WO2001023634A1 - Rotating magnet array and sputter source - Google Patents

Rotating magnet array and sputter source Download PDF

Info

Publication number
WO2001023634A1
WO2001023634A1 PCT/US2000/026503 US0026503W WO0123634A1 WO 2001023634 A1 WO2001023634 A1 WO 2001023634A1 US 0026503 W US0026503 W US 0026503W WO 0123634 A1 WO0123634 A1 WO 0123634A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic path
magnet array
magnets
plate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2000/026503
Other languages
English (en)
French (fr)
Inventor
Edmond A. Richards
Paul R. Fournier
David Johnson
Abdul Lateef
David G. Lishan
Shinzo Onishi
Mark D. Kenney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Management USA Inc
Original Assignee
Unaxis USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unaxis USA Inc filed Critical Unaxis USA Inc
Priority to EP00966934A priority Critical patent/EP1235945B1/en
Priority to AU77207/00A priority patent/AU7720700A/en
Priority to JP2001527013A priority patent/JP2003510464A/ja
Priority to HK03101395.6A priority patent/HK1049502A1/zh
Priority to DE60040757T priority patent/DE60040757D1/de
Publication of WO2001023634A1 publication Critical patent/WO2001023634A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention is directed to a method and apparatus for depositing metal and metal-reactive gas coatings onto a substrate.
  • RF diode sputtering conventionally accomplished by radio frequency (“RF") diode sputtering from a ceramic target. While somewhat effective, the RF diode sputtering process is quite slow with deposition rates of approximately 500 Angstroms/Minute. With such low deposition rates batch loading is required for economic machine throughput.
  • RF radio frequency
  • Batch processing involves coating multiple substrates in a single deposition run.
  • batch processing has long been recognized by the semiconductor industry as less- than optimum because of several factors.
  • the Ar + ions accelerate towards the negatively charged target and collide with the target to release Al atoms that are deposited
  • magnets creates a "trenching" of the target which results in a non-uniform erosion of the target. This is disadvantageous because utilizing a non-uniform erosion pattern increases
  • the magnetic path is a double-lobe structure that includes first and second lobes that are symmetrical about an axis in the plane of the plate that intersects a center of rotation of the plate.
  • the magnets are arranged in several rows.
  • a first row of magnets has a double-lobe structure that corresponds to the first and second lobes of the magnetic path.
  • Second and third rows of magnets are arranged in the shape of a rings inside the first and second lobes of the magnetic path magnetic path.
  • the lobe structure is designed to maximize the erosion of the perimeter region of a sputtering target.
  • the lobe structure can be circular or elliptical in shape.
  • the sputtering system includes a metal sputtering
  • the sputtering system also includes a rotatable magnet array disposed over the sputtering target.
  • the magnet array can be shaped as in the embodiments described above. With this magnet array, the resulting magnetic path generates a substantially uniform erosion of the sputtering target.
  • a magnet array such as the magnet arrays described in the preceding embodiments, is
  • Fig. 2 is a schematic view of a magnet array according to another embodiment of
  • Fig. 3 is a schematic view of a magnet array according to another embodiment of the present invention.
  • Fig. 6 is a schematic view of a sputtering system according to an embodiment of the
  • Fig. 7 is a schematic view of a sputtering source according to another embodiment of the present invention.
  • Fig. 8 is a schematic view of a sputtering target according to an embodiment of the present invention.
  • the present invention provides a sputtering system and magnet array for depositing metal and metal-reactive gas coatings onto a substrate.
  • the metal-reactive gas coatings can be electrically conductive or insulating.
  • the magnet array is designed for use in a rotating magnetron.
  • the magnet array and sputtering system of the present invention are used for the high rate deposition of a dielectric material, such as an Aluminum Oxide coating, on a substrate. While the embodiments described herein are used to deposit Aluminum Oxide coatings on a silicon wafer substrate, the present invention is not limited for use with this particular coating or substrate, as would be apparent to one skilled in the art given the present description.
  • the polarity of the magnets comprising outer rows 106 and 107 is North ("N") and the polarity of the magnets comprising inner rings
  • 108 and 110 is South ("S").
  • the polarity of the magnets in the outer and inner rings can be switched.
  • a center magnet 114 can be utilized having the same polarity as inner rings 108 and 110.
  • Center magnet 114 can be disposed directly over the axis of rotation.
  • a center magnet set (such as shown in Fig. 3, described below) comprising two or more magnets can be disposed over the axis of rotation.
  • a center magnet or center magnet set can be used to further control the resulting erosion
  • the magnets comprising magnet array 100 are all of the same magnetic field strength.
  • the magnets comprise rare-earth
  • Neodimium Iron Boron (NdFeB) magnets such as Neodimium Iron Boron (NdFeB) magnets. These magnets have high pole
  • the example magnets shown in Fig. 1 each have a rectangular shape.
  • the magnets utilized in magnet array 100 can comprise any shape, such as rectangular, square, or circular shapes.
  • a continuous erosion track or closed-loop erosion path 112 is formed between outer rows 106 and 107 and inner rows 108 and 110.
  • the erosion track resembles a " figure-8 " (corresponding to the space between the outer and inner rows of magnets). Flux from one row of magnets to the other forms a tunnel. When sputtering, an intense plasma forms in the tunnel, and by rotating the magnet array, the plasma is swept around the surface of the target. Thus, when magnet array 100 is rotated, the sputter target surface is eroded over nearly the entire available surface area.
  • Figs. 4A-4C where the resulting erosion pattern on the target follows the measured field strength when the magnet array is not rotating.
  • FIGS. 4A-4C show that the erosion track is substantially uniform, with varying field strengths of + 10 % at all points greater than 0.5
  • Magnet array 150 comprises a plurality
  • Lobe 152 includes an outer row of magnets 156 and an inner ring of
  • FIG. 5A-5C The magnetic field strength profiles perpendicular to the sputtering target surface for magnet array 150 are shown graphically in Figs. 5A-5C, where the resulting erosion pattern on the target follows the measured field strength when the magnet array is not rotating. Similar to Figs. 4A-4C, these measurements were taken with a conventional magnetic field probe at a predetermined distance from the surface. The field strength was measured as a function of radial distance from the center out towards the edge along an
  • Magnet array 170 comprises of plurality of magnets disposed on plate 101 that can be rotated about an axis, which corresponds to the center of rotation of plate 101.
  • This design utilizes two circular magnetic lobes 172, 174 that are symmetric about the C-axis.
  • Lobe 172 includes an outer row of magnets 176 and an inner ring of magnets 178.
  • Lobe 174 is shown in FIG. 3.
  • two magnets are disposed surrounding and proximate to (in this example, on either side of) the center of rotation of plate 101.
  • Magnet set 184 can be used to control the resulting erosion profile of a target, in this case by blocking the inner erosion of the target.
  • the elliptical lobe pattern of magnet array 100 of Fig. 1 is designed so that the curvature of the outer regions of magnet rows 106, 107, 108, and 110 have a flatter (as opposed to a more circular) shape, thereby increasing the rate from the edge of the target.
  • the double-lobe, elliptical design of magnet array 100 a greater magnetic field is available for eroding the target, as compared to conventional designs that use a single lobe that is asymmetrical with respect to the axis of rotation.
  • the more circular lobe design of magnet array 150 may be useful depending on the type of material being deposited on the substrate.
  • the symmetrical and dual-lobe design of magnet arrays 100, 150, and 170 generates an increased sputter rate (i.e., the amount of target sputtered off per unit time). According
  • the magnet array design should minimize the area of the target that is not sputtering. Otherwise, the target may accumulate material and begin to arc, which is damaging to the sputtering system.
  • another design parameter of the present invention is based, at least in part, on the discovery by the inventors that the erosion profile in a reactive environment differs from that in a non-reactive environment. Thus, magnet array designs optimized for metal deposition may not be necessarily well suited for reactive applications.
  • Cathode assembly 202 includes a source, such as conventional power supply (not shown) to activate the sputtering process.
  • the target 220 is charged by the source to act as the cathode for the sputtering system.
  • Target 220 can comprise any metal
  • target 220 is an aluminum plate shaped like an annulus. Target 220 is discussed in greater detail with respect to Fig. 8.
  • a motor 203 is coupled to a belt 204 which rotates a shaft 205 about axis of rotation 207 in a conventional manner.
  • a spindle 206 can be used to mount magnet array 210.
  • magnet array 210 can comprise a magnet array 100, magnet array 150, or magnet array 170 discussed above or a variation based on the teachings herein.
  • Motor 203 can have an adjustable speed. In operation, the spindle 206 rotates magnet array 210 to create a rotating field at the sputtering target surface.
  • Sputtering system 200 further includes a backing plate 216.
  • backing plate 216 is electrically isolated and water cooled.
  • Target 220 is attached or bonded to backing plate 216.
  • the backing plate/target assembly is mounted to a vacuum chamber 250 such that the target surface 221 is positioned opposite the substrate 230 to be coated.
  • the outside surface of the backing plate is placed at atmospheric pressure and positioned in front of magnet array 210.
  • a sputter gas medium such as Ar gas
  • Ionized Ar + atoms are attracted to the negatively charged target 220 during the sputtering process.
  • a portion of the released Al atoms will eventually deposit on substrate 230, which is supported by lower electrode 240.
  • electrode 240 includes a moveable platform that provides height adjustment for the substrate and allows for process repeatability.
  • conventional magnetron control equipment (not shown), such as ion gauges, control computers, valve controllers, etc., can be utilized to optimize process repeatability, as will become apparent to those of skill in the art given the present description.
  • sputtering system 200 further includes a reactive gas injection unit 235 to provide for the introduction of a reactive gas, such as Oxygen or Nitrogen.
  • a reactive gas such as Oxygen or Nitrogen.
  • the O 2 reacts with the Al atoms released during the sputtering process to form a dielectric or insulating coating of Al 2 O 3 on the substrate 230.
  • a coating such as titanium nitride, can be used to coat substrate 230.
  • the reactive gas injection system 235 can include a shower ring injector to provide for the uniform introduction of the gas proximate to the exposed surface of substrate 230.
  • Main vacuum chamber 250 can be a conventional vacuum system capable of
  • Fig. 7 schematically shows a more detailed view of several additional embodiments of sputtering system 200.
  • Magnet array 210 is positioned over target 220, which is shaped as an annulus.
  • target 220 is attached or bonded by conventional means to a liquid-cooled backing plate 216.
  • Water, or other types of coolant can be fed to a copper (or the like) backing plate 216 through coolant feed line 217, which is in fluid communication with a coolant conduit (not shown) in contact with backing plate 216.
  • Cooling is important because during the sputtering process, the majority of the power applied to the target is converted to heat. Cooling also helps prevent the target from becoming de-bonded with backing plate 216. Further, by providing target cooling, sputtering source 200 can be temperature controlled during high rate sputtering
  • Sputtering system 200 also provides several alternative mechanisms for injecting a sputter gas medium, such as Ar, into the reaction chamber for sputtering.
  • sputtering system 200 includes a gas feed 225 which can be used to inject Ar gas substantially parallel to or across the surface of target 220. Gas flows from feed 225 along a first gas path or conduit 226 to a gas introduction port 228 located proximate to the central region of target 220. From gas introduction port 228, Ar gas can flow radially outward across the surface of the target 220, to further help provide uniform sputtering of the target.
  • sputtering system 200 include a perimeter gas feed 227, which is used to introduce Ar across the surface of target 220 from the perimeter of the target inward towards the central region along path 229.
  • the perimeter gas feed 227 can be coupled to a conventional shower ring injector which is disposed outside the perimeter of target 220 and directs gas flow inward towards the central region of target 220.
  • Ar gas, or the like can be introduced to the reaction chamber utilizing the above-mentioned mechanisms, either alone or in combination.
  • Fig. 8 shows an embodiment where a metal target 300 to be used with the magnet array and sputtering system of the present invention.
  • Metal target 300 is an annulus shaped structure composed of the target metal to be deposited on the substrate.
  • the target can be configured to resemble an annulus, where the hole in central region 302 corresponds to the central dead spot.
  • a sputtering system similar to that shown in Figs. 6 and 7, was utilized to perform several experimental coating runs on silicon wafer substrate.
  • An aluminum target was utilized having a shape similar to that shown for target 300 in Fig. 8. The outer diameter of the target was approximately 11.5 inches and the inner diameter was approximately 2.5 inches.
  • a magnet array similar in shape to magnet array 100 from Fig. 1 was utilized.
  • the magnet array was disposed on a 12 inch diameter circular plate and included 47 NdFeB magnets arranged in a symmetrical dual-lobe pattern, with each lobe having an elliptical shape.
  • Each NdFeB magnet was rectangular shaped with a length of about 1 inch and a width of about 0.5 inches, with each having a magnetic pole field of about 5000 Gauss.
  • the outer row of each lobe was N-polarized and the inner rows were S-polarized.
  • each lobe was separated by about 20 mm.
  • a conventional pulsed DC plasma generator was used to supply about 4 KWatts of power to the sputtering target.
  • the reactive gas (O 2 ) was introduced to the reaction chamber via a gas introduction system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Treatment Devices (AREA)
  • Telephone Function (AREA)
  • Catching Or Destruction (AREA)
PCT/US2000/026503 1999-09-29 2000-09-27 Rotating magnet array and sputter source Ceased WO2001023634A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00966934A EP1235945B1 (en) 1999-09-29 2000-09-27 Rotating magnet array and sputter source
AU77207/00A AU7720700A (en) 1999-09-29 2000-09-27 Rotating magnet array and sputter source
JP2001527013A JP2003510464A (ja) 1999-09-29 2000-09-27 回転磁石アレイおよびスパッタ・ソース
HK03101395.6A HK1049502A1 (zh) 1999-09-29 2000-09-27 旋轉磁鐵陣列和濺射源
DE60040757T DE60040757D1 (de) 1999-09-29 2000-09-27 Rotierende magnetanordnung und zerstäubungsquelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/406,853 1999-09-29
US09/406,853 US6258217B1 (en) 1999-09-29 1999-09-29 Rotating magnet array and sputter source

Publications (1)

Publication Number Publication Date
WO2001023634A1 true WO2001023634A1 (en) 2001-04-05

Family

ID=23609684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/026503 Ceased WO2001023634A1 (en) 1999-09-29 2000-09-27 Rotating magnet array and sputter source

Country Status (8)

Country Link
US (1) US6258217B1 (enExample)
EP (1) EP1235945B1 (enExample)
JP (1) JP2003510464A (enExample)
AT (1) ATE413688T1 (enExample)
AU (1) AU7720700A (enExample)
DE (1) DE60040757D1 (enExample)
HK (1) HK1049502A1 (enExample)
WO (1) WO2001023634A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465378B2 (en) 2001-06-08 2008-12-16 Cardinal Cg Company Method for reactive sputtering deposition
US8435388B2 (en) 2005-11-01 2013-05-07 Cardinal Cg Company Reactive sputter deposition processes and equipment
CN112030118A (zh) * 2020-07-31 2020-12-04 中国原子能科学研究院 一种氘化聚乙烯纳米线阵列靶的制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454911B1 (en) * 2000-06-01 2002-09-24 Honeywell International Inc. Method and apparatus for determining the pass through flux of magnetic materials
US7041204B1 (en) 2000-10-27 2006-05-09 Honeywell International Inc. Physical vapor deposition components and methods of formation
WO2002086186A1 (en) * 2001-04-24 2002-10-31 Tosoh Smd, Inc. Target and method of optimizing target profile
US6758950B2 (en) 2002-01-14 2004-07-06 Seagate Technology Llc Controlled magnetron shape for uniformly sputtered thin film
US20040129559A1 (en) * 2002-04-12 2004-07-08 Misner Josh W. Diffusion bonded assemblies and fabrication methods
US7041200B2 (en) * 2002-04-19 2006-05-09 Applied Materials, Inc. Reducing particle generation during sputter deposition
JP4493284B2 (ja) * 2003-05-26 2010-06-30 キヤノンアネルバ株式会社 スパッタリング装置
US7101466B2 (en) * 2003-09-19 2006-09-05 Kdf Electronic + Vacuum Services Inc Linear sweeping magnetron sputtering cathode and scanning in-line system for arc-free reactive deposition and high target utilization
US7182843B2 (en) * 2003-11-05 2007-02-27 Dexter Magnetic Technologies, Inc. Rotating sputtering magnetron
WO2006085354A1 (ja) * 2005-02-08 2006-08-17 Tohoku Seiki Industries, Ltd. スパッタリング装置
US7585399B1 (en) * 2005-03-31 2009-09-08 Novellus Systems, Inc. Rotating magnet arrays for magnetron sputtering apparatus
DE102005019100B4 (de) * 2005-04-25 2009-02-12 Steag Hamatech Ag Magnetsystem für eine Zerstäubungskathode
US20080190765A1 (en) * 2005-06-04 2008-08-14 Applied Materials Gmbh & Co.Kg Sputtering Magnetron
US9771647B1 (en) 2008-12-08 2017-09-26 Michael A. Scobey Cathode assemblies and sputtering systems
US8137517B1 (en) 2009-02-10 2012-03-20 Wd Media, Inc. Dual position DC magnetron assembly
JP5328462B2 (ja) * 2009-04-23 2013-10-30 昭和電工株式会社 マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法
US9380692B2 (en) * 2009-08-31 2016-06-28 Samsung Electronics Co., Ltd. Apparatus and arrangements of magnetic field generators to facilitate physical vapor deposition to form semiconductor films
JP5730077B2 (ja) * 2010-06-03 2015-06-03 キヤノンアネルバ株式会社 磁石ユニットおよびマグネトロンスパッタリング装置
US20120024229A1 (en) * 2010-08-02 2012-02-02 Applied Materials, Inc. Control of plasma profile using magnetic null arrangement by auxiliary magnets
WO2012035603A1 (ja) * 2010-09-13 2012-03-22 株式会社シンクロン 磁場発生装置、マグネトロンカソード及びスパッタ装置
US8674327B1 (en) 2012-05-10 2014-03-18 WD Media, LLC Systems and methods for uniformly implanting materials on substrates using directed magnetic fields
US20140124359A1 (en) * 2012-11-02 2014-05-08 Intermolecular, Inc. New Magnet Design Which Improves Erosion Profile for PVD Systems
GB201815216D0 (en) * 2018-09-18 2018-10-31 Spts Technologies Ltd Apparatus and a method of controlling thickness variation in a material layer formed using physical vapour deposition
US11479847B2 (en) 2020-10-14 2022-10-25 Alluxa, Inc. Sputtering system with a plurality of cathode assemblies
US12400830B2 (en) 2023-08-07 2025-08-26 Bühler AG RF sputtering of multiple electrodes with optimized plasma coupling through the implementation of capacitive and inductive components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498969A (en) * 1982-11-18 1985-02-12 Canadian Patents And Development Limited-Societe Candienne Des Brevets Et D'exploitation (Limitee Sputtering apparatus and method
US5026471A (en) * 1989-09-07 1991-06-25 Leybold Aktiengesellschaft Device for coating a substrate
US5164063A (en) * 1991-08-27 1992-11-17 Leybold Aktiengesellschaft Sputtering cathode arrangement according to the magnetron principle for coating a flat annular surface

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878085A (en) 1973-07-05 1975-04-15 Sloan Technology Corp Cathode sputtering apparatus
US4166018A (en) 1974-01-31 1979-08-28 Airco, Inc. Sputtering process and apparatus
US3976555A (en) 1975-03-20 1976-08-24 Coulter Information Systems, Inc. Method and apparatus for supplying background gas in a sputtering chamber
US4422916A (en) 1981-02-12 1983-12-27 Shatterproof Glass Corporation Magnetron cathode sputtering apparatus
US4444643A (en) 1982-09-03 1984-04-24 Gartek Systems, Inc. Planar magnetron sputtering device
US4581118A (en) 1983-01-26 1986-04-08 Materials Research Corporation Shaped field magnetron electrode
JPS6260866A (ja) 1985-08-02 1987-03-17 Fujitsu Ltd マグネトロンスパツタ装置
JPS6247478A (ja) 1985-08-26 1987-03-02 バリアン・アソシエイツ・インコ−ポレイテツド 磁場の円運動と放射状運動を組み合わせたプレ−ナ・マグネトロン・スパツタリング装置
US4714536A (en) 1985-08-26 1987-12-22 Varian Associates, Inc. Planar magnetron sputtering device with combined circumferential and radial movement of magnetic fields
JPH0240739B2 (ja) 1986-03-11 1990-09-13 Fujitsu Ltd Supatsutasochi
DE3619194A1 (de) 1986-06-06 1987-12-10 Leybold Heraeus Gmbh & Co Kg Magnetron-zerstaeubungskatode fuer vakuum-beschichtungsanlagen
JPS63149374A (ja) 1986-12-12 1988-06-22 Fujitsu Ltd スパツタ装置
JP2643149B2 (ja) 1987-06-03 1997-08-20 株式会社ブリヂストン 表面処理方法
JP2627651B2 (ja) 1988-10-17 1997-07-09 アネルバ株式会社 マグネトロンスパッタリング装置
US5130005A (en) 1990-10-31 1992-07-14 Materials Research Corporation Magnetron sputter coating method and apparatus with rotating magnet cathode
US4995958A (en) 1989-05-22 1991-02-26 Varian Associates, Inc. Sputtering apparatus with a rotating magnet array having a geometry for specified target erosion profile
JPH0310072A (ja) * 1989-06-07 1991-01-17 Fujitsu Ltd マグネトロンスパッタリング装置
EP0439360A3 (en) 1990-01-26 1992-01-15 Varian Associates, Inc. Rotating sputtering apparatus for selected erosion
US5252194A (en) 1990-01-26 1993-10-12 Varian Associates, Inc. Rotating sputtering apparatus for selected erosion
US5635036A (en) 1990-01-26 1997-06-03 Varian Associates, Inc. Collimated deposition apparatus and method
EP0439361B1 (en) 1990-01-26 2003-06-11 Varian Semiconductor Equipment Associates Inc. Sputtering apparatus with a rotating magnet array having a geometry for specified target erosion profile
EP0440377B1 (en) 1990-01-29 1998-03-18 Varian Associates, Inc. Collimated deposition apparatus and method
KR950000011B1 (ko) 1990-02-28 1995-01-07 니찌덴 아네루바 가부시끼가이샤 마그네트론 스패터링장치 및 박막형성방법
US5320728A (en) 1990-03-30 1994-06-14 Applied Materials, Inc. Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity
EP0555339B1 (en) 1990-10-31 1997-12-29 Materials Research Corporation Magnetron sputter coating method and apparatus with rotating magnet cathode
DE4039101C2 (de) 1990-12-07 1998-05-28 Leybold Ag Ortsfeste Magnetron-Zerstäubungskathode für Vakuumbeschichtungsanlagen
US5171415A (en) 1990-12-21 1992-12-15 Novellus Systems, Inc. Cooling method and apparatus for magnetron sputtering
DE4106770C2 (de) * 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
US5194131A (en) 1991-08-16 1993-03-16 Varian Associates, Inc. Apparatus and method for multiple ring sputtering from a single target
US5188717A (en) 1991-09-12 1993-02-23 Novellus Systems, Inc. Sweeping method and magnet track apparatus for magnetron sputtering
US5314597A (en) 1992-03-20 1994-05-24 Varian Associates, Inc. Sputtering apparatus with a magnet array having a geometry for a specified target erosion profile
US5248402A (en) 1992-07-29 1993-09-28 Cvc Products, Inc. Apple-shaped magnetron for sputtering system
US5417833A (en) 1993-04-14 1995-05-23 Varian Associates, Inc. Sputtering apparatus having a rotating magnet array and fixed electromagnets
WO1996004839A1 (en) 1994-08-08 1996-02-22 Computed Anatomy, Incorporated Processing of keratoscopic images using local spatial phase
EP0801416A1 (en) 1996-04-10 1997-10-15 Applied Materials, Inc. Plasma processing chamber with epicyclic magnet source assembly
US5855744A (en) 1996-07-19 1999-01-05 Applied Komatsu Technology, Inc. Non-planar magnet tracking during magnetron sputtering
US5830327A (en) 1996-10-02 1998-11-03 Intevac, Inc. Methods and apparatus for sputtering with rotating magnet sputter sources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498969A (en) * 1982-11-18 1985-02-12 Canadian Patents And Development Limited-Societe Candienne Des Brevets Et D'exploitation (Limitee Sputtering apparatus and method
US5026471A (en) * 1989-09-07 1991-06-25 Leybold Aktiengesellschaft Device for coating a substrate
US5164063A (en) * 1991-08-27 1992-11-17 Leybold Aktiengesellschaft Sputtering cathode arrangement according to the magnetron principle for coating a flat annular surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465378B2 (en) 2001-06-08 2008-12-16 Cardinal Cg Company Method for reactive sputtering deposition
US8435388B2 (en) 2005-11-01 2013-05-07 Cardinal Cg Company Reactive sputter deposition processes and equipment
CN112030118A (zh) * 2020-07-31 2020-12-04 中国原子能科学研究院 一种氘化聚乙烯纳米线阵列靶的制备方法

Also Published As

Publication number Publication date
US6258217B1 (en) 2001-07-10
EP1235945A1 (en) 2002-09-04
AU7720700A (en) 2001-04-30
HK1049502A1 (zh) 2003-05-16
EP1235945A4 (en) 2007-01-17
DE60040757D1 (de) 2008-12-18
EP1235945B1 (en) 2008-11-05
ATE413688T1 (de) 2008-11-15
JP2003510464A (ja) 2003-03-18

Similar Documents

Publication Publication Date Title
US6258217B1 (en) Rotating magnet array and sputter source
US6197165B1 (en) Method and apparatus for ionized physical vapor deposition
US5130005A (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
KR100776861B1 (ko) 큰 영역 기판의 마그네트론 스퍼터링 시스템
US6506290B1 (en) Sputtering apparatus with magnetron device
US5795451A (en) Sputtering apparatus with a rotating magnet array
KR100322330B1 (ko) 재료의 이온 스퍼터링 방법 및 장치
US6113752A (en) Method and device for coating substrate
US6132575A (en) Magnetron reactor for providing a high density, inductively coupled plasma source for sputtering metal and dielectric films
EP3880862B1 (en) Tilted magnetron in a pvd sputtering deposition chamber
US4025410A (en) Sputtering apparatus and methods using a magnetic field
US5194131A (en) Apparatus and method for multiple ring sputtering from a single target
US5409590A (en) Target cooling and support for magnetron sputter coating apparatus
CN120591743A (zh) 控制脉冲直流pvd形成的材料层中应力变化的方法及设备
JP2000506225A (ja) 工作物を被覆するための方法および装置
EP1114436A2 (en) Physical vapor processing of a surface with non-uniformity compensation
EP1095394A1 (en) Feedthrough overlap coil
US20100078312A1 (en) Sputtering Chamber Having ICP Coil and Targets on Top Wall
US20100080928A1 (en) Confining Magnets In Sputtering Chamber
US20050098427A1 (en) RF coil design for improved film uniformity of an ion metal plasma source
CA2093635C (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
US5753089A (en) Sputter coating station
US20030127322A1 (en) Sputtering apparatus and magnetron unit
CN121002215A (zh) 用于改善底部覆盖和均匀性的磁控管设计
JP2001516655A (ja) 保護層システムを有する工具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527013

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000966934

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000966934

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642