and used as the temperature for pressure molding.
  • the mold thus treated was filled with the heated iron-based powder mixture, followed by pressure molding to obtain a 10 ⁇ 10 ⁇ 55 mm rectangular solid.
  • the applied pressure was 686 MPa.
  • Table 3 shows the pressure molding conditions. Also included in the iron-based powder mixture
  • Lubricants for powder molding are selected from the various lubricants shown in Table 2.Table 3 shows lubricants with a lower melting point below the pressing temperature and lubricants with a higher melting point than the pressing temperature. Are mixed as follows.
  • these iron-based powder compacts were subjected to a sintering process at 1130 ° C for 20 minutes in an N 2 -10 ° H 2 atmosphere to obtain iron-based sintered compacts.
  • the density of the obtained iron-based sintered body was measured by the Archimedes method. From these sintered compacts, small round bar specimens with a parallel part diameter of 5 mm and a length of 15 mm were sampled by machining and subjected to a tensile test to measure the tensile strength.
  • the heated iron-based powder mixture was filled in a mold to which the lubricant for mold lubrication was not applied, pressed and formed into a rectangular parallelepiped compact, and then subjected to a sintering process to perform iron-based sintering.
  • the example in which the body was used was the conventional example.
  • the example of the present invention has higher density and higher tensile strength than the conventional example (sintered body No. 2-12) in which mold lubrication is not performed. (Example 3)
  • iron-based powder a partially alloyed steel powder of Fe-4Ni-0.5Mo-l.5Cu composition in which Ni, Mo, and Cu were diffused and adhered to atomized pure iron powder was used. 0.2% by mass of graphite powder and various lubricants shown in Table 1 were mixed with the partially alloyed steel powder by a heating and mixing method using a high-speed mixer to obtain an iron-based powder mixture.
  • the mold for pressure molding is preheated to the temperature shown in Table 4, and a lubricant for warm mold lubrication charged using a mold lubrication device (manufactured by Gasbarre) is sprayed into the mold. Then, it was charged and adhered to the mold surface.
  • Lubricants for warm mold lubrication are selected from the various lubricants shown in Table 2, and lubricants with a lower melting point below the pressing temperature and those with a higher melting point than the pressing temperature was used as shown in Table 4. The temperature of the mold surface was measured and used as the temperature for pressure molding.
  • the mold thus treated was filled with the ripened iron-based powder mixture, and then molded under pressure to obtain a 10 ⁇ 10 ⁇ 55 mm rectangular solid.
  • the pressure was set to 686MPa.
  • Table 4 shows the pressing conditions.
  • the powder-forming lubricant contained in the iron-based powder mixture is selected from the various lubricants shown in Table 2, and has a melting point lower than the pressing temperature and a melting point higher than the pressing temperature. As shown in Table 1, a lubricant having the following characteristics was mixed.
  • a mold in which a lubricant for mold lubrication was not applied was filled with the heated iron-based powder mixture, and was molded under pressure to obtain a similar rectangular parallelepiped molded body. Body No. 38). After the molding, the extraction force when the molded body was extracted was measured.
  • Table 4 shows the results regarding the extraction force, the compact density, the appearance of the compact, and the properties of the cross section of the compact.
  • Each of the examples of the present invention is a molded body having a low withdrawal force after molding of 20 MPa or less and a high density of 7.43 g / m 3 or more. Furthermore, no defects such as flaws, cracks, etc. were observed on the molded body, in addition to surface oxidation by heating. The cross-sectional properties of the molded product were normal, and no coarse pores were observed.
  • iron-based powder As an iron-based powder, (1) Partially alloyed steel powder with Fe-4Ni-0.5Mo-1.5Cu composition in which Ni, Mo, and Cu are diffused and attached to pure atomized iron powder a, (2) Cr, Prealloyed steel powder b with a composition of Fe-3Cr-0.3Mo-0.3V, which was pre-alloyed with Mo and V, was used.
  • Table 5 shows the partial alloyed steel powder a and the Blairroy steel powder b.
  • Graphite having the indicated content and the various lubricants shown in Table 5 were mixed by a heating and mixing method using a high-speed mixer to obtain an iron-based powder mixture.
  • the graphite content is a mass ratio to the total amount of the iron-based powder mixture.
  • the mold for pressure molding is preheated to the temperature shown in Table 5, and a lubricant for warm mold lubrication charged using a mold lubrication device (manufactured by Gasbarre) is sprayed into the mold. Then, it was charged and adhered to the mold surface.
  • Lubricants for warm mold lubrication are selected from the various lubricants shown in Table 2, and have a low melting point below the pressing temperature and a higher melting point above the pressing temperature. Was used as shown in Table 5. The temperature of the mold surface was measured and used as the temperature for pressure molding.
  • the mold thus treated was filled with the heated iron-based powder mixture, and then molded under pressure to obtain a 10 ⁇ 10 ⁇ 55 mm rectangular solid.
  • the pressure was set to 686MPa.
  • Table 5 shows the pressure molding conditions.
  • the powder molding lubricant contained in the iron-based powder mixture is selected from the various lubricants shown in Table 2, and has a melting point lower than the pressing temperature and a melting point higher than the pressing temperature. It was mixed with a lubricant as shown in Table 5.
  • iron-based powder compacts were subjected to sintering at 1130 ° C for 20 minutes in an N 2 -10% H 2 atmosphere to obtain iron-based sintered compacts.
  • the density of the obtained iron-based sintered body was measured by the Archimedes method.
  • Table 3 shows the results.
  • the example of the present invention has a high density.
  • the present invention it is possible to easily produce a high-density molded body having good appearance properties and cross-sectional properties in a single molding, and furthermore, has a low withdrawal force after molding and a long tool life. In addition, it is possible to obtain a high-density sintered body easily, which has a remarkable industrial effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Lubricants (AREA)

Description

明 細 書 温間金型潤滑用潤滑剤、 温間金型潤滑成形用鉄基粉末混合物および高 密度鉄基粉末成形体, 高密度鉄基焼結体の製造方法
技術分野
本発明は、 粉末冶金用鉄基粉末成形体および鉄基焼結体の製造方法 に係り、 とくに、 温間成形により高密度の鉄基粉末成形体を製造する 際に使用する潤滑剤の改善に関する。 背景技術
粉末冶金用鉄基粉末成形体は、 鉄基粉末に、 銅粉、 黒鉛粉などの合 金粉末と、 さらにステアリン酸亜鉛、 ステアリ ン酸鉛等の潤滑剤を混 合した鉄基粉末混合物を金型に充填したのち、 加圧成形し製造される のが一般的である。 成形体の密度と しては、 6. 6 〜7. 1Mg/m3が一般的 である。
これら鉄基粉末成形体は、 さらに焼結処理を施され焼結体とされ、 さらに必要に応じてサイジングゃ切削加工が施され、 粉末冶金製品と される。 また、 さらに高強度が必要な場合は焼結後に浸炭熱処理や光 輝熱処理を施されることもある。
この粉末冶金技術により、 高寸法精度の複雑な形状の部品をニァネ ッ ト形状に生産することが可能となり、 従来の製造方法に比べ大幅に 切削コス トの低減が可能である。
さらに、 最近では、 切削加工の省略によるコス ト削減のための一層 の高寸法精度化や、 部品の小型軽量化のための高強度化が鉄系の粉末 冶金製品へ強く要求されている。
粉末冶金製品 (焼結部品) の高強度化に対しては、 成形体の高密度 化による焼結部品の高密度化が有効である。 焼結部品の密度が高いほ ど、 部品中の空孔が減少し、 引張強さ、 衝撃値や疲労強度などの機械 的特性が向上する。
鉄基粉末成形体の高密度化を可能とする成形方法として、 鉄基粉末 混合物を通常の成形と焼結を施したのち、 さらに成形 ·焼結を繰り返 して行う 2回成形 2回焼結法や、 1回成形 1回焼結後熱間で鍛造する 焼結鍛造法などが提案されている。
また、 例えば、 特開平 2- 156002号公報、 特公平 7-103404号公報、 USP 第 5, 256, 185 号公報、 USP 第 5, 368, 630 号公報には、 金属粉末 を加熱しつつ成形する温間成形技術が開示されている。 この温間成形 技術は、 温間成形時に潤滑剤の一部または全部を溶融させて粉末粒子 間に潤滑剤を均一に分散させ、 粒子間および成形体と金型の間の摩擦 抵抗を下げ成形性を向上させよう とするものであり、 上記した高密度 成形体の製造方法のなかではコス ト的には最も有利であると考えら れている。 この温間成形技術によれば、 Fe- 4Ni- 0. 5MO-1. 5Cu系の部分 合金化鉄粉に 0. 5質量%の黒鉛、 0. 6質量%の潤滑剤を配合した鉄基 粉末混合物を 150 °Cで 7t/cm2 の圧力で成形した場合、 7. 30Mg/m3 程 度の成形体が得られる。 しかしながら、 特開平 2- 156002号公報、 特公平 7- 103404号公報、 USP 第 5, 256, 185 号公報、 USP 第 5, 368, 630 号公報に記載された技 術では、 粉末混合物の流動性が不十分で、 生産性が低下するうえ、 成 形体の密度にばらつきが生じ、 焼結体の特性が変動するという問題が あり、 さらに、 成形時の抜き出し力が高く、 成形体表面に疵が発生す ると ともに金型の寿命が短いなどの問題があった。
さらに、 これらの温間成形技術では、 粒子間および成形体と金型の 間の摩擦抵抗を下げ成形性を向上させる目的で、 鉄基粉末混合物中に 潤滑剤を含有させるが、 潤滑剤は、 温間成形時にその一部又は全部が 溶融して成形体表面付近に押し出され、 その後の焼結処理により、 加 熱分解あるいは蒸発して成形体から逸散し、 焼結体表面付近に粗大な 空孔を形成する。 そのため、 焼結体の機械的強度を低下させるという 問題があった。
この問題を解決するために、特開平 8 - 100203号公報には常温また は温間成形において、 帯電させた潤滑剤粉末を金型表面に塗布して、 鉄基粉末混合物中の潤滑剤量を低減し、 高密度の成形体を成形する技 術が開示されている。 しかしながら、 この方法では、 塗布する潤滑剤 の種類が単体であるため、 その融点前後で潤滑剤の形態が変わり、 潤 滑機能が著しく変化する。 このため、 成形温度範囲が潤滑剤の融点に よつて限定されるという問題があった。 さらに金型潤滑剤を金型表面 に塗布し鉄基粉末混合物中の潤滑剤量を低減したとしても、 混合する 潤滑剤の成分によっては量の低減によって潤滑効果を失い、 圧粉密度 の増大が実現できないという問題も生じている。 また、 自動車用部品の高強度化という観点と、 コス ト という観点か らは、 更なる高密度の成形体を、 しかも 1回の成形で得ることのでき る、 高密度鉄基粉末成形体の製造方法の開発が望まれていた。
本発明は、 上記した従来技術の問題を有利に解決し、 例えば、 Fe- 4Ni- 0. 5Mo- 1. 5Cu組成の部分合金化鉄粉に 0. 5 質量%の黒鉛粉を混合 した鉄基粉末混合物を温間加圧成形した場合には 7. 4 Mg/m3 以上の、 高密度の成形体を 1回の成形で得ることができる、 高密度鉄基粉末成 形体の製造方法を提案することを第 1の目的とする。 また、 本発明は、 鉄基粉末成形体を焼結処理して高密度の鉄基焼結体を得ることがで きる、 高密度鉄基焼結体の製造方法を提案することを第 2の目的とす る。 発明の開示
本発明者らは、 温間成形技術および金型潤滑成形技術を利用して上 記した課題を達成するために、 金型潤滑用潤滑剤および鉄基粉末混合 粉の潤滑剤配合について鋭意検討を行った。 その結果、 抜き出し力を 低減させるため、 予熱した金型表面に帯電付着により付着させること のできる金型潤滑用潤滑剤として、 所定の加圧成形の温度以下の低い 融点を有する潤滑剤とその温度よ り高い融点を有する潤滑剤を適正 な配合で混合した潤滑剤がよいという知見を得た。
本発明は、 上記した知見に基づき、 さらに検討して完成されたもの である。
すなわち、 第 1の本発明は、 粉末を予熱された金型で加圧成形する 際に金型表面に帯電付着させて使用する温間金型潤滑用潤滑剤であ つて、 所定の加圧成形の温度より高い融点を有する潤滑剤と、 前記所 定の加圧成形の温度以下の低い融点を有する潤滑剤との混合物であ ることを特徴とする温間金型潤滑用潤滑剤である。
また、 第 1の本発明では、 粉末を予熱された金型で加圧成形する際 に金型表面に帯電付着させて使用する温間金型潤滑用潤滑剤であつ て、所定の加圧成形の温度より高い融点を有する潤滑剤を 0. 5〜80質 量%含有し、 残部が前記所定の加圧成形の温度以下の低い融点を有す る潤滑剤であることを特徴とする温間金型潤滑用潤滑剤と してもよ く、 また、 本発明では、 前記所定の加圧成形の温度より高い融点を有 する潤滑剤は、 金属石験、 熱可塑性樹脂、 熱可塑性エラス トマ一、 層 状の結晶構造を有する無機または有機潤滑剤のうちから選ばれた 1 種または 2種以上であるのが好ましく、 また、 本発明では、 前記所定 の加圧成形の温度以下の低い融点を有する潤滑剤は、 金属石檨、 アミ ド系ワックス、 ポリエチレンおよびこれらのうちの 2種以上の共溶融 物のうちから選ばれた 1種または 2種以上とするのが好ましい。
また、 第 2の本発明は、 鉄基粉末と、 粉末成形用潤滑剤とを含む鉄 基粉末混合物であって、 前記粉末成形用潤滑剤が、 粉末成形用潤滑剤 全量の 10〜75 質量%の、 加圧成形の温度以下の低い融点を有する潤 滑剤を含み、 残部が、 加圧成形の温度より高い融点を有する潤滑剤で あることを特徴とする温間金型潤滑成形用鉄基粉末混合物であり、 ま た、本発明では、前記粉末成形用潤滑剤の含有量を、 0. 05〜0. 40質量% とするのが好ましい。 また、 本発明では、 鉄基粉末混合物に黒鉛を含 有しても良く、 前記黒鉛の含有量を 0. 5質量%未満とするのが好まし レヽ o
また、 第 3 の本発明は、 金型に、 加熱した鉄基粉末混合粉を充填し たのち、 所定の温度で加圧成形する鉄基粉末成形体の製造方法におい て、 前記金型を、 予熱され、 表面に、 温間金型潤滑用潤滑剤を帯電付 着させた金型とし、 前記温間金型潤滑用潤滑剤を、 0. 5〜80質量%の、 所定の加圧成形の温度より高い融点をもつ潤滑剤を含み、 残部が、 所 定の加圧成形の温度以下の低い融点をもつ潤滑剤である潤滑剤と し、 さらに前記鉄基粉末混合物が鉄基粉末と粉末成形用潤滑剤とを含み、 前記粉末成形用潤滑剤が粉末成形用潤滑剤全量の 10〜75 質量%の、 所定の加圧成形の温度以下の低い融点をもつ潤滑剤を含み、 25〜90質 量%の、 所定の加圧成形の温度より高い融点をもつ潤滑剤である混合 潤滑剤とすることを特徴とする高密度鉄基粉末成形体の製造方法で ある。
また、 本発明では、 前記温間金型潤滑用潤滑剤における前記所定の 加圧成形の温度より高い融点を有する潤滑剤を、 金属石婊、 熱可塑性 樹脂、 熱可塑性エラス トマ一、 層状の結晶構造を有する無機または有 機潤滑剤のうちから選ばれた 1種または 2種以上とするのが好まし レヽ o
また、 本発明では、 前記温間金型潤滑用潤滑剤における前記所定の 加圧成形の温度以下の低い融点を有する潤滑剤を、 金属石險、 アミ ド 系ワックス、 ポリエチレンおよびこれらのうちの 2種以上の共溶融物 のうちから選ばれた 1種または 2種以上とするのが好ましくまた、 本 発明では、 前記粉末成形用潤滑剤の含有量を、 0. 05〜0. 40質量%とす るのが好ましい。 また、 本発明では、 鉄基粉末混合物に黒鉛
を含有しても良く、 前記黒鉛の含有量を 0. 5質量%未満とするのが好 ましい。
本発明によれば、 一回の加圧成形で高密度の成形体を容易に得るこ とができる。
また、 第 4の本発明は、 上記した高密度鉄基粉末成形体の製造方法 のいずれかで製造された鉄基粉末成形体に、 さらに焼結処理を施し鉄 基焼結体とすることを特徴とする高密度鉄基焼結体の製造方法であ る。 発明を実施するための最良の形態
本発明では、 金型に、 加熱した鉄基粉末混合粉を充填したのち、 所 定の温度で加圧成形し、 鉄基粉末成形体とする。
本発明では、 成形に用いる金型は、 予め所定の温度に予熱される。 金型の予熱温度は、 鉄基粉末混合物が所定の加圧成形の温度に保持で きる温度であればよく、 とく に限定する必要はないが、 所定の加圧成 形の温度より 20〜60°C高い温度とするのが望ましい。
予熱された金型に、 帯電された金型潤滑用潤滑剤を導入し、 金型表 面に帯電付着させる。 金型潤滑用潤滑剤 (固体粉末) は金型潤滑装置
(例えば、 Gasbarre 社製 Di e Wal l Lubri cant System ) に装入し、 潤滑剤 (固体) 粉末と装置内壁の接触帯電により帯電されるのが好ま しい。 帯電された金型潤滑用潤滑剤は、 噴射により金型内に導入され、 金型表面に帯電付着される。 金型表面に帯電付着させる
金型潤滑用潤滑剤の付着量は、 5 〜100g/m2 とするのが好ましい。 付 着量が 5g/m2未満では潤滑効果が不足し、 成形後の抜き出し力が高く なり、 100g/m2 を超えると、 成形体表面に潤滑剤が残存し, 成形体の 外観不良となる。
粉末を予熱した金型で加圧成形する際に金型表面に帯電付着させ て使用する温間金型潤滑用潤滑剤は、 所定の加圧成形の温度より高い 融点を有する潤滑剤を 0. 5〜80質量%含有し、残部が前記所定の加圧 成形の温度以下の低い融点を有する潤滑剤からなる混合潤滑剤とす る。 なお、 本発明でいう所定の加圧成形の温度は、 加圧成形時の金型 表面での温度をいうものとする。
所定の加圧成形の温度より高い融点を有する潤滑剤は、 成形時、 金 型内で未溶融であり金型内で 「ころ」 のような固体潤滑剤の働きをし 抜き出し力を低下させるとともに、 さらに、 溶融あるいは部分溶融し た潤滑剤 (所定の加圧成形の温度より低い融点を有する潤滑剤) の金 型内での移動を防止し、 成形体と金型表面との摩擦抵抗を低減して抜 き出し力の増加を防止する役割を有している。
所定の加圧成形の温度より高い融点を有する潤滑剤の含有量が、 0. 5 質量%未満では、 加圧成形の温度より低い融点の潤滑剤が多くな り、 潤滑剤が溶融する量が多くなり、 潤滑剤が移動し金型表面で均一 な分布とならず、 成形体と金型表面との摩擦抵抗が増大して抜き出し 力の低減効果が少ない。 一方、 80質量%を超えると、 金型内で溶融し ない潤滑剤の量が多くなりすぎ、 金型表面の潤滑剤の分布が不均一と なり、 金型潤滑が不十分で抜き出し力が増加する。 このため、 温間金 型潤滑用潤滑剤における所定の加圧成形の温度よ り高い融点を有す る潤滑剤の配合量は、 0. 5〜80質量%の範囲に限定した。
金型潤滑用潤滑剤における残部は、 所定の加圧成形の温度以下の低 い融点を有する潤滑剤である。 所定の加圧成形の温度以下の低い融点 を有する潤滑剤は、 加圧成形の温度で、 溶融あるいは部分溶融し、 金 型表面でグリースのような状態になり、 抜き出し力を下げる効果を有 している。
温間金型潤滑用潤滑剤における所定の加圧成形の温度よ り高い融 点を有する潤滑剤は、 金属石験、 熱可塑性樹脂、 熱可塑性エラス トマ 一、 層状の結晶構造を有する無機潤滑剤または有機潤滑剤のうちから 選ばれた 1種または 2種以上とするのが好ましい。 所定の加圧成形の 温度に応じ、 下記した潤滑剤から適宜選択できる。
金属石験としては、 ステアリ ン酸亜鉛、 ステアリン酸リチウム、 ヒ ドロキシステアリン酸リチウム等が好ましい。 また、 熟可塑性樹脂と しては、 ポリスチレン、 ポリアミ ド、 フッ素樹脂等が好適である。 熱 可塑性エラス トマ一としては、 ポリスチレン系エラス トマ一、 ポリア ミ ド系エラス トマ一等が好適である。 また、 層状の結晶構造を有する 無機潤滑剤としては、 黒鉛、 MoS2、 フッ化炭素のいずれでも良く、 粒 度は細かいほど、 抜き出し力の低減に有効である。 層状の結晶構造を 有する有機潤滑剤としては、 メラ ミ ン一シァヌル酸付加物 (MCA )、 N 一アルキルァスパラギン酸 _ —アルキルエステルのいずれも使用 することができる。 一方、 温間金型潤滑用潤滑剤における所定の加圧成形の温度以下の 低い融点を有する潤滑剤は、 所定の加圧成形の温度で金型表面で溶融 あるいは部分溶融する低融点で帯電しやすい潤滑剤とするのが望ま しい。 このような潤滑剤と しては、 金属石險、 アミ ド系ワックス、 ポ リエチレンおよびこれらのうちの 2種以上の共溶融物のう ちから選 ばれた 1種または 2種以上とするのが好ましい。 所定の加圧成形の温 度に応じ、 下記した潤滑剤から選択できる。 金属石験としては、 ステ ァリ ン酸亜鉛、 ステアリ ン酸カルシウムが好適であり、 アミ ド系ヮッ クス と しては、 エチレンビスステアロアミ ド、 ステアリ ン酸モノアミ ド等が好適であり、 共溶融物としては、 エチレンビスステア口アミ ド とポリ エチレンの共溶融物、 エチレンビスステア口アミ ドとステアリ ン酸亜鉛の共溶融物、 エチレンビスステア口アミ ドとステアリン酸カ ルシゥムの共溶融物が好適である。
ついで、 金型潤滑用潤滑剤を帯電付着された金型に、 加熱された鉄 基粉末混合物を装入し、 加圧成形し、 成形体とする。
鉄基粉末混合物の加熱温度は、 70 〜200 °Cとするのが好ましい。 加熱温度が 70 °C未満では、 鉄粉の降伏応力が高く、 成形体の密度が 低下する. 一方、 加熱温度が 200 °Cを超えても実質的に密度の増加は なく、 鉄粉の酸化の懸念が生じるため、 鉄基粉末混合物の加熟温度は、 130 〜200 °Cの範囲とするのが望ましい。
鉄基粉末混合物は、 鉄基粉末に潤滑剤 (粉末成形用潤滑剤)、 ある いは合金用粉末を混合したものである。 鉄基粉末と成形用潤滑剤、 あ るいは合金用粉末との混合は、 とくに限定する必要はなく、 通常公知 の混合方法がいずれも好適に利用できる。 なかでも、 鉄基粉末に合金 用粉末を混合する場合には、 含有粉末の偏析を避けるため、 鉄基粉末 合金用粉末に粉末成形用潤滑剤の 1部を加えて 1次混合したのち、 さ らに前記潤滑剤のうち少なく とも 1種の潤滑剤の融点以上に加熱し つつ撹拌して、 前記潤滑剤のうち少なく とも 1種の潤滑剤を溶融し、 溶融後の混合物を撹拌しながら冷却し、 前記鉄基粉末表面に溶融した 潤滑剤を固着させることによって前記合金用粉末を付着させた後、 粉 末成形用潤滑剤の残部を加えて 2次混合する混合方法が好ましい。 本発明における鉄基粉末は、 ァ トマイズ鉄粉または還元鉄粉などの 純鉄粉、 または部分拡散合金化鋼粉、 完全合金化鋼粉、 またはこれら の混合粉が好ましい。
鉄基粉末混合物に含まれる粉末成形用潤滑剤の含有量は、 鉄基粉末 混合物全体に対し 0. 05〜0. 40 質量%とするのが好ましい。 粉末成形 用潤滑剤の含有量が 0. 05 質量%未満では、 鉄基混合粉末の流動性が 悪く金型表面へ均一に充填されないため、 成形体の密度が低下する。 一方、 粉末成形用潤滑剤含有量が 0. 40 質量%を超えると、 焼結後気 孔率が高くなり成形体密度が低下する。
鉄基粉末混合物に含まれる粉末成形用潤滑剤は、 所定の加圧成形の 温度以下の低い融点をもつ潤滑剤と所定の加圧成形の温度より高い 融点をもつ潤滑剤とからなる混合潤滑剤とする。 所定の加圧成形の温 度以下の低い融点をもつ潤滑剤の含有量は、 含まれる粉末成形用潤滑 剤全量の 10〜75質量%とし、 残部の 25〜90質量%を所定の加圧成形 の温度より高い融点とからなる潤滑剤とする。 所定の加圧成形の温度 以下の低い融点をもつ潤滑剤は、 加圧成形時に溶融し、 粉末粒子間に 毛細管力により浸透して、 粉末粒子内部に均等に分散し、 粒子相互の 接触抵抗を低減し、 粒子再配列を促進して成形体の高密度化を促進す る効果を有する。 所定の加圧成形の温度以下の低い融点をもつ潤滑剤 の含有量が、 10質量%未満では、 粉末粒子内部に潤滑剤が均等に分散 せず、 成形体密度が低下する。 また、 75質量%を超えると、 成形体の 密度が増加するにしたがい、 溶融した潤滑剤が成形体表面へ絞り出さ れ、 表面に、 潤滑剤の逃げ道が形成され、 成形体表面に多数の粗大な 空孔が形成されて、 焼結部材の強度低下を招く。
鉄基粉末混合物に含まれる、 所定の加圧成形の温度より高い融点を もつ潤滑剤は、 成形時、 固体として存在し、 溶融した潤滑剤がはじか れる鉄基粉末粒子表面の凸部において 「ころ」 として作用して, 粒子 の再配列を促進し、 成形体の密度を増加させる効果を有する。
鉄基粉末混合物に含まれる粉末成形用潤滑剤のうち、 所定の加圧成 形の温度より高い融点をもつ潤滑剤としては、 金属石験、 熱可塑性樹 脂、 熱可塑性エラス トマ一、 層状の結晶構造を有する無機または有機 潤滑剤のうちから選ばれた 1種または 2種以上とするのが好ましい。 所定の加圧成形の温度に応じ、 下記した潤滑剤から適宜選択できる。
金属石験としては、 ステアリン酸亜鉛、 ステアリン酸リチウム、 ヒ ドロキシステアリン酸リチウム等が好ましい。 また、 熱可塑性樹脂と しては、 ポリ スチレン、 ポリアミ ド、 フッ素樹脂等が好適である。 熱 可塑性エラス トマ一としては、 ポリスチレン系エラス トマ一、 ポリア ミ ド系エラス トマ一等が好適である。 また、 層状の結晶構造を有する 無機潤滑剤と しては、 黒鉛、 MoS2、 フッ化炭素のいずれでも良く、 粒 度は細かいほど、 抜き出し力の低減に有効である。 層状の結晶構造を 有する有機潤滑剤と しては、 メ ラ ミ ンーシァヌル酸付加物 (MCA )、 N —アルキルァスパラギン酸一 /3 —アルキルエステルのいずれも使用 することができる。
鉄基粉末混合物に含まれる粉末成形用潤滑剤のうち、 所定の加圧成 形の温度以下の低い融点をもつ潤滑剤と しては、 金属石験、 アミ ド系 ワックス、 ポリエチレンおよびこれらのうちの少なく とも 2種以上の 共溶融物のうちから選ばれた 1種または 2種以上とするのが好まし レ、。 所定の加圧成形の温度に応じ、 下記した潤滑剤から適宜選択でき る。
金属石験と しては、 ステアリ ン酸亜鉛、 ステアリ ン酸カルシウム等 が好ましい。 また、 アミ ド系ワックスと しては、 エチレンビスステア 口アミ ド、 ステアリ ン酸モノアミ ド等が好適である。 共溶融物と して は、 エチレンビスステア口アミ ドとポリ エチレンの共溶融物、 ェチレ ンビスステア口アミ ドとステアリ ン酸亜鉛の共溶融物、 エチレンビス ステア口アミ ドとステアリ ン酸カルシウムの共溶融物等が好適であ る。 また、 成形温度によっては、 これらの潤滑剤の一部を加圧成形温 度より高い融点をもつ潤滑剤と して使用することもできる。
鉄基粉末混合物に合金用粉末と して含まれる黒鉛は、 焼結体を強化 する効果を有するが、 多すぎると密度の低下が著しく なる。 このよ う なことから、 鉄基粉末混合物中に含有される黒鉛は、 鉄基粉末混合物 全量に対し、 0. 5質量%未満とするのが好ましい。 本発明では、 上記した製造方法で得られた高密度鉄基粉末成形体に 焼結処理を施し、 高密度の鉄基焼結体を得る。 本発明における焼結処 理は、 特に限定する必要はなく、 通常公知の焼結処理方法がいずれも 好適に使用できる。 また、 焼結後急冷して強度を高める方法 (シンタ 一ハードユング) も使用できる。 実施例
(実施例 1 )
鉄基粉末として、 ア トマイズ純鉄粉に、 Ni、 Mo、 Cuが拡散付着した. Fe-4Ni-0. 5Mo-l. 5Cu組成の部分合金化鋼粉を用いた。 この部分合金化 鋼粉に、 0. 5 質量%の黒鉛粉と、 表 1に示す各種潤滑剤を高速ミキサ 一による加熱混合法で混合し、 鉄基粉末混合物とした。
まず、 加圧成形用の金型を表 1 に示す温度に予熱し、 金型潤滑装 置: Gasbarre社製) を用いて帯電させた温間金型潤滑用潤滑剤を金型 内に噴霧導入し、 金型表面に帯電付着させた。 なお、 温間金型潤滑用 潤滑剤は、 表 2に示す各種潤滑剤から選択し、 加圧成形温度以下の低 い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ潤滑剤とを 表 1に示すように混合したものを使用した。 なお、 金型表面の温度を 測定し、 加圧成形の温度と した。
ついで、 このよ うに処理された金型に、 加熱した鉄基粉末混合物を 充填したのち、 加圧成形し、 10 X 10 X 55匪の直方体の成形体とした。 なお、 加圧力は、 686MPaと した。 また、 加圧成形条件を表 1に示す。 また、 鉄基粉末混合物に含まれる粉末成形用潤滑剤は、 表 2に示す各 種潤滑剤から選択し、 加圧成形温度以下の低い融点をもつ潤滑剤と、 加圧成形温度よ り高い融点をもつ潤滑剤とを表 1 に示すよ うに混合 したものである。
なお、 従来例と して、 金型潤滑用潤滑剤を塗布しない金型に、 加熱 した鉄基粉末混合物を充填し、 加圧成形し、 同様の直方体の成形体と した例を従来例とした (成形体 No. 38 )。
成形後、 成形体を抜き出す時の抜き出し力を測定した。
また、 これら成形体について、 アルキメデス法で密度を測定した。 なお、 アルキメデス法とは、 被測定物である成形体をエタノール中に 浸潰して体積を測定することにより密度を測定する方法である。 さら に、 これら成形体の外観を目視で観察し、 疵、 割れ等の欠陥の有無を 調査した。 また、 これら成形体を中央部で切断し、 樹脂に埋め込んで 研磨し、 断面における空孔の有無を光学顕微鏡で観察した。
抜き出し力、 成形体密度、 成形体の外観および成形体断面の性状に ついての結果を表 1に示す。
本発明例は、 いずれも成形後の抜き出し力が 20MPa以下と低く、 さ らに 7. 4 Mg/m3 以上の高密度を有する成形体となっている。 さらに、 成形体には加熱による表面酸化はもとより、 疵、 割れ等の欠陥は認め られなかった。 また、 成形体の断面性状は、 正常で、 粗大な空孔は認 められなかった。
本発明の範囲を外れる比較例、 従来例は、 抜き出し力が 20MPaを超 えて高いか、 密度が 7. 35Mg/m3未満と低いか、 あるいは成形体断面の 表面付近に粗大な空孔が観察された。 本発明によれば、 外観性状、 断面性状いずれも良好である、 高密度 の成形体を抜き出し力が低く成形できるという効果がある。
(実施例 2 )
鉄基粉末として、 (1 )ア トマイズ純鉄粉に、 Ni、 Mo、 Cu が拡散付着 した、 Fe- 4Ni- 0. 5Mo- 1. 5Cu 組成の部分合金化鋼粉 a、 (2)ァ トマイズ 純鉄粉に、 Ni、 Mo が拡散付着した、 Fe-2Ni-lMo 組成の部分合金化鋼 粉 b、 (3) Cr, Mo、 Vを予合金した、 Fe- 3Cr_0. 3Mo- 0. 3V組成のプレア ロイ鋼粉 c、 (4) Cr, Mo、 V を予合金した、 Fe- lCr_0. 3Mo- 0. 3V組成の ブレアロイ鋼粉 d、 (5)ア トマイ ズ鉄粉 e、 (6)還元鉄粉 f を用いた。 なお、 ア トマイズ鉄粉とは、 溶鋼を高圧水で噴霧して得られた鉄基粉 末であり、 還元鉄粉とは、 酸化鉄を還元して得られた鉄基粉末である c これら部分合金化鋼粉 a、 部分合金化鋼粉 b、 ブレアロイ鋼粉 c、 プ レアロイ鋼粉 d、 ア トマイズ鉄粉 e、 還元鉄粉 f それぞれに、 表 3に 示す含有量の黒鉛と、 表 3に示す各種潤滑剤とを高速ミキサーによる 加熱混合法で混合し、 鉄基粉末混合物とした。 なおア トマイズ鉄粉 e および還元鉄粉 f の場合には 0. 8 質量%の黒鉛に加えて、 2. 0質量% の Cu 粉を混合した。 黒鉛の含有量は、 鉄基粉末と黒鉛あるいはさら に合金粉末との合計量に対する質量比である。
まず、 加圧成形用の金型を表 3に示す温度に予熱し、 金型潤滑装 置: Gasbarre社製) を用いて帯電させた温間金型潤滑用潤滑剤を金型 内に噴霧導入し、 金型表面に帯電付着させた。 なお、 温間金型潤滑用 潤滑剤は、 表 2に示す各種潤滑剤から選択し、 加圧成形温度以下の低 い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ潤滑剤とを 表 3に示すように混合したものを使用した。 なお、 金型表面の温度を 測定し、 加圧成形の温度とした。
ついで、 このように処理された金型に、 加熱した鉄基粉末混合物を 充填したのち、 加圧成形し、 10 X 10 X 55mmの直方体の成形体とした。 なお、 加圧力は、 686MPaと した。 また、 加圧成形条件を表 3に示す。 また、 鉄基粉末混合物に含まれる
粉末成形用潤滑剤は、 表 2に示す各種潤滑剤から選択し、 加圧成形温 度以下の低い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ 潤滑剤とを表 3に示すように混合したものである。
これら鉄基粉末成形体について、 実施例 1 と同様にアルキメデス法 で密度を測定した。
ついで、 これら鉄基粉末成形体を N2 - 10¾H2雰囲気中で 1130°C, 20 分の焼結処理を施し, 鉄基焼結体とした。 得られた鉄基焼結体につい て、 まず、 アルキメデス法で密度を測定した。 また, これらの焼結体 から、 機械加工により平行部径 5 mm, 長さ 1 5 mmの小型丸棒試験片を 採取し, 引張試験を実施し、 引張強さを測定したた.
なお、 金型潤滑用潤滑剤を塗布しない金型に、 加熱した鉄基粉末混 合物を充填し、 加圧成形し、 同様の直方体の成形体とし、 さらに焼結 処理を施し鉄基焼結体とした例を従来例とした。
それらの結果を表 3に示す。
本発明例は、 金型潤滑を行わない従来例 (焼結体 No. 2- 12) と比べ、 高い密度が得られ、 しかも高引張強さを有している。 (実施例 3 )
鉄基粉末として、 アトマイズ純鉄粉に、 Ni、 Mo、 Cuが拡散付着した Fe-4Ni-0. 5Mo-l . 5Cu組成の部分合金化鋼粉を用いた。 この部分合金化 鋼粉に、 0. 2 質量%の黒鉛粉と、 表 1に示す各種潤滑剤を高速ミキサ 一による加熱混合法で混合し、 鉄基粉末混合物とした。
まず、 加圧成形用の金型を表 4に示す温度に予熱し、 金型潤滑装 置: Gasbarre社製) を用いて帯電させた温間金型潤滑用潤滑剤を金型 内に噴霧導入し、 金型表面に帯電付着させた。 なお、 温間金型潤滑用 潤滑剤は、 表 2に示す各種潤滑剤から選択し、 加圧成形温度以下の低 い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ潤滑剤とを 表 4に示すように混合したものを使用した。 なお、 金型表面の温度を 測定し、 加圧成形の温度とした。
ついで、 このよ うに処理された金型に、 加熟した鉄基粉末混合物を 充填したのち、 加圧成形し、 10 X 10 X 55mmの直方体の成形体とした。 なお、 加圧力は、 686MPa と した。 また、 加圧成形条件を表 4に示す。 また、 鉄基粉末混合物に含まれる粉末成形用潤滑剤は、 表 2に示す各 種潤滑剤から選択し、 加圧成形温度以下の低い融点をもつ潤滑剤と、 加圧成形温度よ り高い融点をもつ潤滑剤とを表 1 に示すよ うに混合 したものである。
なお、 従来例として、 金型潤滑用潤滑剤を塗布しない金型に、 加熱 した鉄基粉末混合物を充填し、 加圧成形し、 同様の直方体の成形体と した例を従来例と した (成形体 No. 38 )。 成形後、 成形体を抜き出す時の抜き出し力を測定した。
また、 これら成形体について、 アルキメデス法で密度を測定した。 さらに、 これら成形体の外観を目視で観察し、 疵、 割れ等の欠陥の有 無を調査した。 また、 これら成形体を中央部で切断し、 樹脂に埋め込 んで研磨し、 断面における空孔の有無を光学顕微鏡で観察した。
抜き出し力、 成形体密度、 成形体の外観および成形体断面の性状に ついての結果を表 4に示す。
本発明例は、 いずれも成形後の抜き出し力が 20MPa以下と低く、 さら に 7. 43 g/m3 以上の高密度を有する成形体となっている。 さらに、 成形体には加熱による表面酸化はもとより、 疵、 割れ等の欠陥は認め られなかった。 また、 成形体の断面性状は、 正常で、 粗大な空孔は認 められなかった。
本発明の範囲を外れる比較例、 従来例は、 抜き出し力が 20MPa を超 えて高いか、 密度が 7. 39Mg/m3未満と低いか、 あるいは成形体断面の 表面付近に粗大な空孔が観察された。
本発明によれば、 外観性状、 断面性状いずれも良好である、 高密度 の成形体を抜き出し力が低く成形できるという効果がある。
(実施例 4 )
鉄基粉末として、 (1 )ァ トマイズ純鉄粉に、 Ni、 Mo、 Cu が拡散付着 した、 Fe- 4Ni- 0. 5Mo- 1. 5Cu組成の部分合金化鋼粉 a、 (2) Cr, Mo、 Vを 予合金した、 Fe- 3Cr- 0. 3Mo- 0. 3V組成のプレアロイ鋼粉 bを用いた。
これら部分合金化鋼粉 a、 ブレアロイ鋼粉 b、 それぞれに、 表 5に 示す含有量の黒鉛と、 表 5に示す各種潤滑剤とを高速ミキサーによる 加熱混合法で混合し、 鉄基粉末混合物と した。 黒鉛の含有量は、 鉄基 粉末混合物全量に対する質量比である。
まず、 加圧成形用の金型を表 5に示す温度に予熱し、 金型潤滑装 置: Gasbarre社製) を用いて帯電させた温間金型潤滑用潤滑剤を金型 内に噴霧導入し、 金型表面に帯電付着させた。 なお、 温間金型潤滑用 潤滑剤は、 表 2に示す各種潤滑剤から選択し、 加圧成形温度以下の低 い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ潤滑剤とを 表 5に示すように混合したものを使用した。 なお、 金型表面の温度を 測定し、 加圧成形の温度とした。
ついで、 このよ うに処理された金型に、 加熱した鉄基粉末混合物を 充填したのち、 加圧成形し、 10 X 10 X 55mmの直方体の成形体とした。 なお、 加圧力は、 686MPa と した。 また、 加圧成形条件を表 5に示す。 また、 鉄基粉末混合物に含まれる粉末成形用潤滑剤は、 表 2に示す 各種潤滑剤から選択し、 加圧成形温度以下の低い融点をもつ潤滑剤と、 加圧成形温度より高い融点をもつ潤滑剤とを表 5に示すよ うに混合 したものである。
これら鉄基粉末成形体について、 実施例 1 と同様にアルキメデス法 で密度を測定した。
ついで、 これら鉄基粉末成形体を N2 - 10%H2雰囲気中で 1 130°C, 20 分の焼結処理を施し, 鉄基焼結体とした。 得られた鉄基焼結体につい て、 アルキメデス法で密度を測定した。
それらの結果を表 3に示す。 本発明例は、 高い密度を有している。
Figure imgf000023_0001
Figure imgf000024_0001
*** の
**)鉄基粉末混合物中の潤滑剤総含有量
Figure imgf000025_0001
Figure imgf000026_0001
表 2
符号 潤滑剤種類 符号 潤滑剤種類
A l ステアリン酸 Ca 金 E 1 ポリスチレン 熱可塑
A 2 ステアリン酸 Zn E 2 ポリアミ ド (ナイ Pン 66) 性樹脂
A 3 ステアリ ン酸 Li 石 E 3 ホ。!)テトラフルォ pエチレン
A 4 ヒド Pォキシステアリ ン酸 m F 1 ホ。リスチレン系エラストマ一 熱可塑 Li 性エラ
B 1 直鎖状低密度ポリエチレン F 2 ポリアミ ド系エラス ト ス トマ
C 1 エチレンビスステア口アミ ド アミ マー
系 ワックス G 1 黒鉛
C 2 ステアリン酸モノアミに
D 1 エチレンビスステア口アミ とポ G 2 MoS 2 層状無 リエチレンの共融混合物 G 3 フッ化炭素 機潤滑 剤
D 2 エチレンビスステァ口アミに とステ 共融混
V) ン 酸 Znの共融混合物 合物 H 1 メラミン-シァヌル酸付加物
(MC A) 層状有
D 3 エチレンビスステア Pアミド とステ 機潤滑 ァ /ン 酸 Caの共融混合物 H 2 N-アルキルァスハ。ラキ'ン酸- )3 剤
アルキルエステル
Figure imgf000028_0001
Figure imgf000029_0001
**)鉄基粉末混合物中の潤滑剤総含有量 潤滑剤の符号は表 2参照
4一 2
Figure imgf000030_0001
**)鉄基粉末混合物中の满滑剤総含有量
i
Figure imgf000031_0001
Figure imgf000032_0001
**)鉄基粉末混合物中の潤滑剤総含有量
Figure imgf000033_0001
産業上の利用可能性
本発明によれば、 外観性状、 断面性状いずれも良好である、 高密度 の成形体を 1回の成形で容易に製造でき、 しかも成形後の抜き出し力 が低く、 金型を長寿命化することができ、 さらに高密度の焼結体が容 易に得られるという産業上格段の効果を奏する。

Claims

請 求 の 範 囲
1. 粉末を金型で加圧成形する際に予熱された金型表面に帯電付 着させて使用する温間金型潤滑用潤滑剤であって、 所定の加圧成形の 温度より高い融点を有する潤滑剤と、 前記所定の加圧成形の温度以下 の低い融点を有する潤滑剤との混合物であることを特徴とする温間 金型潤滑用潤滑剤。
2 . 粉末を金型で加圧成形する際に予熱された金型表面に帯電付 着させて使用する温間金型潤滑用潤滑剤であって、 所定の加圧成形の 温度より高い融点を有する潤滑剤を 0. 5〜80質量%含有し、残部が前 記所定の加圧成形の温度以下の低い融点を有する潤滑剤であること を特徴とする温間金型潤滑用潤滑剤。
3. 前記所定の加圧成形の温度より高い融点を有する潤滑剤が、 金属 石鹼、 熱可塑性樹脂、 熱可塑性エラス トマ一、 層状の結晶構造を有す る無機または有機潤滑剤のうちから選ばれた 1種または 2種以上で あることを特徴とする請求項 2に記載の温間金型潤滑用潤滑剤。
4 . 前記所定の加圧成形の温度以下の低い融点を有する潤滑剤が、 金 属石鹼、 アミ ド系ワックス、 ポリエチレンおよびこれらのうちの 2種 以上の共溶融物のうちから選ばれた 1種または 2種以上であること を特徴とする請求項 2または 3に記載の温間金型潤滑用潤滑剤。
5 . 鉄基粉末と、 粉末成形用潤滑剤とを含む鉄基粉末混合物であって. 前記粉末成形用潤滑剤が、 粉末成形用潤滑剤全量に対して 10〜75 質 量%の、 加圧成形の温度以下の低い融点を有する潤滑剤を含み、 残部 力 加圧成形の温度より高い融点を有する潤滑剤であることを特徴と する温間金型潤滑成形用鉄基粉末混合物。
6 , 鉄基粉末と、 粉末成形用潤滑剤と、 黒鉛とを含む鉄基粉末混合 物であって、 前記粉末成形用潤滑剤が、 粉末成形用潤滑剤全量に対し て 10〜75 質量%の、 加圧成形の温度以下の低い融点を有する潤滑剤 を含み、 残部が、 加圧成形の温度より高い融点を有する潤滑剤であり、 前記黒鉛を、 鉄基粉末混合物全量に対し 0. 5質量%未満含有すること を特徴とする請求項 5に記載の温間金型潤滑成形用鉄基粉末混合物。
7. 前記粉末成形用潤滑剤の含有量が、 0. 05〜0. 40質量%である ことを特徴とする請求項 5または 6に記載の温間金型潤滑成形用鉄 基粉末混合物。
8。 金型に、 加熱した鉄基粉末混合粉を充填したのち、 所定の温 度で加圧成形する鉄基粉末成形体の製造方法において、 前記金型を、 予熱され、 表面に、 温間金型潤滑用潤滑剤を帯電付着させた金型とし、 前記温間金型潤滑用潤滑剤を、 0. 5〜80質量%の、 所定の加圧成形の 温度より高い融点をもつ潤滑剤を含み、 残部が所定の加圧成形の温度 以下の低い融点をもつ潤滑剤である潤滑剤とし、 さらに前記鉄基粉末 混合物が鉄基粉末と粉末成形用潤滑剤とを含み、 前記粉末成形用潤滑 剤が粉末成形用潤滑剤全量に対し 10〜75 質量%の、 所定の加圧成形 の温度以下の低い融点をもつ潤滑剤を含み、 残部が所定の加圧成形の 温度より高い融点をもつ潤滑剤である潤滑剤とすることを特徴とす る高密度鉄基粉末成形体の製造方法。
9 , 金型に、 加熱した鉄基粉末混合粉を充填したのち、 所定の温 度で加圧成形する鉄基粉末成形体の製造方法において、 前記金型を、 予熱され、 表面に、 温間金型潤滑用潤滑剤を帯電付着させた金型と し. 前記温間金型潤滑用潤滑剤を、 0. 5〜80質量%の、 所定の加圧成形の 温度より高い融点をもつ潤滑剤を含み、 残部が所定の加圧成形の温度 以下の低い融点をもつ潤滑剤である潤滑剤とし、 さらに前記鉄基粉末 混合物が鉄基粉末と粉末成形用潤滑剤と黒鉛とを含み、 前記粉末成形 用潤滑剤が粉末成形用潤滑剤全量に対し 10〜75 質量%の、 所定の加 圧成形の温度以下の低い融点をもつ潤滑剤を含み、 残部が所定の加圧 成形の温度より高い融点をもつ潤滑剤である潤滑剤とし、 さらに前記 黒鉛を、 鉄基粉末混合物全量に対し 0. 5質量%未満含有することを特 徴とする高密度鉄基粉末成形体の製造方法。
1 0 . 前記温間金型潤滑用潤滑剤における前記所定の加圧成形の温 度より高い融点を有する潤滑剤が、 金属石験、 熱可塑性樹脂、 熱可塑 性エラス トマ一、 層状の結晶構造を有する無機または有機潤滑剤のう ちから選ばれた 1種または 2種以上であることを特徴とする請求項 8または 9に記載の高密度鉄基粉末成形体の製造方法。
1 1 , 前記温間金型潤滑用潤滑剤における前記所定の加圧成形の温度 以下の低い融点を有する潤滑剤が、 金属石験、 アミ ド系ワ ックス、 ポ リエチレンおよびこれらのうちの 2種以上の共溶融物のうちから選 ばれた 1種または 2種以上であることを特徴とする請求項 8ないし 1 0のいずれかに記載の高密度鉄基粉末成形体の製造方法。
1 2 , 前記温間成形用潤滑剤の含有量が、 0. 05〜0. 40質量%であるこ とを特徴とする請求項 8ないし 1 1のいずれかに記載の高密度鉄基 粉末成形体の製造方法。
1 3 , 請求項 8ないし 1 2のいずれかに記載の高密度鉄基粉末成形体 の製造方法により製造された鉄基粉末成形体に, さらに焼結処理を施 し鉄基焼結体とすることを特徴とする高密度鉄基焼結体の製造方法。
PCT/JP2000/005089 1999-10-29 2000-08-01 Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer WO2001032337A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2356253A CA2356253C (en) 1999-10-29 2000-08-01 A die lubricant comprising a higher-melting and a lower-melting lubricants
EP00948302A EP1145788B1 (en) 1999-10-29 2000-08-01 Lubricating agent for mold at elevated temperature and method for producing high density iron-based sintered compact

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP30859099A JP3931503B2 (ja) 1999-02-05 1999-10-29 温間金型潤滑用潤滑剤、高密度鉄基粉末成形体および高密度鉄基焼結体の製造方法
JP11/308590 1999-10-29
JP2000-105050 2000-04-06
JP2000105050A JP4507348B2 (ja) 2000-04-06 2000-04-06 高密度鉄基粉末成形体および高密度鉄基焼結体の製造方法

Publications (1)

Publication Number Publication Date
WO2001032337A1 true WO2001032337A1 (fr) 2001-05-10

Family

ID=26565600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005089 WO2001032337A1 (fr) 1999-10-29 2000-08-01 Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer

Country Status (5)

Country Link
US (1) US6355208B1 (ja)
EP (1) EP1145788B1 (ja)
CA (1) CA2356253C (ja)
TW (1) TW486396B (ja)
WO (1) WO2001032337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302879C (zh) * 2001-10-12 2007-03-07 霍加纳斯股份有限公司 粉末冶金用润滑剂粉末、冶金粉末组合物和生产未烧结产物的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9903244D0 (sv) * 1999-09-10 1999-09-10 Hoeganaes Ab Lubricant for metal-powder compositions, metal-powder composition cantaining the lubricant, method for making sintered products by using the lubricant, and the use of same
DE60030422T8 (de) * 1999-12-14 2007-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute Herstellungsverfahren für pulvergrünkörper
JP4228547B2 (ja) * 2000-03-28 2009-02-25 Jfeスチール株式会社 金型潤滑用潤滑剤および高密度鉄基粉末成形体の製造方法
JP2002020801A (ja) * 2000-07-07 2002-01-23 Kawasaki Steel Corp 粉末冶金用鉄基混合粉
US6652618B1 (en) * 2000-09-12 2003-11-25 Kawasaki Steel Corporation Iron based mixed power high strength sintered parts
US6464751B2 (en) * 2000-10-06 2002-10-15 Kawasaki Steel Corporation Iron-based powders for powder metallurgy
WO2002083824A1 (en) * 2001-04-16 2002-10-24 Honeywell International, Inc. Composite compositions
EP1270708B1 (en) 2001-06-13 2005-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Pressurizing forming process and pressurized-and-formed member
SG111023A1 (en) 2001-07-11 2005-05-30 Inst Data Storage Method and apparatus for decapping integrated circuit packages
JP3945455B2 (ja) * 2002-07-17 2007-07-18 株式会社豊田中央研究所 粉末成形体、粉末成形方法、金属焼結体およびその製造方法
SE0203134D0 (sv) * 2002-10-22 2002-10-22 Hoeganaes Ab Method of preparing iron-based components
JP2005154828A (ja) 2003-11-25 2005-06-16 Mitsubishi Materials Corp 温間成形用原料粉末及び温間成形方法
JP2010285633A (ja) * 2009-06-09 2010-12-24 Kobe Steel Ltd 粉末冶金用混合粉末の製造方法、及び焼結体の製造方法
RU2528527C2 (ru) * 2010-04-28 2014-09-20 АйЭйчАй КОРПОРЕЙШН Электрод, применяемый для поверхностной обработки разрядом, и способ его изготовления
JP2015531027A (ja) * 2012-08-14 2015-10-29 ナノジェスション インコーポレイテッド 金属粉末からの部品の製造に潤滑複合材を使用する技術
JP2015183706A (ja) * 2014-03-20 2015-10-22 Ntn株式会社 軌道輪および該軌道輪を有する転がり軸受
WO2016158373A1 (ja) 2015-03-27 2016-10-06 Ntn株式会社 焼結軸受及びその製造方法
WO2017122434A1 (ja) * 2016-01-15 2017-07-20 Jfeスチール株式会社 粉末冶金用混合粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971801A (ja) * 1995-06-29 1997-03-18 Kawasaki Steel Corp 流動性に優れ見掛け密度の安定な粉末冶金用鉄基粉末混合物及びその製造方法
US5682591A (en) * 1994-08-24 1997-10-28 Quebec Metal Powders Limited Powder metallurgy apparatus and process using electrostatic die wall lubrication
US5744433A (en) * 1994-06-02 1998-04-28 Hoganas Ab Metal powder composition for warm compaction and method for producing sintered products
JPH10280005A (ja) * 1997-04-14 1998-10-20 Kawasaki Steel Corp 粉末冶金用鉄基粉末混合物及びその製造方法
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556255A (en) * 1968-06-17 1971-01-19 Sperry Rand Corp Electrostatic application of solid lubricants
IT1224294B (it) 1988-10-28 1990-10-04 Nuova Merisinter Spa Procedimento per la compattazione di polveri in preparazione ad operazioni di sinterizzazione
US5093076A (en) * 1991-05-15 1992-03-03 General Motors Corporation Hot pressed magnets in open air presses
US5256185A (en) 1992-07-17 1993-10-26 Hoeganaes Corporation Method for preparing binder-treated metallurgical powders containing an organic lubricant
US5368630A (en) 1993-04-13 1994-11-29 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction
JPH07103404A (ja) 1993-10-04 1995-04-18 Nikkiso Co Ltd ドラム型ボイラプラントにおけるドラム水のシリカブロー判定方法
WO1998005454A1 (fr) * 1996-08-05 1998-02-12 Kawasaki Steel Corporation Melange de poudre metallurgique a base de fer possedant d'excellentes caracteristiques de fluidite et de moulage et son procede de preparation
US5767426A (en) * 1997-03-14 1998-06-16 Hoeganaes Corp. Ferromagnetic powder compositions formulated with thermoplastic materials and fluoric resins and compacted articles made from the same
EP0913220B1 (en) * 1997-03-19 2008-12-10 JFE Steel Corporation Iron base powder mixture for powder metallurgy excellent in fluidity and moldability
US5976215A (en) * 1997-08-29 1999-11-02 Kawasaki Steel Corporation Iron-based powder mixture for powder metallurgy and process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744433A (en) * 1994-06-02 1998-04-28 Hoganas Ab Metal powder composition for warm compaction and method for producing sintered products
US5682591A (en) * 1994-08-24 1997-10-28 Quebec Metal Powders Limited Powder metallurgy apparatus and process using electrostatic die wall lubrication
JPH0971801A (ja) * 1995-06-29 1997-03-18 Kawasaki Steel Corp 流動性に優れ見掛け密度の安定な粉末冶金用鉄基粉末混合物及びその製造方法
JPH10280005A (ja) * 1997-04-14 1998-10-20 Kawasaki Steel Corp 粉末冶金用鉄基粉末混合物及びその製造方法
JPH11193404A (ja) * 1997-12-26 1999-07-21 Hitachi Powdered Metals Co Ltd 金属粉末成形用潤滑剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1145788A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302879C (zh) * 2001-10-12 2007-03-07 霍加纳斯股份有限公司 粉末冶金用润滑剂粉末、冶金粉末组合物和生产未烧结产物的方法

Also Published As

Publication number Publication date
CA2356253A1 (en) 2001-05-10
TW486396B (en) 2002-05-11
EP1145788A1 (en) 2001-10-17
US6355208B1 (en) 2002-03-12
EP1145788A4 (en) 2003-04-23
EP1145788B1 (en) 2004-12-15
CA2356253C (en) 2010-10-26

Similar Documents

Publication Publication Date Title
WO2001032337A1 (fr) Agent lubrifiant pour moulage a haute temperature, composition de poudre a base de fer pour compactage a haute temperature avec un moule lubrifie et produit forme de haute densite realise a partir de ladite composition, et procede de production d'un produit compact fritte de densite elevee a base de fer
JP5920984B2 (ja) 鉄基粉末組成物
EP2475481B1 (en) Metal powder composition
EP2379764B1 (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder and a composition including this powder
EP1735121B1 (en) Powder metallurgical compositions and methods for making the same
JP4228547B2 (ja) 金型潤滑用潤滑剤および高密度鉄基粉末成形体の製造方法
JP5169605B2 (ja) 粉末冶金用粉末混合物および成形体の製造方法
JP2016035106A (ja) 鉄粉末冶金用途における改良された寸法制御のための組成物及び方法
JP5012645B2 (ja) 高密度鉄基粉末成形体の製造方法
JP4770667B2 (ja) 温間金型潤滑成形用鉄基粉末混合物
JP4507348B2 (ja) 高密度鉄基粉末成形体および高密度鉄基焼結体の製造方法
JPH07166278A (ja) 銅系摺動材とその製造方法
JP2001181701A (ja) 高強度高密度鉄基焼結体の製造方法
JP2010156059A (ja) 温間金型潤滑成形用鉄基粉末混合物
JP3931503B2 (ja) 温間金型潤滑用潤滑剤、高密度鉄基粉末成形体および高密度鉄基焼結体の製造方法
JP2007169736A (ja) 粉末冶金用合金鋼粉
JP6760504B2 (ja) 粉末冶金用粉末混合物およびその製造方法
JP4808375B2 (ja) 粉末冶金用の鉄基粉末混合物
JP2007031757A (ja) 粉末冶金用合金鋼粉
CN110709191B (zh) 粉末冶金用粉末混合物及其制造方法
JP2003096533A (ja) 温間成形用鉄基粉末混合物および温間金型潤滑成形用鉄基粉末混合物ならびにこれらを用いた鉄基焼結体の製造方法
JP2024017984A (ja) 粉末冶金用鉄基混合粉、鉄基焼結体、および焼結機械部品
KR20240095297A (ko) 분말 야금용 철기 혼합분 및 철기 소결체
WO2018230568A1 (ja) 粉末冶金用粉末混合物およびその製造方法
JP2002155303A (ja) 鉄基焼結体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2356253

Country of ref document: CA

Ref country code: CA

Ref document number: 2356253

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000948302

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000948302

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000948302

Country of ref document: EP