WO2001023631A1 - Fe-Ni ALLOY FOR SHADOW MASK AND METHOD FOR PRODUCTION THEREOF - Google Patents

Fe-Ni ALLOY FOR SHADOW MASK AND METHOD FOR PRODUCTION THEREOF Download PDF

Info

Publication number
WO2001023631A1
WO2001023631A1 PCT/JP2000/004546 JP0004546W WO0123631A1 WO 2001023631 A1 WO2001023631 A1 WO 2001023631A1 JP 0004546 W JP0004546 W JP 0004546W WO 0123631 A1 WO0123631 A1 WO 0123631A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
balance
unavoidable impurities
weight
Prior art date
Application number
PCT/JP2000/004546
Other languages
French (fr)
Japanese (ja)
Inventor
Norio Yuki
Tomoji Mizuguchi
Akihiro Ito
Hitohisa Yamada
Sou Ueda
Takahiro Kishimoto
Original Assignee
Nippon Mining & Metals Co., Ltd.
Japan Steel Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd., Japan Steel Works Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Publication of WO2001023631A1 publication Critical patent/WO2001023631A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the present invention relates to a material for a shadow mask to be finely etched, and more particularly to a Fe—Ni-based alloy in which the occurrence of streaks in finely etched is suppressed.
  • the cause of uneven streaks is the segregation of Ni components. If a concentration difference occurs in Ni due to segregation, a difference in etching property occurs, and as a result, the smoothness of the etching wall surface (the inner peripheral surface of the electron beam transmitting hole) deteriorates. Since the segregated portion is elongated in the rolling direction by rolling, holes with poor smoothness on the wall will continue in the rolling direction long, and when viewed obliquely through the mask, light will appear as streaks. is there.
  • the Ni segregation part looks like a streak pattern (called a striped structure) as shown in Fig. 1 when the cross section of the alloy sheet immediately before etching is etched with an aqueous ferric chloride solution.
  • a streak pattern (called a striped structure) as shown in Fig. 1 when the cross section of the alloy sheet immediately before etching is etched with an aqueous ferric chloride solution.
  • MA X-ray microanalyzer
  • the Ni concentration difference is the maximum value of the difference between adjacent peaks (high Ni concentration) and valleys (low Ni concentration) in the Ni concentration change curve measured in the thickness direction by EPMA. It is.
  • the segregation rate in the Ni segregation zone is reduced to 10% or less to prevent the occurrence of this uneven streaking.
  • the area be 5% by volume or less and the length of one segregated area immediately before etching be 3 Omm or less.
  • an object of the present invention is to provide a Fe—Ni-based alloy for a shadow mask which can suppress the occurrence of streaks even in a recent fine pitch shadow mask, and an object of the present invention.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, when the segregation of Ni in an alloy thin plate immediately before etching exceeds a predetermined level, the portion where Ni segregation occurs ( It has been found that reducing the number of Ni segregation zones per unit plate width is effective as a measure against uneven streaks. Of course, the streaks can be eliminated if there is no Ni segregation zone exceeding the predetermined degree.However, the present inventor has conducted repeated studies on the premise of the existence of the Ni segregation zone exceeding the predetermined degree. We have found that reducing the number of bands eliminates the problem of shadow mask quality.
  • the position of the Ni segregation zone in the plate thickness direction (depth) is constant.
  • the position (depth) in the thickness direction of the Ni segregation zone caused by micro-segregation during solidification is not constant, so if the existing density in the width direction of the Ni segregation zone decreases, it is detected as uneven streaks. You will not be able to.
  • the present inventors have determined that the distance between the main axes of dendrites in the ingot structure related to the size of microsegregation during solidification (hereinafter referred to as “primary dendrite arm's spacing”). ) was found to be preferable. Because, if the distance between the main axes of dendrites is small, This is because the diffusion distance of Ni required for reducing segregation in processing and hot working can be short. Furthermore, the present inventors have clarified that in order to realize these, it is preferable to melt the ingot by electroslag remelting (ESR). In addition, it was clarified that the diameter of the ingot in that case is preferably 125 Omm or less. The present invention has been made based on the above findings.
  • the Fe-Ni alloy for a shadow mask according to the present invention is: Ni: 30 to 50%, Mn: 0.5% or less by weight, balance Consists of Fe and unavoidable impurities, and is characterized by being produced by electroslag remelting (ESR).
  • ESR electroslag remelting
  • the primary dendrite, arm, and spacing can be reduced because the alloy is melted by electroslag remelting, and thus Ni segregation. And the occurrence of stripe unevenness on the inner peripheral surface of the electron beam transmission hole can be suppressed.
  • Another Fe—Ni-based alloy for a shadow mask of the present invention is composed of Ni: 30 to 50%, Mn: 0.5% or less by weight, the balance being Fe and unavoidable impurities.
  • the number of segregation zones having a Ni concentration difference of 0.7% or more is 1.0 or less per 100 mm in the sheet width direction.
  • Another Fe—Ni-based alloy for shadow masks of the present invention comprises, by weight, Ni: 30 to 50%, Mn: 0.5% or less, and the balance consisting of Fe and unavoidable impurities.
  • the primary dendrite, arm, and spacing of the head is less than 1.00 mm.
  • Another Fe_Ni alloy for a shadow mask according to the present invention is, in terms of% by weight, Ni: 30 to 50%, Mn: 0.5% or less, and the balance consisting of Fe and unavoidable impurities.
  • Electroslag remelting (ESR) in which the segregation zone with Ni concentration difference of 0.7% or more is less than 1.0 per 100mm in the width direction of the cross section perpendicular to the rolling direction of the thin alloy sheet It is characterized by being produced by
  • Another Fe-Ni alloy for a shadow mask according to the present invention is composed of Ni: 30 to 50%, Mn: 0.5% or less, and the balance of Fe and unavoidable impurities is ingot by weight. Primary dendrite 'arm spacing is less than 1.00mm
  • ESR electroslag remelting
  • the method for producing a Fe—Ni alloy for a shadow mask according to the present invention is as follows. 50%, Mn: 0.5% or less, the remainder is Fe-Ni-based alloy for shadow masks composed of Fe and unavoidable impurities, and the ingot diameter is 1250mm when melted by electroslag remelting (ESR). It is characterized as follows.
  • Another manufacturing method of the Fe—Ni-based alloy for a shadow mask according to the present invention is as follows. Ni: 30 to 50%, Mn: 0.5% or less in weight%, the balance being Fe and unavoidable impurities.
  • the segregation zone with a Ni concentration difference of 0.7% or more is 1.0 or less per 100 mm in the width direction of the shadow mask.
  • ESR electroslag remelting
  • Another method for producing an Fe—Ni alloy for a shadow mask according to the present invention is as follows: Ni: 30 to 50%, Mn: 0.5% or less, with the balance being Fe and unavoidable impurities.
  • the ingot diameter should be 1250 mm or less. It is characterized by
  • Ni content If the Ni content is less than 30% or more than 50%, the thermal expansion coefficient becomes too large, and it is not possible to cope with a fine pitch shadow mask. Therefore, the content of Ni is set to 30 to 50%.
  • Mn content When the Mn content exceeds 0.5%, the thermal expansion coefficient increases, so the Mn content was set to 0.5% or less.
  • Inevitable impurity elements include C, Si, P and S. It is desirable that C is 0.01% by weight or less, S U O. 1% by weight or less, P is 0.01% by weight or less, and S is 0.05% by weight or less.
  • Ni segregation zone in the section perpendicular to the rolling direction of the alloy sheet immediately before etching Ni in the section perpendicular to the rolling direction of the alloy sheet immediately before etching. If the concentration difference exceeds 0.7%, the smoothness of the hole wall surface becomes poor when etching the shadow mask, which causes uneven streaks. Therefore, it is only necessary to define the existence density in the sheet width direction of the segregation zone in which the ⁇ 1 concentration difference exceeds 0.7%, and the Ni segregation band in which the Ni concentration difference is 0.7% or more in the sheet width direction. If it exceeds 1.0 per 100 mm, line irregularity will occur, so the number of Ni segregation zones with a Ni concentration difference of 0.7% or more per 100 mm in the sheet width direction is specified as 1.0 or less. .
  • the diffusion distance of Ni required for segregation reduction can be shortened, which is effective for eliminating uneven streaks. It was specified as 1.00 mm or less.
  • ESR Electroslag remelting
  • VAR vacuum arc remelting
  • ESR is the preferred method of melting.
  • the ingot diameter is set to 1250 mm or less, which can maintain the feature that the primary dendrite / arm / spacing is 1.00 mm or less.
  • This ESR includes not only normal ESR but also ESR sealed with inert gas (usually Ar) and vacuum ESR (VSR).
  • FIG. 1 is a diagram showing a striped structure by corroding a cross section of a material.
  • FIG. 2 is a diagram showing the relationship between the depth from the surface of the material and the Ni concentration.
  • the primary dendrite arm spacing of the ingot was sampled and measured at a position cut at 20% from the top.
  • the cold-rolled sheet with a thickness of 0.13 mm was filled with resin so that the right-angle cross section of the whole width could be observed, mirror-polished, and etched with a 10-fold diluted solution of ferric chloride aqueous solution having a specific gravity of 45 mm.
  • the Ni segregation zone is corroded, and a striped structure as shown in Fig. 1 appears.
  • After marking this Ni segregation zone with a dent of a picker hardness tester it was mirror polished to the extent that the marking was not erased again, and the Ni concentration map of the segregation zone was analyzed using EPMA under the following conditions.
  • Step interval X 0.19 / m
  • Y 0.19 m
  • the Ni concentration profile in the direction crossing the segregation zone as shown in Fig. 2 was obtained, and the Ni concentration difference between the peak and the valley of this Ni concentration profile was calculated as N
  • the difference in Ni concentration in the i segregation zone was used. According to this method, the quantitative measurement accuracy is higher than that of the ordinary line analysis, and the measurement of the Ni concentration difference of 1% or less can be performed with high reliability.
  • the Ni concentration difference of the Ni segregation zone existing at a plate width of 600 mm was measured, and the number of segregation zones with a concentration difference of 0.7% or more was converted to a value per 100 mm plate width. . Furthermore, each material was etched to create an actual shadow mask, and the streak quality was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A Fe-Ni alloy for a shadow mask which comprises, in wt %, 30 to 50 % of Ni and 0.5 % or less of Mn, the balance of the alloy being Fe and inevitable impurities, and contains, in a cross section perpendicular to the direction of rolling of an alloy thin plate immediately before etching, segregation regions (bands) having a difference in Ni concentration of 0.7 % or more in an amount of 1.0 piece or less per 100 mm in the direction of the width of the plate. The Fe-Ni alloy can be used, in a shadow mask having a fine pitch, for suppressing the occurrence of striped irregularities at a hole for passing an electron beam

Description

明 細 書 シャドウマスク用 F e - N i系合金及びその製造方法 発 明 の 背 景  Description Fe-Ni alloy for shadow mask and method of manufacturing the same Background of the invention
本発明は、 微細エッチング加工されるシャドウマスク用素材に関わり、 特に微 細エッチング加工した際のスジムラの発生を抑制した F e—N i系合金に関する ものである。  The present invention relates to a material for a shadow mask to be finely etched, and more particularly to a Fe—Ni-based alloy in which the occurrence of streaks in finely etched is suppressed.
近年、 カラーブラウン管用のシャドウマスクには、 色純度の観点から熱膨張の 小さい F e — N i系合金が多く使用されている。 シャドウマスクの電子線透過孔 は、 微細エッチング加工により形成され、 F e — N i系合金シャドウマスクは、 従来から使用されている軟鋼製のシャドウマスクと比較して、 エッチング加工さ れた際にスジムラと称する欠陥を生じやすいという欠点がある。 なお、 このスジ ムラは、 シャドウマスクの小孔側を表にして、 透過孔のエッチング壁面が光るよ うに裏側から斜めに光を通して観察することにより確認することができる。 In recent years, Fe—Ni alloys with low thermal expansion are often used in shadow masks for color cathode ray tubes from the viewpoint of color purity. The electron beam transmission holes in the shadow mask are formed by micro-etching, and the Fe—Ni-based alloy shadow mask, when compared to the mild steel shadow mask used conventionally, There is a disadvantage that a defect called a streak tends to occur. In addition, this stripe unevenness can be confirmed by observing the small hole side of the shadow mask as a front surface and obliquely observing light from the back side so that the etching wall surface of the transmission hole shines.
1 ー? 6系合金の場合、 スジムラの原因は N iの成分偏析にある。 偏析によ り N iに濃度差が生じるとエッチング性に差が生じ、 その結果、 エッチング壁面 (電子線透過孔内周面) の平滑性が悪くなる。 偏析部は圧延により圧延方向に長 く伸ばされているので、 壁面の平滑性が悪い孔が圧延方向に長く連なることにな り、 マスクに斜めに光を通して観察したときにスジムラとなって見えるのである。  1-? In the case of a hexagonal alloy, the cause of uneven streaks is the segregation of Ni components. If a concentration difference occurs in Ni due to segregation, a difference in etching property occurs, and as a result, the smoothness of the etching wall surface (the inner peripheral surface of the electron beam transmitting hole) deteriorates. Since the segregated portion is elongated in the rolling direction by rolling, holes with poor smoothness on the wall will continue in the rolling direction long, and when viewed obliquely through the mask, light will appear as streaks. is there.
N i偏析部は、 エッチング直前の合金薄板断面を塩化第二鉄水溶液でエツチン グすると、 第 1図のようにスジ模様 (縞状組織と称されている) となって見える このスジ部を E P MA ( X線マイクロアナライザ) で分析すると、 第 2図に示す ように、 N i濃度が表面から奥へ向かうに従って急激に変化しており、 断面をェ ツチングしたときに見えるスジ模様と N i偏祈が対応していることが判る。 N i 濃度差とは、 このように E P M Aで板厚方向に測定した N i濃度変化曲線の隣接 する山部 (N i濃度が高い) と谷部 (N i濃度が低い) の差の最大値である。 従来、 このスジムラの発生を防ぐために、 N i偏析域の偏析率すなわち母材の N i濃度に対する偏析域の N i濃度の変化率を 1 0 %以下に、 単位体積中の偏析 部を 5容積%以下に、 エッチング直前の偏析部一つの長さを 3 O mm以下とする ことが提唱されている (特開昭 6 0— 5 6 0 5 3号) 。 また、 エッチング直前の 合金素材の断面におけるミクロ偏祈の N i濃度差を 3 %以下にし、 かつ同じ位置 の M n、 P、 S iの濃度差を規定することも提案されている (特開平 9一 1 4 3 6 2 5 ) 。 The Ni segregation part looks like a streak pattern (called a striped structure) as shown in Fig. 1 when the cross section of the alloy sheet immediately before etching is etched with an aqueous ferric chloride solution. When analyzed by MA (X-ray microanalyzer), as shown in Fig. 2, the Ni concentration sharply changes from the surface to the back, and the streak pattern and the Ni deviation seen when the cross section is etched. You can see that the prayers correspond. The Ni concentration difference is the maximum value of the difference between adjacent peaks (high Ni concentration) and valleys (low Ni concentration) in the Ni concentration change curve measured in the thickness direction by EPMA. It is. Conventionally, the segregation rate in the Ni segregation zone, that is, the rate of change of the Ni concentration in the segregation zone with respect to the Ni concentration in the base material, is reduced to 10% or less to prevent the occurrence of this uneven streaking. It has been proposed that the area be 5% by volume or less and the length of one segregated area immediately before etching be 3 Omm or less (Japanese Patent Application Laid-Open No. 60-56053). It has also been proposed to reduce the Ni concentration difference in the micro bias in the cross section of the alloy material immediately before etching to 3% or less, and to specify the concentration difference of Mn, P, and Si at the same position (Japanese Patent Laid-Open No. Heisei 9 (1994) -207). 9 1 1 4 3 6 2 5).
しかしながら、 シャドウマスクのファインピッチ化が進むにつれ、 従来の対策 では不十分になってきており、 さらなる改善が望まれている。 よって、 本発明は、 最近のファインピッチのシャドウマスクでもスジムラの発生を抑制することがで きるシャドウマスク用 F e — N i系合金及びその製造方法を提供することを目的 としている。 発 明 の 概 要  However, as the fine pitch of the shadow mask has advanced, conventional measures have become insufficient, and further improvement is desired. Therefore, an object of the present invention is to provide a Fe—Ni-based alloy for a shadow mask which can suppress the occurrence of streaks even in a recent fine pitch shadow mask, and an object of the present invention. Overview of the invention
本発明者等は、 上記課題を解決すべく鋭意検討を行ったところ、 エッチング直 前の合金薄板における N iの偏析が所定の程度を超える場合に、 N iの偏析が生 じている部分 (以下、 N i偏析帯と称する) の単位板幅当たりの数を少なくする ことがスジムラ対策として有効であることを見出した。 もちろん、 所定の程度を 超える N i偏析帯が皆無であればスジムラは解消できるが、 本発明者は、 所定の 程度を超える N i偏析帯の存在を前提として検討を重ねた結果、 N i偏析帯の数 が少なくなればシャドウマスクの品質上問題がなくなることを見い出した。  The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, when the segregation of Ni in an alloy thin plate immediately before etching exceeds a predetermined level, the portion where Ni segregation occurs ( It has been found that reducing the number of Ni segregation zones per unit plate width is effective as a measure against uneven streaks. Of course, the streaks can be eliminated if there is no Ni segregation zone exceeding the predetermined degree.However, the present inventor has conducted repeated studies on the premise of the existence of the Ni segregation zone exceeding the predetermined degree. We have found that reducing the number of bands eliminates the problem of shadow mask quality.
すなわち、 前述したようにスジムラはシャドウマスクを傾けて透過孔のエッチ ング壁面が光るように斜めに光を通して観察するので、 N i偏析帯の板厚方向の 位置 (深さ) が異なると、 一定の角度でシャドウマスクを傾けたときに同時にス ジとしては見えなくなることがある。 現実には凝固時のミクロ偏析に起因する N i偏析帯の板厚方向の位置 (深さ) は一定ではないので、 N i偏析帯の板幅方向 での存在密度が低くなればスジムラとして検知できなくなるのである。  That is, as described above, since the uneven streaks obliquely observe the light as if the etching wall surface of the transmission hole glows by tilting the shadow mask, the position of the Ni segregation zone in the plate thickness direction (depth) is constant. When the shadow mask is tilted at an angle of, it may not be visible as a stripe at the same time. In reality, the position (depth) in the thickness direction of the Ni segregation zone caused by micro-segregation during solidification is not constant, so if the existing density in the width direction of the Ni segregation zone decreases, it is detected as uneven streaks. You will not be able to.
また、 本発明者等は、 そのためには凝固時のミクロ偏析の大きさに関わるイン ゴットの組織における樹枝状晶の主軸どうしの間隔 (以下、 「 1次デンドライ卜 • アーム 'スペーシング」 と称する) を小さくすることが好ましいことを見い出 した。 なぜなら、 樹枝状晶の主軸どうしの間隔が小さければ、 その後の均質化熱 処理や熱間加工での偏析低減に必要な N iの拡散距離が短くてすむからである。 さらに、 本発明者等は、 これらを実現するためにはエレクトロスラグ再溶解 (E SR) によりインゴットを溶製することが好ましいことを明らかにした。 また、 その場合のィンゴット直径は 125 Omm以下が好ましいことを明らかにした。 本発明は以上の知見に基づいてなされたもので、 本発明のシャドウマスク用 F e -N i系合金は、 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部 が F e及び不可避的不純物からなり、 エレクトロスラグ再溶解 (ESR) により 溶製されたことを特徴としている。 In addition, the present inventors have determined that the distance between the main axes of dendrites in the ingot structure related to the size of microsegregation during solidification (hereinafter referred to as “primary dendrite arm's spacing”). ) Was found to be preferable. Because, if the distance between the main axes of dendrites is small, This is because the diffusion distance of Ni required for reducing segregation in processing and hot working can be short. Furthermore, the present inventors have clarified that in order to realize these, it is preferable to melt the ingot by electroslag remelting (ESR). In addition, it was clarified that the diameter of the ingot in that case is preferably 125 Omm or less. The present invention has been made based on the above findings. The Fe-Ni alloy for a shadow mask according to the present invention is: Ni: 30 to 50%, Mn: 0.5% or less by weight, balance Consists of Fe and unavoidable impurities, and is characterized by being produced by electroslag remelting (ESR).
上記シャドウマスク用 F e -N i系合金によれば、 エレクトロスラグ再溶解に より溶製されているため、 1次デンドライト · アーム ·スペーシングを小さくす ることができ、 よって、 N iの偏析を抑制して電子線透過孔内周面におけるスジ ムラの発生を抑制することができる。  According to the Fe-Ni alloy for shadow masks, the primary dendrite, arm, and spacing can be reduced because the alloy is melted by electroslag remelting, and thus Ni segregation. And the occurrence of stripe unevenness on the inner peripheral surface of the electron beam transmission hole can be suppressed.
本発明の他のシャドウマスク用 F e— N i系合金は、 重量%で、 N i : 30〜 50%、 Mn : 0. 5 %以下、 残部が F e及び不可避的不純物からなり、 エッチ ング直前の合金薄板の圧延方向に直角な断面において、 N i濃度差が0. 7 %以 上である偏析帯が板幅方向 1 00mm当たり 1. 0個以下であることを特徴とし ている。  Another Fe—Ni-based alloy for a shadow mask of the present invention is composed of Ni: 30 to 50%, Mn: 0.5% or less by weight, the balance being Fe and unavoidable impurities. In a cross section perpendicular to the rolling direction of the immediately preceding alloy sheet, the number of segregation zones having a Ni concentration difference of 0.7% or more is 1.0 or less per 100 mm in the sheet width direction.
本発明の他のシャドウマスク用 F e— N i系合金は、 重量%で、 N i : 30〜 50%、 Mn : 0. 5%以下、 残部が F e及び不可避的不純物からなり、 インゴ ットにおける 1次デンドライト ·アーム ·スペーシングが 1. 00mm以下であ ることを特徴としている。  Another Fe—Ni-based alloy for shadow masks of the present invention comprises, by weight, Ni: 30 to 50%, Mn: 0.5% or less, and the balance consisting of Fe and unavoidable impurities. The primary dendrite, arm, and spacing of the head is less than 1.00 mm.
本発明の他のシャドウマスク用 F e _N i系合金は、 重量%で、 N i : 30〜 50%、 Mn : 0. 5%以下、 残部が F e及び不可避的不純物からなり、 エッチ ング直前の合金薄板の圧延方向に直角な断面において、 N i濃度差が 0. 7 %以 上である偏析帯が板幅方向 1 00mm当たり 1. 0個以下である、 エレクトロス ラグ再溶解 (ESR) により溶製されたことを特徴としている。  Another Fe_Ni alloy for a shadow mask according to the present invention is, in terms of% by weight, Ni: 30 to 50%, Mn: 0.5% or less, and the balance consisting of Fe and unavoidable impurities. Electroslag remelting (ESR) in which the segregation zone with Ni concentration difference of 0.7% or more is less than 1.0 per 100mm in the width direction of the cross section perpendicular to the rolling direction of the thin alloy sheet It is characterized by being produced by
本発明の他のシャドウマスク用 F e -N i系合金は、 重量%で、 N i : 30〜 50%、 Mn : 0. 5%以下、 残部が F e及び不可避的不純物からなり、 インゴ ットにおける 1次デンドライ ト ' アーム ·スペーシングが 1. 00mm以下であ る、 エレクトロスラグ再溶解 (ESR) により溶製されたことを特徴としている, 次に、 本発明のシャドウマスク用 F e— N i系合金の製造方法は、 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部が F e及び不可避的不純物から なるシャドウマスク用 F e—N i系合金をエレクトロスラグ再溶解 (ESR) に より溶製するにあたり、 インゴット直径を 1250mm以下にすることを特徴と している。 Another Fe-Ni alloy for a shadow mask according to the present invention is composed of Ni: 30 to 50%, Mn: 0.5% or less, and the balance of Fe and unavoidable impurities is ingot by weight. Primary dendrite 'arm spacing is less than 1.00mm The method is characterized by being produced by electroslag remelting (ESR). Next, the method for producing a Fe—Ni alloy for a shadow mask according to the present invention is as follows. 50%, Mn: 0.5% or less, the remainder is Fe-Ni-based alloy for shadow masks composed of Fe and unavoidable impurities, and the ingot diameter is 1250mm when melted by electroslag remelting (ESR). It is characterized as follows.
本発明の他のシャドウマスク用 F e— N i系合金の製造方法は、 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可避的不純物からな り、 エッチング直前の合金薄板の圧延方向に直角な断面において、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 1 00mm当たり 1. 0個以下であるシャ ドウマスク用 F e— N i系合金をエレクトロスラグ再溶解 (ESR) により溶製 するにあたり、 インゴット直径を 1250mm以下にすることを特徴としている。 本発明の他のシャドウマスク用 F e—N i系合金の製造方法は、 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可避的不純物からな り、 インゴットにおける 1次デンドライト 'アーム 'スペーシングが 1. 00m m以下であるシャドウマスク用 F e— N i系合金をエレクトロスラグ再溶解 (E SR) により溶製するにあたり、 インゴット直径を 1250mm以下にすること を特徴としている。  Another manufacturing method of the Fe—Ni-based alloy for a shadow mask according to the present invention is as follows. Ni: 30 to 50%, Mn: 0.5% or less in weight%, the balance being Fe and unavoidable impurities. In the section perpendicular to the rolling direction of the alloy thin plate immediately before etching, the segregation zone with a Ni concentration difference of 0.7% or more is 1.0 or less per 100 mm in the width direction of the shadow mask. When melting Ni-based alloys by electroslag remelting (ESR), the ingot diameter is reduced to 1250 mm or less. Another method for producing an Fe—Ni alloy for a shadow mask according to the present invention is as follows: Ni: 30 to 50%, Mn: 0.5% or less, with the balance being Fe and unavoidable impurities. In order to melt Fe-Ni-based alloys for shadow masks whose primary dendrite 'arm' spacing in the ingot is less than 1.00 mm by electroslag remelting (ESR), the ingot diameter should be 1250 mm or less. It is characterized by
以下に本発明における上記数値限定の理由を説明する。  Hereinafter, the reason for limiting the numerical values in the present invention will be described.
N i含有量: N iの含有量が 30 %未満、 あるいは 50 %を超えると熱膨張係 数が大きくなりすぎ、 シャドウマスクのファインピッチ化に対応できなくなる。 よって、 N iの含有量は 30〜 50 %とした。  Ni content: If the Ni content is less than 30% or more than 50%, the thermal expansion coefficient becomes too large, and it is not possible to cope with a fine pitch shadow mask. Therefore, the content of Ni is set to 30 to 50%.
Mn含有量: Mnの含有量が 0. 5 %を超えると熱膨張係数が大きくなるので、 Mnの含有量は 0. 5%以下とした。  Mn content: When the Mn content exceeds 0.5%, the thermal expansion coefficient increases, so the Mn content was set to 0.5% or less.
なお、 不可避的不純物元素としては C、 S i、 Pおよび Sを挙げることができ る。 Cは 0. 0 1重量%以下、 S U O. 1重量%以下、 Pは 0. 0 1重量%以 下、 Sは 0. 05重量%以下であることが望ましい。  Inevitable impurity elements include C, Si, P and S. It is desirable that C is 0.01% by weight or less, S U O. 1% by weight or less, P is 0.01% by weight or less, and S is 0.05% by weight or less.
エッチング直前の合金薄板の圧延方向に直角な断面における N i偏析帯: エッチング直前の合金薄板の圧延方向に直角な断面における N i偏析帯の N i 濃度差が 0. 7 %を超えると、 シャドウマスクにエッチングした際に孔壁面の平 滑性が悪くなりスジムラの原因となる。 したがって、 ^ 1濃度差が0. 7 %を超 える偏析帯の板幅方向での存在密度を規定すればよく、 N i濃度差が0. 7 %以 上の N i偏析帯が板幅方向 100mm当たり 1. 0個を超えるとスジムラ異常に なるため、 N i濃度差が 0. 7 %以上である N i偏析帯の板幅方向 1 00mm当 たりの個数を 1. 0個以下と規定した。 Ni segregation zone in the section perpendicular to the rolling direction of the alloy sheet immediately before etching: Ni in the section perpendicular to the rolling direction of the alloy sheet immediately before etching. If the concentration difference exceeds 0.7%, the smoothness of the hole wall surface becomes poor when etching the shadow mask, which causes uneven streaks. Therefore, it is only necessary to define the existence density in the sheet width direction of the segregation zone in which the ^ 1 concentration difference exceeds 0.7%, and the Ni segregation band in which the Ni concentration difference is 0.7% or more in the sheet width direction. If it exceeds 1.0 per 100 mm, line irregularity will occur, so the number of Ni segregation zones with a Ni concentration difference of 0.7% or more per 100 mm in the sheet width direction is specified as 1.0 or less. .
ィンゴッ卜における 1次デンドライト ' アーム ·スペーシング:  Primary Dendrite in Arming 'Arm Spacing:
ィンゴットにおける 1次デンドライト ·アーム ·スペーシングが 1. 00 mm 以下であると偏析低減に必要な N iの拡散距離を短くできスジムラ解消に有効な ため、 インゴットにおける 1次デンドライト 'アーム 'スペーシングを 1. 00 mm以下と規定した。  When the primary dendrite arm spacing in the ingot is less than 1.00 mm, the diffusion distance of Ni required for segregation reduction can be shortened, which is effective for eliminating uneven streaks. It was specified as 1.00 mm or less.
溶製方法:ィンゴッ卜における 1次デンドライト ' アーム ·スペーシングを小 さくするための溶製方法としては、 積層凝固を行うエレクトロスラグ再溶解 (E SR) か真空アーク再溶解 (VAR) が考えられるが、 VARはホワイトスポッ 卜と呼ばれる異常に伴う大きな偏折が起きやすいため、 溶製方法は E S Rが好ま しい。 しかしながら、 E S Rにおいてもインゴット直径の増加とともに凝固組織 は不可避的に粗くなるため、 インゴット直径は 1次デンドライト · アーム ·スぺ 一シングが 1. 00mm以下である特徴を維持できる 1250mm以下とした。 なお、 この ESRには、 通常の ESRの他、 不活性ガス (通常は Ar) によりシ ールした ESRや、 真空 ESR (VS R) も含まれる。 図 面 の 簡 単 な 説 明  Melting method: primary dendrite in the ingot 溶 Electroslag remelting (ESR) or vacuum arc remelting (VAR) for laminating and solidifying can be considered as a melting method to reduce arm spacing. However, VAR is susceptible to large deviations due to abnormalities called white spots, so ESR is the preferred method of melting. However, since the solidified structure is inevitably coarsened as the ingot diameter increases even in ESR, the ingot diameter is set to 1250 mm or less, which can maintain the feature that the primary dendrite / arm / spacing is 1.00 mm or less. This ESR includes not only normal ESR but also ESR sealed with inert gas (usually Ar) and vacuum ESR (VSR). Brief explanation of drawings
第 1図は材料の断面を腐食して縞状組織を表した図である。  FIG. 1 is a diagram showing a striped structure by corroding a cross section of a material.
第 2図は材料の表面からの深さと N i濃度との関係を示す線図である。 実施例  FIG. 2 is a diagram showing the relationship between the depth from the surface of the material and the Ni concentration. Example
次に、 実施例を示し本発明を説明する。  Next, the present invention will be described with reference to examples.
N iが36重量%、 Mnが 0. 25重量%、 残部が F e及び不可避的不純物か らなる成分の直径 700、 1 200、 1 500mmのインゴットをそれぞれ真空 溶解一置注ぎ法と ESR法により溶製した。 インゴット ' トップ部の非定常部分 の影響を取り除くため、 トップから 20%を切り落とし、 残りのインゴットは 1 250°C以上で 1 0時間以上加熱し厚さ 150 mmまで鍛造した。 皮剥き後板厚 3mmまで熱間圧延し、 次に、 酸洗後冷間圧延と焼鈍を繰り返し最終的に板厚 0. 1 3mm、 板幅 600 mmの冷延板とした。 Vacuum ingots of 36% by weight of Ni, 0.25% by weight of Mn, and the remainder of Fe and inevitable impurities with diameters of 700, 1200 and 1500mm It was melted by dissolving in-place pouring and ESR. In order to remove the effect of the unsteady part of the ingot 'top, 20% was cut off from the top, and the remaining ingot was heated at 1250 ° C or more for 10 hours or more and forged to a thickness of 150 mm. After stripping, hot-rolled to a thickness of 3 mm, and then repeated cold rolling and annealing after pickling to finally produce a cold-rolled sheet with a thickness of 0.13 mm and a width of 600 mm.
インゴットの 1次デンドライト · アーム ·スペーシングは、 トップから 20 % で切断した位置でサンプリングし測定した。 板厚 0. 13mmの冷延板は全幅の 圧延直角断面を観察できるように樹脂埋め、 鏡面研磨し、 比重 45ボ一メの塩化 第二鉄水溶液を 1 0倍に希釈した液でエッチングした。 こうすることにより N i 偏析帯が腐食され、 第 1図のような縞状組織が現れる。 この N i偏析帯をピツカ ース硬さ計の打痕によりマーキングした後、 再度マ一キングを消さない程度に鏡 面研磨し、 偏析帯の N i濃度マップを E PMAを用いて次の条件で測定した。 倍率 5000倍  The primary dendrite arm spacing of the ingot was sampled and measured at a position cut at 20% from the top. The cold-rolled sheet with a thickness of 0.13 mm was filled with resin so that the right-angle cross section of the whole width could be observed, mirror-polished, and etched with a 10-fold diluted solution of ferric chloride aqueous solution having a specific gravity of 45 mm. By doing so, the Ni segregation zone is corroded, and a striped structure as shown in Fig. 1 appears. After marking this Ni segregation zone with a dent of a picker hardness tester, it was mirror polished to the extent that the marking was not erased again, and the Ni concentration map of the segregation zone was analyzed using EPMA under the following conditions. Was measured. 5000x magnification
加速電圧 20 k V Acceleration voltage 20 kV
Dwe l l t i me 35ms Dwe l l t i me 35ms
分光結晶: L i F Dispersion crystal: L i F
スキャンタイプ ビーム Scan type beam
ステツプ間隔 X : 0. 1 9 / m、 Y : 0. 1 9 m Step interval X: 0.19 / m, Y: 0.19 m
ステップ数 X: 200点、 Y: 200点 Number of steps X: 200 points, Y: 200 points
上記測定によって得られた N i濃度デ一夕から第 2図に示すような偏析帯を横 切る方向の N i濃度プロファイルを求め、 この N i濃度プロファイルの山と谷の N i濃度差を N i偏析帯の N i濃度差とした。 この方法であると、 通常のライン 分析よりも定量測定精度が高く、 1 %以下の N i濃度差の測定を信頼度高く行う ことができる。 以上のようにして、 板幅 600mmに存在する N i偏析帯の N i 濃度差を測定し、 濃度差が 0. 7 %以上の偏析帯の個数を板幅 1 00mm当たり に換算して求めた。 さらに、 各材料をエッチングして実際のシャドウマスクを作 製し、 スジムラ品質を評価した。  From the Ni concentration data obtained by the above measurement, the Ni concentration profile in the direction crossing the segregation zone as shown in Fig. 2 was obtained, and the Ni concentration difference between the peak and the valley of this Ni concentration profile was calculated as N The difference in Ni concentration in the i segregation zone was used. According to this method, the quantitative measurement accuracy is higher than that of the ordinary line analysis, and the measurement of the Ni concentration difference of 1% or less can be performed with high reliability. As described above, the Ni concentration difference of the Ni segregation zone existing at a plate width of 600 mm was measured, and the number of segregation zones with a concentration difference of 0.7% or more was converted to a value per 100 mm plate width. . Furthermore, each material was etched to create an actual shadow mask, and the streak quality was evaluated.
以上のようにして評価したインゴッ卜の 1次デンドライ ト ' アーム ·スぺ一シ ング、 冷延板の N i濃度差が 0. 7 %以上の偏析帯の板幅 1 00mm当たりの個 数及びマスクのスジムラ品質を各インゴットにっき第 1表に示す。 第 1表から判 るように、 ESR法で製造した No. l〜No. 3は、 従来の真空溶解—置き注 ぎ法により製造した No. 4〜No. 6よりもシャドウマスクのスジムラ品質が 良好である。 The primary dendrites of the ingots evaluated as described above, the arm spacing, and the number of segregation zones per 100 mm in width of the segregation zone with a Ni concentration difference of 0.7% or more in the cold rolled sheet. Table 1 shows the number and the streak quality of the mask for each ingot. As can be seen from Table 1, the No. 1 to No. 3 manufactured by the ESR method have a higher unevenness quality of the shadow mask than the No. 4 to No. 6 manufactured by the conventional vacuum melting and pouring method. Good.
特に、 インゴット直径を 125 Omm以下にして製造し、 1次デンドライト . アーム ·スペーシングが 1. 00 mm以下で、 N i濃度差が 0. 7 %以上の偏析 帯の板幅 1 00mm当たりの個数が 1. 0以下の No. 1と No. 2では、 スジ ムラ品質が非常に良好である。 これに対し、 従来の真空溶解一置き注ぎ法で製造 した比較例の No. 4〜No. 6では、 インゴット直径に関わらず 1次デンドラ イト ·アーム ·スペーシングが 1. 00mmを超え、 N i濃度差が 0. 7 %以上 の偏析帯の板幅 100mm当たりの個数が 10を超え、 スジムラ品質が不良とな つた。  In particular, manufactured with ingot diameter of 125 Omm or less, primary dendrite.Separation zone with arm spacing of 1.00 mm or less and Ni concentration difference of 0.7% or more per 100 mm of plate width. In No. 1 and No. 2 having a value of 1.0 or less, the line unevenness quality was very good. In contrast, in Comparative Examples No. 4 to No. 6, which were manufactured by the conventional vacuum melting one-shot pouring method, the primary dendrite arm spacing exceeded 1.00 mm regardless of the ingot diameter, and Ni The number of segregation zones with a concentration difference of 0.7% or more per plate width of 100 mm exceeded 10, resulting in poor linear streaks.
以上説明したように、 本発明によれば、 最近のファインピッチのシャドウマス クでもスジムラの発生を抑制することができるシャドウマスク用 F e— N i系合 金を得ることができ、 優れた工業上の効果を得ることができる。 As described above, according to the present invention, it is possible to obtain a Fe—Ni-based alloy for a shadow mask capable of suppressing the occurrence of uneven streaks even with a recent fine-pitch shadow mask. The above effects can be obtained.
インゴット直径 1次 DAS+ Νί偏析帯 **個数 Ingot diameter Primary DAS + ΝίSegregation zone ** Number
No. 溶製方法 スジムラ品質 備考  No. Melting method Streaks quality Remarks
(mm) (mm) (個/ 100mm)  (mm) (mm) (pcs / 100mm)
1 ESR 700 0.35 0.0 非常に良好 本発明例  1 ESR 700 0.35 0.0 Very good Example of the present invention
2 ESR 1200 0.90 0.6 非常に良好 本発明例 2 ESR 1200 0.90 0.6 Very good Example of the present invention
3 ESR 1500 1.30 1.4 良好 本発明例 3 ESR 1500 1.30 1.4 Good Example of the present invention
4 VIM-置き注ぎ 700 1.20 10以上 *** 不良 比較例 4 VIM-place poured 700 1.20 10 or more *** Failure Comparative example
5 VIM-置き注ぎ 1200 1.60 10以上 *** 不良 比較例 5 VIM-pour 1200 1.60 10 or more *** Failure Comparative example
6 VIM-置き注ぎ 1500 2.10 10以上 **★ 不良 比較例 6 VIM-Place pouring 1500 2.10 10 or more ** ★ Bad Comparative example
DAS:デンドライト 'アーム'スペーシング DAS: Dendrite 'arm' spacing
* Ni濃度差≥0.7%の偏析帯  * Segregation zone with Ni concentration difference ≥0.7%
★* Νί濃度差≥0.7%の偏析帯があまりにも多いので. 10個で分析を中止した。  ★ * ΝίBecause there are too many segregation zones with concentration difference ≥0.7%. The analysis was stopped after 10 samples.

Claims

請 求 の 範 囲 The scope of the claims
1. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エレクトロスラグ再溶解により溶製されたことを特徴とす るシャドウマスク用 F e一 N i系合金。  1. By weight, Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities, and characterized by being melted by electroslag remelting. Fe-Ni alloy for masks.
2. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 N i濃度差が 0. 7%以上である偏析帯が板幅方向 100mm当たり 1. 0 個以下であることを特徴とするシャドウマスク用 F e— N i系合金。  2. By weight%, Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities. In the section perpendicular to the rolling direction of the alloy sheet immediately before etching, N An Fe—Ni alloy for shadow masks, wherein the number of segregation zones having an i concentration difference of 0.7% or more is 1.0 or less per 100 mm in the sheet width direction.
3. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 インゴットの組織における樹枝状晶の主軸どうしの間隔が 1. 00mm以下であることを特徴とするシャドウマスク用 F e一 N i系合金。 3. By weight%, Ni: 30-50%, Mn: 0.5% or less, the balance is composed of Fe and unavoidable impurities, and the distance between the main axes of dendrites in the ingot structure is 1.00 mm. A Fe-Ni alloy for shadow masks, characterized by the following.
4. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 ^^ 1濃度差が0. 7 %以上である偏析帯が板幅方向 100mm当たり 1. 0 個以下である、 エレクトロスラグ再溶解 (ESR) により溶製することを特徴と するシャドウマスク用 F e— N i系合金。 4. By weight%, Ni: 30-50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities, and in a cross section perpendicular to the rolling direction of the alloy sheet immediately before etching, ^ ^ 1 For segregation zones with a concentration difference of 0.7% or more, 1.0 or less per 100 mm in the width direction of the sheet, produced by electroslag remelting (ESR). Ni-based alloy.
5. 重量%で、 N i : 30〜50%、 Mn : 0. 5%以下、 残部が F e及び不可 避的不純物からなり、 インゴッ卜の組織における樹枝状晶の主軸どうしの間隔が 1. 00mm以下である、 エレクトロスラグ再溶解 (ESR) により溶製するこ とを特徴とするシャドウマスク用 F e— N i系合金。  5. By weight%, Ni: 30 to 50%, Mn: 0.5% or less, balance of Fe and unavoidable impurities, and the distance between the main axes of dendrites in the ingot structure is 1. Fe-Ni-based alloy for shadow masks, characterized by being produced by electroslag remelting (ESR) with a size of 00mm or less.
6. 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなるシャドウマスク用 F e— N i系合金をエレクトロスラグ再溶 解により溶製するにあたり、 インゴット直径を 1250mm以下にすることを特 徵とするシャドウマスク用 F e— N i系合金の製造方法。  6. By weight percent, Ni: 30-50%, Mn: 0.5% or less, Fe-Ni alloy for shadow mask consisting of Fe and unavoidable impurities by electroslag remelting. A method for producing Fe—Ni-based alloys for shadow masks, wherein the ingot diameter is reduced to 1250 mm or less when melting.
7. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 1 00mm当たり 1. 0 個以下であるシャドウマスク用 F e— N i系合金をエレクトロスラグ再溶解によ り溶製するにあたり、 ィンゴットの直径を 1250mm以下にすることを特徴と するシャドウマスク用 F e— N i系合金の製造方法。 7. By weight%, Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities. In the section perpendicular to the rolling direction of the alloy sheet immediately before etching, N When melting Fe-Ni alloys for shadow masks with less than 1.0 segregation zones with a concentration difference of 0.7% or more per 100 mm in the sheet width direction by electroslag remelting, The feature is that the diameter of the ingot is 1250mm or less. Of manufacturing Fe—Ni alloy for shadow masks.
8. 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 インゴッ卜の組織における樹枝状晶の主軸どうしの間隔が 1. 00 mm以下であるシャドウマスク用 F e— N i系合金をエレクトロスラグ 再溶解により溶製するにあたり、 インゴット直径を 125 Omm以下にすること を特徵とするシャドウマスク用 F e -N i系合金の製造方法。 8. By weight%, Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities, and the distance between the main axes of dendrites in the ingot structure is 1. Fe-Ni alloys for shadow masks with a diameter of 00 mm or less are melted by electroslag remelting to reduce the ingot diameter to 125 Omm or less. Production method.
補正書の請求の範囲 Claims of amendment
[2000年 1 2月 9曰 (09. 1 2. 00 ) 国際事務局受理:出願当初の請求の範囲 1は 補正された;他の請求の範囲は変更なし。 (1頁) ]  [9/9/2000 (09.12.00) Accepted by the International Bureau: Claim 1 at the time of filing was amended; other claims remain unchanged. (1 page)]
1. (補正後) 重量%で、 N i : 30〜 50 %、 Mn : 0. 5 %以下、 残部が F e及び不可避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な 断面において、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 10 Omm当 たり 1. 0個以下であり、 かつ、 インゴットの組織における樹枝状晶の主軸どう しの間隔が 1. 00mm以下であることを特徴とするシャドウマスク用 F e一 N i系合金。 1. (After correction) In weight percent, Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities, in a cross section perpendicular to the rolling direction of the alloy sheet immediately before etching. The segregation zone with a Ni concentration difference of 0.7% or more is 1.0 or less per 10 Omm in the plate width direction, and the interval between the main axes of dendrites in the ingot structure is 1.00 mm. A Fe-Ni alloy for shadow masks, characterized by the following.
2. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 ?^ 1濃度差が0. 7 %以上である偏析帯が板幅方向 100mm当たり 1. 0 個以下であることを特徴とするシャドウマスク用 F e -N i系合金。 2. By weight percent, Ni: 30-50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities. In the section perpendicular to the rolling direction of the alloy sheet immediately before etching,? ^ 1 Fe-Ni alloy for a shadow mask, wherein the segregation zone having a concentration difference of 0.7% or more is 1.0 or less per 100 mm in the sheet width direction.
3. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 インゴッ卜の組織における樹枝状晶の主軸どうしの間隔が 1. 00mm以下であることを特徴とするシャドウマスク用 F e— N i系合金。 3. By weight%, Ni: 30-50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities, and the distance between the main axes of dendrites in the ingot structure is 1. Fe—Ni-based alloy for shadow masks, characterized in that it is not more than 00 mm.
4. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 100mm当たり 1. 0 個以下である、 エレクトロスラグ再溶解 (ESR) により溶製することを特徴と するシャドウマスク用 F e— N i系合金。 4. By weight%, Ni: 30-50%, Mn: 0.5% or less, the balance consisting of Fe and unavoidable impurities. In the cross section perpendicular to the rolling direction of the alloy sheet immediately before etching, N Fe-N for shadow masks characterized by being melted by electroslag remelting (ESR), with less than 1.0 segregation zones with a concentration difference of 0.7% or more per 100 mm in the plate width direction. i-based alloy.
5. 重量%で、 N i : 30〜50%、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 インゴッ卜の組織における樹枝状晶の主軸どうしの間隔が 1. 00mm以下である、 エレクトロスラグ再溶解 (ESR) により溶製するこ とを特徴とするシャドウマスク用 F e -N i系合金。 5.Weight%, Ni: 30-50%, Mn: 0.5% or less, the balance consists of Fe and unavoidable impurities, and the distance between the main axes of dendrites in the ingot structure is 1. Fe-Ni-based alloy for shadow masks, which is less than 00mm and is produced by electroslag remelting (ESR).
6. 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなるシャドウマスク用 F e -N i系合金をエレクトロスラグ再溶 解により溶製するにあたり、 ィンゴット直径を 1250mm以下にすることを特 徴とするシャドウマスク用 F e一 N i系合金の製造方法。 6. Fe-Ni alloy for shadow masks consisting of Ni: 30 to 50%, Mn: 0.5% or less, the balance being Fe and unavoidable impurities in weight%, by electroslag remelting A method for producing Fe-Ni-based alloys for shadow masks, wherein the ingot diameter is reduced to 1250 mm or less when melting.
7. 重量%で、 N i : 30〜50 %、 Mn : 0. 5 %以下、 残部が F e及び不可 避的不純物からなり、 エッチング直前の合金薄板の圧延方向に直角な断面におい て、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 100mm当たり 1. 0 個以下であるシャドウマスク用 F e— N i系合金をエレクトロスラグ再溶解によ 7. By weight%, Ni: 30-50%, Mn: 0.5% or less, the balance consisting of Fe and unavoidable impurities. In the cross section perpendicular to the rolling direction of the alloy sheet immediately before etching, N i Fe-Ni alloy for shadow masks with less than 1.0 segregation zones with a concentration difference of 0.7% or more per 100 mm
- 11 - 補正された用紙 (条約第 19条) -11-Amended paper (Article 19 of the Convention)
条約 1 9条に基づく説明書 請求項 1は J P 61— 1 1 3746に対応し、 請求項 2および 3の特徴を含む ように補正した。 請求項 2は、 エッチング直前の合金薄板の圧延方向に直角な断 面において、 N i濃度差が 0. 7 %以上である偏析帯が板幅方向 100mm当た り 1. 0個以下であることを特徴としている。 これに対して、 J P 10— 82 1 3では、 N iの濃度のゆらぎを 1 3 %以下にすることを開示したにとどまり、 請 求項 2の特徴は開示していない。 Statements based on Article 19 of the Convention Claim 1 corresponds to JP 61-1 3746 and has been amended to include the features of claims 2 and 3. Claim 2 is that, at a cross section perpendicular to the rolling direction of the alloy sheet immediately before etching, the number of segregation zones having a Ni concentration difference of 0.7% or more is 1.0 or less per 100 mm in the sheet width direction. It is characterized by. On the other hand, JP 10-8213 only disclosed that the fluctuation of the concentration of Ni should be 13% or less, but did not disclose the features of claim 2.
請求項 3は、 スジムラの発生を抑制するために、 インゴットの組織における樹 枝状晶の主軸 (1次デンドライトアーム) どうしの間隔が 1. 00 mm以下であ ることを特徴としている。 これに対して、 J P 1 1— 80839の図 3には、 デ ンドライトアーム間隔が lmm以下であることが記載されている。 しかしながら、 そのデンドライトアーム間隔は、 請求項 3で規定しているィンゴットの組織にお けるものではなく、 インゴットに均熱と分塊を施した後のものである。 しかも、 それが 1次デンドライトアームの間隔か 2次デンドライトアームの間隔なのかも 定かではない。 したがって、 J P 1 1— 80839に請求項 3の特徴が開示され ているということはできない。  Claim 3 is characterized in that, in order to suppress the occurrence of uneven streaks, the interval between the main axes (primary dendrite arms) of dendrites in the ingot structure is 1.00 mm or less. In contrast, FIG. 3 of JP 11-80839 describes that the interval between dendrite arms is 1 mm or less. However, the dendrite arm spacing is not that of the ingot structure as defined in claim 3, but is after the ingot has been soaked and agglomerated. Moreover, it is not clear whether this is the distance between the primary dendrite arms or the distance between the secondary dendrite arms. Therefore, it cannot be said that the features of claim 3 are disclosed in JP 11-80839.
なお、 J P 10— 82 1 3では、 2次デンドライトアームの間隔に基づいて凝 固速度を評価することを記載しているだけで、 1次デンドライトアームの間隔と スジムラの発生については記載していない。 また、 いずれの文献にもインゴット の直径を 1250mm以下にして 1次デンドライト 'アーム ·スペーシングを 1 mm以下にすることを開示していない。  JP 10-82 13 only describes that the setting speed is evaluated based on the distance between the secondary dendrite arms, but does not describe the distance between the primary dendrite arms and the occurrence of uneven streaks. . In addition, none of the documents discloses that the diameter of the ingot is 1250 mm or less and the primary dendrite's arm spacing is 1 mm or less.
PCT/JP2000/004546 1999-09-29 2000-07-07 Fe-Ni ALLOY FOR SHADOW MASK AND METHOD FOR PRODUCTION THEREOF WO2001023631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27621899A JP2001098345A (en) 1999-09-29 1999-09-29 Fe-Ni ALLOY FOR SHADOW MASK, AND ITS MANUFACTURE
JP11/276218 1999-09-29

Publications (1)

Publication Number Publication Date
WO2001023631A1 true WO2001023631A1 (en) 2001-04-05

Family

ID=17566343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004546 WO2001023631A1 (en) 1999-09-29 2000-07-07 Fe-Ni ALLOY FOR SHADOW MASK AND METHOD FOR PRODUCTION THEREOF

Country Status (3)

Country Link
JP (1) JP2001098345A (en)
KR (1) KR100497590B1 (en)
WO (1) WO2001023631A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064451A (en) * 2001-06-11 2003-03-05 Hitachi Ltd Composite gradient alloy plate, manufacturing method therefor and color cathode ray tube having shadow mask using the composite gradient alloy plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113746A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPH108213A (en) * 1996-06-14 1998-01-13 Hitachi Metals Ltd Iron-nickel sheet for shadow mask, excellent in striped irregularity characteristic, and its production
JPH1180839A (en) * 1997-09-08 1999-03-26 Nkk Corp Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
JP2000080447A (en) * 1998-07-09 2000-03-21 Nkk Corp Low thermal expansion alloy steel excellent in etchability and its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056053A (en) * 1983-09-07 1985-04-01 Nippon Mining Co Ltd Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPS61223188A (en) * 1985-03-28 1986-10-03 Nippon Mining Co Ltd Iron-nickel alloy for shadow mask which suppresses generation of uneven stripe during etching
JPH05285632A (en) * 1992-04-13 1993-11-02 Daido Steel Co Ltd Method for electrically melting slag
JP2622796B2 (en) * 1992-06-11 1997-06-18 株式会社日本製鋼所 Electroslag for remelting electroslag and method for producing alloy using the electrode
JP3072199B2 (en) * 1992-10-22 2000-07-31 株式会社日本製鋼所 Method for producing Ni-Fe-based super heat-resistant alloy ingot
JP3363490B2 (en) * 1992-10-16 2003-01-08 日立金属株式会社 Ingot making method of Fe-Ni based alloy ingot
JPH10306349A (en) * 1997-04-28 1998-11-17 Nkk Corp Low thermal expansion alloy sheet for electronic parts, excellent in etching characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113746A (en) * 1984-11-07 1986-05-31 Nippon Mining Co Ltd Material for shadow mask
JPH108213A (en) * 1996-06-14 1998-01-13 Hitachi Metals Ltd Iron-nickel sheet for shadow mask, excellent in striped irregularity characteristic, and its production
JPH1180839A (en) * 1997-09-08 1999-03-26 Nkk Corp Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
JP2000080447A (en) * 1998-07-09 2000-03-21 Nkk Corp Low thermal expansion alloy steel excellent in etchability and its production

Also Published As

Publication number Publication date
JP2001098345A (en) 2001-04-10
KR20020053816A (en) 2002-07-05
KR100497590B1 (en) 2005-07-01

Similar Documents

Publication Publication Date Title
EP0552800B1 (en) Thin metallic sheet for shadow mask
EP0468059B1 (en) Thin sheet of iron-nickel alloy for shadow mask and production thereof
US5605582A (en) Alloy sheet having high etching performance
WO2001023631A1 (en) Fe-Ni ALLOY FOR SHADOW MASK AND METHOD FOR PRODUCTION THEREOF
JP2929881B2 (en) Metal sheet for shadow mask with excellent etching processability
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JP2000219940A (en) Hot rolled steel sheet of low thermal expansion alloy thin sheet stock for electronic parts excellent in etchability
US5958331A (en) Fe-Ni based alloy sheet having superior surface characteristic and superior etchability
US6024809A (en) Fe-Ni alloy materials for electronic parts
JP3363705B2 (en) Method for producing Fe-Ni-based shadow mask sheet having excellent uneven streaks characteristics
JP3584209B2 (en) Slab for shadow mask material, method for manufacturing the slab, and method for manufacturing shadow mask material excellent in streak quality and surface quality
JP3309679B2 (en) Low thermal expansion alloy sheet with excellent etching properties for electronic components
JP3336691B2 (en) Alloy thin sheet for electronics with excellent etching processability
JPH1150200A (en) Low thermal expansion alloy sheet for electronic parts, excellent in etching characteristic
KR100519615B1 (en) Thin Alloy Sheet of Low Thermal Expansion and Shadow Mask Using the Same
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JP2523603B2 (en) High definition shed mask
JP3233356B2 (en) Method for producing low thermal expansion alloy sheet having excellent etching properties
JP3309680B2 (en) Low thermal expansion alloy sheet with excellent etching properties for electronic components
JPH10306349A (en) Low thermal expansion alloy sheet for electronic parts, excellent in etching characteristic
JPH1180839A (en) Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
JP2795028B2 (en) Metal sheet for shadow mask with excellent etching processability
JPH0762495A (en) Thin alloy sheet for electronic instrument having excellent etching workability
JPH1150201A (en) Low thermal expansion alloy thin sheet for electronic parts excellent in etching property
JPH11307005A (en) Flat mask for shadow mask and thin plate for shadow mask

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027004063

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027004063

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020027004063

Country of ref document: KR